1
|
Sekiguchi K, Matoba K, Nagai Y, Nagao S, Ohashi S, Mitsuyoshi E, Hayashi T, Kawanami D, Yokota T, Shibata H, Utsunomiya K, Nishimura R. Rho-associated, coiled-coil-containing protein kinase 2 regulates expression of mineralocorticoid receptor to mediate sodium reabsorption in mice. Biochem Biophys Res Commun 2024; 736:150874. [PMID: 39467357 DOI: 10.1016/j.bbrc.2024.150874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor family that was initially identified to regulate blood pressure through its ability to modulate kidney sodium handling in response to aldosterone. MR can be regulated by signals other than aldosterone; however, the detailed mechanisms remain to be elucidated. We found that MR is controlled in a Rho-associated coiled-coil-containing protein kinase 2 (ROCK2)-dependent manner. Mice with a specific deletion of ROCK2 in the kidney tubules showed decreased MR expression levels and increased urinary excretion of sodium. Mechanistically, signal transducer and activator of transcription 3 (STAT3) is a key molecule that mediates MR expression in these mice. This study highlights an important role of tubular ROCK2 in electrolyte homeostasis.
Collapse
Affiliation(s)
- Kensuke Sekiguchi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Yosuke Nagai
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Satoru Nagao
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shinji Ohashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Etsuko Mitsuyoshi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takeshi Hayashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, 814-0180, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | | | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
2
|
Min K, Matsumoto Y, Asakura M, Ishihara M. Rediscovery of the implication of albuminuria in heart failure: emerging classic index for cardiorenal interaction. ESC Heart Fail 2024; 11:3470-3487. [PMID: 38725278 PMCID: PMC11631258 DOI: 10.1002/ehf2.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 12/12/2024] Open
Abstract
The development of new drugs and device therapies has led to remarkable advancements in heart failure (HF) treatment in the past couple of decades. However, it becomes increasingly evident that guideline-directed medical therapy cannot be one-size-fits-all across a wide range of ejection fractions (EFs) and various aetiologies. Therefore, classifications solely relying on EF and natriuretic peptide make optimization of treatment challenging, and there is a growing exploration of new indicators that enable efficient risk stratification of HF patients. Particularly when considering HF as a multi-organ interaction syndrome, the cardiorenal interaction plays a central role in its pathophysiology, and albuminuria has gained great prominence as its biomarker, independent from glomerular filtration rate. Albuminuria has been shown to exhibit a linear correlation with cardiovascular disease and HF prognosis in multiple epidemiological studies, ranging from normal (<30 mg/g) to high levels (>300 mg/g). However, on the other hand, it is only recently that the details of the pathological mechanisms that give rise to albuminuria have begun to be elucidated, including the efficient compaction/tightening of the glomerular basement membrane by podocytes and mesangial cells. Interestingly, renal disease, diabetes, and HF damage these components associated with albuminuria, and experimental models have demonstrated that recently developed HF drugs reduce albuminuria by ameliorating these pathological phenotypes. In this review, facing the rapid expansion of horizons in HF treatment, we aim to clarify the current understanding of the pathophysiology of albuminuria and explore the comprehensive understanding of albuminuria by examining the clinically established evidence to date, the pathophysiological mechanisms leading to its occurrence, and the outcomes of clinical studies utilizing various drug classes committed to specific pathological mechanisms to put albuminuria as a novel axis to depict the pathophysiology of HF.
Collapse
Affiliation(s)
- Kyung‐Duk Min
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Yuki Matsumoto
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Masanori Asakura
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| |
Collapse
|
3
|
Kim K, Oh N, Kim H, Roh S. Y-27632 enables long-term expansion of mouse submandibular gland epithelial cells via inactivation of TGF-β1/CTGF/p38 and ROCK2/JNK signaling pathway. J Oral Biosci 2024; 66:98-106. [PMID: 39222911 DOI: 10.1016/j.job.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES This study aimed to investigate the effects of Y-27632 on the long-term maintainence of mouse submandibular epithelial cells (SG-Epis) in vitro and to elucidate the underlying mechanisms. METHODS The role of the Rho-associated kinase (ROCK) inhibitor Y-27632 in maintaining SG-Epis and its underlying mechanisms were evaluated by examining the in vitro expansion of mouse SG-Epis. Changes in key cellular characteristics, such as proliferation, long-term expansion, and mRNA and protein expression, were assessed in the presence or absence of Y-27632. RESULTS Treatment with Y-27632 significantly enhanced the proliferative potential of SG-Epis, preserving Krt8 and Krt14 expression over 17 passages. In the absence of Y-27632, SG-Epis lost their epithelial morphology. However, Y-27632 treatment maintained the epithelial morphology and downregulated mRNA levels of Tgf-β1, Ctgf, and Rock2. Treatment with TGF-β1 indicated that TGF-β/CTGF/p38 signaling is responsible for the maintenance of SG-Epis, while RNA interference studies revealed that ROCK2/c-Jun N-terminal kinase (JNK) signaling is also crucial for SG-Epis proliferation and maintenance. CONCLUSIONS The TGF-β1/CTGF/p38 and ROCK2/JNK signaling pathways are responsible for SG-Epis proliferation, and Y-27632 treatment effectively inactivates these pathways, enabling long-term in vitro maintenance of SG-Epis. The culture method utilizing Y-27632 provides an effective approach for the in vitro expansion of SG-Epis.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Naeun Oh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Chang HH, Wu SB, Tsai CC. A Review of Pathophysiology and Therapeutic Strategies Targeting TGF-β in Graves' Ophthalmopathy. Cells 2024; 13:1493. [PMID: 39273063 PMCID: PMC11393989 DOI: 10.3390/cells13171493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
TGF-β plays a pivotal role in the pathogenesis of GO by promoting orbital tissue remodeling and fibrosis. This process involves the stimulation of orbital fibroblasts, leading to myofibroblast differentiation, increased production of inflammatory mediators, and hyaluronan accumulation. Studies have elucidated TGF-β's role in driving fibrosis and scarring processes through both canonical and non-canonical pathways, particularly resulting in the activation of orbital myofibroblasts and the excessive accumulation of extracellular matrix. Additionally, recent in vitro and in vivo studies have been summarized, highlighting the therapeutic potential of targeting TGF-β signaling pathways, which may offer promising treatment interventions for GO. This review aims to consolidate the current understanding of the multifaceted role of TGF-β in the molecular and cellular pathophysiology in Graves' ophthalmopathy (GO) by exploring its contributions to fibrosis, inflammation, and immune dysregulation. Additionally, the review investigates the therapeutic potential of inhibiting TGF-β signaling pathways as a strategy for treating GO.
Collapse
Affiliation(s)
- Hsin-Ho Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shi-Bei Wu
- Office of Business Development, Technology Commercialization Center, Taipei Medical University, Taipei 110, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
6
|
Cao Y, Wang Y, Li W, Feng J, Chen Y, Chen R, Hu L, Wei J. Fasudil attenuates oxidative stress-induced partial epithelial-mesenchymal transition of tubular epithelial cells in hyperuricemic nephropathy via activating Nrf2. Eur J Pharmacol 2024; 975:176640. [PMID: 38750716 DOI: 10.1016/j.ejphar.2024.176640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024]
Abstract
Anti-partial epithelial-mesenchymal transition (pEMT) treatment of renal tubular epithelial cells (TECs) represents a promising therapeutic approach. Hyperuricemia nephropathy (HN) arises as a consequence of hyperuricemia (HUA)-induced tubulointerstitial fibrosis (TIF). Studies have suggested that the Ras homolog member A (RhoA)/Rho-associated kinase (ROCK) pathway is a crucial signaling transduction system in renal fibrosis. Fasudil, a RhoA/ROCK inhibitor, has exhibited the potential to prevent fibrosis progress. However, its impact on the pEMT of TECs in HN remains unclear. Here, an HN rat model and an uric acid (UA)-stimulated human kidney 2 (HK2) cell model were established and treated with Fasudil to explore its effects. Furthermore, the underlying mechanism of action involved in the attenuation of pEMT in TECs by Fasudil during HN was probed by using multiple molecular approaches. The HN rat model exhibited significant renal dysfunction and histopathological damage, whereas in vitro and in vivo experiments further confirmed the pEMT status accompanied by RhoA/ROCK pathway activation and oxidative stress in tubular cells exposed to UA. Notably, Fasudil ameliorated these pathological changes, and this was consistent with the trend of ROCK silencing in vitro. Mechanistically, we identified the Neh2 domain of nuclear factor erythroid 2-related factor 2 (Nrf2) as a target of Fasudil for the first time. Fasudil targets Nrf2 activation and antagonizes oxidative stress to attenuate the pEMT of TECs in HN. Our findings suggest that Fasudil attenuates oxidative stress-induced pEMT of TECs in HN by targeting Nrf2 activation. Thus, Fasudil is a potential therapeutic agent for the treatment of HN.
