1
|
Waheed YA, Buberwa W, Sun D. Glial cell line-derived neurotrophic factor and its role in attenuating renal fibrosis: a review. Korean J Intern Med 2025; 40:219-229. [PMID: 38086618 PMCID: PMC11938710 DOI: 10.3904/kjim.2023.246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/08/2023] [Accepted: 09/01/2023] [Indexed: 03/20/2025] Open
Abstract
Chronic kidney disease is estimated to affect approximately 10 to 15% of the Chinese population. Renal fibrosis is characterized by progressive extracellular matrix deposition in the kidney parenchyma with eventual tissue scarring and inevitable deterioration of renal function. Vascular rarefaction, glomerulosclerosis, interstitial inflammation, and fibrogenesis are associated with or contribute to renal fibrosis. Recent studies have revealed that glial cell-derived neurotrophic factor (GDNF) is involved in kidney morphogenesis and amelioration of renal injury. Ideal therapies targeting the pathogenesis of renal fibrosis should have the potential to inhibit glomerular and tubulointerstitial fibrosis by targeting multiple pathological events. GDNF plays a unique role in both renal development and improvement of renal fibrosis, and GDNF kidney receptors and signaling pathways can ameliorate renal apoptosis and inflammation. Our work contributes to the establishment of GDNF as an emerging therapy that can increase the effectiveness of currently used interventions to improve renal fibrosis. This literature review focuses on the important role of GDNF in renal development and its relationship with renal fibrosis.
Collapse
Affiliation(s)
| | - Wokuheleza Buberwa
- Department of Pediatrics, Arusha Lutheran Medical Center, Arusha,
Tanzania
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou,
China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou,
China
| |
Collapse
|
2
|
Gao ZX, Fang Y, Xu SZ, He YS, Ge M, Zhang P, Xu YQ, He T, Wang P, Wang DG, Pan HF. Integrated analysis of ATAC-seq and RNA-seq reveals the chromatin accessibility and transcriptional landscape of immunoglobulin a nephropathy. Clin Immunol 2025; 272:110432. [PMID: 39848509 DOI: 10.1016/j.clim.2025.110432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUNDS The association between chromatin accessibility in CD4+ T cells and Immunoglobulin A nephropathy (IgAN) remains unclear. METHODS We performed the assay for transposase accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on CD4+ T cells. ATAC-seq and RNA-seq were conducted to identify differentially accessible regions and differentially expressed genes (DEGs), respectively (P < 0.05, |log2 Fold Change| >1). QRT-PCR was utilized to validate target gene expression. RESULTS We identified 100,865 differentially accessible regions, of which 7225 exhibited higher accessibility in IgAN. Functional analysis revealed that these regions are enriched in T lymphocyte activation and immune pathways. ELF3, MEIS1, and NFYC were identified as key TFs associated with IgAN. QRT-PCR indicated a significant upregulation of hub genes including MEIS1 in IgAN. CONCLUSION We identified key TFs and genes by integrating ATAC-seq and RNA-seq, which provide novel therapeutic targets for IgAN and insights into its pathogenesis from an epigenetic perspective.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yang Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Peng Wang
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
3
|
Pan X, Zhu R, Peng J, Liu H, Pan W, Jin Y, Pei J, Zhang L. Molecular mechanisms and potential targets of lycopene for alleviating renal ischemia-reperfusion injury revealed by network pharmacology and animal experiments. Int Immunopharmacol 2024; 143:113421. [PMID: 39442187 DOI: 10.1016/j.intimp.2024.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Renal IRI is one of the leading causes of AKI. How to effectively mitigate renal IRI is important for the recovery of renal function. The regulatory mechanism of lycopene, a natural antioxidant, in renal IRI is currently unknown. Therefore, we utilized network pharmacology and animal experiments to explore the possible mechanisms and potential targets of lycopene for alleviating renal IRI. METHODS We obtained lycopene-regulated genes and renal IRI-related genes from the CTD database and GeneCards database, respectively. Subsequently, the two were intersected and the intersecting genes we defined as lycopene-regulated genes in renal IRI. Next, we explored their potential biological functions and mechanisms through enrichment analysis. Meanwhile, we constructed a rat renal IRI model and validated the protective effects of lycopene and related mechanisms. To further explore the Hub genes regulated by lycopene, we constructed a PPI protein interactions network and characterized the Hub genes using Cytoscape software. We also verified the expression of Hub genes using animal experiments and molecular docking techniques. Finally, we constructed TF-Hub gene and miRNA-Hub gene regulatory networks. RESULTS We obtained a total of 255 lycopene-regulated genes and 327 renal IRI-related genes. The enrichment analysis revealed that they were closely related to the regulation of oxidative stress as well as the regulation of inflammatory factors. At the same time, the MAPK signaling pathway was significantly enriched. Next, we found in animal experiments that lycopene significantly alleviated the level of oxidative stress and inflammation during renal IRI, and had a protective effect on kidney damage. Also, we found that this protective effect may be achieved by inhibiting the MAPK signaling pathway. Next, we identified a total of five Hub genes using Cytoscape software: TNF, AKT1, MAPK3, IL6 and CASP3. Both animal experiments and molecular docking techniques demonstrated that lycopene can effectively regulate the expression of Hub genes. Finally, our constructed TF-Hub gene and miRNA-Hub gene regulatory network provide a theoretical basis for further regulation of Hub genes in follow-up. CONCLUSIONS This study suggests that lycopene is a promising option in mitigating renal IRI. Lycopene may exert protective effects by inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xingyu Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Rong Zhu
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jinpu Peng
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hongli Liu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Wenqing Pan
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Yuhan Jin
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China
| | - Jun Pei
- Department of Pediatric Surgrey, Guizhou Provincial People's Hospital, Guiyang 550002, China.
| | - Li Zhang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi 563100, China; Nursing School of Zunyi Medical University, Zunyi 563100, China.
| |
Collapse
|
4
|
Xia Y, Zhao Y, Tian J, Yang X, Fan Y, Dong S, Yang F, Zhang M, Zeng C. SIRPα modulates the podocyte cytoskeleton through influencing the phosphorylation of FAK at tyrosine residue 597. Acta Biochim Biophys Sin (Shanghai) 2024; 57:782-791. [PMID: 39552221 DOI: 10.3724/abbs.2024198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Signal regulatory protein α (SIRPα) is recognized as a significant transmembrane protein within the glomeruli that is specifically localized in podocytes, where it plays a role in modulating downstream signaling pathways through phosphorylation. Upon tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM) within SIRPα, protein tyrosine phosphatases are recruited to facilitate the dephosphorylation of downstream signals. Nevertheless, the specific downstream signaling pathways affected by this mechanism have yet to be elucidated. In this study, phosphoproteomic analysis is conducted on podocytes with SIRPα deficiency to identify proteins whose phosphorylation is regulated by SIRPα and the associated signaling pathways in human podocytes. The results reveal significant alterations in biological processes related to cytoskeleton arrangement and cytoskeleton protein binding. Specifically, an increase in FAK tyrosine phosphorylation at Y576 is identified as a potentially crucial signal of the influence of SIRPα on the podocyte cytoskeleton. Our study suggests that SIRPα may facilitate podocyte cytoskeleton rearrangement and migration through the Src/FAK/p38 MAPK signaling pathway. For the first time, we discover increased level of SIRPα, which is strongly linked to urinary protein, in the urine of patients with nephrotic syndrome (NS). Additionally, an increase in urinary FAK level is observed in NS patients, which is positively correlated with both urinary protein level and urinary SIRPα level. These findings suggest that SIRPα and FAK may serve as promising biomarkers for podocytopathies.
Collapse
|
5
|
Üremiş MM, Gürel E, Aslan M, Taşlıdere E. Dexpanthenol protects against nicotine-induced kidney injury by reducing oxidative stress and apoptosis through activation of the AKT/Nrf2/HO-1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1105-1114. [PMID: 37606756 DOI: 10.1007/s00210-023-02671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Dexpanthenol (DEX), a subtype of vitamin B5, plays an important role in anabolic reactions, cellular energy and regeneration in the body. Nicotine has been shown to induce kidney damage through the mechanisms of oxidative stress and apoptosis. The purpose of this study was to investigate the potential protective effects of DEX against nicotine-induced kidney damage through modulation of the AKT/Nrf2/HO-1 signaling pathway. Male rats were intraperitoneally administered with 0.5 mg/kg/day nicotine and/or 500 mg/kg/day DEX for 8 weeks. Following administration, renal function tests were conducted on serum samples, and histopathological examinations and analysis of oxidative stress markers and antioxidant enzymes were performed on tissue samples. Protein levels of Akt, Nrf-2, HO-1, Bcl-xL, and Caspase-9 were also evaluated. Nicotine administration resulted in decreased protein levels of p-Akt, Nrf-2, HO-1, and Bcl-xL and increased Caspase-9 protein levels. In addition, nicotine administration caused an increase in MDA, TOS, and OSI levels and a decrease in GSH, GSH-Px, GST, CAT, SOD, and TAS levels. Additionally, BUN and Creatinine levels increased after nicotine administration. DEX administration positively regulated these parameters and brought them closer to control levels. Nicotine-induced kidney injury caused apoptosis and oxidative stress through Caspase-9 activation. DEX effectively prevented nicotine-induced kidney damage by increasing intracellular antioxidant levels and regulating apoptosis through Bcl-xL activation. These findings suggest that DEX has potential as a protective agent against nicotine-induced kidney damage.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Elif Gürel
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Meral Aslan
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
6
|
Wu Z, Zhang Z, Zhou S, Xie M, Liu L, Luo C, Zheng F, Qiu W, Wang Y, Zhang J. ERK1/2-dependent activity of SOX9 is required for sublytic C5b-9-induced expression of FGF1, PDGFα, and TGF-β1 in rat Thy-1 nephritis. Int Immunopharmacol 2024; 127:111372. [PMID: 38118314 DOI: 10.1016/j.intimp.2023.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Mesangial proliferative glomerulonephritis (MsPGN) and its related rat model Thy-1 nephritis (Thy-1N) are associated with C5b-9 deposition and are characterized by proliferation of glomerular mesangial cell (GMC) and expansion of extracellular matrix (ECM) expansion, alongside overexpression of multiple growth factors. Although fibroblast growth factor 1 (FGF1), platelet-derived growth factor alpha (PDGFα), and transforming growth factor beta 1 (TGF-β1) are well known for their proproliferative and profibrotic roles, the molecular mechanisms responsible for regulating the expression of these growth factors have not been thoroughly elucidated. In this study, we found that sublytic C5b-9 induction of sex-determining region Y-box 9 (SOX9) transactivated FGF1, PDGFα, and TGF-β1 genes in GMCs, resulting in a significant increase in their mRNA and protein levels. Besides, sublytic C5b-9 induction of activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylated SOX9 at serine 181 and serine 64, which enhanced SOX9's ability to transactivate FGF1, PDGFα, and TGF-β1 genes in GMCs. Furthermore, we demonstrated that inhibiting ERK1/2 activation or silencing either ERK1/2 or SOX9 gene led to reduced SOX9 phosphorylation, decreased generation of FGF1, PDGFα, and TGF-β1, and ameliorated glomerular injury in rat Thy-1N. Overall, these findings suggest that expression of FGF1, PDGFα, and TGF-β1 is promoted by ERK1/2-mediated phosphorylation of SOX9, which may provide a valuable insight into the pathogenesis of MsPGN and offer a potential target for the development of novel treatment strategies for MsPGN.
