1
|
Bokov RO, Sharlo KA, Vilchinskaya NA, Tyganov SA, Turtikova OV, Rozhkov SV, Deviatiiarov RM, Gusev OA, Tomilovskaya ES, Shenkman BS, Orlov OI. Molecular insights into human soleus muscle atrophy development: long-term dry immersion effects on the transcriptomic profile and posttranslational signaling. Physiol Genomics 2025; 57:357-382. [PMID: 40072920 DOI: 10.1152/physiolgenomics.00196.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Muscle disuse results in complex signaling alterations followed by structural and functional changes, such as atrophy, force decrease, and slow-to-fast fiber-type shift. Little is known about human skeletal muscle signaling alterations under long-term muscle disuse. In this study, we describe the effects of 21-day dry immersion on human postural soleus muscle. We performed both transcriptomic analysis and Western blots to describe the states of the key signaling pathways regulating soleus muscle fiber size, fiber type, and metabolism. Twenty-one-day dry immersion resulted in both slow-type and fast-type myofibers atrophy, downregulation of rRNA content, and mTOR signaling. Twenty-one-day dry immersion also leads to slow-to-fast fiber-type and gene expression shift, upregulation of p-eEF2, p-CaMKII, p-ACC content and downregulation of NFATc1 nuclear content. It also caused massive gene expression alterations associated with calcium signaling, cytoskeletal parameters, and downregulated mitochondrial signaling (including fusion, fission, and marker of mitochondrial density).NEW & NOTEWORTHY The main findings of our study are as follows: 1) The soleus slow fibers atrophy after 21-day dry immersion (DI) does not exceed that after 7-day DI; 2) The soleus ubiquitin ligases expression after 21-day DI returns to its initial level; 3) The soleus slow fibers atrophy after 21-day DI is accompanied by a mitochondrial apparatus structural markers decrease; 4) The soleus fibers signaling pathways restructuring process during 21-day DI is carried out in a complex manner.
Collapse
Affiliation(s)
- Roman O Bokov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Kristina A Sharlo
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey A Tyganov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Olga V Turtikova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Rozhkov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Oleg A Gusev
- Life Improvement by Future Technologies Center, Moscow, Russia
| | | | - Boris S Shenkman
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oleg I Orlov
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Dreiner M, Godonou ET, Mündermann A, Tascilar K, Schett G, Zaucke F, Liphardt AM, Niehoff A. Immobilization by 21-days of bed rest causes changes in biomarkers of cartilage homeostasis in healthy individuals. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100597. [PMID: 40144955 PMCID: PMC11938040 DOI: 10.1016/j.ocarto.2025.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Objective To investigate the effects of 21 days bed rest immobilization (with and without exercise and nutrition intervention) on serum concentrations of cartilage homeostasis biomarkers in healthy individuals. Design Twelve male volunteers (age 34.2 ± 8.3 years; BMI 22.4 ± 1.7 kg/m2) participated in 6 days of baseline data collection (BDC), 21 days of 6° head-down-tilt (HDT) bed rest (CON) + interventions HDT + resistive vibration exercise (RVE; 2 times/week; 25 min) and HDT + RVE + nutrition (NeX; 0.6 g/kg body weight/day whey protein and 90 mmol KHCO3/day bicarbonate supplementation), and 6 days of recovery (R) in a cross-over designed study. The starting HDT condition was randomized (CON-RVE-NeX, RVE-NeX-CON, NeX-CON-RVE). Blood samples were collected before, during and after HDT. Serum concentrations of COMP, MMP-3, MMP-9, YKL-40 and resistin were analyzed. Results The main effect of time was significant for all biomarkers tested (p < 0.001). While COMP (-36 % at HDT5, p < 0.001) and MMP-3 (-36 % at HDT21, p < 0.001) decreased during HDT bed rest, MMP-9 (+18 % at HDT5, p < 0.001) and resistin (+13 % at HDT21, p < 0.001) increased during HDT bed rest. Interestingly, during recovery, YKL-40 levels increased (+13 % at R1, p = 0.022), while MMP-9 levels decreased (-19 % at R6, p = 0.035). We identified correlations between COMP and MMP-3 (rrm = 0.58, p < 0.001) as well as between MMP-9 and resistin (rrm = 0.58, p < 0.001). Conclusions Immobilization affects serum concentrations of cartilage homeostasis biomarkers suggesting changes in cartilage metabolism that do not completely recover during re-ambulation. Both interventions had only minimal effects.
Collapse
Affiliation(s)
- Maren Dreiner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
| | - Elie-Tino Godonou
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Annegret Mündermann
- Department of Teaching, Research and Development, Schulthess Clinic, Zurich, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Koray Tascilar
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopaedics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - Anna-Maria Liphardt
- Department of Internal Medicine – Rheumatology & Immunology, Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Universitätsklinikum Erlangen & Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
3
|
Sun C, Ding L, Zhang Q, Nie J, Zhao Y, Xu D, Liu Z, Wu B. Research on the effects of 15-day of head-down tilt bed rest on arterial hemodynamics and blood supply using Doppler ultrasound technology. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:34-43. [PMID: 40280641 DOI: 10.1016/j.lssr.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/11/2025] [Accepted: 01/20/2025] [Indexed: 04/29/2025]
Abstract
Prolonged exposure to microgravity would cause cardiovascular deconditioning in astronauts, leading to physiological discomfort, decreased cognitive function, and reduced work efficiency. This study aims to explore the hemodynamic effects of short-term -6° head-down tilt bed rest (HDBR) on the human circulatory system and the regulation mechanisms of blood supply to the neck and extremities. An HDBR experiment with a duration of 29 days was conducted. Doppler ultrasound was employed to quantify the blood flow spectra of the left carotid (CA), brachial (BA), radial (RA), and femoral (FA) arteries in 14 volunteers before and after HDBR. Blood flow velocity curves were obtained through edge contour extraction technology, to calculate hemodynamic parameters. After HDBR, the FA diameter significantly decreased by 0.2 mm. The resistance index (RI) of the RA, pulsatility index (PI) of the RA and PI of the FA significantly increased. The minute blood flow volume (MBF) in the CA, BA, RA, and FA significantly decreased. The proportion of total blood flow volume (PTBF) to the CA significantly increased by 4.8 %, while the PTBF to the FA significantly decreased by 4.1 %. After HDBR, the blood flow velocity, MBF, and total blood supply in the CA and extremities arteries decreased. Vasoconstriction and increased resistance in the FA led to a decreased blood supply ratio to the lower extremities and an increased ratio to the neck. This study provides a theoretical basis for the prevention of cardiovascular deconditioning and the establishment of targeted countermeasures, which are significant for enhancing astronauts' physical performance.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Li Ding
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiachen Nie
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yiyang Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Dong Xu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training, Beijing, 100094, China
| | - Zhongqi Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Bin Wu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training, Beijing, 100094, China.
| |
Collapse
|
4
|
Riabova A, Bekreneva M, Saveko A. Human foot cutaneous receptors function: clinical findings and prospects of using medical devices to stimulate mechanoreceptors in neurorehabilitation. Rev Neurosci 2025; 36:279-293. [PMID: 39425663 DOI: 10.1515/revneuro-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
The effectiveness of the support stimulation of the mechanoreceptors of the feet has been first shown in space medicine. In space flight during support withdrawal with non-use of postural muscle, this method is a countermeasure against sensorimotor disorders. Later, it was applied in clinical practice as treatment of motor disorders after stroke, in Parkinson's disease, infantile cerebral palsy, neuropathies, and many others. The impact of such stimulation on motor control is due to spinal and supraspinal mechanisms, which are activated by creating an additional support afferent input through the plantar surface. Many studies confirmed the positive effect of support stimulation on motor control, but the protocols of such stimulation remain the subject of active discussion. This review includes (1) the features of sensitivity of the foot sole cutaneous afferents to the support mechanical stimuli, (2) data on spinal and supraspinal responses of the nervous system to support stimulation, and (3) the results of applying this approach in neurological practice via various techniques. Summarizing this information, the authors highlight the most promising ways and types of medical devices for foot support stimulation in neurology.