Collapse
Affiliation(s)
- Yun Cao
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yanni Wang
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Weiwei Li
- Division of Nephrology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Jianan Feng
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yao Chen
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Ruike Chen
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Langtao Hu
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China.
| |
Collapse
|
7
|
Matoba K, Nagai Y, Sekiguchi K, Ohashi S, Mitsuyoshi E, Shimoda M, Tachibana T, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. Deletion of podocyte Rho-associated, coiled-coil-containing protein kinase 2 protects mice from focal segmental glomerulosclerosis. Commun Biol 2024; 7:402. [PMID: 38565675 PMCID: PMC10987559 DOI: 10.1038/s42003-024-06127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) shares podocyte damage as an essential pathological finding. Several mechanisms underlying podocyte injury have been proposed, but many important questions remain. Rho-associated, coiled-coil-containing protein kinase 2 (ROCK2) is a serine/threonine kinase responsible for a wide array of cellular functions. We found that ROCK2 is activated in podocytes of adriamycin (ADR)-induced FSGS mice and cultured podocytes stimulated with ADR. Conditional knockout mice in which the ROCK2 gene was selectively disrupted in podocytes (PR2KO) were resistant to albuminuria, glomerular sclerosis, and podocyte damage induced by ADR injection. In addition, pharmacological intervention for ROCK2 significantly ameliorated podocyte loss and kidney sclerosis in a murine model of FSGS by abrogating profibrotic factors. RNA sequencing of podocytes treated with a ROCK2 inhibitor proved that ROCK2 is a cyclic nucleotide signaling pathway regulator. Our study highlights the potential utility of ROCK2 inhibition as a therapeutic option for FSGS.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Yosuke Nagai
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shinji Ohashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Etsuko Mitsuyoshi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, 814-0180, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | | | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
8
|
Yoo D, Horacek M, Chae MK, Kim JY, Bu P, Yoon JS. The Effect of Rho Kinase Inhibitors on In Vitro Human Orbital Preadipocytes. Ophthalmic Plast Reconstr Surg 2024; 40:181-186. [PMID: 37995134 DOI: 10.1097/iop.0000000000002523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
PURPOSE To identify the effects of Rho Kinase (ROCK) inhibitor medications on human orbital adipogenesis, fibroblast proliferation, and fibrosis. METHODS Orbital adipose tissue was obtained from patients with Graves' ophthalmopathy (GO) as well as controls (non-GO or normal) after informed consent was done. These tissue samples were cultured and adipogenesis was initiated. Levels of Rho Kinase as well as cellular mediators of orbital inflammation and fibrosis. The same cultures and measurements were then repeated with the use of a ROCK inhibitor (KD025-ROCK2) to assess for changes in adipogenesis as well as markers associated with inflammation and fibrosis. RESULTS Rho Kinase levels in GO tissue were more highly expressed than in controls. These levels were suppressed with the use of the ROCK inhibitor KD025. There was a dose-dependent reduction in differentiation of orbital adipocytes with the use of KD025. KD025 reduced the levels of fibrosis-related gene expression. Finally, there was a significant reduction of transforming growth factor beta mediated phosphorylation signaling pathways in the KD025-treated GO tissue. CONCLUSION This study shows that the ROCK inhibitor, KD025, helps to reduce the expression of ROCK in GO tissue along with reducing orbital adipocyte differentiation as well as cell mediators involved in fibrosis that occurs in GO.
Collapse
Affiliation(s)
- David Yoo
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, U.S.A
| | - Meredith Horacek
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, U.S.A
| | - Min Kyung Chae
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Young Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Ping Bu
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois, U.S.A
| | - Jin Sook Yoon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Trivedi A, Bose D, Saha P, Roy S, More M, Skupsky J, Klimas NG, Chatterjee S. Prolonged Antibiotic Use in a Preclinical Model of Gulf War Chronic Multisymptom-Illness Causes Renal Fibrosis-like Pathology via Increased micro-RNA 21-Induced PTEN Inhibition That Is Correlated with Low Host Lachnospiraceae Abundance. Cells 2023; 13:56. [PMID: 38201260 PMCID: PMC10777912 DOI: 10.3390/cells13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Gulf War (GW) veterans show gastrointestinal disturbances and gut dysbiosis. Prolonged antibiotic treatments commonly employed in veterans, especially the use of fluoroquinolones and aminoglycosides, have also been associated with dysbiosis. This study investigates the effect of prolonged antibiotic exposure on risks of adverse renal pathology and its association with gut bacterial species abundance in underlying GWI and aims to uncover the molecular mechanisms leading to possible renal dysfunction with aging. Using a GWI mouse model, administration of a prolonged antibiotic regimen involving neomycin and enrofloxacin treatment for 5 months showed an exacerbated renal inflammation with increased NF-κB activation and pro-inflammatory cytokines levels. Involvement of the high mobility group 1 (HMGB1)-mediated receptor for advanced glycation end products (RAGE) activation triggered an inflammatory phenotype and increased transforming growth factor-β (TGF-β) production. Mechanistically, TGF-β- induced microRNA-21 upregulation in the renal tissue leads to decreased phosphatase and tensin homolog (PTEN) expression. The above event led to the activation of protein kinase-B (AKT) signaling, resulting in increased fibronectin production and fibrosis-like pathology. Importantly, the increased miR-21 was associated with low levels of Lachnospiraceae in the host gut which is also a key to heightened HMGB1-mediated inflammation. Overall, though correlative, the study highlights the complex interplay between GWI, host gut dysbiosis, prolonged antibiotics usage, and renal pathology via miR-21/PTEN/AKT signaling.
Collapse
Affiliation(s)
- Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
| | | | - Nancy G. Klimas
- Institute for Neuro-Immune Medicine, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (A.T.); (D.B.); (P.S.); (S.R.); (M.M.)
- Long Beach VA Medical Center, Long Beach, CA 90822, USA;
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
11
|
Amano H, Inoue T, Kusano T, Fukaya D, Kosakai W, Okada H. Module 4-Deficient CCN2/Connective Tissue Growth Factor Attenuates the Progression of Renal Fibrosis via Suppression of Focal Adhesion Kinase Phosphorylation in Tubular Epithelial Cells. Mol Cell Biol 2023; 43:515-530. [PMID: 37746701 PMCID: PMC10569360 DOI: 10.1080/10985549.2023.2253130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
CCN2/connective tissue growth factor (CTGF) potentially serves as a therapeutic target for chronic kidney disease. Here we investigated CCN2 module-4, encoded by Ccn2 exon 5, through the generation of Ccn2 exon 5 knockout mice (Ex5-/- mice). To investigate renal fibrosis pathogenesis, Ex5-/- mice were employed to model unilateral ureteral obstruction (UUO), unilateral ischemic-reperfusion injury (UIRI), and 5/6 nephrectomy. Interstitial fibrosis was significantly attenuated in the Ex5-/- mice in the three models. Furthermore, phosphorylated focal adhesion kinase (FAK) levels in tubular epithelial cells were significantly lower in the kidneys of the UUO- and UIRI-Ex5-/- mice than those of the Ex5+/+ mice. Moreover, CCN2 module 4-mediated renal tubule FAK and promoted fibrosis. These findings indicate that CCN2 module-4-FAK pathway components will serve as therapeutic targets for effectively attenuating renal fibrosis.
Collapse
Affiliation(s)
- Hiroaki Amano
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takeru Kusano
- General Internal Medicine, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Daichi Fukaya
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Wakako Kosakai
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hirokazu Okada
- Department of Nephrology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
12
|
Haroun E, Agrawal K, Leibovitch J, Kassab J, Zoghbi M, Dutta D, Lim SH. Chronic graft-versus-host disease in pediatric patients: Differences and challenges. Blood Rev 2023; 60:101054. [PMID: 36805299 DOI: 10.1016/j.blre.2023.101054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Despite the use of high-resolution molecular techniques for tissue typing, chronic graft-versus-host disease (cGVHD) remains a major complication following allogeneic hematopoietic stem cell transplant. cGVHD adversely affects the life-expectancy and quality of life. The latter is particularly important and functionally relevant in pediatric patients who have a longer life-expectancy than adults. Current laboratory evidence suggests that there is not any difference in the pathophysiology of cGVHD between adults and pediatric patients. However, there are some clinical features and complications of the disease that are different in pediatric patients. There are also challenges in the development of new therapeutics for this group of patients. In this review, we will discuss the epidemiology, pathophysiology, clinical features and consequences of the disease, and highlight the differences between pediatric and adult patients. We will examine the current treatment options for pediatric patients with moderate to severe cGVHD and discuss the challenges facing therapeutic development for cGVHD in the pediatric population.
