1
|
Baum O, Huber-Abel FAM, Flück M. nNOS Increases Fiber Type-Specific Angiogenesis in Skeletal Muscle of Mice in Response to Endurance Exercise. Int J Mol Sci 2023; 24:ijms24119341. [PMID: 37298293 DOI: 10.3390/ijms24119341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
We studied the relationship between neuronal NO synthase (nNOS) expression and capillarity in the tibialis anterior (TA) muscle of mice subjected to treadmill training. The mRNA (+131%) and protein (+63%) levels of nNOS were higher (p ≤ 0.05) in the TA muscle of C57BL/6 mice undergoing treadmill training for 28 days than in those of littermates remaining sedentary, indicating an up-regulation of nNOS by endurance exercise. Both TA muscles of 16 C57BL/6 mice were subjected to gene electroporation with either the pIRES2-ZsGreen1 plasmid (control plasmid) or the pIRES2-ZsGreen1-nNOS gene-inserted plasmid (nNOS plasmid). Subsequently, one group of mice (n = 8) underwent treadmill training for seven days, while the second group of mice (n = 8) remained sedentary. At study end, 12-18% of TA muscle fibers expressed the fluorescent reporter gene ZsGreen1. Immunofluorescence for nNOS was 23% higher (p ≤ 0.05) in ZsGreen1-positive fibers than ZsGreen1-negative fibers from the nNOS-transfected TA muscle of mice subjected to treadmill training. Capillary contacts around myosin heavy-chain (MHC)-IIb immunoreactive fibers (14.2%; p ≤ 0.05) were only higher in ZsGreen1-positive fibers than ZsGreen1-negative fibers in the nNOS-plasmid-transfected TA muscles of trained mice. Our observations are in line with an angiogenic effect of quantitative increases in nNOS expression, specifically in type-IIb muscle fibers after treadmill training.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | - Martin Flück
- Heart Repair and Regeneration Laboratory, Department EMC, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
Chen Y, Zhang S, Li Y, Yan H, Ba Y, Wang X, Shi N, Liu C. Gastric Electrical Stimulation Increases the Proliferation of Interstitial Cells of Cajal and Alters the Enteric Nervous System in Diabetic Rats. Neuromodulation 2022; 25:1106-1114. [DOI: 10.1016/j.neurom.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
|
3
|
Shenkman BS, Sharlo KA. How Muscle Activity Controls Slow
Myosin Expression. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s002209302103011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure. Nitric Oxide 2017; 74:1-9. [PMID: 29288804 DOI: 10.1016/j.niox.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 12/24/2017] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) modulates oxygen delivery-utilization matching in resting and contracting skeletal muscle. Recent reports indicate that neuronal NO synthase (nNOS)-mediated vasoregulation during contractions is enhanced with exercise training and impaired with chronic heart failure (HF). Consequently, we tested the hypothesis that selective nNOS inhibition (S-methyl-l-thiocitrulline; SMTC, 2.1 μmol/kg) would produce attenuated reductions in muscle blood flow during moderate/heavy submaximal exercise in sedentary HF rats compared to their healthy counterparts. In addition, SMTC was expected to evoke greater reductions in exercising muscle blood flow in trained compared to sedentary healthy and HF rats. Blood flow during submaximal treadmill running (20 min/m, 5% grade) was determined via radiolabeled microspheres pre- and post-SMTC administration in healthy sedentary (Healthy + Sed, n = 8), healthy exercise trained (Healthy + ExT, n = 8), HF sedentary (HF + Sed, left ventricular end-diastolic pressure (LVEDP) = 12 ± 1 mmHg, n = 8), and HF exercise trained (HF + ExT, LVEDP = 16 ± 2 mmHg, n = 7) rats. nNOS contribution to exercising total hindlimb blood flow (ml/min/100 g) was not increased by training in either healthy or HF groups (Healthy + Sed: 105 ± 11 vs. 108 ± 16; Healthy + ExT: 96 ± 9 vs. 91 ± 7; HF + Sed: 124 ± 6 vs. 110 ± 12; HF + ExT: 107 ± 13 vs. 101 ± 8; control vs. SMTC, respectively; p > .05 for all). Similarly, SMTC did not reduce exercising blood flow in the majority of individual hindlimb muscles in any group (p > .05 for all, except for the semitendinosus and adductor longus in HF + Sed and the adductor longus in HF + ExT; p < .05). Contrary to our hypothesis, we find no support for either upregulation of nNOS function contributing to exercise hyperemia after training or its dysregulation with chronic HF.
Collapse
|
5
|
Egginton S, Hussain A, Hall-Jones J, Chaudhry B, Syeda F, Glen KE. Shear stress-induced angiogenesis in mouse muscle is independent of the vasodilator mechanism and quickly reversible. Acta Physiol (Oxf) 2016; 218:153-166. [PMID: 27261201 PMCID: PMC5082534 DOI: 10.1111/apha.12728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/10/2015] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
AIM Is modulation of skeletal muscle capillary supply by altering blood flow due to a presumptive shear stress response per se, or dependent on the vasodilator mechanism? METHODS The response to four different vasodilators, and cotreatment with blockers of NO and prostaglandin synthesis, was compared. Femoral artery blood flow was correlated with capillary-to-fibre ratio (C:F) and protein levels of putative angiogenic compounds. RESULTS All vasodilators induced a similar increase in blood flow after 14 days, with a similar effect on C:F (1.62 ± 0.05, 1.60 ± 0.01, 1.57 ± 0.06, 1.57 ± 0.07, respectively, all P < 0.05 vs. control 1.20 ± 0.01). Concomitant inhibitors revealed differential effects on blood flow and angiogenesis, demonstrating that a similar response may have different signalling origins. The time course of this response with the most commonly used vasodilator, prazosin, showed that blood flow increased from 0.40 mL min-1 to 0.61 mL min-1 by 28 days (P < 0.05), dropped within 1 week after the cessation of treatment (0.54 mL min-1 ; P < 0.05) and returned to control levels by 6 weeks. In parallel with FBF, capillary rarefaction began within 1 week (P < 0.05), giving C:F values similar to control by 2 weeks. Of the dominant signalling pathways, prazosin decreased muscle VEGF, but increased its cognate receptor Flk-1 (both P < 0.01); levels of eNOS varied with blood flow (P < 0.05), and Ang-1 initially increased, while its receptor Tie-2 was unchanged, with only modest changes in the antiangiogenic factor TSP-1. CONCLUSION Hyperaemia-induced angiogenesis, likely in response to elevated shear stress, is independent of the vasodilator involved, with a rapid induction and quick regression following the stimulus withdrawal.
Collapse
Affiliation(s)
- S. Egginton
- School of Biomedical Sciences; University of Leeds; Leeds UK
| | - A. Hussain
- Science Department; Denefield School; Reading UK
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - J. Hall-Jones
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - B. Chaudhry
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - F. Syeda
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - K. E. Glen
- Centre for Biological Engineering; Loughborough University; Loughborough UK
| |
Collapse
|
6
|
Genetic Dissection of the Physiological Role of Skeletal Muscle in Metabolic Syndrome. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/635146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The primary deficiency underlying metabolic syndrome is insulin resistance, in which insulin-responsive peripheral tissues fail to maintain glucose homeostasis. Because skeletal muscle is the major site for insulin-induced glucose uptake, impairments in skeletal muscle’s insulin responsiveness play a major role in the development of insulin resistance and type 2 diabetes. For example, skeletal muscle of type 2 diabetes patients and their offspring exhibit reduced ratios of slow oxidative muscle. These observations suggest the possibility of applying muscle remodeling to recover insulin sensitivity in metabolic syndrome. Skeletal muscle is highly adaptive to external stimulations such as exercise; however, in practice it is often not practical or possible to enforce the necessary intensity to obtain measurable benefits to the metabolic syndrome patient population. Therefore, identifying molecular targets for inducing muscle remodeling would provide new approaches to treat metabolic syndrome. In this review, the physiological properties of skeletal muscle, genetic analysis of metabolic syndrome in human populations and model organisms, and genetically engineered mouse models will be discussed in regard to the prospect of applying skeletal muscle remodeling as possible therapy for metabolic syndrome.