Collapse
Affiliation(s)
- Zhijiao Wu
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiwei Zhang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Sicheng Zhou
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengxiao Xie
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Longfei Liu
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Can Luo
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Feixiang Zheng
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen Qiu
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China
| | - Yingwei Wang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, China; National Health Commission Key Laboratory of Antibody Techniques, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Cai M, Xiang Y, Li Z, Xie J, Wen F. Network pharmacology and molecular docking predictions of the active compounds and mechanism of action of Huangkui capsule for the treatment of idiopathic membranous nephropathy. Medicine (Baltimore) 2023; 102:e35214. [PMID: 37713831 PMCID: PMC10508523 DOI: 10.1097/md.0000000000035214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Huangkui Capsule is a single herbal concoction prepared from the flower of Abelmoschus manihot, which is used to treat idiopathic membranous nephropathy (IMN), a frequent pathologically damaging kidney condition. It has been widely utilized to treat a variety of renal disorders, including IMN, in clinical practice. However, the active compounds and mechanism of action underlying the anti-IMN effects of Huangkui Capsule remain unclear. In this study, we aimed to predict the potential active compounds and molecular targets of Huangkui Capsule for the treatment of IMN. METHODS The possible active components of Huangkui were located using the SymMap v2 database. The targets of these drugs were predicted using Swiss Target Prediction, while IMN-related genes with association scores under 5 were gathered from the GeneCards and DisGeNET databases. The common targets of the disease and the components were determined using VENNY 2.1. Using Cytoscape 3.8.0, a drug-disease network diagram was created. Molecular docking was carried out with Pymol, AutoDock Tools, and AutoDock Vina. RESULTS With 1260 IMN-related illness genes gathered from GeneCards and DisGeNET databases, we were able to identify 5 potentially active chemicals and their 169 target proteins in Huangkui. Based on degree value, the top 6 targets for Huangkui treatment of IMN were chosen, including AKT, MAPK3, PPARG, MMP9, ESR1, and KDR. CONCLUSION This work theoretically explains the mechanism of action of Huangkui Capsule in treating IMN and offers a foundation for using Huangkui Capsule in treating IMN in clinical settings. The findings require additional experimental validation.
Collapse
Affiliation(s)
- Meng Cai
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongjing Xiang
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhengsheng Li
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Juan Xie
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fulong Wen
- Nephrology Department, Secondary Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
8
|
Song K, Zheng X, Liu X, Sheng Y, Liu L, Wen L, Shang S, Deng Y, Ouyang Q, Sun X, Li Q, Chen P, Cai G, Chen M, Zhang Y, Liang B, Zhang J, Zhang X, Chen X. Genome-wide association study of SNP- and gene-based approaches to identify susceptibility candidates for lupus nephritis in the Han Chinese population. Front Immunol 2022; 13:908851. [PMID: 36275661 PMCID: PMC9580327 DOI: 10.3389/fimmu.2022.908851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLupus nephritis (LN) is one of the most common and serious complications of systemic lupus erythaematosus (SLE). Genetic factors play important roles in the pathogenesis of LN and could be used to predict who might develop LN. The purpose of this study was to screen for susceptible candidates of LN across the whole genome in the Han Chinese population.Methods592 LN patients and 453 SLE patients without renal damage were genotyped at 492,970 single nucleotide polymorphisms (SNPs) in the genome-wide association study (GWAS). Fifty-six SNPs were selected for replication in an independent cohort of 188 LN and 171 SLE without LN patients. Further quantitative real-time (qRT) PCR was carried out in 6 LN patients and 6 healthy controls. Gene-based analysis was conducted using the versatile gene-based test for GWAS. Subsequently, enrichment and pathway analyses were performed in the DAVID database.ResultsThe GWAS analysis and the following replication research identified 9 SNPs showing suggestive correlation with LN (P<10-4). The most significant SNP was rs12606116 (18p11.32), at P=8.72×10−6. The qRT-PCR results verified the mRNA levels of LINC00470 and ADCYAP1, the closest genes to rs12606116, were significantly lower in LN patients. From the gene-based analysis, 690 genes had suggestive evidence of association (P<0.05), including LINC00470. The enrichment analysis identified the involvement of transforming growth factor beta (TGF-β) signalings in the development of LN. Lower plasma level of TGF-β1 (P<0.05) in LN patients and lower expression of transforming growth factor beta receptor 2 in lupus mice kidney (P<0.05) futher indicate the involvement of TGF-β in LN.ConclusionsOur analyses identified several promising susceptibility candidates involved in LN, and further verification of these candidates was necessary.
Collapse
Affiliation(s)
- Kangkang Song
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xiaodong Zheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Xiaomin Liu
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yujun Sheng
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Lu Liu
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Leilei Wen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Shunlai Shang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Yiyao Deng
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Qing Ouyang
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Xuefeng Sun
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Qinggang Li
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Pu Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
| | - Mengyun Chen
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Yuanjing Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Bo Liang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
| | - Jianglin Zhang
- Department of Rheumatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Hefei, China
- Institute of Dermatology and Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xiangmei Chen, ; Xuejun Zhang,
| | - Xiangmei Chen
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing, China
- Haihe Laboratory of Cell Ecosystem, Tianjin, China
- *Correspondence: Xiangmei Chen, ; Xuejun Zhang,
| |
Collapse
|
9
|
Masoudi-Sobhanzadeh Y, Gholaminejad A, Gheisari Y, Roointan A. Discovering driver nodes in chronic kidney disease-related networks using Trader as a newly developed algorithm. Comput Biol Med 2022; 148:105892. [PMID: 35932730 DOI: 10.1016/j.compbiomed.2022.105892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
Thanks to the advances in the field of computational-based biology, a huge volume of disease-related data has been generated so far. From the existing data, the disease-related protein-protein interaction (PPI) networks seem to yield effective treatment plans due to the informative/systematic representation of diseases. Yet, a large number of previous studies have failed due to the complex nature of such disease-related networks. For addressing this limitation, in the present study, we combined Trader and the DFS algorithms to identify a minimal subset of nodes (driver nodes) whose removal produces a maximum number of disjoint sub-networks. We then screened the nodes in the disease-associated PPI networks and to evaluate the efficiency of the suggested method, it was applied to six PPI networks of differentially expressed genes in chronic kidney diseases. The performance of Trader was superior to other well-known algorithms in terms of identifying driver nodes. Besides, the proportion of proteins that were targeted by at least one FDA-approved drug was significantly higher among the identified driver nodes when compared with the rest of the proteins in the networks. The proposed algorithm could be applied for predicting future therapeutic targets in complex disorder networks. In conclusion, unlike the common methods, computationally efficient algorithms can generate more practical outcomes which are compatible with real-world biological facts.
Collapse
Affiliation(s)
- Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Moon JJ, Choi Y, Kim KH, Seo A, Kwon S, Kim YC, Kim DK, Kim YS, Yang SH. Inhibiting Transglutaminase 2 Mediates Kidney Fibrosis via Anti-Apoptosis. Biomedicines 2022; 10:biomedicines10061345. [PMID: 35740367 PMCID: PMC9220123 DOI: 10.3390/biomedicines10061345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Transglutaminase 2 (TG2) is a calcium-dependent transamidating acyltransferase enzyme of the protein-glutamine γ-glutamyltransferase family implicated in kidney injury. In this study, we identified associations between TG2 and chronic kidney disease (CKD) identified by visualizing TG2 in kidney biopsy samples derived from CKD patients using immunohistochemistry and measuring the plasma TG2 concentrations. Our study revealed a connection between TG2 and the pathological markers of kidney disease. We showed high plasma TG2 levels in samples from patients with advanced CKD. In addition, we observed an increase in TG2 expression in tissues concomitant with advanced CKD in human samples. Moreover, we investigated the effect of TG2 inhibition on kidney injury using cystamine, a well-known competitive inhibitor of TG2. TG2 inhibition reduced apoptosis and accumulation of extracellular molecules (ECM) such as fibronectin and pro-inflammatory cytokine IL-8. Collectively, the increased expression of TG2 that was observed in advanced CKD, hence inhibiting TG2 activity, could protect kidney cells from ECM molecule accumulation, apoptosis, and inflammatory responses, thereby preventing kidney fibrosis.
Collapse
Affiliation(s)
- Jong-Joo Moon
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Yejin Choi
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Kyu-Hyeon Kim
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Areum Seo
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
| | - Yong-Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
| | - Dong-Ki Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Yon-Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea; (S.K.); (Y.-C.K.); (D.-K.K.); (Y.-S.K.)
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Seung-Hee Yang
- Biomedical Research Institute, Seoul National University, Seoul 03080, Korea; (J.-J.M.); (Y.C.); (K.-H.K.); (A.S.)