Collapse
Affiliation(s)
- Elio Haroun
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Kavita Agrawal
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Jennifer Leibovitch
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Joseph Kassab
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Marianne Zoghbi
- Department of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Dibyendu Dutta
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America
| | - Seah H Lim
- Division of Hematology and Oncology, State University of New York Upstate Medical University, Syracuse, NY, United States of America,; Sanofi Oncology, Cambridge, MA, United States of America.
| |
Collapse
|
13
|
Kim HJ, Hwang JS, Noh KB, Oh SH, Park JB, Shin YJ. A p-Tyr42 RhoA Inhibitor Promotes the Regeneration of Human Corneal Endothelial Cells by Ameliorating Cellular Senescence. Antioxidants (Basel) 2023; 12:1186. [PMID: 37371916 DOI: 10.3390/antiox12061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The development of treatment strategies for human corneal endothelial cells (hCECs) disease is necessary because hCECs do not regenerate in vivo due to the properties that are similar to senescence. This study is performed to investigate the role of a p-Tyr42 RhoA inhibitor (MH4, ELMED Inc., Chuncheon) in transforming growth factor-beta (TGF-β)- or H2O2-induced cellular senescence of hCECs. Cultured hCECs were treated with MH4. The cell shape, proliferation rate, and cell cycle phases were analyzed. Moreover, cell adhesion assays and immunofluorescence staining for F-actin, Ki-67, and E-cadherin were performed. Additionally, the cells were treated with TGF-β or H2O2 to induce senescence, and mitochondrial oxidative reactive oxygen species (ROS) levels, mitochondrial membrane potential, and NF-κB translocation were evaluated. LC3II/LC3I levels were determined using Western blotting to analyze autophagy. MH4 promotes hCEC proliferation, shifts the cell cycle, attenuates actin distribution, and increases E-cadherin expression. TGF-β and H2O2 induce senescence by increasing mitochondrial ROS levels and NF-κB translocation into the nucleus; however, this effect is attenuated by MH4. Moreover, TGF-β and H2O2 decrease the mitochondrial membrane potential and induce autophagy, while MH4 reverses these effects. In conclusion, MH4, a p-Tyr42 RhoA inhibitor, promotes the regeneration of hCECs and protects hCECs against TGF-β- and H2O2-induced senescence via the ROS/NF-κB/mitochondrial pathway.
Collapse
Affiliation(s)
- Hyeon Jung Kim
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| |
Collapse
|
14
|
Zheng L, Qin R, Rao Z, Xiao W. High-intensity interval training induces renal injury and fibrosis in type 2 diabetic mice. Life Sci 2023; 324:121740. [PMID: 37120014 DOI: 10.1016/j.lfs.2023.121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
AIMS Previous studies showed that high-intensity interval training (HIIT) improved fasting blood glucose and insulin resistance in type 2 diabetes mellitus (T2DM) mice. However, the effect of HIIT on the kidneys of mice with T2DM has not been examined. This study aimed to investigate the impact of HIIT on the kidneys of T2DM mice. MATERIALS AND METHODS T2DM mice were induced with a high-fat diet (HFD) and one-time 100 mg/kg streptozotocin intraperitoneal injection, and then T2DM mice were treated with 8 weeks of HIIT. Renal function and glycogen deposition were observed by serum creatinine levels and PAS staining, respectively. Sirius red staining, hematoxylin-eosin staining, and Oil red O staining were used to detect fibrosis and lipid deposition. Western blotting was performed to detect the protein levels. KEY FINDINGS HIIT significantly ameliorated the body composition, fasting blood glucose, and serum insulin of the T2DM mice. HIIT also improved glucose tolerance, insulin tolerance, and renal lipid deposition of T2DM mice. However, we found that HIIT increased serum creatinine and glycogen accumulation in the kidneys of T2DM mice. Western blot analysis showed that the PI3K/AKT/mTOR signaling pathway was activated after HIIT. The expression of fibrosis-related proteins (TGF-β1, CTGF, collagen-III, α-SMA) increased, while the expression of klotho (sklotho) and MMP13 decreased in the kidneys of HIIT mice. SIGNIFICANCE This study concluded that HIIT induced renal injury and fibrosis, although it also improved glucose homeostasis in T2DM mice. The current study reminds us that patients with T2DM should be cautious when participating in HIIT.
Collapse
Affiliation(s)
- Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; Shanghai Key Lab of Human Performance, Shanghai University of sport, Shanghai 200438, China
| | - Ruiting Qin
- College of Physical Education, Shanghai University, Shanghai 200444, China
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China; Exercise Biological Center, China Institute of Sport Science, Beijing, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of sport, Shanghai 200438, China.
| |
Collapse
|
15
|
Nagai Y, Matoba K, Yako H, Ohashi S, Sekiguchi K, Mitsuyoshi E, Sango K, Kawanami D, Utsunomiya K, Nishimura R. Rho-kinase inhibitor restores glomerular fatty acid metabolism in diabetic kidney disease. Biochem Biophys Res Commun 2023; 649:32-38. [PMID: 36739697 DOI: 10.1016/j.bbrc.2023.01.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
The small GTPase Rho and its effector Rho-kinase (ROCK) are activated in the diabetic kidney, and recent studies decade have demonstrated that ROCK signaling is an integral pathway in the progression of diabetic kidney disease. We previously identified the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism in diabetic glomeruli. However, the effect of pharmacological intervention for ROCK1 is not clear. In the present study, we show that the inhibition of ROCK1 by Y-27632 and fasudil restores fatty acid oxidation in the glomeruli. Mechanistically, these compounds optimize fatty acid utilization and redox balance in mesangial cells via AMPK phosphorylation and the subsequent induction of PGC-1α. A further in vivo study showed that the inhibition of ROCK1 suppressed the downregulation of the fatty acid oxidation-related gene expression in glomeruli and mitochondrial fragmentation in the mesangial cells of db/db mice. These observations indicate that ROCK1 could be a promising therapeutic target for diabetic kidney disease through a mechanism that improves glomerular fatty acid metabolism.
Collapse
Affiliation(s)
- Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Hideji Yako
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinji Ohashi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Etsuko Mitsuyoshi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Dong X, Tang Y. Ntrk1 promotes mesangial cell proliferation and inflammation in rat glomerulonephritis model by activating the STAT3 and p38/ERK MAPK signaling pathways. BMC Nephrol 2022; 23:413. [PMID: 36575400 PMCID: PMC9795628 DOI: 10.1186/s12882-022-03001-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/07/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mesangial proliferative glomerulonephritis (MsPGN) accounts for a main cause of chronic kidney disease (CKD), chronic renal failure and uremia. This paper aimed to examine the effect of Ntrk1 on MsPGN development, so as to identify a novel therapeutic target for MsPGN. METHODS The MsPGN rat model was constructed by single injection of Thy1.1 monoclonal antibody via the tail vein. Additionally, the Ntrk1 knockdown rat model was established by injection of Ntrk1-RNAi lentivirus via the tail vein. Periodic acid-schiff staining and immunohistochemistry (IHC) were performed on kidney tissues. Moreover, the rat urinary protein was detected. Mesangial cells were transfected and treated with p38 inhibitor (SB202190) and ERK inhibitor (PD98059). Meanwhile, the viability and proliferation of mesangial cells were analyzed by cell counting kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine assays. Gene expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western-blot (WB) assays. RESULTS The proliferation of mesangial cells was enhanced in glomerulus and Ki67 expression was up-regulated in renal tubule of MsPGN rats. The urine protein level increased in MsPGN rats. Pro-inflammatory factors and Ntrk1 expression were up-regulated in glomerulus of MsPGN rats. Ntrk1 up-regulation promoted the viability, proliferation, expression of pro-inflammatory factors and activation of the STAT3, p38 and ERK signaling pathways in mesangial cells. Ntrk1 knockdown reduced mesangial cell proliferation, urine protein, pro-inflammatory factors, activation of STAT3, p38 and ERK signaling pathways in glomerulus, and decreased Ki67 expression in renal tubule of MsPGN rats. Treatment with SB202190 and PD98059 reversed the effect of Ntrk1 on promoting the viability, proliferation and inflammatory response of mesangial cells. CONCLUSION Ntrk1 promoted mesangial cell proliferation and inflammation in MsPGN rats by activating the STAT3 and p38/ERK MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiongjun Dong
- Blood Purification Center, The Second People’s Hospital of Wuhu, Anhui Province, 241000 China
| | - Yingchun Tang
- Blood Purification Center, The Second People’s Hospital of Wuhu, Anhui Province, 241000 China
| |
Collapse
|
17
|
Mu Q, Zhang C, Li R, Guo Z. CircPalm2 knockdown alleviates LPS-evoked pulmonary microvascular endothelial cell apoptosis and inflammation via miR-450b-5p/ROCK1 axis. Int Immunopharmacol 2022; 113:109199. [DOI: 10.1016/j.intimp.2022.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
|
18
|
Regulatory Networks, Management Approaches, and Emerging Treatments of Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2022; 2022:6799414. [PMID: 36397950 PMCID: PMC9666027 DOI: 10.1155/2022/6799414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
The pathogenesis of NAFLD is complex and diverse, involving multiple signaling pathways and cytokines from various organs. Hepatokines, stellakines, adipokines, and myokines secreted by hepatocytes, hepatic stellate cells, adipose tissue, and myocytes play an important role in the occurrence and development of nonalcoholic fatty liver disease (NAFLD). The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributes to the progression of NAFLD by mediating liver inflammation, immune response, hepatocyte death, and later compensatory proliferation. In this review, we first discuss the crosstalk and interaction between hepatokines, stellakines, adipokines, and myokines and NF-κB in NAFLD. The characterization of the crosstalk of NF-κB with these factors will provide a better understanding of the molecular mechanisms involved in the progression of NAFLD. In addition, we examine new expert management opinions for NAFLD and explore the therapeutic potential of silymarin in NAFLD/NASH.