Collapse
Affiliation(s)
- Alexandra Riabova
- Institute of Biomedical Problems of the Russian Academy of Sciences (IBMP RAS), 76A Khoroshevskoye shosse, 123007, Moscow, Russia
| | - Maria Bekreneva
- Institute of Biomedical Problems of the Russian Academy of Sciences (IBMP RAS), 76A Khoroshevskoye shosse, 123007, Moscow, Russia
| | - Alina Saveko
- Institute of Biomedical Problems of the Russian Academy of Sciences (IBMP RAS), 76A Khoroshevskoye shosse, 123007, Moscow, Russia
| |
Collapse
|
5
|
Wuyts FL, Deblieck C, Vandevoorde C, Durante M. Brains in space: impact of microgravity and cosmic radiation on the CNS during space exploration. Nat Rev Neurosci 2025:10.1038/s41583-025-00923-4. [PMID: 40247135 DOI: 10.1038/s41583-025-00923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/19/2025]
Abstract
Solar system exploration is a grand endeavour of humankind. Space agencies have been planning crewed missions to the Moon and Mars for several decades. However, several environmental stress factors in space, such as microgravity and cosmic radiation, confer health risks for human explorers. This Review examines the effects of microgravity and exposure to cosmic radiation on the CNS. Microgravity presents challenges for the brain, necessitating the development of adaptive movement and orientation strategies to cope with alterations in sensory information. Exposure to microgravity also affects cognitive function to a certain extent. Recent MRI results show that microgravity affects brain structure and function. Post-flight recovery from these changes is gradual, with some lasting up to a year. Regarding cosmic radiation, animal experiments suggest that the brain could be much more sensitive to this stressor than may be expected from experiences on Earth. This may be due to the presence of energetic heavy ions in space that have an impact on cognitive function, even at low doses. However, all data about space radiation risk stem from rodent experiments, and extrapolation of these data to humans carries a high degree of uncertainty. Here, after presenting an overview of current knowledge in the above areas, we provide a concise description of possible counter-measures to protect the brain against microgravity and cosmic radiation during future space missions.
Collapse
Affiliation(s)
- Floris L Wuyts
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Choi Deblieck
- Laboratory for Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.
- Institute for Condensed Matter of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
- Department of Physics 'Ettore Pancini', University Federico II, Naples, Italy.
| |
Collapse
|
6
|
Klos B, Kaul A, Straube E, Steinhauser V, Gödel C, Schäfer F, Lambert C, Enck P, Mack I. Effects of isolated, confined and extreme environments on parameters of the immune system - a systematic review. Front Immunol 2025; 16:1532103. [PMID: 40201171 PMCID: PMC11975566 DOI: 10.3389/fimmu.2025.1532103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 04/10/2025] Open
Abstract
Background The immune system is a crucial part of the body's defense against infection and disease. However, individuals in antigen-limited environments face unique challenges that can weaken their immune systems. This systematic review aimed to investigate the impact of an exposure to an isolated, confined and extreme (ICE) environment with limited antigen diversity on human immune parameters. Methods A systematic literature search was conducted using PubMed, Web of Science and Cochrane Library to identify relevant studies on immune system parameters in ICE environments. The studies were grouped by ICE type (space missions, microgravity simulations like bed rest studies, space simulation units like MARS500, and Antarctic research stations) to allow for clearer comparison and analysis of immune outcomes. Results Analysis of 140 studies revealed considerable heterogeneity in study designs and outcomes, reflecting the complexity of immune responses across ICE environments. Nevertheless, immune dysregulation was consistently observed across environments. Space missions and Antarctic stations, in particular, showed pronounced immune changes, likely due to low antigen diversity and extreme conditions, with higher rates of infections and allergic responses suggesting increased vulnerability. Space simulation units exhibited immune changes similar to those in actual space missions, while gravity simulation studies, which focus on fluid shifts and bone loss, showed fewer immune alterations. Across environments, most immunological measures returned to baseline after isolation, indicating resilience and the potential for recovery upon re-exposure to diverse antigens. Conclusion Reduced antigen diversity in ICE environments disrupts immune function, with effects often compounded by extreme conditions. Although immune resilience and recovery post-isolation are promising, the heterogeneity in current studies highlights the need for targeted research to identify specific immune vulnerabilities and to develop countermeasures. Such measures could reduce immune-related health risks for individuals in isolated settings, including astronauts, polar researchers, and vulnerable populations on Earth, such as the elderly or immunocompromised, thereby enhancing resilience in confined environments. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023476132.
Collapse
Affiliation(s)
- Bea Klos
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Alina Kaul
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Emily Straube
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | | | - Celina Gödel
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Franziska Schäfer
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Claude Lambert
- Cytometry Unit, Immunology Laboratory, Saint-Etienne University Hospital, Saint-Étienne, Lyon, France
- LCOMS/ENOSIS Environmental Toxicology, University of Lorraine, Metz, France
| | - Paul Enck
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Mack
- Internal Medicine VI, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Fan G, Yang H, Zhang Y, Yao M, Wei C, Zhang Q. Research on visual comfort of color matching in space station experiment module. Sci Rep 2025; 15:9553. [PMID: 40108204 PMCID: PMC11923048 DOI: 10.1038/s41598-025-90712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Considering the living environment, appropriate color adjustment has a positive effect on improving the visual comfort of astronauts, promoting their physical and mental health, and enhancing work efficiency. This article takes the Chinese space station experimental module as a prototype, and through simulation experiments, uses a method that combines physiological signals with subjective evaluation to compare the differences in the impact of 9 different color matching schemes on human visual comfort. The results showed that using 2-3 colors for pairing resulted in the highest visual comfort for people, and people were more willing to choose cool, white, or cool, warm, and white combinations. Among them, spaces using blue, green, and white combinations could help alleviate visual fatigue, while spaces using yellow, green, and white combinations could help people maintain or form a good psychological state. Finally, the experimental results were discussed, and prospects for the future development and construction of space stations were discussed.