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-1724
| |
Collapse
|
11
|
Neflamapimod induces vasodilation in resistance mesenteric arteries by inhibiting p38 MAPKα and downstream Hsp27 phosphorylation. Sci Rep 2022; 12:4905. [PMID: 35318382 PMCID: PMC8941071 DOI: 10.1038/s41598-022-08877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 01/02/2023] Open
Abstract
Neflamapimod, a selective inhibitor of p38 mitogen activated protein kinase alpha (MAPKα), is under clinical investigation for its efficacy in Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB). Here, we investigated if neflamapimod-mediated acute inhibition of p38 MAPKα could induce vasodilation in resistance-size rat mesenteric arteries. Our pressure myography data demonstrated that neflamapimod produced a dose-dependent vasodilation in mesenteric arteries. Our Western blotting data revealed that acute neflamapimod treatment significantly reduced the phosphorylation of p38 MAPKα and its downstream target heat-shock protein 27 (Hsp27) involved in cytoskeletal reorganization and smooth muscle contraction. Likewise, non-selective inhibition of p38 MAPK by SB203580 attenuated p38 MAPKα and Hsp27 phosphorylation, and induced vasodilation. Endothelium denudation or pharmacological inhibition of endothelium-derived vasodilators such as nitric oxide (NO) and prostacyclin (PGI2) had no effect on such vasodilation. Neflamapimod-evoked vasorelaxation remained unaltered by the inhibition of smooth muscle cell K+ channels. Altogether, our data for the first time demonstrates that in resistance mesenteric arteries, neflamapimod inhibits p38 MAPKα and phosphorylation of its downstream actin-associated protein Hsp27, leading to vasodilation. This novel finding may be clinically significant and is likely to improve systemic blood pressure and cognitive deficits in AD and DLB patients for which neflamapimod is being investigated.
Collapse
|
12
|
Park JS, Jung IA, Choi HS, Kim DH, Choi HI, Bae EH, Ma SK, Kim SW. Anti-fibrotic effect of 6-bromo-indirubin-3'-oxime (6-BIO) via regulation of activator protein-1 (AP-1) and specificity protein-1 (SP-1) transcription factors in kidney cells. Biomed Pharmacother 2022; 145:112402. [PMID: 34773763 DOI: 10.1016/j.biopha.2021.112402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
PAI-1 and CTGF are overexpressed in kidney diseases and cause fibrosis of the lungs, liver, and kidneys. We used a rat model of unilateral ureteral obstruction (UUO) to investigate whether 6-BIO, a glycogen synthase kinase-3β inhibitor, attenuated fibrosis by inhibiting PAI-1 and CTGF in vivo. Additionally, TGFβ-induced cellular fibrosis was observed in vitro using the human kidney proximal tubular epithelial cells (HK-2), and rat interstitial fibroblasts (NRK49F). Expression of fibrosis-related proteins and signaling molecules such as PAI-1, CTGF, TGFβ, αSMA, SMAD, and MAPK were determined in HK-2 and NRK49F cells using immunoblotting. To identify the transcription factors that regulate the expression of PAI-1 and CTGF the promoter activities of AP-1 and SP-1 were analyzed using luciferase assays. Confocal microscopy was used to observe the co-localization of AP-1 and SP-1 to PAI-1 and CTGF. Expression of PAI-1, CTGF, TGFβ, and α-SMA increased in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Furthermore, UUO and TGFβ treatment induced the activation of P-SMAD2/3, SMAD4, P-ERK 1/2, P-P38, and P-JNK MAPK signaling pathways. PAI-1, CTGF, AP-1 and SP-1 promoter activity increased in response to TGFβ treatment. However, treatment with 6-BIO decreased the expression of proteins and signaling pathways associated with fibrosis in UUO model as well as in TGFβ-treated HK-2 and NRK49F cells. Moreover, 6-BIO treatment attenuated the expression of PAI-1 and CTGF as well as the promoter activities of AP-1 and SP-1, thereby regulating the SMAD and MAPK signaling pathways, and subsequently exerting anti-fibrotic effects on kidney cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - In Ae Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Hoon In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea.
| |
Collapse
|
13
|
Das JR, Jerebtsova M, Tang P, Li J, Yu J, Ray PE. Circulating fibroblast growth factor-2 precipitates HIV nephropathy in mice. Dis Model Mech 2021; 14:dmm048980. [PMID: 34308967 PMCID: PMC8326767 DOI: 10.1242/dmm.048980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023] Open
Abstract
People of African ancestry living with the human immunodeficiency virus-1 (HIV-1) are at risk of developing HIV-associated nephropathy (HIVAN). Children with HIVAN frequently show high plasma fibroblast growth factor-2 (FGF-2) levels; however, the role of circulating FGF-2 in the pathogenesis of childhood HIVAN is unclear. Here, we explored how circulating FGF-2 affected the outcome of HIVAN in young HIV-Tg26 mice. Briefly, we demonstrated that FGF-2 was preferentially recruited in the kidneys of mice without pre-existing kidney disease, precipitating HIVAN by activating phosphorylated extracellular signal-regulated kinase (pERK) in renal epithelial cells, without inducing the expression of HIV-1 genes. Wild-type mice injected with recombinant adenoviral FGF-2 (rAd-FGF-2) vectors carrying a secreted form of human FGF-2 developed transient and reversible HIVAN-like lesions, including proteinuria and glomerular enlargement. HIV-Tg26 mice injected with rAd-FGF-2 vectors developed more-significant proliferative and pro-fibrotic inflammatory lesions, similar to those seen in childhood HIVAN. These lesions were partially reversed by treating mice with the FGF/VEGF receptor tyrosine kinase inhibitor PD173074. These findings suggest that high plasma FGF-2 levels may be an independent risk factor for precipitating HIVAN in young children.
Collapse
Affiliation(s)
- Jharna R. Das
- Children's National Hospital,Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Marina Jerebtsova
- Children's National Hospital,Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Pingtao Tang
- Children's National Hospital,Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jinliang Li
- Children's National Hospital,Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jing Yu
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Patricio E. Ray
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
14
|
Miao Y, Yang J, Yun Y, Sun J, Wang X. Synthesis and anti-rheumatoid arthritis activities of 3-(4-aminophenyl)-coumarin derivatives. J Enzyme Inhib Med Chem 2021; 36:450-461. [PMID: 33557646 PMCID: PMC7889190 DOI: 10.1080/14756366.2021.1873978] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rheumatoid arthritis is a chronic systemic disease characterised by an unknown aetiology of inflammatory synovitis. A large number of studies have shown that synoviocytes show tumour-like dysplasia in the pathological process of RA, and the changes in the expression of related cytokines are closely related to the pathogenesis of RA. In this thesis, a series of novel 3-(4-aminophenyl) coumarins containing different substituents were synthesised to find new coumarin anti-inflammatory drugs for the treatment of rheumatoid arthritis. The results of preliminary activity screening showed that compound 5e had the strongest inhibitory activity on the proliferation of fibroid synovial cells, and it also had inhibitory effect on RA-related cytokines IL-1, IL-6, and TNF-α. The preliminary mechanism study showed that compound 5e could inhibit the activation of NF-κB and MAPKs signal pathway. The anti-inflammatory activity of compound 5ein vivo was further determined in the rat joint inflammation model.
Collapse
Affiliation(s)
- Yuhang Miao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Yang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yinling Yun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Wang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
15
|
Hu JN, Leng J, Shen Q, Liu Y, Li XD, Wang SH, Li HP, Wang Z, Wang YP, Li W. Platycodin D suppresses cisplatin-induced cytotoxicity by suppressing ROS-mediated oxidative damage, apoptosis, and inflammation in HEK-293 cells. J Biochem Mol Toxicol 2020; 35:e22624. [PMID: 32881195 DOI: 10.1002/jbt.22624] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/29/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin-induced human embryonic kidney 293 (HEK-293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose-dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase-3,-9, and decreased protein levels of Bcl-2, Bcl-XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF-κB-mediated inflammatory relative proteins. Our finding indicated that PD exerted significant effects on cisplatin induced oxidative stress, apoptosis and inflammatory, which will provide evidence for the development of PD to attenuate cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jing Leng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xin-Dian Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shi-Han Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
16
|
Toxicologic Evaluation for Amorphous Silica Nanoparticles: Genotoxic and Non-Genotoxic Tumor-Promoting Potential. Pharmaceutics 2020; 12:pharmaceutics12090826. [PMID: 32872498 PMCID: PMC7559769 DOI: 10.3390/pharmaceutics12090826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Amorphous silica nanoparticles (SiO2NPs) have been widely used in medicine including targeted drug/DNA delivery, cancer therapy, and enzyme immobilization. Nevertheless, SiO2NPs should be used with caution due to safety concerns associated with unique physical and chemical characteristics. The objective of this study was to determine the effects of SiO2NPs on genotoxic and non-genotoxic mechanisms associated with abnormal gap junctional intercellular communication (GJIC) in multistage carcinogenesis. The SiO2NPs exhibited negative responses in standard genotoxicity tests including the Ames test, chromosome aberration assay, and micronucleus assay. In contrast, the SiO2NPs significantly induced DNA breakage in comet assay. Meanwhile, SiO2NPs inhibited GJIC based on the results of scrape/loading dye transfer assay for the identification of non-genotoxic tumor-promoting potential. The reduction in expression and plasma membrane localization of Cx43 was detected following SiO2NP treatment. Particularly, SiO2NP treatment increased Cx43 phosphorylation state, which was significantly attenuated by inhibitors of extracellular signal-regulated kinases 1/2 (ERK1/2) and threonine and tyrosine kinase (MEK), but not by protein kinase C (PKC) inhibitor. Taken together, in addition to a significant increase in DNA breakage, SiO2NP treatment resulted in GJIC dysregulation involved in Cx43 phosphorylation through the activation of mitogen-activated protein kinase (MAPK) signaling. Overall findings of the genotoxic and non-genotoxic carcinogenic potential of SiO2NPs provide useful toxicological information for clinical application at an appropriate dose.