Collapse
|
19
|
Qian X, Yang L. ROCK2 knockdown alleviates LPS‑induced inflammatory injury and apoptosis of renal tubular epithelial cells via the NF‑κB/NLRP3 signaling pathway. Exp Ther Med 2022; 24:603. [PMID: 35949322 PMCID: PMC9353529 DOI: 10.3892/etm.2022.11540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Rho-associated protein kinase 2 (ROCK2) is an important regulator of the inflammatory response and has been reported to serve a role in sepsis. The present study aimed to investigate whether ROCK2 served a role in sepsis-associated acute kidney injury (S-AKI). HK-2 cells were stimulated with lipopolysaccharide (LPS) to simulate S-AKI in vitro. Subsequently, the change in ROCK2 expression levels were determined. ROCK2 in LPS-induced HK-2 cells was knocked down using short hairpin RNA-ROCK2, in the absence or presence of phorbol 12-myristate 13-acetate (PMA), an activator of NF-κB. Cell viability, cytotoxicity, inflammation and apoptosis were assessed using MTT, lactate dehydrogenase (LDH) release, reverse transcription-quantitative PCR, ELISA, TUNEL and western blotting assays. The protein expression levels of proteins involved in the NF-κB/NLR family pyrin domain containing 3 (NLRP3) signaling pathway were also assessed using western blotting. The results demonstrated that ROCK2 was upregulated in HK-2 cells upon LPS treatment. LPS also reduced cell viability, promoted LDH activity and increased TNF-α, IL-6 and IL-1β mRNA expression levels and concentrations. Apoptosis was also induced by LPS as indicated by an increase in the proportion of TUNEL-positive cells, decreased Bcl-2 protein expression levels and increased cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase protein expression levels. However, ROCK2 knockdown in LPS-induced HK-2 cells reversed cell viability damage and inhibited LDH activity, the generation of pro-inflammatory cytokines and apoptosis caused by LPS. Furthermore, ROCK2 knockdown inhibited the LPS-induced expression of phosphorylated-NF-κB p65, NLRP3, apoptosis-associated speck-like protein containing a CARD and caspase-1 p20. PMA treatment reversed all the aforementioned effects of ROCK2 knockdown on LPS-treated HK-2 cells. Therefore, ROCK2 knockdown may alleviate LPS-induced HK-2 cell injury via the inactivation of the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xinfeng Qian
- Department of Emergency, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Linjun Yang
- Department of Emergency, Hanzhong People's Hospital, Hanzhong, Shaanxi 723000, P.R. China
| |
Collapse
|
20
|
Rho-associated, coiled-coil-containing protein kinase 1 regulates development of diabetic kidney disease via modulation of fatty acid metabolism. Kidney Int 2022; 102:536-545. [PMID: 35597365 DOI: 10.1016/j.kint.2022.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022]
Abstract
Dysregulation of fatty acid utilization is increasingly recognized as a significant component of diabetic kidney disease. Rho-associated, coiled-coil-containing protein kinase (ROCK) is activated in the diabetic kidney, and studies over the past decade have illuminated ROCK signaling as an essential pathway in diabetic kidney disease. Here, we confirmed the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism using glomerular mesangial cells and ROCK1 knockout mice. Mesangial cells with ROCK1 deletion were protected from mitochondrial dysfunction and redox imbalance driven by transforming growth factor β, a cytokine upregulated in diabetic glomeruli. We found that high-fat diet-induced obese ROCK1 knockout mice exhibited reduced albuminuria and histological abnormalities along with the recovery of impaired fatty acid utilization and mitochondrial fragmentation. Mechanistically, we found that ROCK1 regulates the induction of critical mediators in fatty acid metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1α, carnitine palmitoyltransferase 1, and widespread program-associated cellular metabolism. Thus, our findings highlight ROCK1 as an important regulator of energy homeostasis in mesangial cells in the overall pathogenesis of diabetic kidney disease.
Collapse
|
21
|
Etlingera elatior Flower Aqueous Extract Protects against Oxidative Stress-Induced Nephropathy in a Rat Model of Type 2 Diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2814196. [PMID: 35502173 PMCID: PMC9056225 DOI: 10.1155/2022/2814196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a known systemic disease with increasing global prevalence and multi-organ complications including diabetic nephropathy (DN). The trend of using medicinal plants in the management of DM is increasing exponentially. Etlingera elatior is a medicinal plant that contains chemicals and antioxidants that delay the oxidation process. However, available data focusing on its use on DN are inconsistent and scarce. This study aims to investigate the antidiabetic and nephroprotective effects of E. elatior flower aqueous extract (EEAE) in a type 2 DM rat (T2DR) model. The T2DR model was developed using a combination of a high-fat diet (HFD) and a low dose of streptozotocin (STZ) at 35 mg/kg. Thirty-two Sprague Dawley male rats were randomly divided into four groups (n = 8): (1) control (normal rat), (2) T2DR (untreated-type 2 diabetic rat), (3) Met (250 mg/kg metformin-treated T2DR), and (4) EEAE (1000 mg/kg EEAE-treated T2DR). All treatments were administered orally for 6 weeks. EEAE significantly reduced fasting blood glucose (FBG), microalbuminuria, serum creatinine, and serum blood urea nitrogen. EEAE also reduced malondialdehyde (MDA) and enhanced the levels of antioxidant markers—superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and total antioxidant capacity (T-AOC). The inflammatory marker (interleukin (IL)-6) and fibrosis markers (transforming growth factor-beta (TGF-β), and connective tissue growth factor (CTGF)) were significantly decreased in the EEAE-treated group. The T2DR group developed DN, which was characterized by segmental sclerosis of the glomeruli associated with focal tubular atrophy and interstitial fibrosis. Interestingly, the histology of kidney tissue in the EEAE group was preserved. This effect was similar to that of the control drug metformin. In summary, the antidiabetic and nephroprotective effects might be related to the antioxidant properties and anti-inflammatory effects of the EEAE. The antidiabetic activity could be due to the presence of the active compound cyanidin-3-O-glycosides, which is an anthocyanin antioxidant, that is present in the EEAE. E. elatior has the potential to be developed as a natural source of antioxidants that can be used for the prevention or even the treatment of DM. These findings could lead to future research into the therapeutic use of E. elatior in alleviating the progression of DM and thus preventing nephropathy.
Collapse
|
22
|
Matoba K, Takeda Y, Nagai Y, Sekiguchi K, Ukichi R, Takahashi H, Aizawa D, Ikegami M, Tachibana T, Kawanami D, Kanazawa Y, Yokota T, Utsunomiya K, Nishimura R. ROCK2-induced metabolic rewiring in diabetic podocytopathy. Commun Biol 2022; 5:341. [PMID: 35396346 PMCID: PMC8993857 DOI: 10.1038/s42003-022-03300-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/22/2022] [Indexed: 12/26/2022] Open
Abstract
Loss of podocytes is a common feature of diabetic renal injury and a key contributor to the development of albuminuria. We found that podocyte Rho associated coiled-coil containing protein kinase 2 (ROCK2) is activated in rodent models and patients with diabetes. Mice that lacked ROCK2 only in podocytes (PR2KO) were resistant to albuminuria, glomerular fibrosis, and podocyte loss in multiple animal models of diabetes (i.e., streptozotocin injection, db/db, and high-fat diet feeding). RNA-sequencing of ROCK2-null podocytes provided initial evidence suggesting ROCK2 as a regulator of cellular metabolism. In particular, ROCK2 serves as a suppressor of peroxisome proliferator-activated receptors α (PPARα), which rewires cellular programs to negatively control the transcription of genes involved in fatty acid oxidation and consequently induce podocyte apoptosis. These data establish ROCK2 as a nodal regulator of podocyte energy homeostasis and suggest this signaling pathway as a promising target for the treatment of diabetic podocytopathy. ROCK2 is found to be activated in 3 diabetic models and patients with diabetes. ROCK2 deletion in podocytes protects against diabetic kidney injury, with the beneficial effect of ROCK2 inhibition observed due to rescued PPARα signaling, leading to a recovery of fatty acid metabolism.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Yusuke Takeda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Rikako Ukichi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Hiroshi Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Daisuke Aizawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, 814-0180, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
23
|
Chen YY, Chen XG, Zhang S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin 2022; 43:505-519. [PMID: 33990764 PMCID: PMC8888625 DOI: 10.1038/s41401-021-00660-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Renal fibrosis contributes to progressive damage to renal structure and function. It is a common pathological process as chronic kidney disease develops into kidney failure, irrespective of diverse etiologies, and eventually leads to death. However, there are no effective drugs for renal fibrosis treatment at present. Lipid aggregation in the kidney and consequent lipotoxicity always accompany chronic kidney disease and fibrosis. Numerous studies have revealed that restoring the defective fatty acid oxidation in the kidney cells can mitigate renal fibrosis. Thus, it is an important strategy to reverse the dysfunctional lipid metabolism in the kidney, by targeting critical regulators of lipid metabolism. In this review, we highlight the potential "druggability" of lipid metabolism to ameliorate renal fibrosis and provide current pre-clinical evidence, exemplified by some representative druggable targets and several other metabolic regulators with anti-renal fibrosis roles. Then, we introduce the preliminary progress of noncoding RNAs as promising anti-renal fibrosis drug targets from the perspective of lipid metabolism. Finally, we discuss the prospects and deficiencies of drug targeting lipid reprogramming in the kidney.