Collapse
Affiliation(s)
- Gongfu Fan
- School of Architecture, Huaqiao University, Xiamen, China
| | - Hebing Yang
- School of Architecture, Huaqiao University, Xiamen, China
| | - Yikang Zhang
- School of Architecture, Huaqiao University, Xiamen, China
| | - Minfeng Yao
- School of Architecture, Huaqiao University, Xiamen, China.
| | - Chuanshuai Wei
- School of Architecture, Huaqiao University, Xiamen, China
| | - Qi Zhang
- School of Architecture, Huaqiao University, Xiamen, China
| |
Collapse
|
8
|
Derobertmasure A, Toh LS, Wotring VE, Williams PM, Morbidelli L, Stingl JC, Vinken M, Ramadan R, Chhun S, Boutouyrie P. Pharmacological countermeasures for long-duration space missions: addressing cardiovascular challenges and advancing space-adapted healthcare. Eur J Pharm Sci 2025; 209:107063. [PMID: 40064402 DOI: 10.1016/j.ejps.2025.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Future long-duration crewed space missions beyond Low Earth Orbit (LEO) will bring new healthcare challenges for astronauts for which pharmacological countermeasures (pharmacological countermeasures) are crucial. This paper highlights current pharmacological countermeasures challenges described in the ESA SciSpacE Roadmap, with a focus on the cardiovascular system as a model to demonstrate the potential implication of the challenges and recommendations. New pharmacological approaches and procedures need to be adapted to spaceflight (spaceflight) conditions, including ethical and reglementary considerations. Potential strategies include combining pharmacological biomarkers such as pharmacogenomics with therapeutic drug monitoring, advancing microsampling techniques, and implementing a pharmacovigilance system to gain deep insights into pharmacokinetics/pharmacodynamics (PK/PD) spaceflight alteration on drug exposure. Emerging therapeutic approaches (such as long-term regimens) or manufacturing drugs in the space environment, can address specific issues related to drug storage and stability. The integration of biobanks and innovative technologies like organoids and organ-on-a-chip, artificial intelligence (AI), including machine learning will further enhance PK modelling leading to personalized treatments. These innovative pharmaceutical tools will also enable reciprocal game-changing healthcare developments to be made on Earth as well as in space and are essential to ensure space explorers receive safe effective pharmaceutical care.
Collapse
Affiliation(s)
- Audrey Derobertmasure
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France
| | - Li Shean Toh
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Virginia E Wotring
- International Space University, 1 rue Jean-Dominique Cassini, Parc d'Innovation, 6700 Illkirch-Graffenstaden, France
| | - Philip M Williams
- School of Pharmacy, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Wendlingweg 2, 52064, Aachen, Germany
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raghda Ramadan
- Interdisciplinary Biosciences Group, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Stephanie Chhun
- Faculty of Medicine, Paris Cité University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253; AP-HP, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Pierre Boutouyrie
- Faculty of Medicine, Paris Cité University, INSERM PARCC, Service de Pharmacologie Clinique, Hôpital Européen Georges Pompidou Hospital (AP-HP), Paris, France.
| |
Collapse
|
9
|
Zhang X, Zhu H, Zhang J. Oxidative Stress on the Ground and in the Microgravity Environment: Pathophysiological Effects and Treatment. Antioxidants (Basel) 2025; 14:231. [PMID: 40002415 PMCID: PMC11852023 DOI: 10.3390/antiox14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
With the continued exploration of the universe, there is an increasingly urgent need to address the health challenges arising from spaceflight. In space, astronauts are exposed to radiation, confinement and isolation, circadian rhythm dysregulation, and microgravity conditions that are different from those on Earth. These risk factors jeopardize astronauts' health, thus affecting the quality of space missions. Among these factors, gravitational changes influence the balance between oxidation and antioxidants, stimulating the production of reactive oxygen species (ROS), finally leading to oxidative stress (OS). OS leads to oxidative damage of biomolecules such as lipids, proteins, and DNA, which causes the development of various diseases. The occurrence of OS is increased in microgravity and affects multiple systems, including the musculoskeletal, cardiovascular, nervous, and immune systems. In this review, we discuss the mechanisms of OS, the physiological effects on different systems caused by OS in microgravity environment, and potential treatments for OS. Finally, treatment strategies for oxidative stress in microgravity are summarized, providing some promising approaches for protecting the health of astronauts in future space exploration.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (X.Z.); (H.Z.)
| | - Huaiying Zhu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (X.Z.); (H.Z.)
| | - Jinhua Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (X.Z.); (H.Z.)
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
10
|
Nguyen T, Ong J, Brunstetter T, Gibson CR, Macias BR, Laurie S, Mader T, Hargens A, Buckey JC, Lan M, Wostyn P, Kadipasaoglu C, Smith SM, Zwart SR, Frankfort BJ, Aman S, Scott JM, Waisberg E, Masalkhi M, Lee AG. Spaceflight Associated Neuro-ocular Syndrome (SANS) and its countermeasures. Prog Retin Eye Res 2025; 106:101340. [PMID: 39971096 DOI: 10.1016/j.preteyeres.2025.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Astronauts can develop a distinct collection of neuro-ophthalmic findings during long duration spaceflight, collectively known as Spaceflight Associated Neuro-ocular Syndrome (SANS). These clinical characteristics include optic disc edema, hyperopic refractive shifts, globe flattening, and chorioretinal folds, which may pose a health risk for future space exploration. Obtaining knowledge of SANS and countermeasures for its prevention is crucial for upcoming crewed space missions and warrants a multidisciplinary approach. This review examines the potential causes and countermeasures of SANS, including space anticipation glasses, lower body negative pressure, venoconstrictive thigh cuffs, impedance threshold devices, translaminar pressure gradient modulation, centrifugation, artificial gravity, pharmaceuticals, and precision nutritional supplementation. This paper highlights future research directions for understanding the genetic, anthropometric, behavioral, and environmental susceptibilities to SANS as well as how to use terrestrial analogs for testing future mitigation strategies.
Collapse
Affiliation(s)
- Tuan Nguyen
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York City, New York, USA
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - C Robert Gibson
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA; South Shore Eye Center, League City, TX, USA
| | | | - Steven Laurie
- KBR, NASA Space Medicine Operations Division, Houston, TX, USA
| | | | - Alan Hargens
- Department of Orthopaedic Surgery, University of California, Altman Clinical and Translational Research Institute, La Jolla, CA, San Diego, USA
| | - Jay C Buckey
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Mimi Lan
- Space Medicine Innovations Laboratory, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH, USA
| | - Peter Wostyn
- Department of Psychiatry, PC Sint-Amandus, Beernem, Belgium
| | | | - Scott M Smith
- Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Sara R Zwart
- University of Texas Medical Branch, Galveston, TX, USA
| | - Benjamin J Frankfort
- Departments of Ophthalmology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Sarah Aman
- Wilmer Eye Institute, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Jessica M Scott
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | - Mouayad Masalkhi
- University College Dublin School of Medicine, Belfield, Dublin, Ireland
| | - Andrew G Lee
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA; University of Texas MD Anderson Cancer Center, Houston, TX, USA; Texas A&M College of Medicine, Bryan, TX, USA; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
11
|
Ren W, Liu L, Liang J, Zhang P, Wu D, Zhang Z. Effects of short time -30° head-down tilt on time perception. Perception 2025; 54:115-124. [PMID: 39801428 DOI: 10.1177/03010066241311831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Exposure to microgravity induces abnormal experiences that may affect the perception of time. Head-down tilts (HDTs) are commonly used to investigate the effects of weightlessness. A -30° HDT is considered an appropriate model to simulate the acute phase of microgravity exposure. Temporal performance in a time reproduction task was assessed before and after 30 min of -30° HDT, using 800, 1,000, and 2,000 ms as standard intervals. Absolute error (AE), relative error (ratio), and coefficient of variation (CV) were calculated to quantify performance. Compared to baseline measures obtained prior to HDT, both the mean AE and the ratio were significantly increased after 30 min of -30° HDT at the 800 ms interval. A similar trend was observed at the 1,000 ms interval, but no significant effect was found at the 2,000 ms interval. No significant differences were observed in the CV before and after -30° HDT. Acute exposure to microgravity, simulated by the -30° HDT condition, primarily affects duration perception at sub-second intervals.