Collapse
|
17
|
Fan J, Hu J, Xue C, Zhang H, Susztak K, Reilly MP, Xiao R, Li M. ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing. PLoS Genet 2020; 16:e1008786. [PMID: 32392242 PMCID: PMC7241832 DOI: 10.1371/journal.pgen.1008786] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/21/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Allele-specific expression (ASE) analysis, which quantifies the relative expression of two alleles in a diploid individual, is a powerful tool for identifying cis-regulated gene expression variations that underlie phenotypic differences among individuals. Existing methods for gene-level ASE detection analyze one individual at a time, therefore failing to account for shared information across individuals. Failure to accommodate such shared information not only reduces power, but also makes it difficult to interpret results across individuals. However, when only RNA sequencing (RNA-seq) data are available, ASE detection across individuals is challenging because the data often include individuals that are either heterozygous or homozygous for the unobserved cis-regulatory SNP, leading to sample heterogeneity as only those heterozygous individuals are informative for ASE, whereas those homozygous individuals have balanced expression. To simultaneously model multi-individual information and account for such heterogeneity, we developed ASEP, a mixture model with subject-specific random effect to account for multi-SNP correlations within the same gene. ASEP only requires RNA-seq data, and is able to detect gene-level ASE under one condition and differential ASE between two conditions (e.g., pre- versus post-treatment). Extensive simulations demonstrated the convincing performance of ASEP under a wide range of scenarios. We applied ASEP to a human kidney RNA-seq dataset, identified ASE genes and validated our results with two published eQTL studies. We further applied ASEP to a human macrophage RNA-seq dataset, identified genes showing evidence of differential ASE between M0 and M1 macrophages, and confirmed our findings by results from cardiometabolic trait-relevant genome-wide association studies. To the best of our knowledge, ASEP is the first method for gene-level ASE detection at the population level that only requires the use of RNA-seq data. With the growing adoption of RNA-seq, we believe ASEP will be well-suited for various ASE studies for human diseases.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Katalin Susztak
- Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
- The Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
18
|
Tan X, Tao Q, Li G, Xiang L, Zheng X, Zhang T, Wu C, Li D. Fibroblast Growth Factor 2 Attenuates Renal Ischemia-Reperfusion Injury via Inhibition of Endoplasmic Reticulum Stress. Front Cell Dev Biol 2020; 8:147. [PMID: 32266254 PMCID: PMC7105877 DOI: 10.3389/fcell.2020.00147] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a serious clinical disease that is mainly caused by renal ischemia-reperfusion (I/R) injury, sepsis, and nephrotoxic drugs. The pathologic mechanism of AKI is very complex and may involve oxidative stress, inflammatory response, autophagy, apoptosis, and endoplasmic reticulum (ER) stress. The basic fibroblast growth factor (FGF2) is a canonic member of the FGF family that plays a crucial role in various cellular processes, including organ development, wound healing, and tissue regeneration. However, few studies have reported the potential therapeutic effect of FGF2 in the repair of renal ischemic injury in the past two decades. In the present study, we investigated the protective effect of FGF2 on renal I/R injury using Sprague-Dawley and NRK-52E cells. Our results showed that FGF2 significantly attenuates the apoptosis of kidney tissues after I/R injury through the inhibition of excessive ER stress. Moreover, FGF2 also alleviated the excessive ER stress and apoptosis in cultured NRK-52E cells injured by tert-Butyl hydroperoxide (TBHP). Significantly, phosphatidylinositol 3-kinase (PI3K)-selective inhibitor LY294002 and mitogen-activated protein kinase kinase (MEK)-selective inhibitor U0126 were utilized in the present study to examine the protective mechanism of FGF2. Our in vitro experimental results confirmed that both LY294002 and U0126 largely abolished the protective effect of FGF2. Taken together, the findings of the present study indicated that FGF2 attenuates I/R-induced renal epithelial apoptosis by suppressing excessive ER stress via the activation of the PI3K/AKT and MEK-ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Guixiu Li
- Outpatient Operating Room, Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Lijun Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaomeng Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Tianzhen Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cuijiao Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dequan Li
- Department of Traumatology Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Tan X, Yu L, Yang R, Tao Q, Xiang L, Xiao J, Zhang JS. Fibroblast Growth Factor 10 Attenuates Renal Damage by Regulating Endoplasmic Reticulum Stress After Ischemia-Reperfusion Injury. Front Pharmacol 2020; 11:39. [PMID: 32116715 PMCID: PMC7019113 DOI: 10.3389/fphar.2020.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
Renal ischemia–reperfusion (I/R) injury is a predominant cause of acute kidney injury (AKI), the pathologic mechanism of which is highly complex involving reactive oxygen species (ROS) accumulation, inflammatory response, autophagy, apoptosis as well as endoplasmic reticulum (ER) stress. Fibroblast growth factor 10 (FGF10), as a multifunctional growth factor, plays crucial roles in embryonic development, adult homeostasis, and regenerative medicine. Herein, we investigated the molecular pathways underlying the protective effect of FGF10 on renal I/R injury using Sprague–Dawley rats. Results showed that administration of FGF10 not only effectively inhibited I/R-induced activation of Caspase-3 and expression of Bax, but also alleviated I/R evoked expression of ER stress-related proteins in the kidney including CHOP, GRP78, XBP-1, and ATF-4 and ATF-6. The protective effect of FGF10 against apoptosis and ER stress was recapitulated by in vitro experiments using oxidative damaged NRK-52E cells induced by tert-Butyl hydroperoxide (TBHP). Significantly, U0126, a selective noncompetitive inhibitor of MAP kinase kinases (MKK), largely abolished the protective role of FGF10. Taken together, both in vivo and in vitro experiments indicated that FGF10 attenuates I/R-induced renal epithelial apoptosis by suppressing excessive ER stress, which is, at least partially, mediated by the activation of the MEK–ERK1/2 signaling pathway. Therefore, our present study revealed the therapeutic potential of FGF10 on renal I/R injury.
Collapse
Affiliation(s)
- Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lixia Yu
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Ruo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianyu Tao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lijun Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin-San Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Life Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
20
|
Capolongo G, Suzumoto Y, D'Acierno M, Simeoni M, Capasso G, Zacchia M. ERK1,2 Signalling Pathway along the Nephron and Its Role in Acid-base and Electrolytes Balance. Int J Mol Sci 2019; 20:E4153. [PMID: 31450703 PMCID: PMC6747339 DOI: 10.3390/ijms20174153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are intracellular molecules regulating a wide range of cellular functions, including proliferation, differentiation, apoptosis, cytoskeleton remodeling and cytokine production. MAPK activity has been shown in normal kidney, and its over-activation has been demonstrated in several renal diseases. The extracellular signal-regulated protein kinases (ERK 1,2) signalling pathway is the first described MAPK signaling. Intensive investigations have demonstrated that it participates in the regulation of ureteric bud branching, a fundamental process in establishing final nephron number; in addition, it is also involved in the differentiation of the nephrogenic mesenchyme, indicating a key role in mammalian kidney embryonic development. In the present manuscript, we show that ERK1,2 signalling mediates several cellular functions also in mature kidney, describing its role along the nephron and demonstrating whether it contributes to the regulation of ion channels and transporters implicated in acid-base and electrolytes homeostasis.
Collapse
Affiliation(s)
- Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | | | | | - Mariadelina Simeoni
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
- Biogem Scarl, 83031 Ariano Irpino, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy.
| |
Collapse
|
21
|
Lee D, Kim KH, Lee WY, Kim CE, Sung SH, Kang KB, Kang KS. Multiple Targets of 3-Dehydroxyceanothetric Acid 2-Methyl Ester to Protect Against Cisplatin-Induced Cytotoxicity in Kidney Epithelial LLC-PK1 Cells. Molecules 2019; 24:molecules24050878. [PMID: 30832267 PMCID: PMC6429383 DOI: 10.3390/molecules24050878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic exposure to cisplatin, a potent anticancer drug, causes irreversible kidney damage. In this study, we investigated the protective effect and mechanism of nine lupane- and ceanothane-type triterpenoids isolated from jujube (Ziziphus jujuba Mill., Rhamnaceae) on cisplatin-induced damage to kidney epithelial LLC-PK1 cells via mitogen-activated protein kinase (MAPK) and apoptosis pathways. Cisplatin-induced LLC-PK1 cell death was most significantly reduced following treatment with 3-dehydroxyceanothetric acid 2-methyl ester (3DC2ME). Additionally, apoptotic cell death was significantly reduced. Expression of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 was markedly suppressed by 3DC2ME, indicating inhibition of the MAPK pathway. Treatment with 3DC2ME also significantly reduced expression of active caspase-8 and -3, Bcl-2-associated X protein (Bax), and B cell lymphoma 2 (Bcl-2), indicating the inhibition of apoptosis pathways in the kidneys. We also applied the network pharmacological analysis and identified multiple targets of 3DC2ME related to MAPK signaling pathway and apoptosis.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea.
| | - Won Yung Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Sang Hyun Sung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea.
| | - Ki Sung Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
22
|
Reis RI, Nogueira MD, Campanha-Rodrigues AL, Pereira LM, Andrade MCC, Parreiras-E-Silva LT, Costa-Neto CM, Mortara RA, Casarini DE. The binding of captopril to angiotensin I-converting enzyme triggers activation of signaling pathways. Am J Physiol Cell Physiol 2018; 315:C367-C379. [PMID: 29874111 DOI: 10.1152/ajpcell.00012.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hypertension is a global health problem, and angiotensin I (ANG I)-converting enzyme (ACE) inhibitors are largely used to control this pathology. Recently, it has been shown that ACE can also act as a transducer signal molecule when its inhibitors or substrates bind to it. This new role of ACE could contribute to understanding some of the effects not explained by its catalytic activity only. In this study, we investigated signaling pathway activation in Chinese hamster ovary (CHO) cells stably expressing ACE (CHO-ACE) under different conditions. We also investigated gene modulation after 4 h and 24 h of captopril treatment. Our results demonstrated that CHO-ACE cells when stimulated with ANG I, ramipril, or captopril led to JNK and ERK1/2 phosphorylation. To verify any physiological role at the endogenous level, we made use of primary cultures of mesangial cells from spontaneously hypertensive rats (SHR) and Wistar rats. Our results showed that ERK1/2 activation occurred mainly in primary cultures of mesangial cells from SHR rats upon captopril stimulation, suggesting that this signaling pathway could be differentially regulated during hypertension. Our results also showed that captopril treatment leads to a decrease of cyclooxygenase 2, interleukin-1β, and β-arrestin2 and a significant increase of AP2 gene expression levels. Our findings strengthen the fact that, in addition to the blockage of enzymatic activity, ACE inhibitors also trigger signaling pathway activation, and this may contribute to their beneficial effects in the treatment of hypertension and other pathologies.