Collapse
Affiliation(s)
- Yuan-yuan Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Xiao-guang Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| |
Collapse
|
24
|
Steichen C, Hervé C, Hauet T, Bourmeyster N. Rho GTPases in kidney physiology and diseases. Small GTPases 2022; 13:141-161. [PMID: 34138686 PMCID: PMC9707548 DOI: 10.1080/21541248.2021.1932402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Rho family GTPases are molecular switches best known for their pivotal role in dynamic regulation of the actin cytoskeleton, but also of cellular morphology, motility, adhesion and proliferation. The prototypic members of this family (RhoA, Rac1 and Cdc42) also contribute to the normal kidney function and play important roles in the structure and function of various kidney cells including tubular epithelial cells, mesangial cells and podocytes. The kidney's vital filtration function depends on the structural integrity of the glomerulus, the proximal portion of the nephron. Within the glomerulus, the architecturally actin-based cytoskeleton podocyte forms the final cellular barrier to filtration. The glomerulus appears as a highly dynamic signalling hub that is capable of integrating intracellular cues from its individual structural components. Dynamic regulation of the podocyte cytoskeleton is required for efficient barrier function of the kidney. As master regulators of actin cytoskeletal dynamics, Rho GTPases are therefore of critical importance for sustained kidney barrier function. Dysregulated activities of the Rho GTPases and of their effectors are implicated in the pathogenesis of both hereditary and idiopathic forms of kidney diseases. Diabetic nephropathy is a progressive kidney disease that is caused by injury to kidney glomeruli. High glucose activates RhoA/Rho-kinase in mesangial cells, leading to excessive extracellular matrix production (glomerulosclerosis). This RhoA/Rho-kinase pathway also seems involved in the post-transplant hypertension frequently observed during treatment with calcineurin inhibitors, whereas Rac1 activation was observed in post-transplant ischaemic acute kidney injury.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
| | | | - Thierry Hauet
- Inserm UMR-1082 Irtomit, Poitiers, France
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
| | - Nicolas Bourmeyster
- Faculté De Médecine Et De Pharmacie, Université De Poitiers, Poitiers, France
- Department of Medical Biology, Service De Biochimie, CHU De Poitiers, Poitiers, France
- Laboratoire STIM CNRS ERL 7003, Université de Poitiers, Poitiers Cédex, France
| |
Collapse
|
25
|
Yin C, Ye Z, Wu J, Huang C, Pan L, Ding H, Zhong L, Guo L, Zou Y, Wang X, Wang Y, Gao P, Jin X, Yan X, Zou Y, Huang R, Gong H. Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine 2021; 74:103745. [PMID: 34911029 PMCID: PMC8669316 DOI: 10.1016/j.ebiom.2021.103745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Acute myocardial infarction (AMI)-induced excessive myocardial fibrosis exaggerates cardiac dysfunction. However, serum Wnt2 or Wnt4 level in AMI patients, and the roles in cardiac fibrosis are largely unkown. Methods AMI and non-AMI patients were enrolled to examine serum Wnt2 and Wnt4 levels by ELISA analysis. The AMI patients were followed-up for one year. MI mouse model was built by ligation of left anterior descending branch (LAD). Findings Serum Wnt2 or Wnt4 level was increased in patients with AMI, and the elevated Wnt2 and Wnt4 were correlated to adverse outcome of these patients. Knockdown of Wnt2 and Wnt4 significantly attenuated myocardial remodeling and cardiac dysfunction following experimental MI. In vitro, hypoxia enhanced the secretion and expression of Wnt2 and Wnt4 in neonatal rat cardiac myocytes (NRCMs) or fibroblasts (NRCFs). Mechanistically, the elevated Wnt2 or Wnt4 activated β-catenin /NF-κB signaling to promote pro-fibrotic effects in cultured NRCFs. In addition, Wnt2 or Wnt4 upregulated the expression of these Wnt co-receptors, frizzled (Fzd) 2, Fzd4 and (ow-density lipoprotein receptor-related protein 6 (LRP6). Further analysis revealed that Wnt2 or Wnt4 activated β-catenin /NF-κB by the co-operation of Fzd4 or Fzd2 and LRP6 signaling, respectively. Interpretation Elevated Wnt2 and Wnt4 activate β-catenin/NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 in fibroblasts, which contributes to adverse outcome of patients with AMI, suggesting that systemic inhibition of Wnt2 and Wnt4 may improve cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Chao Yin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China
| | - Jian Wu
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxing Huang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Le Pan
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Huaiyu Ding
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Zhong
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Guo
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yan Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiang Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Wang
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pan Gao
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xuejuan Jin
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxiang Yan
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzeng Zou
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China.
| | - Hui Gong
- NHC Key Laboratory of Viral Heart Diseases, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
26
|
Li Y, Tai HC, Sladojevic N, Kim HH, Liao JK. Vascular Stiffening Mediated by Rho-Associated Coiled-Coil Containing Kinase Isoforms. J Am Heart Assoc 2021; 10:e022568. [PMID: 34612053 PMCID: PMC8751888 DOI: 10.1161/jaha.121.022568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The pathogenesis of vascular stiffening and hypertension is marked by non‐compliance of vessel wall because of deposition of collagen fibers, loss of elastin fibers, and increased vascular thickening. Rho/Rho‐associated coiled‐coil containing kinases 1 and 2 (ROCK1 and ROCK2) have been shown to regulate cellular contraction and vascular remodeling. However, the role of ROCK isoforms in mediating pathogenesis of vascular stiffening and hypertension is not known. Methods and Results Hemizygous Rock mice (Rock1+/− and Rock2+/−) were used to determine the role of ROCK1 and ROCK2 in age‐related vascular dysfunction. Both ROCK activity and aortic stiffness increased to a greater extent with age in wild‐type mice compared with that of Rock1+/− and Rock2+/− mice. As a model for age‐related vascular stiffening, we administered angiotensin II (500 ng/kg per minute) combined with nitric oxide synthase inhibitor, L‐Nω‐nitroarginine methyl ester (0.5 g/L) for 4 weeks to 12‐week‐old male Rock1+/− and Rock2+/− mice. Similar to advancing age, angiotensin II/L‐Nω‐nitroarginine methyl ester caused increased blood pressure, aortic stiffening, and vascular remodeling, which were attenuated in Rock2+/−, and to a lesser extent, Rock1+/− mice. The reduction of aortic stiffening in Rock2+/− mice was accompanied by decreased collagen deposition, relatively preserved elastin content, and less aortic wall hypertrophy. Indeed, the upregulation of collagen I by transforming growth factor‐β1 or angiotensin II was greatly attenuated in Rock2−/− mouse embryonic fibroblasts. Conclusions These findings indicate that ROCK1 and ROCK2 mediate both age‐related and pharmacologically induced aortic stiffening, and suggest that inhibition of ROCK2, and to a lesser extent ROCK1, may have therapeutic benefits in preventing age‐related vascular stiffening.