Collapse
Affiliation(s)
| | - Le Liu
- Hebei Normal University, China
| | - Jin Liang
- Institute of Marine Technology and Economy, China; National Key Laboratory of Human Factors Engineering, China
| | | | - Di Wu
- Air Force Medical University, China
| | | |
Collapse
|
12
|
Wesselink EO, Hides J, Elliott JM, Hoggarth M, Weber KA, Salomoni SE, Tran V, Lindsay K, Hughes L, Weber T, Scott J, Hodges PW, Caplan N, De Martino E. New insights into the impact of bed rest on lumbopelvic muscles: a computer-vision model approach to measure fat fraction changes. J Appl Physiol (1985) 2025; 138:157-168. [PMID: 39611883 DOI: 10.1152/japplphysiol.00502.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Space agencies plan crewed missions to the Moon and Mars. However, microgravity-induced lumbopelvic deconditioning, characterized by an increased fat fraction (FF) due to reduced physical activity, poses a significant challenge to spine health. This study investigates the spatial distribution of FF in the lumbopelvic muscles to identify the most affected regions by deconditioning, utilizing a computer-vision model and a tile-based approach to assess FF changes. Twenty-four healthy individuals (8 F) were recruited, and automatic segmentation of the lumbopelvic muscles was applied before and after 59 days of head-down tilt bed rest (HDTBR + 59) and 13 days of reconditioning (R + 13). Axial Dixon sequence images were acquired from 3 T magnetic resonance imaging. FF in the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum, psoas major, gluteus maximus (GMax), gluteus medius (GMed), and gluteus minimus (GMin) muscles from the upper margin of L1 vertebra to the inferior border of GMax muscle were automatically derived using a computer-vision model. Lumbar muscles were segmented into eight tiles (superficial and deep, lateral to medial), and gluteal muscles into regions (anterior/superior for GMed and GMin, superior/inferior for GMax). At HDTBR + 59, the deep centrolateral region at L5/S1 for LM (18.7 ± 15.7%, P < 0.001; d = 0.97) and the deep medial region at Upper L4 for LES (5.4 ± 5.9%, P < 0.001; d = 0.34) showed the largest increase in FF compared with baseline data collection. These regions did not recover at R + 13 (P < 0.05; d ≥ 0.25). These findings highlight the need to target deep fascicles of LM and LES in countermeasure strategies to mitigate microgravity-induced lumbopelvic deconditioning, optimizing spine health, and performance.NEW & NOTEWORTHY This study reveals novel insights into fat fraction changes in lumbopelvic muscles after 60 days of head-down bed rest and 13 days of reconditioning. Lipids increased in the deep regions of the lumbar multifidus (LM) and lumbar erector spinae (LES), particularly at lower vertebral levels, and persisted after reconditioning. These findings highlight the need to target deep fascicles of LM and LES in future countermeasures to mitigate microgravity-induced deconditioning and optimize spine health.
Collapse
Affiliation(s)
- Evert O Wesselink
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, Queensland, Australia
| | - James M Elliott
- Northern Sydney Local Health District and The University of Sydney, Faculty of Medicine and Health, The Kolling Institute Sydney, Sydney, New South Wales, Australia
| | - Mark Hoggarth
- Department of Physical Therapy, North Central College, Naperville, Illinois, United States
| | - Kenneth A Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California, United States
| | - Sauro E Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Vienna Tran
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Luke Hughes
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Tobias Weber
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team, European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Hedge ET, Mastrandrea CJ, Patterson CA, Hughson RL. Sex differences between postmenopausal women and similar-age men in response to orthostatic stress following 2 wk of bed rest. J Appl Physiol (1985) 2025; 138:226-237. [PMID: 39656788 DOI: 10.1152/japplphysiol.00477.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Reduced orthostatic tolerance is common following periods of bed rest that are associated with illness or surgery, putting individuals at higher risk for syncope and falls following hospitalization. Following menopause, mechanisms of female cardiovascular regulation change, which may be associated with sex-specific responses to orthostatic stress following bed rest. The purpose of our experiment was to investigate sex differences between healthy postmenopausal women and similar-age men (age: 55-65 yr) for their orthostatic tolerance and cerebrovascular responses to standing following bed rest. Twenty-two late-middle-aged adults (11 women) completed 14 days of head-down bed rest, with half of the participants being randomized into an exercise group that performed high-intensity exercise during bed rest. Supine-to-stand tests were performed before and ∼5 h after bed rest. Women had lower orthostatic tolerance than men after bed rest (bed rest × sex interaction: P = 0.004), without a protective effect of daily exercise. Both men and women were mildly hypocapnic while supine (main effect: P = 0.019) following bed rest and had lower middle cerebral artery blood velocity (MCAv) nadirs upon standing (main effect: P = 0.027). During the third minute of standing, both men and women had lower end-tidal Pco2 (main effect: P < 0.001) and MCAv (main effect: P = 0.002) after bed rest, but only men had increased cerebrovascular resistance index (bed rest × sex interaction: P = 0.005) and only women were hypotensive (bed rest × sex interaction: P = 0.020) compared with pre-bed rest. Accordingly, lower MCAv of postmenopausal women and men while standing after bed rest was mediated by different factors.NEW & NOTEWORTHY Postmenopausal women had lower orthostatic tolerance than similar-age men while standing post-bed rest. Both sexes exhibited lower cerebral blood velocity nadirs upon standing; however, sex-specific interactions of the determinants of cerebral perfusion (i.e., Pco2, cerebrovascular resistance index, and arterial pressure) were observed during prolonged standing after bed rest. These results indicate that postmenopausal women and men have different factors underlying reduced cerebral perfusion while standing after bed rest.