Collapse
|
7
|
Insulin resistance does not inhibit the ability of overload to induce hypertrophy in the obese Zucker rat (Leprfa) plantaris. Sci Sports 2013. [DOI: 10.1016/j.scispo.2012.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Soltow QA, Zeanah EH, Lira VA, Criswell DS. Cessation of cyclic stretch induces atrophy of C2C12 myotubes. Biochem Biophys Res Commun 2013; 434:316-21. [PMID: 23541574 DOI: 10.1016/j.bbrc.2013.03.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Cyclic stretch of differentiated myotubes mimics the loading pattern of mature skeletal muscle. We tested a cell culture model of disuse atrophy by the cessation of repetitive bouts of cyclic stretch in differentiated C2C12 myotubes. Myotubes were subjected to cyclic strain (12%, 0.7 Hz, 1 h/d) on collagen-I-coated Bioflex plates using a computer-controlled vacuum stretch apparatus (Flexcell Int.) for 2 (2dSTR) or 5 (5dSTR) consecutive days. Control cultures were maintained in the Bioflex plates without cyclic stretch for 2d or 5d. Additionally, some cultures were stretched for 2 d followed by cessation of stretch for 3d (2dSTR3dCES). Cyclic stretching (5dSTR) increased myotube diameter and overall myotube area by ~2-fold (P<0.05) compared to non-stretched controls, while cessation of stretch (2dSTR3dCES) resulted in ~80% smaller myotubes than 5dSTR cells, and 40-50% smaller than non-stretched controls (P<0.05). Further, the calpain-dependent cleavage products of αII-spectrin (150 kDa) and talin increased (3.5-fold and 2.2-fold, respectively; P<0.05) in 2dSTR3dCES myotubes, compared to non-stretched controls. The 1h cyclic stretching protocol acutely increased the phosphorylation of Akt (+4.5-fold; P<0.05) and its downstream targets, FOXO3a (+4.2-fold; P<0.05) and GSK-3β (+1.8-fold; P<0.05), which returned to baseline by 48 h after cessation of stretch. Additionally, nitric oxide production increased during stretch and co-treatment with the NOS inhibitor, l-NAME, inhibited the effects of stretch and cessation of stretch. We conclude that cessation of cyclic stretching causes myotube atrophy by activating calpains and decreasing activation of Akt. Stretch-induced myotube growth, as well as activation of atrophy signaling with cessation of stretch, are dependent on NOS activity.
Collapse
Affiliation(s)
- Quinlyn A Soltow
- Center for Exercise Science, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
9
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Martins KJB, St-Louis M, Murdoch GK, MacLean IM, McDonald P, Dixon WT, Putman CT, Michel RN. Nitric oxide synthase inhibition prevents activity-induced calcineurin-NFATc1 signalling and fast-to-slow skeletal muscle fibre type conversions. J Physiol 2012; 590:1427-42. [PMID: 22219342 DOI: 10.1113/jphysiol.2011.223370] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The calcineurin–NFAT (nuclear factor of activated T-cells) signalling pathway is involved in the regulation of activity-dependent skeletal muscle myosin heavy chain (MHC) isoform type expression. Emerging evidence indicates that nitric oxide (NO) may play a critical role in this regulatory pathway. Thus, the purpose of this study was to investigate the role of NO in activity-induced calcineurin–NFATc1 signalling leading to skeletal muscle faster-to-slower fibre type transformations in vivo. Endogenous NO production was blocked by administering L-NAME (0.75 mg ml(−1)) in drinking water throughout 0, 1, 2, 5 or 10 days of chronic low-frequency stimulation (CLFS; 10 Hz, 12 h day(−1)) of rat fast-twitch muscles (L+Stim; n = 30) and outcomes were compared with control rats receiving only CLFS (Stim; n = 30). Western blot and immunofluorescence analyses revealed that CLFS induced an increase in NFATc1 dephosphorylation and nuclear localisation, sustained by glycogen synthase kinase (GSK)-3β phosphorylation in Stim, which were all abolished in L+Stim. Moreover, real-time RT-PCR revealed that CLFS induced an increased expression of MHC-I, -IIa and -IId(x) mRNAs in Stim that was abolished in L+Stim. SDS-PAGE and immunohistochemical analyses revealed that CLFS induced faster-to-slower MHC protein and fibre type transformations, respectively, within the fast fibre population of both Stim and L+Stim groups. The final fast type IIA to slow type I transformation, however, was prevented in L+Stim. It is concluded that NO regulates activity-induced MHC-based faster-to-slower fibre type transformations at the transcriptional level via inhibitory GSK-3β-induced facilitation of calcineurin–NFATc1 nuclear accumulation in vivo, whereas transformations within the fast fibre population may also involve translational control mechanisms independent of NO signalling.
Collapse
Affiliation(s)
- Karen J B Martins
- Exercise Biochemistry Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada T6G 2H9
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Miyazaki D, Nakamura A, Fukushima K, Yoshida K, Takeda S, Ikeda SI. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 2011; 20:1787-99. [PMID: 21320869 DOI: 10.1093/hmg/ddr062] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.
Collapse
Affiliation(s)
- Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Sethi A, Parmar HS, Kumar A. The Effect of Aspirin on Atherogenic Diet-Induced Diabetes Mellitus. Basic Clin Pharmacol Toxicol 2011; 108:371-7. [DOI: 10.1111/j.1742-7843.2010.00663.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Carmeli E, Beiker R, Maor M, Kodesh E. Increased iNOS, MMP-2, and HSP-72 in skeletal muscle following high-intensity exercise training. J Basic Clin Physiol Pharmacol 2010; 21:127-146. [PMID: 20853596 DOI: 10.1515/jbcpp.2010.21.2.127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Skeletal muscle adapts to exercise by an upregulation of cellular defenses, such as inducible nitric oxide synthase (iNOS) and matrix metalloproteinase type 2 (MMP-2) and heat shock protein type-72 (HSP-72). The aims of the study were to examine iNOS, MMP-2, and HSP-72 mRNA and protein expression after high-intensity exercise training and to examine whether the expression levels are fiber type dependent. Young Wistar rats were assigned to either 2 or 4 weeks of a high-intensity (32 m/min) running exercise for 40 minutes 5 day per week. A non-running group served as a control. Western blotting and reverse transcriptase-polymerase chain reaction of muscle mRNA and protein levels were assessed in the medial gastrocnemius, quadriceps, soleus, crural, and sternal head of diaphragm muscles. High-intensity exercise training for 4 weeks but not for 2 weeks resulted in a significant increase in both RNA and protein levels of iNOS, MMP-2, and HSP-72 in all muscles examined except the sternal head of diaphragm. High-intensity exercise training is required to promote the expression of iNOS, MMP-2, and HSP-72 in hind limb muscles regardless their muscle fiber type, whereas in the diaphragm the changes are fiber-type dependent.
Collapse
Affiliation(s)
- Eli Carmeli
- Department of Physical Therapy, Sackler Faculty of Medicine, The Stanley Steyer School of Health Professions, Tel Aviv University, Ramat Aviv, Israel.
| | | | | | | |
Collapse
|
14
|
Drenning JA, Lira VA, Soltow QA, Canon CN, Valera LM, Brown DL, Criswell DS. Endothelial nitric oxide synthase is involved in calcium-induced Akt signaling in mouse skeletal muscle. Nitric Oxide 2009; 21:192-200. [PMID: 19682597 DOI: 10.1016/j.niox.2009.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/20/2009] [Accepted: 08/06/2009] [Indexed: 11/17/2022]
Abstract
We hypothesized that targeted mutation of the endothelial nitric oxide synthase (eNOS) gene would reduce Akt-related signaling events in skeletal muscle cells, compared to wild type (WT) controls. Results show that slow myosin heavy chain (type I/beta) expression and the abundance of slow-twitch fibers are reduced in plantaris muscle of eNOS(-/-) mice, compared to WT. Further, basal phosphorylation of Akt (p-Akt (Ser-473)/total Akt) and GSK-3beta (GSK-3beta (Ser-9)/total GSK-3beta) are reduced 60-70% in primary myotubes from eNOS(-/-) mice. Treatment with the calcium ionophore, A23187 (0.4 microM, 1 h), increased phosphorylation of Akt and GSK-3beta by approximately 2-fold (P<0.05) in myotubes from WT mice, but had no effect on phosphorylation of these proteins in eNOS(-/-) myotubes. Additionally, A23187 treatment failed to induce nuclear translocation of the transcription factor, NFATc1, in eNOS(-/-) myotubes. Treatment with the nitric oxide donor, propylamine propylamine NONOate (PAPA-NO; 1 microM for 1 h) increased Akt and GSK-3beta phosphorylation, and induced NFATc1 nuclear translocation in WT and eNOS(-/-) myotubes, and eliminated differences from WT in the NOS knockout cultures. Parallel experiments in C2C12 myotubes found that Akt phosphorylation induced by NO or the guanylate cyclase activator, YC-1, is prevented by co-treatment with either a guanylate cyclase or PI3K inhibitor (10 microM ODQ or 25 microM LY2904002, respectively). These data suggest that eNOS activity is necessary for calcium-induced activation of the Akt pathway, and that nitric oxide is sufficient to elevate Akt activity in primary myotubes. NO appears to influence Akt signaling through a cGMP, PI3K-dependent pathway.
Collapse
Affiliation(s)
- Jason A Drenning
- Center for Exercise Science, Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Rodway GW, Choi J, Hoffman LA, Sethi JM. Exhaled nitric oxide in the diagnosis and management of asthma: clinical implications. Chron Respir Dis 2009; 6:19-29. [PMID: 19176709 DOI: 10.1177/1479972308095936] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Exhaled nitric oxide (eNO) used as an aid to the diagnosis and management of lung disease is receiving attention from pulmonary researchers and clinicians alike because it offers a noninvasive means to directly monitor airway inflammation. Research evidence suggests that eNO levels significantly increase in individuals with asthma before diagnosis, decrease with inhaled corticosteroid administration, and correlate with the number of eosinophils in induced sputum. These observations have been used to support an association between eNO levels and airway inflammation. This review presents an update on current opportunities regarding use of eNO in patient care, and more specifically on its potential usage for asthma diagnosis and monitoring. The review will also discuss factors that may complicate use of eNO as a diagnostic tool, including changes in disease severity, symptom response, and technical measurement issues. Regardless of the rapid, convenient, and noninvasive nature of this test, additional well-designed, long-term longitudinal studies are necessary to fully evaluate the clinical utility of eNO in asthma management.