Collapse
Affiliation(s)
- Rosana I Reis
- Department of Medicine, Nephrology Division, Escola Paulista de Medicina, Federal University of São Paulo , São Paulo , Brazil
| | - Marie D Nogueira
- Department of Medicine, Nephrology Division, Escola Paulista de Medicina, Federal University of São Paulo , São Paulo , Brazil
| | - Ana Lucia Campanha-Rodrigues
- Department of Medicine, Nephrology Division, Escola Paulista de Medicina, Federal University of São Paulo , São Paulo , Brazil
| | - Larissa Miranda Pereira
- Department of Medicine, Nephrology Division, Escola Paulista de Medicina, Federal University of São Paulo , São Paulo , Brazil
| | - Maria Claudina C Andrade
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa , São Paulo , Brazil
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto - University of São Paulo , Ribeirão Preto , Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirao Preto - University of São Paulo , Ribeirão Preto , Brazil
| | - Renato Arruda Mortara
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo , São Paulo , Brazil
| | - Dulce E Casarini
- Department of Medicine, Nephrology Division, Escola Paulista de Medicina, Federal University of São Paulo , São Paulo , Brazil
| |
Collapse
|
23
|
Lee D, Lee H, Kang KS, Lee JW. 2-Bromo-4,5-Dimethoxy Chalcone Inhibits Cisplatin-induced LLC-PK1 Kidney Cell Death. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dahae Lee
- School of Pharmacy; Sungkyunkwan University; Suwon 16419 South Korea
| | - Heesu Lee
- College of Dentisty; Gangneung Wonju National University; Gangneung 25457 South Korea
| | - Ki Sung Kang
- College of Korean Medicine; Gachon University; Seongnam 13120 South Korea
| | - Jae Wook Lee
- Natural Constituent Research Center, Korea Institute of Science and Technology; Gangneung 25451 South Korea
- Convergence Research Center of Dementia, Korea Institute of Science and Technology (KIST); Seoul 02792 South Korea
- Department of Biological Chemistry; Korea University of Science and Technology; Daejun 34113 South Korea
| |
Collapse
|
24
|
Lee D, Yu JS, Lee SR, Hwang GS, Kang KS, Park JG, Kim HY, Kim KH, Yamabe N. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2018; 19:ijms19041117. [PMID: 29642519 PMCID: PMC5979275 DOI: 10.3390/ijms19041117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae), is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1), quercetin 3-O-β-d-glucoside (2), kaempferol 3-O-β-d-rutinoside (3), rutin (4), and 2-phenylethyl d-rutinoside (5) by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR) data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Seoung Rak Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Jae Gyu Park
- Advanced Bio Convergenve Center, Pohang Technopark, Pohang 37668, Korea.
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
25
|
Abdel-Maksoud FM, Knight R, Waler K, Yaghoubi-Yeganeh N, Olukunle JO, Thompson H, Panizzi JR, Akingbemi BT. Exposures of male rats to environmental chemicals [bisphenol A and di (2-ethylhexyl) phthalate] affected expression of several proteins in the developing epididymis. Andrology 2017; 6:214-222. [DOI: 10.1111/andr.12451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 11/30/2022]
Affiliation(s)
- F. M. Abdel-Maksoud
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - R. Knight
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - K. Waler
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - N. Yaghoubi-Yeganeh
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | | | - H. Thompson
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - J. R. Panizzi
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - B. T. Akingbemi
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| |
Collapse
|
26
|
Genome-wide Profiling of Urinary Extracellular Vesicle microRNAs Associated With Diabetic Nephropathy in Type 1 Diabetes. Kidney Int Rep 2017; 3:555-572. [PMID: 29854963 PMCID: PMC5976846 DOI: 10.1016/j.ekir.2017.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Diabetic nephropathy (DN) is a form of progressive kidney disease that often leads to end-stage renal disease (ESRD). It is initiated by microvascular complications due to diabetes. Although microalbuminuria (MA) is the earliest clinical indication of DN among patients with type 1 diabetes (T1D), it lacks the sensitivity and specificity to detect the early onset of DN. Recently, microRNAs (miRNAs) have emerged as critical regulators in diabetes as well as various forms of kidney disease, including renal fibrosis, acute kidney injury, and progressive kidney disease. Additionally, circulating extracellular miRNAs, especially miRNAs packaged in extracellular vesicles (EVs), have garnered significant attention as potential noninvasive biomarkers for various diseases and health conditions. Methods As part of the University of Pittsburgh Epidemiology of Diabetes Complications (EDC) study, urine was collected from individuals with T1D with various grades of DN or MA (normal, overt, intermittent, and persistent) over a decade at prespecified intervals. We isolated EVs from urine and analyzed the small-RNA using NextGen sequencing. Results We identified a set of miRNAs that are enriched in urinary EVs compared with EV-depleted samples, and identified a number of miRNAs showing concentration changes associated with DN occurrence, MA status, and other variables, such as hemoglobin A1c levels. Conclusion Many of the miRNAs associated with DN occurrence or MA status directly target pathways associated with renal fibrosis (including transforming growth factor-β and phosphatase and tensin homolog), which is one of the major contributors to the pathology of DN. These miRNAs are potential biomarkers for DN and MA.
Collapse
|
27
|
Sapiro JM, Monks TJ, Lau SS. All- trans-retinoic acid-mediated cytoprotection in LLC-PK 1 renal epithelial cells is coupled to p-ERK activation in a ROS-independent manner. Am J Physiol Renal Physiol 2017; 313:F1200-F1208. [PMID: 28768661 DOI: 10.1152/ajprenal.00085.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/13/2017] [Accepted: 07/23/2017] [Indexed: 02/05/2023] Open
Abstract
Although all-trans-retinoic acid (ATRA) provides protection against a variety of conditions in vivo, particularly ischemia, the molecular mechanisms underpinning these effects remain unclear. The present studies were designed to assess potential mechanisms by which ATRA affords cytoprotection against renal toxicants in LLC-PK1 cells. Pretreatment of LLC-PK1 cells with ATRA (25 μM) for 24 h afforded cytoprotection against oncotic cell death induced by p-aminophenol (PAP), 2-(glutathion-S-yl)hydroquinone (MGHQ), and iodoacetamide but not against apoptotic cell death induced by cisplatin. Inhibition of protein synthesis with cycloheximide blunted ATRA protection, indicating essential cell survival pathways must be engaged before toxicant exposure to provide cytoprotection. Interestingly, ATRA did not prevent the PAP-induced generation of reactive oxygen species (ROS) nor did it alter glutathione levels. Moreover, ATRA had no significant effect on Nrf2 protein expression, and the Nrf2 inducers sulforaphane and MG132 did not influence ATRA cytoprotection, suggesting cytoprotective pathways beyond those that influence ROS levels contribute to ATRA protection. In contrast, ATRA rapidly (15 min) induced levels of the cellular stress kinases p-ERK and p-AKT at concentrations of ATRA (10 and 25 μM) required for cytoprotection. Consistent with a role for p-ERK in ATRA-mediated cytoprotection, inhibition of p-ERK with PD98059 reduced the ability of ATRA to afford protection against PAP toxicity. Collectively, these data suggest that p-ERK and its downstream targets, independent of ROS and antioxidant signaling, are important contributors to the cytoprotective effects of ATRA against oncotic cell death.
Collapse
Affiliation(s)
- Jessica M Sapiro
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Terrence J Monks
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and .,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Serrine S Lau
- Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; and.,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
28
|
Sutariya B, Jhonsa D, Saraf MN. TGF-β: the connecting link between nephropathy and fibrosis. Immunopharmacol Immunotoxicol 2016; 38:39-49. [PMID: 26849902 DOI: 10.3109/08923973.2015.1127382] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Renal fibrosis is the usual outcome of an excessive accumulation of extracellular matrix (ECM) that frequently occurs in membranous and diabetic nephropathy. The result of renal fibrosis would be end-stage renal failure, which requires costly dialysis or kidney transplantation. Renal fibrosis typically results from chronic inflammation via production of several molecules, such as growth factors, angiogenic factors, fibrogenic cytokines, and proteinase. All of these factors can stimulate excessive accumulation of ECM components through epithelial to mesenchymal transition (EMT), which results in renal fibrosis. Among these, transforming growth factor-beta (TGF-β) is proposed to be the major regulator in inducing EMT. Besides ECM protein synthesis, TGF-β is involved in hypertrophy, proliferation, and apoptosis in renal cells. In particular, TGF-β is likely to be most potent and ubiquitous profibrotic factor acting through several intracellular signaling pathways including protein kinases and transcription factors. Factors that regulate TGF-β expression in renal cell include hyperglycemia, angiotensin II, advance glycation end products, complement activation (C5b-9), and oxidative stress. Over the past several years, the common understanding of the pathogenic factors that lead to renal fibrosis in nephropathy has improved considerably. This review will discuss the recent findings on the mechanisms and role of TGF-β in membranous and diabetic nephropathy.
Collapse
Affiliation(s)
- Brijesh Sutariya
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Dimple Jhonsa
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| | - Madhusudan N Saraf
- a Department of Pharmacology , Bombay College of Pharmacy , Mumbai , Maharashtra , India
| |
Collapse
|
29
|
Hu M, Fan M, Zhen J, Lin J, Wang Q, Lv Z, Wang R. FAK contributes to proteinuria in hypercholesterolaemic rats and modulates podocyte F-actin re-organization via activating p38 in response to ox-LDL. J Cell Mol Med 2016; 21:552-567. [PMID: 27704688 PMCID: PMC5323874 DOI: 10.1111/jcmm.13001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that regulates cell adhesion, proliferation and differentiation. In the present study, a rat model of high fat diet-induced hypercholesterolaemia was established to investigate the involvement of FAK in lipid disorder-related kidney diseases. We showed focal fusion of podocyte foot process that occurred at as early as 4 weeks in rats consuming high fat diet, preceding the onset of proteinuria when aberrant phosphorylation of FAK was found. These abnormalities were ameliorated by dietary intervention of TAE226, a reported inhibitor of FAK. FAK is also an adaptor protein initiating cascades of intracellular signals including c-Src, Rho GTPase and mitogen-activated protein kinase (MAPK). P38 MAPK belongs to the latter and is centrally involved in kidney diseases. Our cell culture data revealed oxidized low-density lipoprotein (ox-LDL) triggered hyper-phosphorylation of FAK and p38, ectopic expression of cellular markers (manifested as decreased WT1, podocin and NEPH1, and increased vimentin and mmp9), and re-arrangement of F-actin filaments with enhanced cell motility; these mutations were significantly rectified by FAK shRNA. Notably, pre-treatment of p38 inhibitor did not alter FAK activation, albeit its deletion of p38 hyper-activity and attenuation of cellular abnormalities, demonstrating that p38 acted as a downstream effector of FAK signalling and ox-LDL damaged podocytes in a FAK/p38-dependent manner. This was further identified by animal data that p38 activation was also abrogated by TAE226 treatment in hypercholesterolaemic rats, suggesting that FAK/p38 axis might also be involved in in vivo events. These findings provided a potential early mechanism of hypercholesterolaemia-related podocyte damage and proteinuria.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital of Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Jiangong Lin
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qun Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
30
|
Kidney injury molecule-1 (KIM-1) mediates renal epithelial cell repair via ERK MAPK signaling pathway. Mol Cell Biochem 2016; 416:109-16. [PMID: 27084535 DOI: 10.1007/s11010-016-2700-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
Abstract
The expression of kidney injury molecule-1 (KIM-1), a very promising sensitive and specific urinary biomarker for acute renal injury, is markedly upregulated in injured and regenerating renal proximal tubular epithelial cells following ischemic or toxic insults, suggesting a possible role for this molecule in renal repair process. In the present study, we report that expression of KIM-1 facilitates renal tubular epithelial cell repair by promoting cell migration and proliferation. KIM-1 expression also enhances ERK MAPK activation, and the modulatory effect of KIM-1 on cellular repair process is likely mediated via ERK MAPK signaling pathway.