Collapse
Affiliation(s)
- Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Carmelo J Mastrandrea
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
14
|
Elsangeedy E, Yamaleyeva DN, Edenhoffer NP, Deak A, Soloshenko A, Ray J, Sun X, Shaltout OH, Cruz-Diaz N, Westwood B, Kim-Shapiro D, Diz DI, Soker S, Pulgar VM, Ronca A, Willey JS, Yamaleyeva LM. Sex-specific cardiovascular adaptations to simulated microgravity in Sprague-Dawley rats. NPJ Microgravity 2024; 10:110. [PMID: 39702444 DOI: 10.1038/s41526-024-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8). HLU had no effect on aortic PWV in males (n = 5-6). Aortic α smooth muscle actin, myosin, collagen, elastin, and collagen-to-elastin ratio were not different in rats of either sex following HLU. The levels of G protein-coupled estrogen receptor (GPER) were lower in the aorta of SD females exposed to HLU compared with female controls but were not altered in males. HLU females also had lower aortic PPARγ, increased oxidative stress markers, and diastolic dysfunction compared with control females. GPER agonist G1 prevented the increase in PWV and 8-hydroxy-2'-deoxyguanosine without altering PPARγ or p47phox in HLU females (n = 4 in each group) suggesting that lower GPER may contribute to arterial stiffening in the setting of simulated microgravity. This study highlights sex-specific vascular adaptations to the state of simulated microgravity.
Collapse
Affiliation(s)
- Ebrahim Elsangeedy
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dina N Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas P Edenhoffer
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson Deak
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anna Soloshenko
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jonathan Ray
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xuming Sun
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Omar H Shaltout
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nildris Cruz-Diaz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian Westwood
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Debra I Diz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Victor M Pulgar
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmaceutical & Clinical Sciences, Campbell University, Buies Creek, NC, USA
| | - April Ronca
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Liliya M Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
15
|
Strauch L, von der Wiesche M, Noppe A, Mulder E, Rieger I, Aeschbach D, Elmenhorst EM. Simulating microgravity with 60 days of 6 degree head-down tilt bed rest compromises sleep. NPJ Microgravity 2024; 10:109. [PMID: 39638792 PMCID: PMC11621691 DOI: 10.1038/s41526-024-00448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
Astronauts in space often experience sleep loss. In the AGBRESA (Artificial Gravity Bed Rest) study, we examined 24 participants (mean age ± SD, 33 ± 9 years) during two months of 6o head-down tilt (HDT) bed rest, which is a well-established spaceflight analogue. Polysomnography was recorded during baseline (BDC-9), HDT (nights 1, 8, 30 and 58) and recovery (R, nights 1 and 12). Mixed ANOVAs with post-hoc step-down Bonferroni adjustment indicated that compared to BDC-9, arousals were increased, while sleep duration, N3, and sleep efficiency were all decreased during HDT. Significant quadratic associations between sleep duration and quality with time into HDT did not indicate adaptive improvements during the course of HDT. While sleep duration recovered quickly after the end of bed rest, participants still displayed protracted sleep fragmentation. We conclude that physiological changes caused by exposure to microgravity may contribute to persistent sleep deficits experienced during real space missions.
Collapse
Affiliation(s)
- Luise Strauch
- Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany
| | - Melanie von der Wiesche
- Institute of Aerospace Medicine, Study Team, German Aerospace Center (DLR), Cologne, Germany
| | - Alexandra Noppe
- Institute of Aerospace Medicine, Study Team, German Aerospace Center (DLR), Cologne, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, Research Relations and Development, German Aerospace Center (DLR), Cologne, Germany
| | - Iris Rieger
- Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany
| | - Daniel Aeschbach
- Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Eva-Maria Elmenhorst
- Institute of Aerospace Medicine, Department of Sleep and Human Factors Research, German Aerospace Center (DLR), Cologne, Germany.
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.
| |
Collapse
|
16
|
Marcos-Lorenzo D, Lysandrou C, Sudres L, Gil-Martinez A, Swanenburg J, Clark JE, Green DA. 50% body weight loading reduces stature increases and lumbar disc expansion from 4 h hyper-buoyancy floatation versus 15 min sitting upright. Exp Physiol 2024. [PMID: 39632504 DOI: 10.1113/ep091745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024]
Abstract
Microgravity is associated with stature increases, back pain and post-flight intervertebral disc (IVD) herniation. This study aims to determine whether 30 s seated 50% body weight (BW) axial loading is comparable to 15 min sitting upright in 1 g upon changes in stature, anterior lumbar IVD height (via ultrasound), passive vertebral stiffness (VS), and back pain induced by 4 h hyper-buoyancy floatation (HBF) unloading. Sixteen (seven male) healthy volunteers had stature, lumbar IVD height (L2-S1), passive VS (C1-L5) and back pain assessed before and following 4 h HBF, and immediately after participants performed a 30 s seated squat with 50% of their BW or 15 min sitting upright. Four hours of HBF unloading induced significant increments in stature (+1.6 ± 0.5 cm; P < 0.001), IVD height (L2-L3: P = 0.002; L3-L4: P < 0.001; L4-L5: P = 0.013; L5-S1: P < 0.001) and back pain (2.90 ± 1.26; P < 0.001) with no differences between 1 and 1.5 BW. Stature, IVD height increments and back pain were similarly attenuated in both reloading groups. Passive VS was unchanged by 4 h HBF or reloading. HBF-induced back pain positively correlated with stature (P = 0.01) and lumbar IVD height changes (L2-L3: P = 0.03; L3-L4: P = 0.01; L5-S1: P = 0.02). Four hours of HBF increased stature, lumbar IVD height and induced moderate back pain that were similarly (albeit not entirely) ameliorated by both 15 min upright sitting and 30 s of 50% BW axial loading, with no changes in passive VS observed. IVD geometric changes appear key to space adaptation back pain and stature increments that can be rapidly modulated by brief periods of axial loading.
Collapse
Affiliation(s)
| | - Christina Lysandrou
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
| | - Laura Sudres
- Department of Physiotherapy, Centro de Estudios Superiores La Salle, Madrid, Spain
| | - Alfonso Gil-Martinez
- Department of Physiotherapy, Centro de Estudios Superiores La Salle, Madrid, Spain
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
- Unit of Physiotherapy, Hospital Universitario La Paz, Carlos III Institute for Health Research, Madrid, Spain
| | - Jaap Swanenburg
- Integrative Spinal Research ISR, Department of Chiropractic Medicine, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - James Edward Clark
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
| | - David Andrew Green
- Centre of Human and Applied Physiological Sciences, King's College London, London, UK
- KBRwyle GmbH, Cologne, Germany
- Institute for Risk and Disaster Reduction, University College London (UCL), London, UK
- Space Medicine Team, European Astronaut Centre, European Space Agency, Cologne, Germany
| |
Collapse
|
17
|
Loke G, Chandrapala J, Besnard A, Kantono K, Brennan C, Newman L, Low J. Food odour perception and affective response in Virtual spacecraft and microgravity body posture (1-G) - Potential ground-based simulations. Food Res Int 2024; 197:115260. [PMID: 39577930 DOI: 10.1016/j.foodres.2024.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
This study investigates food odour perception and affective response within a virtually simulated spacecraft environment, with links to the volatile composition of odours. Healthy participants (n = 44) between the ages of 18-39 years rated the intensity of eight food odours in two simulated space environments for comparison, a 'microgravity' posture (MicroG Posture; physical) and Virtual Reality (VR; visual-spatial cues) simulation of a spacecraft. Results indicate that these methods yield different outcomes. Particularly, odour intensity perception was significantly higher in VR compared to the MicroG Posture for all odours (p < 0.05), except lemongrass. Moreover, individual differences in odour sensitivity were observed, with low-sensitive individuals (n = 14) perceiving stronger almond odour (p < 0.001) and highly sensitive individuals (n = 29) perceiving stronger vinegar odour (p = 0.003) in VR. Emotional dimensions of valence and arousal were also significantly higher (p < 0.001) in VR, while stress response remained low across contexts (all p > 0.05). While emotional and stress responses did not generally affect odour intensity perception, valence was positively correlated with almond and vinegar odour perception, while stress was negatively correlated with vinegar odour perception. These findings suggest that odour perception and affective response may vary in virtual space contexts, with certain individuals exhibiting sensitivity to specific odours due to their unique flavour profiles. This highlights how confined, cluttered environments, reminiscent of space conditions, affect sensory responses to food, with implications for personalised dietary interventions and improved well-being in similar populations.