Collapse
Affiliation(s)
- G W Rodway
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
16
|
Suwa M, Nakano H, Radak Z, Kumagai S. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metabolism 2008; 57:986-98. [PMID: 18555842 DOI: 10.1016/j.metabol.2008.02.017] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 02/25/2008] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is considered to play a pivotal role in the exercise-induced metabolic adaptation of skeletal muscle. Although the oxidized form of nicotinamide adenine dinucloetide (NAD(+))-dependent histone deacetylase SIRT1 has been shown to mediate PGC-1alpha-induced metabolic adaptation, the effect of endurance exercise on the SIRT1 protein remains to be elucidated. The purposes of this study were (1) to investigate the distribution of SIRT1 and PGC-1alpha proteins in skeletal muscle and (2) to examine the effects of acute endurance exercise and low- or high-intensity exercise training on SIRT1 and PGC-1alpha protein expressions and on the metabolic components in rat skeletal muscle. Both the SIRT1 and PGC-1alpha proteins preferentially accumulate in red oxidative muscles. Acute endurance exercise on a motor-driven treadmill (20 m/min, 18.5% incline, 45 minutes) increases the PGC-1alpha protein expression at 18 hours after exercise and the SIRT1 protein expression at 2 hours after exercise in the soleus muscle. In the training experiment, the rats were divided into control, low-intensity (20 m/min, 18.5% incline, 90 min/d), and high-intensity (30 m/min, 18.5% incline, 60 min/d) training groups. After 14 days of training, the SIRT1 and PGC-1alpha proteins, hexokinase activity, mitochondrial proteins and enzyme activities, and glucose transporter 4 protein in the soleus muscle were increased by both trainings. In the plantaris muscle, SIRT1, hexokinase activity, mitochondrial proteins and enzyme activities, and glucose transporter 4 were increased by high-intensity training whereas the PGC-1alpha was not. These results suggest that endurance exercise increases the skeletal muscle SIRT1 protein content. In addition, the findings also raise the possibility that the SIRT1 protein expression may play a potentially important role in such adaptations, whereas an increase in the PGC-1alpha protein expression is not necessary for such adaptations.
Collapse
Affiliation(s)
- Masataka Suwa
- Institute of Health Science, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | | | | | | |
Collapse
|
17
|
Høydal MA, Wisløff U, Kemi OJ, Britton SL, Koch LG, Smith GL, Ellingsen Ø. Nitric oxide synthase type-1 modulates cardiomyocyte contractility and calcium handling: association with low intrinsic aerobic capacity. ACTA ACUST UNITED AC 2007; 14:319-25. [PMID: 17446814 DOI: 10.1097/hjr.0b013e3280128bef] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The neuronal isoform of nitric oxide synthase (NOS-1) may be an important regulator of cardiac contractility by modifying calcium release and uptake from sarcoplasmic reticulum. Our working hypothesis was that NOS-1 modulates cardiomyocyte contractility more markedly in rat lines with low versus high congenital aerobic fitness. METHODS AND RESULTS Rats performed high-intensity interval treadmill running 5 days per week over 8 weeks; age-matched sedentary rats served as controls. At baseline before the training program, aerobic fitness measured as maximal oxygen uptake was 30% higher, and cardiomyocyte contractility measured as fractional shortening 42% higher in high than in low congenital aerobic fitness rats. Training markedly increased aerobic fitness as well as cardiomyocyte contractility, relaxation and corresponding changes in calcium transient in both lines. Selective inhibition of NOS-1 increased cardiomyocyte contractility (12-43%) and calcium transient amplitude (10-28%), prolonged time to 50% relengthening (13-52%) and time to 50% calcium decay (17-35%), in all groups. Interestingly, NOS-1-inhibition abolished the difference in systolic events between low and high congenital aerobic fitness whereas no such findings occurred in diastolic parameters. CONCLUSION NOS-1-derived nitric oxide production is a modulator of cardiomyocyte contractile performance and calcium handling in rats. It accounts for some of the difference between rats with low versus high congenital aerobic fitness, whereas it contributes little during adaptation to exercise training.
Collapse
Affiliation(s)
- Morten A Høydal
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, St Olavs Hospital, Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
18
|
Parmar HS, Kar A. Atherogenic diet induced diabetes mellitus: involvement of thyroid hormones. Eur J Pharmacol 2007; 570:244-8. [PMID: 17628531 DOI: 10.1016/j.ejphar.2007.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 12/11/2022]
Abstract
An investigation was made to reveal the possible involvement of thyroid hormones in the progression of diabetes mellitus in response to an atherogenic diet; CCT (4% cholesterol, 1% cholic acid and 0.5% 2-thiouracil). Following the intake of CCT diet for 14 consecutive days a decrease in the serum levels of insulin, both the thyroid hormones, triiodothyronine (T(3)) and thyroxine (T(4)); hepatic glycogen content, hepatic type-1 iodothyronine 5'-mono-deiodinase (5'D) and serum alpha-amylase activities were observed, while there was an increase in the levels of serum glucose and nitrite and in lipid peroxidation of heart, liver and kidney tissues as well as in serum. However, simultaneous administration of L-thyroxine (500 microg/kg/day, s.c.) to CCT-diet fed animals resulted in the amelioration of all the aforesaid adverse changes including that of serum glucose, insulin, alpha-amylase, hepatic glycogen content and nitrite levels, suggesting the involvement of thyroid hormones in the progression of CCT-diet induced diabetes mellitus.
Collapse
Affiliation(s)
- Hamendra Singh Parmar
- Thyroid Research Unit, School of Life Sciences, D.A. University, Takshashila Campus, Indore-452017, India.
| | | |
Collapse
|
19
|
Hudlicka O, Brown MD, May S, Zakrzewicz A, Pries AR. Changes in capillary shear stress in skeletal muscles exposed to long-term activity: role of nitric oxide. Microcirculation 2006; 13:249-59. [PMID: 16627367 DOI: 10.1080/10739680600556951] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The purpose of this study was to establish whether suppression of angiogenesis by nitric oxide synthase (NOS) inhibition in skeletal muscles exposed to long-term activity can be explained by changes in capillary shear stress linked to the lack of nitric oxide production. METHODS Capillary shear stress was calculated from diameters (d) and red blood cell velocities (V(rbc)) measured at rest and after acute contractions in epi-illuminated extensor digitorum longus muscles of control rats and those in which ankle flexors had been stimulated via implanted electrodes (10 Hz, 8 h x day(-1)) for 2 or 7 days without and with inhibition of nitric oxide synthase activity by N(omega)-nitro-L-arginine (L-NNA, 3-4 mg x day(-1) in drinking water). RESULTS Neither chronic electrical stimulation nor L-NNA treatment altered capillary diameters. Capillary V(rbc) and shear stress (SS) were doubled in muscles after 2 days stimulation (298 +/- 22 microm x s(-1) and 11.4 +/- 1.0 dyne x cm(-2), respectively, p < .005) compared to controls (148 +/- 18 microm x s(-1) and 5.6 +/- 0.8 dyne x cm(-2)) but normalized after 7 days (153 +/- 27 microm x s(-1) and 6.2 +/- 1.0 dyne x cm(-2)), when the capillary bed is known to be enlarged. L-NNA, which increased blood pressure in all treated animals, abolished the increase in capillary SS after 2 days stimulation and decreased SS after 7 days. CONCLUSIONS These data support a role for NO in the early elevation of capillary shear stress that initiates angiogenesis in stimulated muscles, likely via modulation of upstream vascular resistance, and could explain the lack of capillary growth in stimulated muscles when nitric oxide generation is suppressed.
Collapse
Affiliation(s)
- Olga Hudlicka
- Department of Physiology, Charité-Universitatsmedizin Berlin, Campus Benjamin Franklin, Germany.
| | | | | | | | | |
Collapse
|
20
|
Choi J, Hoffman LA, Rodway GW, Sethi JM. Markers of lung disease in exhaled breath: nitric oxide. Biol Res Nurs 2006; 7:241-55. [PMID: 16581895 DOI: 10.1177/1099800405286131] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Management of airway inflammation requires proper monitoring and treatment to improve long-term outcomes. However, achieving this goal is difficult, as current methods have limitations. Although nitric oxide (NO) was first identified 200 years ago, its physiological importance was not recognized until the early 1980s. Many studies have established the role of NO as an essential messenger molecule in body systems. In addition, studies have demonstrated a significant relationship between changes in exhaled NO levels and other markers of airway inflammation. The technique used to measure NO in exhaled breath is noninvasive, reproducible, sensitive, and easy to perform. Consequently, there is growing interest in the use of exhaled NO in the management of asthma and other pulmonary conditions. The purpose of this review is to promote a basic understanding of the physiologic actions of NO, measurement techniques, and ways that research findings might translate to future application in clinical practice. Specifically, the article will review the role of exhaled NO in regard to its historical background, mechanisms of action, measurement techniques, and implications for clinical practice and research.