Collapse
Affiliation(s)
- Yuxin Li
- Division of Cell Regeneration and Transplantation Department of Functional Morphology Nihon University School of Medicine Tokyo Japan
| | - Haw-Chih Tai
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Nikola Sladojevic
- Section of Cardiology Department of Medicine University of Chicago IL
| | - Hyung-Hwan Kim
- Neurovascular Laboratory Massachusetts General Hospital and Harvard Medical School Boston MA
| | - James K Liao
- Section of Cardiology Department of Medicine University of Chicago IL
| |
Collapse
|
27
|
Mendoza FA, Jimenez SA. Serine-Threonine Kinase inhibition as antifibrotic therapy: TGF-β and ROCK inhibitors. Rheumatology (Oxford) 2021; 61:1354-1365. [PMID: 34664623 DOI: 10.1093/rheumatology/keab762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Serine-threonine kinases mediate the phosphorylation of intracellular protein targets, transferring a phosphorus group from an ATP molecule to the specific amino acid residues within the target proteins. Serine-threonine kinases regulate multiple key cellular functions. From this large group of kinases, transforming growth factor beta (TGF-β) through the serine-threonine activity of its receptors and Rho kinase (ROCK) play an important role in the development and maintenance of fibrosis in various human diseases, including systemic sclerosis. In recent years, multiple drugs targeting and inhibiting these kinases, have been developed, opening the possibility of becoming potential antifibrotic agents of clinical value for treating fibrotic diseases. This review analyzes the contribution of TGF- β and ROCK-mediated serine-threonine kinase molecular pathways to the development and maintenance of pathological fibrosis and the potential clinical use of their inhibition.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Division of Rheumatology, Department of Medicine. Thomas Jefferson University. Philadelphia, PA, USA 19107.,Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA, USA 19107
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA, USA 19107
| |
Collapse
|
28
|
Matoba K, Sekiguchi K, Nagai Y, Takeda Y, Takahashi H, Yokota T, Utsunomiya K, Nishimura R. Renal ROCK Activation and Its Pharmacological Inhibition in Patients With Diabetes. Front Pharmacol 2021; 12:738121. [PMID: 34557101 PMCID: PMC8454778 DOI: 10.3389/fphar.2021.738121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase with essential roles in cytoskeletal functions. Substantial evidence implicates ROCK as a critical regulator in the inception and progression of diabetic nephropathy through a mechanism involving mesangial fibrosis, podocyte apoptosis, and endothelial inflammation. Despite these experimental observations, human data is lacking. Here we show that the phosphorylated form of myosin phosphatase targeting subunit 1 (MYPT1), a ROCK substrate, was increased in both the glomerular and tubulointerstitial areas in patients with histologically confirmed diabetic nephropathy. We also conducted a retrospective pilot analysis of data from patients with diabetes to assess the renoprotective effects of fasudil, an ATP-competitive ROCK inhibitor licensed in Japan for the prevention of vasospasm following subarachnoid hemorrhage. Fifteen subjects (male, n = 8; female, n = 7; age 65.7 ± 14.7 years; body height, 161.1 ± 12.6 cm; body weight, 57.6 ± 13.7 kg; body mass index, 22.4 ± 3.7 kg/m2) were enrolled to evaluate blood pressure and the renal outcome after fasudil treatment. Of note, proteinuria was significantly reduced at the end of the fasudil treatment without affecting the blood pressure or estimated glomerular filtration rate. Taken together, these findings suggest that the administration of fasudil could be associated with a better renal outcome by inhibiting the ROCK activity in patients with diabetes.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
Zanin-Zhorov A, Blazar BR. ROCK2, a critical regulator of immune modulation and fibrosis has emerged as a therapeutic target in chronic graft-versus-host disease. Clin Immunol 2021; 230:108823. [PMID: 34400321 PMCID: PMC8456981 DOI: 10.1016/j.clim.2021.108823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an immune-mediated disorder characterized by chronic inflammation and fibrosis. Rho-associated coiled-coil-containing protein kinases (ROCKs) are key coordinators of tissue response to injury, regulating multiple functions, such as gene expression and cell migration, proliferation and survival. Relevant to cGVHD and autoimmunity, only the ROCK2 isoform drives a pro-inflammatory type 17 helper T (Th17) cell response. Moreover, ROCK2 inhibition shifts the Th17/regulatory T (Treg) cell balance toward Treg cells and restores immune homeostasis in animal models of autoimmunity and cGVHD. Furthermore, the selective inhibition of ROCK2 by belumosudil reduces fibrosis by downregulating both transforming growth factor-β signaling and profibrotic gene expression, thereby impeding the creation of focal adhesions. Consistent with its anti-inflammatory and antifibrotic activities, belumosudil has demonstrated efficacy in clinical studies, resulting in an overall response rate of >70% in patients with cGVHD who failed 2 to 5 prior lines of systemic therapy. In summary, selective ROCK2 inhibition has emerged as a promising novel therapeutic approach for treating cGVHD and other immunologic diseases with unique mechanisms of action, targeting both immune imbalance and detrimental fibrotic responses.
Collapse
Affiliation(s)
| | - Bruce R Blazar
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Tang R, Meng T, Lin W, Shen C, Ooi JD, Eggenhuizen PJ, Jin P, Ding X, Chen J, Tang Y, Xiao Z, Ao X, Peng W, Zhou Q, Xiao P, Zhong Y, Xiao X. A Partial Picture of the Single-Cell Transcriptomics of Human IgA Nephropathy. Front Immunol 2021; 12:645988. [PMID: 33936064 PMCID: PMC8085501 DOI: 10.3389/fimmu.2021.645988] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/19/2021] [Indexed: 01/11/2023] Open
Abstract
The molecular mechanisms underlying renal damage of IgA nephropathy (IgAN) remain incompletely defined. Here, single-cell RNA sequencing (scRNA-seq) was applied to kidney biopsies from IgAN and control subjects to define the transcriptomic landscape at single-cell resolution. We presented a comprehensive scRNA-seq analysis of human renal biopsies from IgAN. We showed for the first time that IgAN mesangial cells displayed increased expression of several novel genes including MALAT1, GADD45B, SOX4, and EDIL3, which were related to cell proliferation and matrix accumulation. The overexpressed genes in tubule cells of IgAN were mainly enriched in inflammatory pathways including TNF signaling, IL-17 signaling, and NOD-like receptor signaling. Furthermore, we compared the results of 4 IgAN patients with the published scRNA-Seq data of healthy kidney tissues of three human donors in order to further validate the findings in our study. The results also verified that the overexpressed genes in tubule cells from IgAN patients were mainly enriched in inflammatory pathways including TNF signaling, IL-17 signaling, and NOD-like receptor signaling. The receptor-ligand crosstalk analysis revealed potential interactions between mesangial cells and other cells in IgAN. IgAN patients with overt proteinuria displayed elevated genes participating in several signaling pathways compared with microproteinuria group. It needs to be mentioned that based on number of mesangial cells and other kidney cells analyzed in this study, the results of our study are preliminary and needs to be confirmed on larger number of cells from larger number of patients and controls in future studies. Therefore, these results offer new insight into pathogenesis and identify new therapeutic targets for IgAN.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Chanjuan Shen
- Department of Hematology, the Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, China
| | - Joshua D Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China.,Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbiao Chen
- Department of Medical Records & Information, Xiangya Hospital, Central South University, Changsha, China
| | - Yangshuo Tang
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, China
| | - Zhou Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Weisheng Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Liu X, Guo B, Zhang W, Ma B, Li Y. MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis, and JNK/NF-κB signaling pathway. J Biochem 2021; 170:349-362. [PMID: 33837411 DOI: 10.1093/jb/mvab047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular disease. A declined miR-20a-5p was observed in hearts of diabetic mice, while its effect on DCM remains unknown. Herein, we established streptozotocin-induced DCM rat model and high glucose-stimulated H9C2 model of DCM. They then were treated with adenovirus expressing miR-20a-5p to explore the function of miR-20a-5p. ITT and ipGTT assay revealed that miR-20a-5p reduced blood glucose level. Besides, miR-20a-5p improved cardiac dysfunction reflected by reduced HW/BW and LVDP, and increased LVSP and ±LV dp/dt max. MiR-20a-5p prevented cardiomyocyte apoptosis, along with the up-regulated c-caspase-3, bax and down-regulated bcl-2. Moreover, miR-20a-5p alleviated cardiac hypertrophy as the parameters of ANP, BNP and MyHC-β decreased. Also, miR-20a-5p attenuated the cardiac fibrosis demonstrated by decreased TGF-β1, collagen I levels and the inflammatory response manifested by reduced IL-6, TNF-α and IL-1β production. Furthermore, miR-20a-5p prevented JNK phosphorylation and NF-κB p65nuclear translocation. Similarly, the effects of miR-20a-5p on DCM were confirmed in our in vitro experiments. Additionally, ROCK2 is a possible target gene of miR-20a-5p. ROCK2 overexpression reversed the protective effect of miR-20a-5p on DCM. Overall, miR-20a-5p may effectively ameliorate DCM through improving cardiac metabolism, and subsequently inhibiting inflammation, apoptosis, hypertrophy, fibrosis, and JNK/NF-κB pathway via modulating ROCK2.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.,The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Bingyan Guo
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Zhang
- The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Bocong Ma
- The Third Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
32
|
Activin A and Cell-Surface GRP78 Are Novel Targetable RhoA Activators for Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22062839. [PMID: 33799579 PMCID: PMC8000060 DOI: 10.3390/ijms22062839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of kidney failure. RhoA/Rho-associated protein kinase (ROCK) signaling is a recognized mediator of its pathogenesis, largely through mediating the profibrotic response. While RhoA activation is not feasible due to the central role it plays in normal physiology, ROCK inhibition has been found to be effective in attenuating DKD in preclinical models. However, this has not been evaluated in clinical studies as of yet. Alternate means of inhibiting RhoA/ROCK signaling involve the identification of disease-specific activators. This report presents evidence showing the activation of RhoA/ROCK signaling both in vitro in glomerular mesangial cells and in vivo in diabetic kidneys by two recently described novel pathogenic mediators of fibrosis in DKD, activins and cell-surface GRP78. Neither are present in normal kidneys. Activin inhibition with follistatin and neutralization of cell-surface GRP78 using a specific antibody blocked RhoA activation in mesangial cells and in diabetic kidneys. These data identify two novel RhoA/ROCK activators in diabetic kidneys that can be evaluated for their efficacy in inhibiting the progression of DKD.