Collapse
Affiliation(s)
- Grace Loke
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Anne Besnard
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Kevin Kantono
- International Flavors and Fragrances (IFF), Hilversum, Netherlands
| | - Charles Brennan
- School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Lisa Newman
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
| | - Julia Low
- Sensory and Consumer Science Research Group, School of Science, STEM College, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia.
| |
Collapse
|
18
|
Hönemann J, Hoffmann F, de Boni L, Gauger P, Mulder E, Möstl S, Heusser K, Schmitz M, Halbach M, Laurie SS, Lee SMC, Macias BR, Jordan J, Tank J. Impact of Daily Lower-Body Negative Pressure or Cycling Followed by Venous Constrictive Thigh Cuffs on Bedrest-Induced Orthostatic Intolerance. J Am Heart Assoc 2024; 13:e034800. [PMID: 39450723 PMCID: PMC11935683 DOI: 10.1161/jaha.124.034800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Orthostatic intolerance occurs following immobilization in patients on Earth and in astronauts after spaceflight. Head-down tilt bedrest is a terrestrial model for weightlessness and induces orthostatic intolerance. We hypothesized that lower-body negative pressure (LBNP) or cycling followed by wearing venous constrictive thigh cuffs mitigates orthostatic intolerance after head-down tilt bedrest. METHODS AND RESULTS We enrolled 47 healthy individuals (20 women, 35±9 years) to a 30-day strict head-down tilt bedrest study. During bedrest, they were assigned to 6 hours of 25 mm Hg LBNP (n=12) per day and 1 hour of supine cycling followed by 6 hours of venous constriction through thigh cuffs 6 days per week (n=12), 6 hours of daily upright sitting (positive control, n=11), or no countermeasure (negative control, n=12). We measured orthostatic tolerance as the time to presyncope during 80° head-up tilt testing with incremental LBNP before and immediately after bedrest. We determined plasma volume with carbon monoxide rebreathing before and at the end of bedrest. After bedrest, orthostatic tolerance decreased 540±457 seconds in the control group, 539±68 seconds in the cycling group, 217±379 seconds in the LBNP group, and 289±89 seconds in the seated group (P<0.0001 time point, P=0.009 for group differences). Supine and upright heart rate increased in all groups following bedrest. Plasma volume was only maintained in the cycling group but decreased in all others (interaction countermeasure×time point P<0.0001). CONCLUSIONS Six hours of moderate LBNP training was as effective as sitting in attenuating orthostatic intolerance after 30 days of head-down tilt bedrest. Daily cycling exercise followed by 6 hours of wearing venous constrictive thigh cuffs, while maintaining plasma volume, did not improve orthostatic tolerance. REGISTRATION URL: https://www.bfarm.de/EN; Identifiers: DRKS00027643 and DRKS00030848.
Collapse
Affiliation(s)
- Jan‐Niklas Hönemann
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal MedicineUniversity of CologneCologneGermany
| | - Fabian Hoffmann
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal MedicineUniversity of CologneCologneGermany
| | - Laura de Boni
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
| | - Peter Gauger
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
| | - Edwin Mulder
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
| | - Stefan Möstl
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
| | - Karsten Heusser
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
| | - Marie‐Therese Schmitz
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE)University Hospital BonnBonnGermany
| | - Marcel Halbach
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal MedicineUniversity of CologneCologneGermany
| | | | | | | | - Jens Jordan
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
- Medical FacultyUniversity of CologneCologneGermany
| | - Jens Tank
- Institute of Aerospace MedicineGerman Aerospace CenterCologneGermany
| |
Collapse
|
19
|
Goerke P, Marggraf-Micheel C, Stelling D, Soll H. Personality matters in extremely demanding environments: A bed rest performance study. Front Psychol 2024; 15:1444276. [PMID: 39559694 PMCID: PMC11570997 DOI: 10.3389/fpsyg.2024.1444276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/13/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Personality is a rather neglected aspect in bed rest studies. The aim of the study was to clarify which specific personality pattern may predict the performance of bed rest study participants. Materials and methods Personality traits were correlated with participants' performance rated by the team running the study. The sample consisted of N = 68 participants who took part in one of four different studies. A broad set of personality traits correlated with different performance aspects (stability, perseverance, modesty, flexibility, compliance, likability, social adaptation). Results Emotional instability showed the highest correlations. Furthermore, participants with low aggressiveness, low empathy and low achievement motivation were rated as more suitable for a study. Additionally, participants with a high extraversion showed a higher social adaptation. Discussion The results contribute to the knowledge of the impact of personality in extremely demanding environments and provide first evidence for the identification of an ideal personality profile predicting performance of bed rest study participants.
Collapse
Affiliation(s)
- Panja Goerke
- Department of Aviation and Space Psychology, Institute of Aerospace Medicine, German Aerospace Center, Hamburg, Germany
| | | | | | | |
Collapse
|
20
|
Mircea AA, Pistritu DV, Fortner A, Tanca A, Liehn EA, Bucur O. Space Travel: The Radiation and Microgravity Effects on the Cardiovascular System. Int J Mol Sci 2024; 25:11812. [PMID: 39519362 PMCID: PMC11545902 DOI: 10.3390/ijms252111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Space flight modulates the functions of the cardiovascular system. The exposure to space conditions can alter the cerebral blood flow, as well as the venous return. Anemia, cardiac output changes, and increased activity of the sympathetic nervous system can also be seen. Understanding cardiac changes prepares astronauts for both better in-flight adaptations and long-term protection against cardiovascular diseases. The heart could undergo radio-degenerative effects when exposed to space radiation, increasing the risk of cardiovascular diseases in the long run. A high frequency of arrhythmias, such as ventricular/atrial premature complexes, have been reported during the Gemini and Apollo missions. Additionally, microgravity can lead to progressive degeneration of the myocytes and muscle atrophy with altered gene expression and calcium handling, along with impaired contractility. This review summarizes the potential cardiovascular effects of spaceflight and prevention measures.