Collapse
Affiliation(s)
- JiYeon Choi
- University of Pittsburgh School of Nursing, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
21
|
Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, Wener AD, Wang G, Bevan SC, Newton DC, Marsden PA. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest 2006; 115:3128-39. [PMID: 16276418 PMCID: PMC1265848 DOI: 10.1172/jci20806] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 08/30/2005] [Indexed: 11/17/2022] Open
Abstract
We tested the hypothesis that induction of neuronal NO synthase (nNOS) impairs vascular smooth muscle contractility after hypoxia. nNOS protein was increased in aorta, mesenteric arterioles, pulmonary arteries, brain, and diaphragm from rats exposed to 8% O2 for 48 hours and in human aortic SMCs after hypoxic incubation (1% O2). Ca-dependent NO synthase activity was increased in endothelium-denuded aortic segments from hypoxia-exposed rats. N-nitro-L-arginine methyl ester enhanced the contractile responses of endothelium-denuded aortic rings and mesenteric arterioles from hypoxia-exposed but not normoxic rats (P < 0.05). The hypoxia-inducible mRNA transcript expressed by human cells was found to contain a novel 5'-untranslated region, consistent with activation of transcription in the genomic region contiguous with exon 2. Translational efficiency of this transcript is markedly increased compared with previously described human nNOS mRNAs. Transgenic mice possessing a lacZ reporter construct under control of these genomic sequences demonstrated expression of the construct after exposure to hypoxia (8% O2, 48 hours) in the aorta, mesenteric arterioles, renal papilla, and brain. These results reveal a novel human nNOS promoter that confers the ability to rapidly upregulate nNOS expression in response to hypoxia with a functionally significant effect on vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Michael E Ward
- Division of Respirology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tan X, Qi WN, Gu X, Urbaniak JR, Chen LE. Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles. J Biomech 2006; 39:2430-7. [PMID: 16225881 DOI: 10.1016/j.jbiomech.2005.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
This study investigated the effects of intermittent pneumatic compression (IPC) on expression of nitric oxide synthase (NOS) isoforms in compressed (anterior tibialis, AT) and uncompressed (cremaster muscles, CM) skeletal muscles. Following IPC application of 0.5, 1, and 5h on both legs of rats, the endothelial NOS (eNOS) mRNA expression was significantly up-regulated to 1.2-, 1.8, and 2.7-fold from normal, respectively, in both AT and CM, and protein expression increased more than 1.5-fold of normal at each time point. Similarly, neuronal NOS expression was up-regulated, but to a lesser degree. In contrast, inducible NOS expression was significantly and time-dependently down-regulated in both muscles. After IPC cessation, eNOS levels returned to normal in both AT and CM. The results confirm our hypothesis that IPC-induced vasodilation is mediated by regulating expression of NOS isoforms, in particular eNOS, in both compressed and uncompressed skeletal muscles. The results also suggest the importance of precisely characterizing expression of each NOS isoform in tissue pathophysiology.
Collapse
Affiliation(s)
- Xiangling Tan
- Nan-Ton Medical College, Nanton, Jiangsu Province, PR China
| | | | | | | | | |
Collapse
|
23
|
Püttmann B, Gerlach EM, Krüger M, Blottner D. Neuromuscular contacts induce nitric oxide signals in skeletal myotubes in vitro. Neurosignals 2005; 14:85-95. [PMID: 16088222 DOI: 10.1159/000086290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 12/20/2004] [Indexed: 12/16/2022] Open
Abstract
It has previously been shown that skeletal myotubes express nitric oxide synthase (NOS) and produce and release NO signals. NOS is also part of agrin-induced acetylcholine receptor aggregations on myotubes. As nerve-muscle interactions underlie reciprocal signaling mechanisms, we hypothesized that NO signals in target myotubes may be induced by neuromuscular contacts in development. Chimeric neuron-myotube co-cultures were prepared using p75-selected spinal cord neurons from embryonic chicken. Confocal imaging revealed robust 1,2-diaminoanthraquinone red fluorescence indicative of de novo formation of NO only in those myotubes which were contacted by neurites, also verified by pre- and postsynaptic marker costaining (anti-synaptotagmin and alpha-bungarotoxin). Neither soluble agrin nor sensory dorsal root ganglionic neurons showed comparable effects in this model. We concluded that in target skeletal muscle cells the NOS/NO system is controlled by motoneuron contacts by as yet incompletely understood signaling mechanisms. Endogenous NO signaling in myotubes may be essential during synapse formation and plasticity of the neuromuscular system.
Collapse
Affiliation(s)
- Britta Püttmann
- Neurobiology and Neuromuscular Working Group, Institute of Anatomy, Campus Benjamin Franklin, Charité-University Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Huijing PA, Jaspers RT. Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand J Med Sci Sports 2005; 15:349-80. [PMID: 16293149 DOI: 10.1111/j.1600-0838.2005.00457.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper considers the literature and some new experimental results important for adaptation of muscle fiber cross-sectional area and serial sarcomere number. Two major points emerge: (1) general rules for the regulation of adaptation (for in vivo immobilization, low gravity conditions, synergist ablation, tenotomy and retinaculum trans-section experiments) cannot be derived. As a consequence, paradoxes are reported in the literature. Some paradoxes are resolved by considering the interaction between different levels of organization (e.g. muscle geometrical effects), but others cannot. (2) An inventory of signal transduction pathways affecting rates of muscle protein synthesis and/or degradation reveals controversy concerning the pathways and their relative contributions. A major explanation for the above is not only the inherently limited control of the experimental conditions in vivo, but also of in situ experiments. Culturing of mature single Xenopus muscle fibers at high and low lengths (allowing longitudinal study of adaptation for periods up to 3 months) did not yield major changes in the fiber cross-sectional area or the serial sarcomere number. This is very different from substantial effects (within days) of immobilization in vivo. It is concluded that overall strain does not uniquely regulate muscle fiber size. Force transmission, via pathways other than the myotendinous junctions, may contribute to the discrepancies reported: because of substantial serial heterogeneity of sarcomere lengths within muscle fibers creating local variations in the mechanical stimuli for adaptation. For the single muscle fiber, mechanical signalling is quite different from the in vivo or in vitro condition. Removal of tensile and shear effects of neighboring tissues (even of antagonistic muscle) modifies or removes mechanical stimuli for adaptation. It is concluded that the study of adaptation of muscle size requires an integrative approach taking into account fundamental mechanisms of adaptation, as well as effects of higher levels of organization. More attention should be paid to adaptation of connective tissues within and surrounding the muscle and their effects on muscular properties.
Collapse
Affiliation(s)
- P A Huijing
- Instituut voor Fundamentele en Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands.
| | | |
Collapse
|
25
|
|
26
|
Paula FBA, Gouvêa CMCP, Alfredo PP, Salgado I. Protective action of a hexane crude extract of Pterodon emarginatus fruits against oxidative and nitrosative stress induced by acute exercise in rats. Altern Ther Health Med 2005; 5:17. [PMID: 16107219 PMCID: PMC1192789 DOI: 10.1186/1472-6882-5-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 08/17/2005] [Indexed: 11/17/2022]
Abstract
Background The aim of the present work was to evaluate the effect of a hexane crude extract (HCE) of Pterodon emarginatus on the oxidative and nitrosative stress induced in skeletal muscle, liver and brain of acutely exercised rats. Methods Adult male rats were subjected to acute exercise by standardized contractions of the tibialis anterior (TA) muscle (100 Hz, 15 min) and treated orally with the HCE (once or three times with a fixed dose of 498 mg/kg), before and after acute exercise. Serum creatine kinase activity was determined by a kinetic method and macrophage infiltration by histological analyses of TA muscle. Lipid peroxidation was measured as malondialdehyde (MDA) levels. Nitric oxide production was evaluated by measuring nitrite formation, using Griess reagent, and nitrotyrosine was assessed by western blotting. Results Serum creatine kinase activities in the controls (111 U/L) increased 1 h after acute exercise (443 U/L). Acute exercise also increased the infiltration of macrophages into TA muscle; lipid peroxidation levels in TA muscle (967%), liver (55.5%) and brain (108.9%), as well as the nitrite levels by 90.5%, 30.7% and 60%, respectively. The pattern of nitrotyrosine formation was also affected by acute exercise. Treatment with HCE decreased macrophage infiltration, lipid peroxidation, nitrite production and nitrotyrosine levels to control values. Conclusion Acute exercise induced by functional electrical stimulation in rats resulted in increase in lipid peroxidation, nitrite and nitrotyrosine levels in brain, liver and skeletal muscle. The exercise protocol, that involved eccentric muscle contraction, also caused some muscle trauma, associated with over-exertion, leading to inflammation. The extract of P. emarginatus abolished most of these oxidative processes, thus confirming the high antioxidant activity of this oil which infusions are used in folk medicine against inflammatory processes.