Collapse
|
33
|
Kawanami D, Takashi Y, Takahashi H, Motonaga R, Tanabe M. Renoprotective Effects of DPP-4 Inhibitors. Antioxidants (Basel) 2021; 10:246. [PMID: 33562528 PMCID: PMC7915260 DOI: 10.3390/antiox10020246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Dipeptidyl peptidase (DPP)-4 inhibitors are widely used in the treatment of patients with type 2 diabetes (T2D). DPP-4 inhibitors reduce glucose levels by inhibiting degradation of incretins. DPP-4 is a ubiquitous protein with exopeptidase activity that exists in cell membrane-bound and soluble forms. It has been shown that an increased renal DPP-4 activity is associated with the development of DKD. A series of clinical and experimental studies showed that DPP-4 inhibitors have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by anti-fibrotic, anti-inflammatory, and anti-oxidative stress properties. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying renoprotection by DPP-4 inhibitors under diabetic conditions.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan; (Y.T.); (H.T.); (R.M.); (M.T.)
| | | | | | | | | |
Collapse
|
34
|
Wu X, Verschut V, Woest ME, Ng-Blichfeldt JP, Matias A, Villetti G, Accetta A, Facchinetti F, Gosens R, Kistemaker LEM. Rho-Kinase 1/2 Inhibition Prevents Transforming Growth Factor-β-Induced Effects on Pulmonary Remodeling and Repair. Front Pharmacol 2021; 11:609509. [PMID: 33551810 PMCID: PMC7855981 DOI: 10.3389/fphar.2020.609509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Transforming growth factor (TGF)-β-induced myofibroblast transformation and alterations in mesenchymal-epithelial interactions contribute to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Rho-associated coiled-coil-forming protein kinase (ROCK) consists as two isoforms, ROCK1 and ROCK2, and both are playing critical roles in many cellular responses to injury. In this study, we aimed to elucidate the differential role of ROCK isoforms on TGF-β signaling in lung fibrosis and repair. For this purpose, we tested the effect of a non-selective ROCK 1 and 2 inhibitor (compound 31) and a selective ROCK2 inhibitor (compound A11) in inhibiting TGF-β-induced remodeling in lung fibroblasts and slices; and dysfunctional epithelial-progenitor interactions in lung organoids. Here, we demonstrated that the inhibition of ROCK1/2 with compound 31 represses TGF-β-driven actin remodeling as well as extracellular matrix deposition in lung fibroblasts and PCLS, whereas selective ROCK2 inhibition with compound A11 did not. Furthermore, the TGF-β induced inhibition of organoid formation was functionally restored in a concentration-dependent manner by both dual ROCK 1 and 2 inhibition and selective ROCK2 inhibition. We conclude that dual pharmacological inhibition of ROCK 1 and 2 counteracts TGF-β induced effects on remodeling and alveolar epithelial progenitor function, suggesting this to be a promising therapeutic approach for respiratory diseases associated with fibrosis and defective lung repair.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Manon E. Woest
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- AQUILO BV, Groningen, Netherlands
| | - John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ana Matias
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gino Villetti
- Corporate Pre-Clinical R and D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Alessandro Accetta
- Corporate Pre-Clinical R and D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | | | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Loes E. M. Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- AQUILO BV, Groningen, Netherlands
| |
Collapse
|
35
|
Deng B, Deng J, Yi X, Zou Y, Li C. ROCK2 Promotes Osteosarcoma Growth and Glycolysis by Up-Regulating HKII via Phospho-PI3K/AKT Signalling. Cancer Manag Res 2021; 13:449-462. [PMID: 33500659 PMCID: PMC7823140 DOI: 10.2147/cmar.s279496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 10/24/2020] [Indexed: 01/14/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumour that exhibits a high mortality. While tumours thrive in a state of malnutrition, the mechanism by which OS cells adapt to metabolic stress through metabolic reprogramming remains unclear. Methods We analysed the expression of ROCK2 in osteosarcoma tissues by RT-qPCR and Western blot. Cell proliferation were analysed using CCK8, EdU and colony formation assays. The level of cell glycolysis was detected by glucose-6 phosphate, glucose consumption, lactate production and ATP levels. Results Herein, our study showed that ROCK2 expression in OS tissues was higher than in adjacent tissues. Functional assays have demonstrated that ROCK2 contributes to the growth of OS cells by inducing aerobic glycolysis. The current study revealed that ROCK2 knockdown decreased the levels of mitochondrial hexokinase II (HKII). And also indicated that ROCK2 served as a key enzyme in glycolysis and that it served an important role in tumour growth. A significant positive correlation was identified between the mRNA and protein expressions of ROCK2 and HKII, further demonstrating that ROCK2-induced glycolysis and proliferation was dependent on HKII expression in OS cells. Mechanistically, ROCK2 promotes HKII expression by activating the phospho-PI3K/AKT signalling pathway. Conclusion Taken together, the results of the current study linked the two drivers of OS growth and aerobic glycolysis and identified a new mechanism of ROCK2 control in OS.
Collapse
Affiliation(s)
- Binbin Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jianyong Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xuan Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Chen Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
36
|
Inhibition of ROCK2 alleviates renal fibrosis and the metabolic disorders in the proximal tubular epithelial cells. Clin Sci (Lond) 2020; 134:1357-1376. [PMID: 32490513 DOI: 10.1042/cs20200030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
Non-specific inhibition of Rho-associated kinases (ROCKs) alleviated renal fibrosis in the unilateral ureteral obstruction (UUO) model, while genetic deletion of ROCK1 did not affect renal pathology in mice. Thus, whether ROCK2 plays a role in renal tubulointerstitial fibrosis needs to be clarified. In the present study, a selective inhibitor against ROCK2 or genetic approach was used to investigate the role of ROCK2 in renal tubulointerstitial fibrosis. In the fibrotic kidneys of chronic kidney diseases (CKDs) patients, we observed an enhanced expression of ROCK2 with a positive correlation with interstitial fibrosis. In mice, the ROCK2 protein level was time-dependently increased in the UUO model. By treating CKD animals with KD025 at the dosage of 50 mg/kg/day via intraperitoneal injection, the renal fibrosis shown by Masson's trichrome staining was significantly alleviated along with the reduced expression of fibrotic genes. In vitro, inhibiting ROCK2 by KD025 or ROCK2 knockdown/knockout significantly blunted the pro-fibrotic response in transforming growth factor-β1 (TGF-β1)-stimulated mouse renal proximal tubular epithelial cells (mPTCs). Moreover, impaired cellular metabolism was reported as a crucial pathogenic factor in CKD. By metabolomics analysis, we found that KD025 restored the metabolic disturbance, including the impaired glutathione metabolism in TGF-β1-stimulated tubular epithelial cells. Consistently, KD025 increased antioxidative stress enzymes and nuclear erythroid 2-related factor 2 (Nrf2) in fibrotic models. In addition, KD025 decreased the infiltration of macrophages and inflammatory response in fibrotic kidneys and blunted the activation of macrophages in vitro. In conclusion, inhibition of ROCK2 may serve as a potential novel therapy for renal tubulointerstitial fibrosis in CKD.
Collapse
|
37
|
Matoba K, Takeda Y, Nagai Y, Sekiguchi K, Yokota T, Utsunomiya K, Nishimura R. The Physiology, Pathology, and Therapeutic Interventions for ROCK Isoforms in Diabetic Kidney Disease. Front Pharmacol 2020; 11:585633. [PMID: 33101039 PMCID: PMC7545791 DOI: 10.3389/fphar.2020.585633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase that was originally identified as RhoA interacting protein. A diverse array of cellular functions, including migration, proliferation, and phenotypic modulation, are orchestrated by ROCK through a mechanism involving cytoskeletal rearrangement. Mammalian cells express two ROCK isoforms: ROCK1 (Rho-kinase β/ROKβ) and ROCK2 (Rho-kinase α/ROKα). While both isoforms have structural similarities and are widely expressed across multiple tissues, investigations in gene knockout animals and cell-based studies have revealed distinct functions of ROCK1 and ROCK2. With respect to the kidney, inhibiting ROCK activity has proven effective for the preventing diabetic kidney disease (DKD) in both type 1 and type 2 diabetic rodent models. However, despite significant progress in the understanding of the renal ROCK biology over the past decade, the pathogenic roles of the ROCK isoforms is only beginning to be elucidated. Recent studies have demonstrated the involvement of renal ROCK1 in mitochondrial dynamics and cellular transdifferentiation, whereas ROCK2 activation leads to inflammation, fibrosis, and cell death in the diabetic kidney. This review provides a conceptual framework for dissecting the molecular underpinnings of ROCK-driven renal injury, focusing on the differences between ROCK1 and ROCK2.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Liu W, Li Y, Xiong X, Chen Y, Qiao L, Wang J, Su X, Chu F, Liu H. Traditional Chinese medicine protects against hypertensive kidney injury in Dahl salt-sensitive rats by targeting transforming growth factor-β signaling pathway. Biomed Pharmacother 2020; 131:110746. [PMID: 33152915 DOI: 10.1016/j.biopha.2020.110746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
This study investigated the therapeutic efficacy of Bu-Shen-Jiang-Ya decoction (BSJYD) on hypertensive renal damage to determine whether it regulates the expression of transforming growth factor-β (TGF-β)/SMADs signaling pathways, thereby relieving renal fibrosis in Dahl salt-sensitive (SS) rats. Dahl SS rats on a high-sodium diet were prospectively treated with BSJYD (n = 12) or valsartan (n = 12) for 8 weeks. The blood pressure (BP) of these rats was measured and their kidneys were subjected to biochemical analysis, including serum creatinine (Scr) and blood urea nitrogen (BUN); hematoxylin and eosin staining; Masson trichrome staining; real-time polymerase chain reaction; and western blot analysis. The primary outcome was that BSJYD significantly reduced BP, debased BUN, and Scr and ameliorated renal pathological changes. As underlying therapeutic mechanisms, BSJYD reduces TGFβ1 and Smad2/3 expression and suppresses renal fibrosis, as suggested by the decreased expression of connective tissue growth factor(CTGF). These data suggest that BSJYD acts as an optimal therapeutic agent for hypertensive renal damage by inhibiting the TGF-β/SMADs signaling pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yixuan Li
- Community Healthcare Center of Shangzhuang Town, Haidian District, Beijing, 100053, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yuyi Chen
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lumin Qiao
- Department of Emergency, Yinchuan Chinese Medicine Hospital, Ningxia, 750001, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xing Su
- Medical Administration Division, Beijing Mentougou Hospital of Traditional Chinese Medicine, Beijing, 102300, China
| | - Fuyong Chu
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Hongxu Liu
- Department of Cardiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
39
|
Takeda Y, Matoba K, Sekiguchi K, Nagai Y, Yokota T, Utsunomiya K, Nishimura R. Endothelial Dysfunction in Diabetes. Biomedicines 2020; 8:E182. [PMID: 32610588 PMCID: PMC7400447 DOI: 10.3390/biomedicines8070182] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes is a worldwide health issue closely associated with cardiovascular events. Given the pandemic of obesity, the identification of the basic underpinnings of vascular disease is strongly needed. Emerging evidence has suggested that endothelial dysfunction is a critical step in the progression of atherosclerosis. However, how diabetes affects the endothelium is poorly understood. Experimental and clinical studies have illuminated the tight link between insulin resistance and endothelial dysfunction. In addition, macrophage polarization from M2 towards M1 contributes to the process of endothelial damage. The possibility that novel classes of anti-hyperglycemic agents exert beneficial effects on the endothelial function and macrophage polarization has been raised. In this review, we discuss the current status of knowledge regarding the pathological significance of insulin signaling in endothelium. Finally, we summarize recent therapeutic strategies against endothelial dysfunction with an emphasis on macrophage polarity.