Collapse
Affiliation(s)
- Andrei Alexandru Mircea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Dan Valentin Pistritu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Andra Fortner
- Medical School, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Antoanela Tanca
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Elisa Anamaria Liehn
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| | - Octavian Bucur
- Viron Molecular Medicine Institute, Boston, MA 02451, USA
- Genomics Research and Development Institute, 020021 Bucharest, Romania
| |
Collapse
|
21
|
Hughes-Fulford M, Carroll DJ, Allaway HCM, Dunbar BJ, Sawyer AJ. Women in space: A review of known physiological adaptations and health perspectives. Exp Physiol 2024. [PMID: 39487998 DOI: 10.1113/ep091527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024]
Abstract
Exposure to the spaceflight environment causes adaptations in most human physiological systems, many of which are thought to affect women differently from men. Since only 11.5% of astronauts worldwide have been female, these issues are largely understudied. The physiological nuances affecting the female body in the spaceflight environment remain inadequately defined since the last thorough published review on the subject. A PubMed literature search yielded over 2200 publications. Using NASA's 2014 review series 'The effects of sex and gender on adaptation to space' as a benchmark, we identified substantive advancements and persistent knowledge gaps in need of further study from the nearly 600 related articles that have been published since the initial review. This review highlights the most critical issues to mitigate medical risk and promote the success of missions to the Moon and Mars. Salient sex-linked differences observed terrestrially should be studied during upcoming missions, including increased levels of inflammatory markers, coagulation factors and leptin levels following sleep deprivation; correlation between body mass and the severity of spaceflight-associated neuro-ocular syndrome; increased incidence of orthostatic intolerance; increased severity of muscle atrophy and bone loss; differences in the incidence of urinary tract infections; and susceptibility to specific cancers after exposure to ionizing radiation. To optimize health and well-being among all astronauts, it is imperative to prioritize research that considers the physiological nuances of the female body. A more robust understanding of female physiology in the spaceflight environment will support crew readiness for Artemis missions and beyond.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Danielle J Carroll
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Surgery, UCSF, San Francisco, California, USA
- Department of Bioastronautics, University of Colorado Boulder, Boulder, Colorado, USA
| | - Heather C M Allaway
- Department of Kinesiology, Texas A&M University, College Station, Texas, USA
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bonnie J Dunbar
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas, USA
- Texas A&M Engineering Experiment Station, Texas A&M University, College Station, Texas, USA
| | - Aenor J Sawyer
- UC Space Health, University of California San Francisco (UCSF), San Francisco, California, USA
- Department of Orthopaedic Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
22
|
Zhang S, Zhang S, Wang Z, Adachi T, Yoshida Y, Takahashi A. Disparity in the effect of partial gravity simulated using a new apparatus on different rat hindlimb muscles. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:54-67. [PMID: 39521495 DOI: 10.1016/j.lssr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 11/16/2024]
Abstract
The days of returning to the Moon and landing on Mars are approaching. These long-duration missions present significant challenges, such as changes in gravity, which pose serious threats to human health. Maintaining muscle function and health is essential for successful spaceflight and exploration of the Moon and Mars. This study aimed to observe the adaptation of rat hindlimb muscles to partial gravity conditions by simulating the gravity of space (microgravity (µG)), Moon (1/6G), and Mars (3/8G) using our recently invented ground-based apparatus. A total of 25 rats were included in this study. The rats were divided into five groups: control (1G), sham (1G), simulated Mars (3/8G), simulated Moon (1/6G), and simulated Space (µG). Muscle mass, fiber proportion, and fiber cross-sectional area (CSA) of four types of hindlimb muscles were measured: gastrocnemius (GA), tibialis anterior (TA), extensor digitorum longus (EDL), soleus (Sol). Sol and GA exhibited the most significant alterations in response to the changes in gravity after 10 days of the experiment. A notable decline in muscle mass was observed in the simulated µG, Moon, and Mars groups, with the µG group exhibiting the most noticeable decline. In Sol, a noteworthy decline in the proportion of slow-twitch type I fibers, CSA of slow-twitch type I fibers, and average CSA of the whole muscle fibers was observed in the simulated groups. The GA red, mixed, and white portions were examined, and the GA mixed portion showed significant differences in fiber proportion and CSA. A notable increase in the proportion of slow-twitch type I fibers was observed in the simulated groups, with a significant decrease in CSA of type IIb. In EDL or TA, no discernible changes in muscle mass, fiber proportion, or fiber CSA were observed in any of the five groups. These findings indicate that weight-bearing muscles, such as Sol and GA, are more sensitive to changes in partial gravity. Furthermore, partial gravity is insufficient to preserve the normal physiological and functional properties of the hindlimb muscles. Therefore, targeted muscle interventions are required to ensure astronauts' health and mission success. Furthermore, these findings demonstrate the viability and durability of our ground-based apparatus for partial gravity simulation.
Collapse
Affiliation(s)
- Shengli Zhang
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Gunma 371-8511, Japan.
| | - Shenke Zhang
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Gunma 371-8511, Japan.
| | - Zhen Wang
- Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan.
| | - Takuya Adachi
- Graduate School of Medicine Medical Sciences, Gunma University, Maebashi, Gunma 371-8511, Japan.
| | - Yukari Yoshida
- Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan.
| | - Akihisa Takahashi
- Division of Biology, Gunma University Heavy Ion Medical Center, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
23
|
Caddy HT, Fujino M, Vahabli E, Voigt V, Kelsey LJ, Dilley RJ, Carvalho LS, Takahashi S, Green DJ, Doyle BJ. Simulation of murine retinal hemodynamics in response to tail suspension. Comput Biol Med 2024; 182:109148. [PMID: 39298883 DOI: 10.1016/j.compbiomed.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The etiology of spaceflight-associated neuro-ocular syndrome (SANS) remains unclear. Recent murine studies indicate there may be a link between the space environment and retinal endothelial dysfunction. Post-fixed control (N = 4) and 14-day tail-suspended (TS) (N = 4) mice eye samples were stained and imaged for the vessel plexus and co-located regions of endothelial cell death. A custom workflow combined whole-mounted and tear reconstructed three-dimensional (3D) spherical retinal plexus models with computational fluid dynamics (CFD) simulation that accounted for the Fåhræus-Lindqvist effect and boundary conditions that accommodated TS fluid pressure measurements and deeper capillary layer blood flow distribution. TS samples exhibited reduced surface area (4.6 ± 0.5 mm2 vs. 3.5 ± 0.3 mm2, P = 0.010) and shorter lengths between branches in small vessels (<10 μm, 69.5 ± 0.6 μm vs. 60.4 ± 1.1 μm, P < 0.001). Wall shear stress (WSS) and pressure were higher in TS mice compared to controls, particularly in smaller vessels (<10 μm, WSS: 6.57 ± 1.08 Pa vs. 4.72 ± 0.67 Pa, P = 0.034, Pressure: 72.04 ± 3.14 mmHg vs. 50.64 ± 6.74 mmHg, P = 0.004). Rates of retinal endothelial cell death were variable in TS mice compared to controls. WSS and pressure were generally higher in cell death regions, both within and between cohorts, but significance was variable and limited to small to medium-sized vessels (<20 μm). These findings suggest a link may exist between emulated microgravity and retinal endothelial dysfunction that may have implications for SANS development. Future work with increased sample sizes of larger species or spaceflight cohorts should be considered.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Valentina Voigt
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Rodney J Dilley
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
| | - Livia S Carvalho
- Retinal Genomics and Therapy Group, Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), The University of Western Australia, Perth, Australia; Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan; Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia.