Collapse
Affiliation(s)
- Fernanda BA Paula
- Departamento de Análises Clínicas e Toxicológicas, Escola de Farmácia e Odontologia de Alfenas (EFOA), Alfenas, MG, 37130-000, Brazil
| | - Cibele MCP Gouvêa
- Departamento de Ciências Biológicas, Escola de Farmácia e Odontologia de Alfenas (EFOA), Alfenas, MG, 37130-000, Brazil
| | - Patrícia P Alfredo
- Faculdade de Fisioterapia, Universidade de Alfenas, MG, 37130-000, Brazil
| | - Ione Salgado
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| |
Collapse
|
27
|
Milkiewicz M, Hudlicka O, Brown MD, Silgram H. Nitric oxide, VEGF, and VEGFR-2: interactions in activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 2005; 289:H336-43. [PMID: 15734877 DOI: 10.1152/ajpheart.01105.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is considered to be important in promotion of capillary growth in skeletal muscles exposed to increased activity. We studied its interactions with nitric oxide (NO) by examining the expression of endothelial NO synthase (NOS), VEGF, and VEGF receptor-2 (VEGFR-2) proteins in relation to capillary growth in rat extensor digitorum longus muscles electrically stimulated for 2, 4, or 7 days with and without NOS inhibition by N(omega)-nitro-L-arginine (L-NNA, 3 mg/day). Stimulation increased all proteins from 2 days onward, concomitantly with capillary proliferation (labeling for proliferating cell nuclear antigen). Capillary-to-fiber ratio was elevated by 25% after 7 days. Concurrent oral administration of L-NNA did not affect the increase in endothelial NOS but depressed its activity, as shown by increased blood pressure and decreased arteriolar diameters in 2-day-stimulated muscles. NOS inhibition eliminated the increased expression of VEGFR-2 and VEGF proteins in muscles stimulated for 2 and 4 days but not for 7 days. However, it depressed capillary proliferation and the increase in C/F at all time points. We conclude that, in stimulated muscles, NO, generated by activation of neuronal NOS by muscle activity or endothelial NOS by increased blood flow and capillary shear stress, may increase capillary proliferation in the early stages of stimulation through upregulation of VEGFR-2 and VEGF. With longer stimulation, capillary growth appears to require NO, and high levels of VEGF and VEGFR-2 may be contributing to maintenance of the increased capillary bed.
Collapse
|
28
|
Kim EY, Shin KM, Jang S, Oh S. Changes of [3H]Muscimol, [3H]Flunitrazepam and [3H]MK-801 Binding in Rat Brain by Prolonged Ventricular Infusion of 7-Nitroindazole. Neurochem Res 2004; 29:2221-9. [PMID: 15672543 DOI: 10.1007/s11064-004-7029-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the present study, we have investigated the effects of prolonged inhibition of nitric oxide synthase (NOS) by infusion of neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI), to examine modulation of NMDA and GABAA receptor binding in rat brain. The duration of sleeping time was significantly increased by the pre-treatment with 7-NI (100 mg/kg) 30 min before pentobarbital (40 mg/kg) treatment in rats. However, the duration of pentobarbital-induced sleep was shortened by the prolonged infusion of 7-NI into cerebroventricle for 7 days. We have investigated the effect of NOS inhibitor on NMDA and GABAA receptor binding characteristics in discrete areas of brain regions by using autoradiographic techniques. The GABAA receptors were analyzed by quantitative autoradiography using [3H]muscimol and [3H]flunitrazepam binding, and NMDA receptor binding was analyzed by using [3H]MK-801 binding in rat brain slices. Rats were infused with 7-NI (500 pmol/10 microl/h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps. The levels of [3H]muscimol were markedly elevated in cortex, caudate putamen, and thalamus while the levels of [3H]flunitrazepam binding were only elevated in cerebellum by NOS inhibitor. However, there was no change in the level of [3H]MK-801 binding except decreasing in the thalamus. These results show that the prolonged inhibition of NOS by 7-NI-infusion highly elevates [3H]muscimol binding in a region-specific manner and decreases the pentobarbital-induced sleep.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Neurosurgery, Gil Medical Center, Gachon Medical School, Inchon, Korea
| | | | | | | |
Collapse
|
29
|
Pattwell DM, Patwell DM, McArdle A, Morgan JE, Patridge TA, Jackson MJ. Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells. Free Radic Biol Med 2004; 37:1064-72. [PMID: 15336322 DOI: 10.1016/j.freeradbiomed.2004.06.026] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 06/03/2004] [Accepted: 06/17/2004] [Indexed: 11/19/2022]
Abstract
A number of studies have indicated that exercise is associated with an increased oxidative stress in skeletal muscle tissue, but the nature of the increased oxidants and sites of their generation have not been clarified. The generation of extracellular reactive oxygen and nitrogen species has been studied in myotubes derived from an immortalized muscle cell line (H-2k(b) cells) that were stimulated to contract by electrical stimulation in culture. Cells were stimulated to contract with differing frequencies of electrical stimulation. Both induced release of superoxide anion and nitric oxide into the extracellular medium and caused an increase in extracellular hydroxyl radical activity. Increasing frequency of stimulation increased the nitric oxide generation and hydroxyl radical activity, but had no significant effect on the superoxide released. Additions of inhibitors of putative generating pathways indicated that contraction-induced NO release was primarily from neuronal NO synthase enzymes and that the superoxide released is likely to be generated by a plasma membrane-located, flavoprotein oxidoreductase system. The data also indicate that peroxynitrite is generated in the extracellular fluid of muscle during contractile activity.
Collapse
Affiliation(s)
- David M Pattwell
- School of Clinical Sciences, University of Liverpool, Liverpool L69 3GA, UK
| | | | | | | | | | | |
Collapse
|
30
|
Barreiro E, Gea J, Corominas JM, Hussain SNA. Nitric oxide synthases and protein oxidation in the quadriceps femoris of patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2003; 29:771-8. [PMID: 12816735 DOI: 10.1165/rcmb.2003-0138oc] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle dysfunction contributes to poor exercise performance in patients with chronic obstructive pulmonary disease (COPD). Increased oxygen radicals and nitric oxide (NO) have been proposed as mechanisms. In this study, we assessed the levels of protein oxidation (carbonyl formation), lipid peroxidation (4-hydroxy-2-nonenal formation), catalase and Mn-superoxide dismutase (Mn-SOD) expressions, nitric oxide synthases (NOSs), and protein tyrosine nitration in quadriceps muscles of 12 patients with patients with COPD and 6 control subjects. Lipid peroxidation was elevated in muscles of patients with patients with COPD as compared with control subjects, but protein oxidation was not. Muscle Mn-SOD but not catalase protein expression was significantly higher (200%) in patients with patients with COPDas compared with control subjects. Expression of neuronal NOS and endothelial NOS isoforms did not differ between control subjects and patients with COPD, whereas no inducible NOS protein expression was detected in limb muscles of the two groups of subjects. In patients with COPD, neuronal NOS expression correlated negatively with the degree of the airway obstruction (%FEV1 predicted). 3-Nitrotyrosine levels were significantly elevated in muscles of patients with COPDas compared with control subjects, and correlated positively with nNOS protein levels. These results indicate the development of both oxidative and nitrosative stresses in the quadriceps of patients with COPD, suggesting their involvement in muscle dysfunction.
Collapse
Affiliation(s)
- Esther Barreiro
- Room L3.05, 687 Pine Ave. West, Montreal, PQ, H3A 1A1 Canada
| | | | | | | |
Collapse
|
31
|
Silveira LR, Pereira-Da-Silva L, Juel C, Hellsten Y. Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions. Free Radic Biol Med 2003; 35:455-64. [PMID: 12927595 DOI: 10.1016/s0891-5849(03)00271-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined intra- and extracellular H(2)O(2) and NO formation during contractions in primary rat skeletal muscle cell culture. The fluorescent probes DCFH-DA/DCFH (2,7-dichlorofluorescein-diacetate/2,7-dichlorofluorescein) and DAF-2-DA/DAF-2 (4,5-diaminofluorescein-diacetate/4,5-diaminofluorescein) were used to detect H(2)O(2) and NO, respectively. Intense electrical stimulation of muscle cells increased the intra- and extracellular DCF fluorescence by 171% and 105%, respectively, compared with control nonstimulated cells (p <.05). The addition of glutathione (GSH) or Tiron prior to electrical stimulation inhibited the intracellular DCFH oxidation (p <.05), whereas the addition of GSH-PX + GSH inhibited the extracellular DCFH oxidation (p <.05). Intense electrical stimulation also increased (p <.05) the intra- and extracellular DAF-2 fluorescence signal by 56% and 20%, respectively. The addition of N(G)-nitro-L-arginine (L-NA) completely removed the intra- and extracellular DAF-2 fluorescent signal. Our results show that H(2)O(2) and NO are formed in skeletal muscle cells during contractions and suggest that a rapid release of H(2)O(2) and NO may constitute an important defense mechanism against the formation of intracellular (*)OH and (*)ONOO. Furthermore, our data show that DCFH and DAF-2 are suitable probes for the detection of ROS and NO both intra- and extracellularly in skeletal muscle cell cultures.