Collapse
Affiliation(s)
- Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan; (Y.T.); (K.S.); (Y.N.); (T.Y.); (R.N.)
| |
Collapse
|
40
|
Matoba K, Takeda Y, Nagai Y, Kanazawa Y, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. ROCK Inhibition May Stop Diabetic Kidney Disease. JMA J 2020; 3:154-163. [PMID: 33150249 PMCID: PMC7590381 DOI: 10.31662/jmaj.2020-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is strongly associated with cardiovascular mortality. Given the pandemic of obesity and diabetes, the elucidation of the molecular underpinnings of DKD and establishment of effective therapy are urgently required. Studies over the past decade have identified the activated renin-angiotensin system (RAS) and hemodynamic changes as important therapeutic targets. However, given the residual risk observed in patients treated with RAS inhibitors and/or sodium glucose co-transporter 2 inhibitors, the involvement of other molecular machinery is likely, and the elucidation of such pathways represents fertile ground for the development of novel strategies. Rho-kinase (ROCK) is a serine/threonine kinase that is under the control of small GTPase protein Rho. Many fundamental cellular processes, including migration, proliferation, and survival are orchestrated by ROCK through a mechanism involving cytoskeletal reorganization. From a pathological standpoint, several analyses provide compelling evidence supporting the hypothesis that ROCK is an important regulator of DKD that is highly pertinent to cardiovascular disease. In cell-based studies, ROCK is activated in response to a diverse array of external stimuli associated with diabetes, and renal ROCK activity is elevated in the context of type 1 and 2 diabetes. Experimental studies have demonstrated the efficacy of pharmacological or genetic inhibition of ROCK in the prevention of diabetes-related histological and functional abnormalities in the kidney. Through a bird’s eye view of ROCK in renal biology, the present review provides a conceptual framework that may be widely applicable to the pathological processes of multiple organs and illustrate novel therapeutic promise in diabetology.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
ROCK1 knockdown inhibits non-small-cell lung cancer progression by activating the LATS2-JNK signaling pathway. Aging (Albany NY) 2020; 12:12160-12174. [PMID: 32554853 PMCID: PMC7343464 DOI: 10.18632/aging.103386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Rho-associated kinase 1 (ROCK1) regulates tumor metastasis by maintaining cellular cytoskeleton homeostasis. However, the precise role of ROCK1 in non-small-cell lung cancer (NSCLC) apoptosis remains largely unknown. In this study, we examined the function of ROCK1 in NSCLS survival using RNA interference-mediated knockdown. Our results showed that ROCK1 knockdown reduced A549 lung cancer cell viability in vitro. It also inhibited A549 cell migration and proliferation. Transfection of ROCK1 siRNA was associated with increased expression of large tumor suppressor kinase 2 (LATS2) and c-Jun N-terminal kinase (JNK). Moreover, ROCK1 knockdown-induced A549 cell apoptosis and inhibition of proliferation were suppressed by LATS2 knockdown or JNK inactivation, suggesting that ROCK1 deficiency triggers NSCLC apoptosis in a LATS2-JNK pathway-dependent manner. Functional analysis further demonstrated that ROCK1 knockdown dysregulated mitochondrial dynamics and inhibited mitochondrial biogenesis. This effect too was reversed by LATS2 knockdown or JNK inactivation. We have thus identified a potential pathway by which ROCK1 downregulation triggers apoptosis in NSCLC by inducing LATS2-JNK-dependent mitochondrial damage.
Collapse
|
42
|
Significance of Metformin Use in Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21124239. [PMID: 32545901 PMCID: PMC7352798 DOI: 10.3390/ijms21124239] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
Metformin is a glucose-lowering agent that is used as a first-line therapy for type 2 diabetes (T2D). Based on its various pharmacologic actions, the renoprotective effects of metformin have been extensively studied. A series of experimental studies demonstrated that metformin attenuates diabetic kidney disease (DKD) by suppressing renal inflammation, oxidative stress and fibrosis. In clinical studies, metformin use has been shown to be associated with reduced rates of mortality, cardiovascular disease and progression to end-stage renal disease (ESRD) in T2D patients with chronic kidney disease (CKD). However, metformin should be administered with caution to patients with CKD because it may increase the risk of lactic acidosis. In this review article, we summarize our current understanding of the safety and efficacy of metformin for DKD.
Collapse
|
43
|
Targeting Redox Imbalance as an Approach for Diabetic Kidney Disease. Biomedicines 2020; 8:biomedicines8020040. [PMID: 32098346 PMCID: PMC7167917 DOI: 10.3390/biomedicines8020040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a worldwide public health problem. It is the leading cause of end-stage renal disease and is associated with increased mortality from cardiovascular complications. The tight interactions between redox imbalance and the development of DKD are becoming increasingly evident. Numerous cascades, including the polyol and hexosamine pathways have been implicated in the oxidative stress of diabetes patients. However, the precise molecular mechanism by which oxidative stress affects the progression of DKD remains to be elucidated. Given the limited therapeutic options for DKD, it is essential to understand how oxidants and antioxidants are controlled in diabetes and how oxidative stress impacts the progression of renal damage. This review aims to provide an overview of the current status of knowledge regarding the pathological roles of oxidative stress in DKD. Finally, we summarize recent therapeutic approaches to preventing DKD with a focus on the anti-oxidative effects of newly developed anti-hyperglycemic agents.
Collapse
|
44
|
Wei YH, Liao SL, Wang SH, Wang CC, Yang CH. Simvastatin and ROCK Inhibitor Y-27632 Inhibit Myofibroblast Differentiation of Graves' Ophthalmopathy-Derived Orbital Fibroblasts via RhoA-Mediated ERK and p38 Signaling Pathways. Front Endocrinol (Lausanne) 2020; 11:607968. [PMID: 33597925 PMCID: PMC7883643 DOI: 10.3389/fendo.2020.607968] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-induced differentiation of orbital fibroblasts into myofibroblasts is an important pathogenesis of Graves' ophthalmopathy (GO) and leads to orbital tissue fibrosis. In the present study, we explored the antifibrotic effects of simvastatin and ROCK inhibitor Y-27632 in primary cultured GO orbital fibroblasts and tried to explain the molecular mechanisms behind these effects. Both simvastatin and Y-27632 inhibited TGF-β-induced α-smooth muscle actin (α-SMA) expression, which serves as a marker of fibrosis. The inhibitory effect of simvastatin on TGF-β-induced RhoA, ROCK1, and α-SMA expression could be reversed by geranylgeranyl pyrophosphate, an intermediate in the biosynthesis of cholesterol. This suggested that the mechanism of simvastatin-mediated antifibrotic effects may involve RhoA/ROCK signaling. Furthermore, simvastatin and Y-27632 suppressed TGF-β-induced phosphorylation of ERK and p38. The TGF-β-mediated α-SMA expression was suppressed by pharmacological inhibitors of p38 and ERK. These results suggested that simvastatin inhibits TGF-β-induced myofibroblast differentiation via suppression of the RhoA/ROCK/ERK and p38 MAPK signaling pathways. Thus, our study provides evidence that simvastatin and ROCK inhibitors may be potential therapeutic drugs for the prevention and treatment of orbital fibrosis in GO.
Collapse
Affiliation(s)
- Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sen-Hsu Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chun Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chang-Hao Yang,
| |
Collapse
|