Collapse
|
31
|
Lin M, Gao P, Zhao T, He L, Li M, Li Y, Shui H, Wu X. Calcitriol regulates angiotensin-converting enzyme and angiotensin converting-enzyme 2 in diabetic kidney disease. Mol Biol Rep 2016; 43:397-406. [PMID: 26968558 DOI: 10.1007/s11033-016-3971-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/05/2016] [Indexed: 10/22/2022]
Abstract
To investigate the effects of calcitriol on angiotensin-converting enzyme (ACE) and ACE2 in diabetic nephropathy. Streptozotocin (STZ) induced diabetic rats were treated with calcitriol for 16 weeks. ACE/ACE2 and mitogen activated protein kinase (MAPK) enzymes were measured in the kidneys of diabetic rats and rat renal tubular epithelial cells exposed to high glucose. Calcitriol reduced proteinuria in diabetic rats without affecting calcium-phosphorus metabolism. ACE and ACE2 levels were significantly elevated in diabetic rats compared to those in control rats. The increase in ACE levels was greater than that of ACE2, leading to an elevated ACE/ACE2 ratio. Calcitriol reduced ACE levels and ACE/ACE2 ratio and increased ACE2 levels in diabetic rats. Similarly, high glucose up-regulated ACE expression in NRK-52E cells, which was blocked by the p38 MAPK inhibitor SB203580, but not the extracellular signal-regulated kinase (ERK) inhibitor FR180204 or the c-Jun N-terminal kinase (JNK) inhibitor SP600125. High glucose down-regulated ACE2 expression, which was blocked by FR180204, but not SB203580 or SP600125. Incubation of cells with calcitriol significantly inhibited p38 MAPK and ERK phosphorylation, but not JNK phosphorylation, and effectively attenuated ACE up-regulation and ACE2 down-regulation in high glucose conditions. The renoprotective effects of calcitriol in diabetic nephropathy were related to the regulation of tubular levels of ACE and ACE2, possibly by p38 MAPK or ERK, but not JNK pathways.
Collapse
Affiliation(s)
- Mei Lin
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Ping Gao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Tianya Zhao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Lei He
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Mengshi Li
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yaoyao Li
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
32
|
Abstract
Activator of G-protein signaling 3 (AGS3) is an accessory protein that functions to regulate the activation status of heterotrimeric G-protein subunits. To date, however, the downstream signaling pathways regulated by AGS3 remain to be fully elucidated, particularly in renal epithelial cells. In the present study, normal rat kidney (NRK-52E) proximal tubular epithelial cells were genetically modified to regulate the expression of AGS3 to investigate its role on MAPK and mTOR signaling to control epithelial cell number. Knockdown of endogenous AGS3 protein was associated with a reduced phosphorylated form of ERK5 and increased apoptosis as determined by elevated cleaved caspase-3. In the presence of the ERK5 inhibitor, BIX02189, a significant 2-fold change (P < 0.05) in G2/M transition state was detected compared to control conditions. Neither of the other MAPK, ERK1/2 or p38 MAPK, nor another pro-survival pathway, mTOR, was significantly altered by the changes in AGS3 protein levels in the renal epithelial cells. The selective ERK5 inhibitor, BIX02189, was found to dose-dependently reduce NRK cell number by up to 41% (P < 0.05) compared to control cells. In summary, these findings demonstrated that cell viability was regulated by AGS3 and was associated with ERK5 activation in renal epithelial cells.
Collapse
|
33
|
Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells. Chem Biol Interact 2015; 240:292-303. [PMID: 26341651 DOI: 10.1016/j.cbi.2015.08.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 08/31/2015] [Indexed: 12/26/2022]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.
Collapse
|
34
|
Habib R, Begum S, Alam G, Ali A, Khan I, Waseem M, Kabir N, Salim A. Transcription profile of genes affected in response to pathological changes in drug-induced rat model of acute kidney injury. Ren Fail 2015; 37:1225-1231. [PMID: 26114661 DOI: 10.3109/0886022x.2015.1057801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The objective of the present study was to examine the changes in the expression profile of certain genes in rat model of gentamicin-induced acute kidney injury (AKI) and to see whether time period and routes of administration affect their expression levels. METHODS Rat AKI model was established with gentamicin injection using two different routes of administration and two different time periods. The models were evaluated through histopathological observations. Renal specific genes were selected on the basis of their role during kidney injury. These genes were analyzed through reverse transcriptase (RT) PCR. RESULTS Marked disorganization of normal structure of proximal and distal tubules was observed in all the gentamicin-treated groups. Many tubules showed loss of brush border and presence of intratubular protein casts. Changes in gene expression levels were observed for kidney injury molecule (KIM-1), osteopontin, bone morphogenic protein-7 (BMP-7), extracellular signal-regulated kinases (ERK), stem cell factor (SCF) and IL-7 receptor with different levels of significance in the renal injury groups studied depending on the time period and route of administration. CONCLUSION Gene expression seems to be dependent partly on the type of injury, route of administration and time period after induction of injury. An improved mechanistic understanding of gene regulation pathways in AKI may provide basis for potential therapeutic development.
Collapse
Affiliation(s)
- Rakhshinda Habib
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | - Sumreen Begum
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | - Gulzar Alam
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | - Anwar Ali
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
- b Department of Physiology , Institute of Biological Sciences, University of Karachi , Karachi , Pakistan , and
| | - Irfan Khan
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | - Muhammad Waseem
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| | - Nurul Kabir
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
- c Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - Asmat Salim
- a Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi , Karachi , Pakistan
| |
Collapse
|
35
|
Yan R, Zhang L, Xia N, Liu Q, Sun H, Guo H. Knockdown of augmenter of liver regeneration in HK-2 cells inhibits inflammation response via the mitogen-activated protein kinase signaling pathway. Inflamm Res 2015; 64:453-462. [PMID: 25929436 DOI: 10.1007/s00011-015-0825-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Augmenter of liver regeneration (ALR) is a growth factor that is ubiquitously expressed in multiple forms among eukaryotes. The present study focused on the role of endogenous ALR on the hypoxia/reoxygenation (H/R)-induced inflammatory response in human kidney 2 (HK-2) cells, and the underlying molecular mechanisms. METHODS To determine the relationship between exogenous and endogenous ALR, exogenous ALR was administrated to HK-2 cells, and endogenous ALR protein and mRNA expression was examined by Western blotting and quantitative real-time polymerase chain reaction (qPCR), respectively. In order to knockdown endogenous ALR expression, HK-2 cells were infected with lentiviral shRNA/ALR, after which cell viability was determined by the MTS cell viability assay. Cells were subjected to hypoxia for 6 h and reoxygenation for 12 h. Levels of monocyte chemotactic protein (MCP-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA) and qPCR. Cells were harvested, and nuclear and phosphorylated protein extracts were prepared from the HK-2 cell lysates. Nuclear factor κB (NF-κB), and phosphorylated extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) were analyzed by Western blotting. The translocation of NF-κB was detected by immunofluorescence. RESULTS Exogenous ALR inhibited the expression of endogenous ALR. Lentiviral shRNA/ALR markedly downregulated endogenous ALR expression, whereas there were no changes in ALR expression in lentiviral shRNA/control HK-2 cells. The results of the MTS assay showed that silencing ALR expression did not influence cell viability. H/R led to increased production of MCP-1, IL-6, and TNF-α. However, knockdown of ALR attenuated the inflammatory response via inhibition of ERK, p38, and JNK phosphorylation. The translocation of NF-κB into the nucleus was also decreased. CONCLUSIONS These results suggest that there is a negative feedback loop involving ALR in HK-2 cells. Knockdown of ALR exerts anti-inflammatory actions via suppression of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Ruyu Yan
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China,
| | | | | | | | | | | |
Collapse
|
36
|
Thandavarayan RA, Giridharan VV, Arumugam S, Suzuki K, Ko KM, Krishnamurthy P, Watanabe K, Konishi T. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One 2015; 10:e0119214. [PMID: 25742619 PMCID: PMC4351084 DOI: 10.1371/journal.pone.0119214] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/26/2015] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (Dox) is a highly effective antineoplastic drug. However, Dox-induced apoptosis in cardiomyocytes leads to irreversible degenerative cardiomyopathy, which limits Dox clinical application. Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In current study, we investigated possible protective effects of Sch B against Dox-induced cardiomyopathy in mice. Mice received a single injection of Dox (20 mg/kg IP). Five days after Dox administration, left ventricular (LV) performance was significantly depressed and was improved by Sch B treatment. Sch B prevented the Dox-induced increase in lipid peroxidation, nitrotyrosine formation, and metalloproteinase activation in the heart. In addition, the increased expression of phospho-p38 MAPK and phospho-MAPK activated mitogen kinase 2 levels by Dox were significantly suppressed by Sch B treatment. Sch B also attenuated Dox-induced higher expression of LV proinflammatory cytokines, cardiomyocyte DNA damage, myocardial apoptosis, caspase-3 positive cells and phopho-p53 levels in mice. Moreover, LV expression of NADPH oxidase subunits and reactive oxygen species were significantly less in Sch B treatment mice after Dox injection. These findings suggest that Sch B attenuates Dox-induced cardiotoxicity via antioxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Rajarajan A. Thandavarayan
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Higashijima, Akiha Ku, Niigata, Japan
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
| | | | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Higashijima, Akiha Ku, Niigata, Japan
| | - Kenji Suzuki
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kam Ming Ko
- Section of Biochemistry and Cell Biology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences (NUPALS), Higashijima, Akiha Ku, Niigata, Japan
| | - Tetsuya Konishi
- Basic studies on second generation functional foods, NUPALS, NUPALS Liaison R/D promotion devision, Higashi-jima 265-1, Akiha-ku, Niigata, Japan, and Changchun University of Chinese Medicine, Bosuo Road #1035 Jingyue Economic Development District, Changchun, RP China
- * E-mail:
| |
Collapse
|
37
|
Xu Y, Zhang J, Liu J, Li S, Li C, Wang W, Ma R, Liu Y. Luteolin attenuate thed-galactose-induced renal damage by attenuation of oxidative stress and inflammation. Nat Prod Res 2015; 29:1078-82. [DOI: 10.1080/14786419.2014.981181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Kim JY, Yun JW, Kim YS, Kwon E, Choi HJ, Yeom SC, Kang BC. Mutagenicity and tumor-promoting effects of Tiglium seed extract via PKC and MAPK signaling pathways. Biosci Biotechnol Biochem 2014; 79:374-83. [PMID: 25391291 DOI: 10.1080/09168451.2014.980217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tiglium seed is a seed of mature Croton Tiglium Linne containing croton oils, which have been traditionally used as laxative or purgative. As it contains phorbol derivatives, we investigated the mutagenicity and tumor-promoting activity of Tiglium seed. Tiglium seed extract produced the mutagenic responses in five Salmonella typhimurium strains in Ames assay, whereas it did not alter the frequencies of chromosomal aberrations or micronuclei, indicating that it exerted the mutagenic potential, not clastogenicity. Accompanied with phosphorylation of connexin43 (Cx43) and extracellular signal-regulated kinases 1/2 (ERK1/2), Tiglium seed extract inhibited gap junctional intercellular communication (GJIC) associated with tumor-promoting potential. Importantly, these effects were blocked by a protein kinase C (PKC) inhibitor or mitogen-activated protein kinase (MAPKs) inhibitors, suggesting that Tiglium seed-induced GJIC inhibition was regulated by phosphorylation of Cx43 via PKC and MAPKs signaling. In conclusion, Tiglium seed has mutagenicity, possibly linking to tumor-promoting potential through the dysfunction of GJIC.