Collapse
Affiliation(s)
- Leonardo R Silveira
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil.
| | | | | | | |
Collapse
|
32
|
Rajasekaran K, Jayakumar R, Venkatachalam K. Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs. Brain Res 2003; 979:85-97. [PMID: 12850575 DOI: 10.1016/s0006-8993(03)02878-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Increased neuronal nitric oxide synthase (nNOS) activity was observed during the prodromal period of seizures in various rat brain regions following administration of GABA(A) receptor antagonist, picrotoxin (PCT). Pretreatment with the selective nNOS inhibitor 7-nitroindazole (7-NI), dose- and time-dependently delayed the onset of clonus with a corresponding decrease in nNOS activity. The threshold dose of antiepileptic drugs (AEDs; diazepam, phenobarbitone and gabapentin) have potentiated the anticonvulsant action by pretreatment with graded doses of 7-NI. The increase in efficacy of anticonvulsant action correlated with a corresponding decrease of PCT-evoked increase in nNOS activity. The present data support a role for abnormal nNOS activity in mechanisms that trigger seizures and suggest a possible NO-mediated interplay between GABA(A) and glutamate receptors. The results of the present study provide evidence for a trigger role of neuronally produced NO in epileptogenesis induced by PCT and the participation of nNOS inhibitory mechanisms in the action of AEDs.
Collapse
Affiliation(s)
- Karthik Rajasekaran
- Department of Pharmacology and Environmental Toxicology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, 600 113, Chennai, India.
| | | | | |
Collapse
|
33
|
Fadel PJ, Zhao W, Thomas GD. Impaired vasomodulation is associated with reduced neuronal nitric oxide synthase in skeletal muscle of ovariectomized rats. J Physiol 2003; 549:243-53. [PMID: 12665606 PMCID: PMC2342919 DOI: 10.1113/jphysiol.2003.038828] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In exercising skeletal muscle, vasoconstrictor responses to alpha-adrenoceptor activation are attenuated in part by nitric oxide (NO) produced by the neuronal isoform of NO synthase (nNOS), which is expressed constitutively in skeletal muscle cells. In skeletal muscle of pregnant animals, nNOS mRNA is upregulated, suggesting that muscle nNOS expression is modulated by the steroid hormone oestrogen. Whether oestrogen-induced changes in nNOS expression have measurable effects on vasoregulation in skeletal muscle is unknown. In this study, we hypothesized that oestrogen deficiency would reduce muscle nNOS expression, resulting in impaired modulation of sympathetic vasoconstriction in exercising skeletal muscle. Compared to gonadally intact rats, we found that ovariectomized (OVX) rats were characterized by greater sympathetic vasoconstriction in contracting hindlimb and reduced nNOS, but not eNOS, in skeletal muscle. In addition, NOS inhibition resulted in a greater enhancement of sympathetic vasoconstriction in contracting hindlimbs of intact compared to OVX rats. These effects of oestrogen deficiency were prevented by chronic treatment of OVX rats with 17beta-oestradiol, but not with chronic progesterone or acute oestradiol. Further analysis revealed that skeletal muscle nNOS correlated directly with plasma 17beta-oestradiol and inversely with the magnitude of sympathetic vasoconstrictor responses in contracting hindlimbs. These data indicate that NO-dependent attenuation of sympathetic vasoconstriction in contracting skeletal muscle is impaired in oestrogen-deficient female rats, and suggest that this impairment may be mediated by reduced skeletal muscle nNOS expression.
Collapse
Affiliation(s)
- Paul J Fadel
- Department of Internal Medicine, Hypertension Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, USA
| | | | | |
Collapse
|
34
|
Vassilakopoulos T, Deckman G, Kebbewar M, Rallis G, Harfouche R, Hussain SNA. Regulation of nitric oxide production in limb and ventilatory muscles during chronic exercise training. Am J Physiol Lung Cell Mol Physiol 2003; 284:L452-7. [PMID: 12573984 DOI: 10.1152/ajplung.00270.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we evaluated the differential influence of chronic treadmill training (30 m/min, 15% incline, 1 h/day, 5 days/wk) on nitric oxide (NO) production and NO synthase (NOS) isoform expression as well as 3-nitrotyrosine formation (footprint of peroxynitrite) both in limb (gastrocnemius) and ventilatory (diaphragm) muscles. A group of exercise-trained rats and a control group (no training) were examined after a 4-wk experimental period. Exercise training elicited an approximate fourfold rise in gastrocnemius NOS activity and augmented protein expression of the endothelial (eNOS) and neuronal (nNOS) isoforms of NOS to approximately 480% and 240%, respectively. Qualitatively similar but quantitatively smaller elevations in NOS activity and eNOS and nNOS expression were observed in the diaphragm. No detectable inducible NOS (iNOS) protein expression was found in any of the muscle samples. Training increased the intensity of 3-nitrotyrosine only in the gastrocnemius muscle. We conclude that whole body exercise training enhances both limb and ventilatory muscle NO production and that constitutive and not iNOS isoforms are responsible for increased protein tyrosine nitration in trained limb muscles.
Collapse
Affiliation(s)
- T Vassilakopoulos
- Critical Care and Respiratory Divisions, McGill University Health Center and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
35
|
Smith LW, Smith JD, Criswell DS. Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol (1985) 2002; 92:2005-11. [PMID: 11960951 DOI: 10.1152/japplphysiol.00950.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the necessity of nitric oxide (NO) for hypertrophy and fiber-type transition in overloaded (OL) skeletal muscle. Endogenous NO production was blocked by administering N(G)-nitro-L-arginine methyl ester (L-NAME; 0.75 mg/ml; approximately 100 mg x kg-1 x day-1) in drinking water. Thirty-eight female Sprague-Dawley rats (approximately 250 g) were randomly divided into four groups: control-nonoverloaded (Non-OL), control-OL, L-NAME-Non-OL, and L-NAME-OL. Chronic overload of the plantaris was induced bilaterally by surgical removal of the gastrocnemius and soleus. Rats in the Non-OL groups received sham surgeries. L-NAME treatment began 24 h before surgery and continued until the rats were killed 14 days postsurgery. Although OL induced hypertrophy in both control (+76%) and L-NAME (+39%) conditions (P < 0.05), mean plantaris-to-body mass ratio in the L-NAME-OL group was significantly lower (P < 0.05) than that in the control-OL group. Microphotometric analysis of histochemically determined fiber types revealed increases in cross-sectional area (P < 0.05) for all fiber types (types I, IIA, and IIB/X) in the OL plantaris from control rats, whereas L-NAME-OL rats exhibited increases only in type I and IIB/X fibers. SDS-PAGE analysis of myosin heavy chain (MHC) composition in the plantaris indicated a significant (P < 0.05) OL effect in the control rats. Specifically, the mean proportion of type I MHC increased 6% (P < 0.05), whereas the proportion of type IIb MHC decreased approximately 9% (P < 0.05). No significant OL effects on MHC profile were observed in the L-NAME rats. These data support a role of NO in overload-induced skeletal muscle hypertrophy and fiber-type transition.
Collapse
Affiliation(s)
- Lori W Smith
- Department of Kinesiology, Texas Woman's University, Denton 76201, USA
| | | | | |
Collapse
|
36
|
Sutherland H, Khundkar R, Zolle O, McArdle A, Simpson AW, Jarvis JC, Salmons S. A fluorescence-based method for measuring nitric oxide in extracts of skeletal muscle. Nitric Oxide 2002; 5:475-81. [PMID: 11587562 DOI: 10.1006/niox.2001.0374] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe here a fluorescence assay for nitric oxide synthase activity in skeletal muscle based on a new indicator, 4,5-diaminofluorescein (DAF-2). The rapid and irreversible binding of DAF-2 to oxidized NO allows real-time measurement of NO production. The method is safer and more convenient than the usual citrulline radioassay and can be used with crude muscle extracts. Rabbit fast tibialis anterior (TA) muscle had a nitric oxide synthase (NOS) activity of 44.3 +/- 3.5 pmol/min/mg muscle. Addition of NOS blocker N(G)-allyl-L-arginine reduced this activity by 43%. Slow soleus muscle displayed NOS activity of 7.3 +/- 2.5 pmol/min/mg muscle, 16% that of the TA muscle. Continuous stimulation of TA muscle at 10 Hz for 3 weeks reduced NOS activity by 47% to an intermediate value consistent with the associated conversion of the muscle phenotype from fast to slow.
Collapse
Affiliation(s)
- H Sutherland
- Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Chaubourt E, Voisin V, Fossier P, Baux G, Israël M, De La Porte S. Muscular nitric oxide synthase (muNOS) and utrophin. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:43-52. [PMID: 11755782 DOI: 10.1016/s0928-4257(01)00079-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Duchenne muscular dystrophy (DMD), the severe X-linked recessive disorder which results in progressive muscle degeneration, is due to a lack of dystrophin, a membrane cytoskeletal protein. Three types of treatment are envisaged: pharmacological (glucocorticoid), myoblast transplantation, and gene therapy. An alternative to the pharmacological approach is to compensate for dystrophin loss by the upregulation of another cytoskeletal protein, utrophin. Utrophin and dystrophin are part of a complex of proteins and glycoproteins, which links the basal lamina to the cytoskeleton, thus ensuring the stability of the muscle membrane. One protein of the complex, syntrophin, is associated with a muscular isoform of the neuronal nitric oxide synthase (nNOS). We have demonstrated an overexpression of utrophin, visualised by immunofluorescence and quantified by Western blotting, in normal myotubes and in mdx (the animal model of DMD) myotubes, as in normal (C57) and mdx mice, both treated with nitric oxide (NO) donor or L-arginine, the NOS substrate. There is evidence that utrophin may be capable of performing the same cellular functions as dystrophin and may functionally compensate for its lack. Thus, we propose to use NO donors, as palliative treatment of Duchenne and Becker muscular dystrophies, pending, or in combination with, gene and/or cellular therapy. Discussion has focussed on the various isoforms of NOS that could be implicated in the regeneration process. Dystrophic and healthy muscles respond to treatment, suggesting that although NOS is delocalised in the cytoplasm in the case of DMD, it conserves substantial activity. eNOS present in mitochondria and iNOS present in cytoplasm and the neuromuscular junction could also be activated. Lastly, production of NO by endothelial NOS of the capillaries would also be beneficial through increased supply of metabolites and oxygen to the muscles.
Collapse
Affiliation(s)
- Emmanuel Chaubourt
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
38
|
Murrant CL, Reid MB. Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 2001; 55:236-48. [PMID: 11748862 DOI: 10.1002/jemt.1173] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are usually identified with pathological states and mediators of cellular injury. However, over the last decade ROS and RNS have been identified in skeletal muscle under physiological conditions. Detection of ROS and RNS production by skeletal muscle cells is fundamental to the problem of differentiating between physiological and pathological levels. The goal of this paper is to review the techniques that have been used to detect ROS and RNS in skeletal muscle. Electron spin resonance, fluorescent assays, cyotchrome c reduction, chemiluminescence, hydroxylation of salicylate, and nitration of phenylalanine are some of the assay systems that have been used thus far. A large body of evidence now indicates that ROS and RNS are continually produced by many different skeletal muscle types studied in vivo, in situ, and in vitro. Under resting conditions, ROS and RNS are detectable in both intracellular and extracellular compartments. Production increases during both non-fatiguing and fatiguing muscle contractions. In the absence of disease, the individual molecular species detected in skeletal muscle include parent radicals for the ROS and RNS cascades: superoxide anions and nitric oxide. Both are generated at rates estimated to range from pmol-to-nmol/mg muscle/minute. Evidence indicates that hydrogen peroxide, hydroxyl radicals, and peroxynitrite are also present under physiological conditions. However, the molecular species that mediate specific biological effects remains largely undetermined, as do the sources of ROS and RNS within muscle fibers. Eventual delineation of the mechanisms whereby ROS and RNS regulate cellular function will hinge on our understanding of the production and distribution of ROS and RNS within skeletal muscle.
Collapse
Affiliation(s)
- C L Murrant
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA.
| | | |
Collapse
|
39
|
Abstract
The synthesis of the free radical gas nitric oxide (NO) is catalyzed by the enzyme NO synthase (NOS). NOS converts arginine and molecular oxygen to NO and citrulline in a reaction that requires NADPH, FAD, FMN, and tetrahydrobiopterin as cofactors. Three types of NOS have been identified by molecular cloning. The activity of the constitutively expressed neuronal NOS (nNOS) and endothelial NOS (eNOS) is Ca(2+)/calmodulin-dependent, whereas that the inducible NOS (iNOS) is Ca(2+)-insensitive. The predominant NOS isoform in skeletal muscle is nNOS. It is present at the sarcolemma of both extra- and intrafusal muscle fibers. An accentuated accumulation of nNOS is found in the endplate area. This strict sarcolemmal localization of nNOS is due its association with the dystrophin-glycoprotein complex, which is mediated by the syntrophins. The activity of nNOS in skeletal muscle is regulated by developmental, myogenic, and neurogenic influences. NO exerts several distinct effects on various aspects of skeletal muscle function, such as excitation-contraction coupling, mitochondrial energy production, glucose metabolism, and autoregulation of blood flow. Inside the striated muscle fibers, NO interacts directly with several classes of proteins, such as soluble guanylate cyclase, ryanodine receptor, sarcoplasmic reticulum Ca(2+)-ATPase, glyceraldehyde-3-phosphate dehydrogenase, and mitochondrial respiratory chain complexes, as well as radical oxygen species. In addition, NO produced and released by contracting muscle fibers diffuses to nearby arterioles where it acts to inhibit reflex sympathetic vasoconstriction.
Collapse
Affiliation(s)
- Z Grozdanovic
- Institute of Anatomy, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Koenigin-Luise-Strasse 15, D-14195 Berlin, Germany.
| |
Collapse
|
40
|
Tews DS. Role of nitric oxide and nitric oxide synthases in experimental models of denervation and reinnervation. Microsc Res Tech 2001; 55:181-6. [PMID: 11747093 DOI: 10.1002/jemt.1169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nitric oxide (NO) is a short-living free molecule synthesized by three different isoforms of nitric oxide synthases (NOS)-neuronal NOS, endothelial NOS, and inducible NOS-associated with neuromuscular transmission, muscle contractility, mitochondrial respiration, and carbohydrate metabolism in skeletal muscle. Neuronal NOS is constitutively expressed at the muscle fiber sarcolemma linked to the dystrophin-glycoprotein complex and concentrated at the neuromuscular endplate. There is increasing evidence that altered expression of neuronal NOS plays a role in muscle fiber damage in neuromuscular diseases such as dystrophinopathies and denervating disorders. Although there have been some previous conflicting results on the neuronal NOS expression pattern in denervated muscle fibers, it is now well established that denervation is associated with a down-regulation and disappearance of sarcolemmal neuronal NOS at synaptic/extrasynaptic or both sites. As NO has been shown to induce collapse and growth arrest on neuronal growth cones, down-regulation of sarcolemmal neuronal NOS may contribute to axonal regeneration and attraction to muscle fibers aiming at the formation of new motor endplates providing reinnervation and reconstitution of NOS expression. As NO serves as a retrograde messenger, it may trigger structural downstream events responsible for neuromuscular synaptogenesis and preventing polyneural innervation. Nevertheless, decreased NO production in denervation reduces the cytoprotective scavenger function of NO for superoxide anions promoting oxidative stress that is likely to be involved in muscle fiber damage and death. However, the multifaced role of NOS and NO under physiological and pathological conditions remains poorly understood on the basis of the current knowledge.
Collapse
Affiliation(s)
- D S Tews
- Division of Neuropathology, Johannes Gutenberg-University Hospital, Langenbeckstrasse 1, D-55101 Mainz, Germany 2001.
| |
Collapse
|
41
|
|
42
|
Abstract
In the past five years, skeletal muscle has emerged as a paradigm of "nitric oxide" (NO) function and redox-related signaling in biology. All major nitric oxide synthase (NOS) isoforms, including a muscle-specific splice variant of neuronal-type (n) NOS, are expressed in skeletal muscles of all mammals. Expression and localization of NOS isoforms are dependent on age and developmental stage, innervation and activity, history of exposure to cytokines and growth factors, and muscle fiber type and species. nNOS in particular may show a fast-twitch muscle predominance. Muscle NOS localization and activity are regulated by a number of protein-protein interactions and co- and/or posttranslational modifications. Subcellular compartmentalization of the NOSs enables distinct functions that are mediated by increases in cGMP and by S-nitrosylation of proteins such as the ryanodine receptor-calcium release channel. Skeletal muscle functions regulated by NO or related molecules include force production (excitation-contraction coupling), autoregulation of blood flow, myocyte differentiation, respiration, and glucose homeostasis. These studies provide new insights into fundamental aspects of muscle physiology, cell biology, ion channel physiology, calcium homeostasis, signal transduction, and the biochemistry of redox-related systems.
Collapse
Affiliation(s)
- J S Stamler
- Howard Hughes Medical Institute, Department of Medicine, Divisions of Pulmonary and Cardiology and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
43
|
Frandsen U, Höffner L, Betak A, Saltin B, Bangsbo J, Hellsten Y. Endurance training does not alter the level of neuronal nitric oxide synthase in human skeletal muscle. J Appl Physiol (1985) 2000; 89:1033-8. [PMID: 10956347 DOI: 10.1152/jappl.2000.89.3.1033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of endurance training on neuronal nitric oxide synthase (nNOS) content and distribution in muscle was investigated. Seven male subjects performed 6 wk of one-legged knee-extensor endurance training (protocol A). Muscle biopsies, obtained from vastus lateralis muscle in the untrained and the trained leg, were analyzed for nNOS protein and activity as well as immunohistochemical distribution of nNOS and endothelial nitric oxide synthase (eNOS). Muscle biopsies were also obtained from another seven male subjects before and after 6 wk of training by endurance running (protocol B) and analyzed for nNOS protein. No difference was found in the amount of nNOS protein in the untrained and the trained muscle either with protocol A or protocol B (P > 0.05). In protocol A, the activity of nNOS was 4.76 +/- 0.56 pmol. mg protein(-1). min(-1) in the control leg, and the level was not different in the trained leg (P > 0.05). nNOS was present in the sarcolemma and cytosol of type I and type II muscle fibers, and the qualitative distribution was similar in untrained and trained muscle. The number of eNOS immunoreactive structures and the number of capillaries per muscle fiber were higher (P < 0.05) after training than before. The present findings demonstrate that, in contrast to findings on animals, nNOS levels remain unaltered with endurance training in humans. Evidence is also provided that endurance training may increase the amount of eNOS, in parallel with an increase in capillaries in human muscle.