Collapse
Affiliation(s)
- Ji-Young Kim
- a Graduate School of Translational Medicine , Seoul National University College of Medicine , Seoul , Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Ou YW, Zhao ZT, Wu CY, Xu BN, Song YM, Zhan QM. Mig-2 attenuates cisplatin-induced apoptosis of human glioma cells in vitro through AKT/JNK and AKT/p38 signaling pathways. Acta Pharmacol Sin 2014; 35:1199-1206. [PMID: 25152024 PMCID: PMC4155532 DOI: 10.1038/aps.2014.60] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/26/2014] [Indexed: 02/07/2023]
Abstract
AIM Mig-2 (also known as Kindlin-2 and FERMT2) is an important regulator of integrin activation and cell-extracellular matrix adhesion, and involved in carcinogenesis and tumor progression. The aim of this study was to investigate the role of mig-2 in cisplatin-induced apoptosis of human glioma cells in vitro. METHODS The expression of mig-2 was modulated in human glioma H4, HS 683 and U-87 MG cells by transfection with a plasmid carrying mig-2 or mig-2 siRNA. Cisplatin-induced apoptosis was detected using Annexin V/PI staining and flow cytometry, as well as MTS analyses. The expression of apoptosis-related or signaling proteins was examined using Western blotting analysis. H4 cells were transfected with plasmids carrying mig-2 mutants to determine the functional domain of mig-2. RESULTS In the 3 glioma cell lines tested, overexpression of mig-2 significantly attenuated cisplatin-induced apoptosis, whereas knock-down of mig-2 potentiated the apoptosis. The mechanisms of action of mig-2 were further addressed in H4 cells: overexpression of mig-2 markedly reduced cleaved caspase-9, caspase-8, caspase-3 and PARP, as well as p-JNK and p-p38, and increased p-AKT in cisplatin-treated H4 cells, whereas mig-2 siRNA reversely changed these apoptosis-related and signaling proteins. Furthermore, pretreatment with JNK inhibitor SP600125 and p38 inhibitor SB203580, or with AKT inhibitor LY294002 abolished the effects of mig-2 on cisplaxtin-induced apoptosis. In H4 cells, GFP-mig-2 F3 plasmid that contained only the F3 subdomain showed the same efficiency in attenuating cisplatin-induced apoptosis, as the mig-2 wild-type vector did, whereas GFP-mig-2 (1-541) plasmid that lacked the F3 subdomain was inactive. CONCLUSION Mig-2 significantly attenuates the antitumor action of cisplatin against human glioma cells in vitro through AKT/JNK and AKT/p38 signaling pathways. The F3 subdomain of mig-2 is necessary and sufficient for this effect.
Collapse
Affiliation(s)
- Yun-wei Ou
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zi-tong Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chuan-yue Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bai-nan Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong-mei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qi-min Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
40
|
Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1998-2008. [DOI: 10.1016/j.bbadis.2013.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022]
|
41
|
Downregulation of p38 MAPK involved in inhibition of LDL-induced proliferation of mesangial cells and matrix by curcumin. ACTA ACUST UNITED AC 2013; 33:666-671. [PMID: 24142718 DOI: 10.1007/s11596-013-1178-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Curcumin, as a main pharmacological component in the traditional Chinese medicine-turmeric, has shown anti-inflammatory, anti-oxidation, anti-tumor and anti-fibrotic effects. This study aimed to investigate the possible underlying signaling pathway which was involved in the inhibition of LDL-induced proliferation of mesangial cells and matrix by curcumin. Rat mesangial cells in vitro were incubated with low-density lipoprotein (LDL) and different concentrations of curcumin (0, 6.25, 12.5, 25.0 μmol/L) or p38 MAPK inhibitor, SB203580 (10 μmol/L). Under LDL incubation, mesangial cells proliferated, the expression of MMP-2 mRNA and protein was decreased, the expression of COX-2 mRNA and protein was increased, reactive oxygen species (ROS) generation was increased and p38 MAPK was activated significantly (P<0.05). When LDL-induced cells were treated with curcumin in the concentration of 12.5 or 25.0 μmol/L, LDL-induced proliferation of mesangial cells was suppressed, the expression of MMP-2 mRNA and protein increased, the expression of COX-2 mRNA and protein downregulated, the production of ROS inhibited and p38 MAPK inactivated (P<0.05). In conclusion, curcumin can inhibit the LDL-induced proliferation of mesangial cells and up-regulate the expression of MMP-2, which may be related with the inhibitory effect of curcumin on COX-2 expression, ROS production and p38 MAPK.
Collapse
|
42
|
Kim HS, Kim YW. Expression of phosphorylated extracellular signal-regulated kinase in rat kidneys exposed to high +Gz. Bosn J Basic Med Sci 2013. [PMID: 23198944 DOI: 10.17305/bjbms.2012.2453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exposure to high gravitational acceleration forces acting along the body axis from the head to the feet (+Gz) severely reduces blood flow to the visceral organs, including the kidneys. Extracellular signal-regulated kinase (ERK) figures predominantly in mediating kidney cell responses to a wide variety of stress-related stimuli. Though previous studies have shown the activation of ERK in some experimental models, the regulation of ERK associated with +Gz exposure has not yet been investigated. The aim of this study was to examine the effect of high +Gz exposure on ERK activation in the kidneys. Using a small animal centrifuge, eight male Sprague-Dawley rats were exposed to +10Gz or +13Gz three times for 3 minutes each. The bilateral kidneys were obtained from each rat, and the expression levels of phosphorylated ERK (p-ERK) were evaluated using immunohistochemistry. In the control group, the collecting duct epithelium displayed faint cytoplasmic staining with no nuclear staining of p-ERK. By contrast, rats exposed to +10Gz showed strong nuclear staining intensity for p-ERK. In the renal papilla, the epithelial cells of collecting ducts and thin segments of the loop of Henle exhibited strong nuclear immunoreactivity for p-ERK. Rats exposed to +13Gz also showed the same staining intensity and distribution of p-ERK expression as that of rats exposed to +10Gz. This study is the first to describe +Gz exposure-induced alteration in the expression of p-ERK in the kidneys. Our finding suggests that high +Gz exposure leads to the activation of ERK in the renal papilla.
Collapse
Affiliation(s)
- Hyun Soo Kim
- Molecular Biology Laboratory, Aerospace Medical Center, Republic of Korea Air Force
| | | |
Collapse
|
43
|
Jain G, Jaimes EA. Nicotine signaling and progression of chronic kidney disease in smokers. Biochem Pharmacol 2013; 86:1215-23. [PMID: 23892062 DOI: 10.1016/j.bcp.2013.07.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 11/24/2022]
Abstract
The deleterious health effects of cigarette smoking are far reaching, and it remains the most important modifiable risk factor for improving overall morbidity and mortality. In addition to being a risk factor for cancer, cardiovascular disease and lung disease, there is strong evidence, both from human and animal studies, demonstrating a role for cigarette smoking in the progression of chronic kidney disease (CKD). Clinical studies have shown a strong correlation between cigarette smoking and worsening CKD in patients with diabetes, hypertension, polycystic kidney disease, and post kidney transplant. Nicotine, in addition to its role in the addictive properties of cigarette smoking, has other biological effects via activation of non-neuronal nicotinic acetylcholine receptors (nAChRs). Several nAChR subunits are expressed in the normal kidney and blockade of the α7-nAChR subunit ameliorates the effects of nicotine in animal models of CKD. Nicotine increases the severity of renal injury in animal models including acute kidney injury, diabetes, acute nephritis and subtotal nephrectomy. The renal effects of nicotine are also linked to increased generation of reactive oxygen species and activation of pro-fibrotic pathways. In humans, nicotine induces transitory increases in blood pressure accompanied by reductions in glomerular filtration rate and effective renal plasma flow. In summary, clinical and experimental evidence indicate that nicotine is at least in part responsible for the deleterious effects of cigarette smoking in the progression of CKD. The mechanisms involved are the subject of active investigation and may result in novel strategies to ameliorate the effects of cigarette smoking in CKD.