Collapse
Affiliation(s)
- U Frandsen
- Department of Human Physiology, Copenhagen Muscle Research Centre, University of Copenhagen, DK-2100 Copenhagen O, Denmark
| | | | | | | | | | | |
Collapse
|
44
|
Javeshghani D, Sakkal D, Mori M, Hussain SN. Regulation of diaphragmatic nitric oxide synthase expression during hypobaric hypoxia. Am J Physiol Lung Cell Mol Physiol 2000; 279:L520-7. [PMID: 10956627 DOI: 10.1152/ajplung.2000.279.3.l520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is normally synthesized inside skeletal muscle fibers by both endothelial (eNOS) and neuronal (nNOS) nitric oxide synthases. In this study, we evaluated the influence of hypobaric hypoxia on the expression of NOS isoforms, argininosuccinate synthetase (AS), argininosuccinate lyase (AL), and manganese superoxide dismutase (Mn SOD) in the ventilatory muscles. Rats were exposed to hypobaric hypoxia ( approximately 95 mmHg) from birth for 60 days or 9-11 mo. Age-matched control groups of rats also were examined. Sixty days of hypoxia elicited approximately two- and ninefold increases in diaphragmatic eNOS and nNOS protein expression (evaluated by immunoblotting), respectively, and about a 50% rise in diaphragmatic NOS activity. In contrast, NOS activity and the expression of these proteins declined significantly in response to 9 mo of hypoxia. Hypoxia elicited no significant alterations in AS, AL and Mn SOD protein expression. Moreover, the inducible NOS (iNOS) was not detected in normoxic and hypoxic diaphragmatic samples. We conclude that diaphragmatic NOS expression and activity undergo significant adaptations to hypobaric hypoxia and that iNOS does not participate in this response.
Collapse
Affiliation(s)
- D Javeshghani
- Critical Care and Respiratory Divisions, Royal Victoria Hospital and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H3A 1A1
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- L M Heunks
- Department of Pulmonary Diseases, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
46
|
Orendácová J, Marsala M, Sulla I, Kafka J, Jalc P, Cizková D, Taira Y, Marsala J. Incipient cauda equina syndrome as a model of somatovisceral pain in dogs: spinal cord structures involved as revealed by the expression of c-fos and NADPH diaphorase activity. Neuroscience 2000; 95:543-57. [PMID: 10658635 DOI: 10.1016/s0306-4522(99)00429-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Segmental and laminar distribution of Fos-like immunoreactive, reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting and double-labeled (Fos-like immunoreactive and NADPHd-exhibiting) neurons was examined in lower lumbar and sacral segments of the dog spinal cord using the model of multiple cauda equina constrictions. NADPHd histochemistry was used as marker of nitric oxide synthase-containing neurons. The appearance and the time-course of Fos-like immunoreactive, NADPHd and double-labeled neurons was studied at 2 h and 8 h postconstriction characterized as the incipient phase of cauda equina syndrome. The occurrence of Fos-like immunoreactive and NADPHd-exhibiting neurons in fully developed cauda equina syndrome was studied at five days postconstriction. An increase in Fos-like immunoreactivity in superficial laminae (I-II) and an enhanced NADPHd staining of lamina VIII neurons were found. A statistically significant increase in Fos-like immunoreactive neurons was found in laminae I-II and VIII-X 8 h postconstriction, and in contrast, a prominent decrease in Fos-like immunoreactive neurons was found in laminae I-II, accompanied by a statistically significant increase in Fos-like immunoreactive neurons in more ventrally located laminae VII-X at five days postconstriction. Quantitative analysis of laminar distribution of constriction-induced NADPHd-exhibiting neurons revealed a considerable increase in these neurons in laminae VIII-IX 8 h postconstriction and a statistically highly significant increase in NADPHd-exhibiting neurons in laminae VII-X five days postconstriction. Concurrently, the number of NADPHd-exhibiting neurons in laminae I-II was greatly reduced. While a low number of double-labeled neurons was found throughout the gray matter of lower lumbar and sacral segments at 2 h postconstriction, a statistically significant number of double-labeled neurons was found in lamina X 8 h and in laminae VII-X five days postconstriction. The course and distribution of anterograde degeneration resulting five days after multiple cauda equina constrictions are compared with segmental and laminar distribution of Fos-like immunoreactive and NADPHd-exhibiting neurons. Prominent involvement of the spinal cord neurons appearing in the lumbosacral segments at the early beginning and in fully developed cauda equina syndrome results in a Fos-like immunoreactivity and strongly enhanced NADPHd staining of some neuronal pools. Under such circumstances, an early cauda equina decompression surgery is advisable aimed at decreasing or preventing the derangement of the neural circuits in the lumbosacral segments.
Collapse
Affiliation(s)
- J Orendácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Tidball JG, Spencer MJ, Wehling M, Lavergne E. Nitric-oxide synthase is a mechanical signal transducer that modulates talin and vinculin expression. J Biol Chem 1999; 274:33155-60. [PMID: 10551887 DOI: 10.1074/jbc.274.46.33155] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical stimuli can cause changes in muscle mass and structure which indicate that mechanisms exist for transducing mechanical stimuli into signals that influence gene expression. Myotendinous junctions show adaptations to modified muscle loading which suggest that these are transcriptionally distinct domains in muscle fibers that may experience local regulation of expression of structural proteins that are concentrated at these sites. Vinculin and talin are cytoskeletal proteins that are highly enriched at myotendinous junctions that we hypothesize to be subject to local transcriptional regulation. Our findings show that mechanical stimulation of muscle cells in vivo and in vitro causes an increase in the expression of vinculin and talin that is mediated by nitric oxide. Furthermore, nitric oxide-stimulated increases in vinculin and talin expression occur through a protein kinase G-dependent pathway and therefore differ from other mechanisms through which nitric oxide has been shown previously to modulate transcription. Analysis of vinculin mRNA distribution in mechanically stimulated muscle fibers shows that the mRNA is highly concentrated at myotendinous junctions, which supports the hypothesis that myotendinous junctions are distinct domains in which the expression of cytoskeletal proteins is modulated by mechanical stimuli through a nitric oxide and protein kinase G-dependent pathway.
Collapse
Affiliation(s)
- J G Tidball
- Department of Physiological Science, University of California, Los Angeles, California 90095-1527, USA.
| | | | | | | |
Collapse
|
49
|
Roberts CK, Barnard RJ, Jasman A, Balon TW. Acute exercise increases nitric oxide synthase activity in skeletal muscle. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E390-4. [PMID: 10444436 DOI: 10.1152/ajpendo.1999.277.2.e390] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of acute exercise on skeletal muscle nitric oxide synthase (NOS) activity. Female Sprague-Dawley rats were divided into three groups: control, exercise, and exercise + N(G)-nitro-L-arginine methyl ester (L-NAME). In the exercise + L-NAME group, L-NAME was administered in the drinking water (1 mg/ml) for 2 days and subsequently the exercise and exercise + L-NAME groups underwent a 45-min bout of exhaustive treadmill running after which NOS activity and muscle glycogen were measured. In the control and exercise groups, 1-amino-S-methylisothiourea (AMITU), a selective neuronal NOS inhibitor, with and without additional nonselective NOS blockade [with N(G)-monomethyl-L-arginine (L-NMMA)], was used in vitro to assess the contribution of nNOS to total NOS activity. The exercise bout increased NOS activity by 37% in exercise compared with control groups, and both groups had significantly greater NOS activity compared with exercise + L-NAME. AMITU decreased total NOS activity in the control and exercise groups by 31.8 and 30.2%, respectively, and these activities were significantly greater than AMITU + L-NMMA in both control and exercise groups. We conclude that 1) there is basal neuronal NOS and endothelial NOS activity in skeletal muscle, 2) an acute exercise bout increases NOS activity in skeletal muscle, and 3) glycogen depletion during exercise occurs irrespective of NOS activity.
Collapse
Affiliation(s)
- C K Roberts
- Department of Physiological Science, University of California, Los Angeles 90024, California, USA
| | | | | | | |
Collapse
|
50
|
Boissel JP, Schwarz PM, Förstermann U. Neuronal-type NO synthase: transcript diversity and expressional regulation. Nitric Oxide 1999; 2:337-49. [PMID: 10100489 DOI: 10.1006/niox.1998.0189] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Of the three established isoforms of NO synthase, the gene for the neuronal-type enzyme (NOS I) is by far the largest and most complicated one. The genomic locus of the human NOS I gene is located on chromosome 12 and distributed over a region greater than 200 kb. The nucleotide sequence corresponding to the major neuronal mRNA transcript is encoded by 29 exons. The full-length open reading frame codes for a protein of 1434 amino acids with a predicted molecular weight of 160.8 kDa. However, both in rodents and in humans, multiple, tissue-specific or developmentally regulated NOS I mRNA transcripts have been reported. They arise from the initiation by different transcriptional units containing alternative promoters (at least eight in the human gene), cassette exon deletions or insertions, and/or the usage of alternate polyadenylation signals. Depending on the insertions and deletions, translation results in functional or nonfunctional proteins. The use of alternative promoters can influence gene expression by various means. Indeed, NOS I is not a static, constitutively expressed enzyme, but subject to expressional regulation by various compounds and conditions. The molecular mechanisms underlying these regulations are currently being studied in several laboratories including our own.
Collapse
Affiliation(s)
- J P Boissel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | |
Collapse
|