Collapse
Affiliation(s)
- Gaurav Jain
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
44
|
Sulodexide improves renal function through reduction of vascular endothelial growth factor in type 2 diabetic rats. Life Sci 2013; 92:1118-24. [PMID: 23643633 DOI: 10.1016/j.lfs.2013.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 11/23/2022]
Abstract
AIMS Sulodexide is a promising therapeutic drug for the management of diabetic nephropathy. Although sulodexide has demonstrated a renoprotective effect through its ability to restore glomerular ionic permselectivity, the exact mechanism is still not clear. We investigated the effects of long-term sulodexide treatment on diabetic nephropathy in Otsuka-Long-Evans-Tokushima-Fatty (OLETF) rats. MAIN METHODS Diabetic rats were treated with or without sulodexide at 10mg/kg/day in the drinking water for nine months. Renal morphology and changes in VEGF and p38 mitogen-activated protein kinase (p38 MAPK), urinary levels of albumin (UAE) and urinary VEGF excretion were determined. To define the direct effects of sulodexide, we performed an in vitro experiment using podocytes. KEY FINDINGS UAE was significantly higher in OLETF rats than in control LETO rats, and the sulodexide group showed significantly decreased UAE after six months of treatment. Interestingly, urinary VEGF levels were also significantly decreased in the sulodexide-treated group. In accordance with UAE and urinary VEGF changes, the renal expression of profibrotic molecules was significantly decreased after sulodexide treatment. In addition, the activation of p38 MAPK, assessed by measuring the level of phospho-specific p38 MAPK, increased in diabetic renal tissues and was markedly suppressed by sulodexide treatment. In cultured podocytes, sulodexide treatment significantly decreased high glucose-induced p38 MAPK activation and VEGF synthesis. SIGNIFICANCE Sulodexide directly suppresses VEGF synthesis through the p38 MAPK pathway in podocytes, and these results suggest that sulodexide may provide renoprotection via suppression of renal VEGF synthesis independently of glomerular basement membrane ionic permselectivity in type 2 diabetic rats.
Collapse
|
45
|
Casali CI, Weber K, Favale NO, Tome MCF. Environmental hyperosmolality regulates phospholipid biosynthesis in the renal epithelial cell line MDCK. J Lipid Res 2013; 54:677-691. [PMID: 23269393 PMCID: PMC3617943 DOI: 10.1194/jlr.m031500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/14/2012] [Indexed: 12/29/2022] Open
Abstract
Hyperosmolality is a key signal for renal physiology. On the one hand, it contributes to the differentiation of renal medullary structures and to the development of the urinary concentrating mechanism. On the other, it is a stress factor. In both cases, hyperosmolality activates processes that require an adequate extension of cellular membranes. In the present work, we examined whether hyperosmolality regulates phospholipid biosynthesis, which is needed for the membrane biogenesis in the renal epithelial cell line Madin-Darby canine kidney (MDCK). Because phospholipids are the structural determinants of all cell membranes, we evaluated their content, synthesis, and regulation in MDCK cultures subjected to different hyperosmotic concentrations of NaCl, urea, or both. Hyperosmolality increased phospholipid content in a concentration-dependent manner. Such an effect was exclusively due to changes in NaCl concentration and occurred at the initial stage of hyperosmolar treatment concomitantly with the expression of the osmoprotective protein COX-2. The hypertonic upregulation of phosphatidylcholine (PC) synthesis, the main constituent of all cell membranes, involved the transcriptional activation of two main regulatory enzymes, choline kinase (CK) and cytidylyltransferase α (CCTα) and required ERK1/2 activation. Considering that physiologically, renal medullary cells are constantly exposed to high and variable NaCl, these findings could contribute to explaining how renal cells could maintain cellular integrity even in a nonfavorable environment.
Collapse
Affiliation(s)
- Cecilia I. Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires, IQUIFIB–CONICET, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina
| | - Karen Weber
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires, IQUIFIB–CONICET, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina
| | - Nicolás O. Favale
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires, IQUIFIB–CONICET, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina
| | - María C. Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires, IQUIFIB–CONICET, Ciudad Autónoma de Buenos Aires (C1113AAD), Argentina
| |
Collapse
|
46
|
Feng Y, Liu Y, Wang L, Cai X, Wang D, Wu K, Chen H, Li J, Lei W. Sustained oxidative stress causes late acute renal failure via duplex regulation on p38 MAPK and Akt phosphorylation in severely burned rats. PLoS One 2013; 8:e54593. [PMID: 23349934 PMCID: PMC3547934 DOI: 10.1371/journal.pone.0054593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/13/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Clinical evidence indicates that late acute renal failure (ARF) predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS) induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. MATERIALS AND METHODS Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area). Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. RESULTS Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. CONCLUSIONS These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation.
Collapse
Affiliation(s)
- Yafei Feng
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Yi Liu
- Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoqing Cai
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Dexin Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaimin Wu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongli Chen
- Department of Toxicology, Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Wei Lei
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
47
|
Liu Y, Liang W, Yang Q, Ren Z, Chen X, Zha D, Singhal PC, Ding G. IQGAP1 mediates angiotensin II-induced apoptosis of podocytes via the ERK1/2 MAPK signaling pathway. Am J Nephrol 2013; 38:430-44. [PMID: 24247724 DOI: 10.1159/000355970] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/23/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND/AIMS The mechanism underlying angiotensin II (AngII)-promoted podocyte apoptosis has not been established. IQ domain GTPase-activating protein 1 (IQGAP1) is a scaffolding protein of the mitogen-activated protein kinases (MAPK) signaling pathway, and plays a significant role in apoptosis. The present study evaluates the role of IQGAP1 in AngII-induced podocyte apoptosis. METHODS We randomly assigned 36 male Wistar rats to a normal saline-infused group, an AngII-infused group, or a normal control group, and measured podocyte apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and transmission electron microscopic analysis. In addition, we exposed differentiated mouse podocytes to AngII and then assessed apoptosis by flow cytometry and Hoechst-33258 staining. Expression of IQGAP1 was measured by Western blotting, real-time PCR and immunofluorescence assay in vivo and in vitro. IQGAP1 siRNA and MAPK pathway inhibitors were further introduced to investigate the role of IQGAP1 and MAPK signaling in the process. Coimmunoprecipitation was used to evaluate the interaction between ERK1/2 and IQGAP1. RESULTS AngII promoted podocyte apoptosis in vivo and in vitro. IQGAP1 had a linear distribution along the capillary loops of glomeruli in vivo, and was in the cellular membrane and cytoplasm of cultured podocytes. AngII stimulated IQGAP1 expression and increased phosphorylation of P38, JNK, and ERK1/2. Knockdown of IQGAP1 with siRNA prevented AngII-induced apoptosis of podocytes and reduced AngII-induced phosphorylation of ERK1/2, but not that of P38, JNK. This was accompanied by a reduced interaction between ERK1/2 and IQGAP1. CONCLUSION IQGAP1 contributes to AngII-induced apoptosis of podocytes by interacting with the ERK1/2 signaling protein.
Collapse
Affiliation(s)
- Yipeng Liu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease. Proc Natl Acad Sci U S A 2012; 109:21462-7. [PMID: 23236168 DOI: 10.1073/pnas.1216830110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polycystic kidney diseases are the most common genetic diseases that affect the kidney. There remains a paucity of information regarding mechanisms by which G proteins are regulated in the context of polycystic kidney disease to promote abnormal epithelial cell expansion and cystogenesis. In this study, we describe a functional role for the accessory protein, G-protein signaling modulator 1 (GPSM1), also known as activator of G-protein signaling 3, to act as a modulator of cyst progression in an orthologous mouse model of autosomal dominant polycystic kidney disease (ADPKD). A complete loss of Gpsm1 in the Pkd1(V/V) mouse model of ADPKD, which displays a hypomorphic phenotype of polycystin-1, demonstrated increased cyst progression and reduced renal function compared with age-matched cystic Gpsm1(+/+) and Gpsm1(+/-) mice. Electrophysiological studies identified a role by which GPSM1 increased heteromeric polycystin-1/polycystin-2 ion channel activity via Gβγ subunits. In summary, the present study demonstrates an important role for GPSM1 in controlling the dynamics of cyst progression in an orthologous mouse model of ADPKD and presents a therapeutic target for drug development in the treatment of this costly disease.
Collapse
|
49
|
The connection between GRKs and various signaling pathways involved in diabetic nephropathy. Mol Biol Rep 2012; 39:7717-26. [PMID: 22350265 DOI: 10.1007/s11033-012-1608-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/24/2012] [Indexed: 01/11/2023]
Abstract
Diabetic nephropathy (DN) is a known microvascular complication in patients with diabetes mellitus. DN has become one of the main causes of death in diabetic patients. The occurrence and development of DN results from the comprehensive action of multi-factors, though the exact mechanism is not very clear. Recently, a study found that numerous pathways are activated during the course of the disease, including the PGE2-EP-G protein system, the renin-angiotensin system, protein kinase C, MAPK and oxidative stress, and transforming growth factor-β. G protein-coupled receptor kinases (GRKs), specifically recognize and phosphorylate agonist-activated G protein-coupled receptors, which play a major role in the above-mentioned pathways. The purpose of this paper is to review current information concerning the connection between GRKs and various signaling pathways involved in DN.
Collapse
|
50
|
Chen CH, Hsieh TJ, Lin KD, Lin HY, Lee MY, Hung WW, Hsiao PJ, Shin SJ. Increased unbound retinol-binding protein 4 concentration induces apoptosis through receptor-mediated signaling. J Biol Chem 2012; 287:9694-9707. [PMID: 22308028 DOI: 10.1074/jbc.m111.301721] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increase of apo-/holo-retinol-binding protein 4 (RBP4) concentrations has been found in subjects with renal dysfunction and even in diabetic patients with microalbuminuria. Holo-RBP4 is recognized to possess cytoprotective function. Therefore, we supposed that the relative increase in apo-RBP4 might induce cell damage. In this study, we investigated the signal transduction that activated apoptosis in response to the increase of apo-/holo-RBP4 concentration. We found that increase of apo-/holo-RBP4 concentration ratio delayed the displacement of RBP4 with "stimulated by retinoic acid 6" (STRA6), enhanced Janus kinase 2 (JAK2)/STAT5 cascade, up-regulated adenylate cyclase 6 (AC6), increased cAMP, enhanced JNK1/p38 cascade, suppressed CRBP-I/RARα (cellular retinol-binding protein/retinoic acid receptor α) expression, and led to apoptosis in HK-2 and human umbilical vein endothelial cells. Furthermore, STRA6, JAK2, STAT5, JNK1, or p38 siRNA and cAMP-PKA inhibitor reversed the repression of CRBP-I/RARα and apoptosis in apo-RBP4 stimulation. In conclusion, this study indicates that the increase of apo-/holo-RBP4 concentration may influence STRA6 signaling, finally causing apoptosis.
Collapse
Affiliation(s)
- Chao-Hung Chen
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tusty-Jiuan Hsieh
- School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Der Lin
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsing-Yi Lin
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wei-Wen Hung
- Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pi-Jung Hsiao
- School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shyi-Jang Shin
- School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Endocrinology and Metabolism, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|