| |
Collapse
|
24
|
Reddy A, Pan Y, Finberg A, Dong H, Kesser B. Flow Analysis of Central Venous Outflow Tract: A New Approach to Understanding Pulse-Synchronous Tinnitus. Otolaryngol Head Neck Surg 2024; 171:1485-1496. [PMID: 38984878 DOI: 10.1002/ohn.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Pulse-synchronous tinnitus (PST) has been linked to multiple anatomical variants of the central venous outflow tract (CVOT) including sigmoid sinus (SS) dehiscence and diverticulum. This study investigates flow turbulence, pressure, and wall shear stress along the CVOT and proposes a mechanism that results in SS dehiscence and PST. STUDY DESIGN Case series. SETTING Tertiary Academic Center. METHODS Venous models were reconstructed from computed tomography scans of 3 patients with unilateral PST. Two models for each patient are obtained: a symptomatic and contralateral asymptomatic side. A turbulent model-enabled commercial flow solver was used to simulate the pulsatile blood flow over the cardiac cycle through the models. Fluid flow through the transverse and SS junction was analyzed to observe the velocity, pressure, turbulent kinetic energy (TKE), and shear stress over a simulated cardiac cycle. RESULTS Fluid flow on the symptomatic side showed increased vorticity in the presence of an SS diverticulum. Higher TKE with periodicity following the cardiac cycle was observed on the symptomatic side, and a sharp increase was observed if SS diverticulum was present. Shear stress was highest near the narrowest segments of the vessel. Pressure was observed to be lower on the symptomatic side at the transverse-SS junction for all 3 patients. CONCLUSION Computational fluid dynamics modeling of blood flow through the CVOT in PST suggests that low pressure may be the cause of dehiscence, and tinnitus may result from periodic increases in TKE.
Collapse
Affiliation(s)
- Adithya Reddy
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Yu Pan
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Ariel Finberg
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Haibo Dong
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Bradley Kesser
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
25
|
De la Torre GG, Groemer G, Diaz-Artiles A, Pattyn N, Van Cutsem J, Musilova M, Kopec W, Schneider S, Abeln V, Larose T, Ferlazzo F, Zivi P, de Carvalho A, Sandal GM, Orzechowski L, Nicolas M, Billette de Villemeur R, Traon APL, Antunes I. Space Analogs and Behavioral Health Performance Research review and recommendations checklist from ESA Topical Team. NPJ Microgravity 2024; 10:98. [PMID: 39433767 PMCID: PMC11494059 DOI: 10.1038/s41526-024-00437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
Space analog research has increased over the last few years with new analogs appearing every year. Research in this field is very important for future real mission planning, selection and training of astronauts. Analog environments offer specific characteristics that resemble to some extent the environment of a real space mission. These analog environments are especially interesting from the psychological point of view since they allow the investigation of mental and social variables in very similar conditions to those occurring during real space missions. Analog missions also represent an opportunity to test operational work and obtain information on which combination of processes and team dynamics are most optimal for completing specific aspects of the mission. A group of experts from a European Space Agency (ESA) funded topical team reviews the current situation of topic, potentialities, gaps, and recommendations for appropriate research. This review covers the different domains in space analog research including classification, main areas of behavioral health performance research in these environments and operational aspects. We also include at the end, a section with a list or tool of recommendations in the form of a checklist for the scientific community interested in doing research in this field. This checklist can be useful to maintain optimal standards of methodological and scientific quality, in addition to identifying topics and areas of special interest.
Collapse
Affiliation(s)
- Gabriel G De la Torre
- Neuropsychology and Experimental Psychology Lab. University of Cadiz, Cadiz, Spain.
- Institute of Biomedical Research and Innovation of Cadiz (INIBICA), Cadiz, Spain.
| | | | - Ana Diaz-Artiles
- Bioastronautics and Human Performance Lab. Texas AM University, Houston, TX, USA
| | - Nathalie Pattyn
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
- Centre de Recherche Avancée en Médecine du Sommeil, Université de Montréal, Montreal, QC, Canada
| | - Jeroen Van Cutsem
- VIPER Research Unit, Royal Military Academy, Brussels, Belgium
- Brain, Body and Cognition, Vrije Universiteit, Brussels, Belgium
| | - Michaela Musilova
- Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Wieslaw Kopec
- XR Center, Polish-Japanese Academy of Information Technology, Warsaw, Poland
| | - Stefan Schneider
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Vera Abeln
- Institute for Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Tricia Larose
- Faculty of Medicine, Institute for Health and Community Medicine. University of Oslo, Oslo, Norway
| | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Zivi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | - Anne Pavy-Le Traon
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
- Department of Neurology, Institute for Neurosciences, Toulouse University Hospital, Toulouse, France
| | - Ines Antunes
- Directorate of Human and Robotic Exploration Programmes (HRE-RS). European Space Agency (ESA), Noordwijk, The Netherlands
| |
Collapse
|
26
|
Nie HY, Ge J, Huang GX, Liu KG, Yue Y, Li H, Lin HG, Zhang T, Yan HF, Xu BX, Sun HW, Yang JW, Si SY, Zhou JL, Cui Y. New insights into the intestinal barrier through "gut-organ" axes and a glimpse of the microgravity's effects on intestinal barrier. Front Physiol 2024; 15:1465649. [PMID: 39450142 PMCID: PMC11499591 DOI: 10.3389/fphys.2024.1465649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 10/26/2024] Open
Abstract
Gut serves as the largest interface between humans and the environment, playing a crucial role in nutrient absorption and protection against harmful substances. The intestinal barrier acts as the initial defense mechanism against non-specific infections, with its integrity directly impacting the homeostasis and health of the human body. The primary factor attributed to the impairment of the intestinal barrier in previous studies has always centered on the gastrointestinal tract itself. In recent years, the concept of the "gut-organ" axis has gained significant popularity, revealing a profound interconnection between the gut and other organs. It speculates that disruption of these axes plays a crucial role in the pathogenesis and progression of intestinal barrier damage. The evaluation of intestinal barrier function and detection of enterogenic endotoxins can serve as "detecting agents" for identifying early functional alterations in the heart, kidney, and liver, thereby facilitating timely intervention in the disorders. Simultaneously, consolidating intestinal barrier integrity may also present a potential therapeutic approach to attenuate damage in other organs. Studies have demonstrated that diverse signaling pathways and their corresponding key molecules are extensively involved in the pathophysiological regulation of the intestinal barrier. Aberrant activation of these signaling pathways and dysregulated expression of key molecules play a pivotal role in the process of intestinal barrier impairment. Microgravity, being the predominant characteristic of space, can potentially exert a significant influence on diverse intestinal barriers. We will discuss the interaction between the "gut-organ" axes and intestinal barrier damage, further elucidate the signaling pathways underlying intestinal barrier damage, and summarize alterations in various components of the intestinal barrier under microgravity. This review aims to offer a novel perspective for comprehending the etiology and molecular mechanisms of intestinal barrier injury as well as the prevention and management of intestinal barrier injury under microgravity environment.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Ge
- Clinical laboratory, The Ninth Medical Center of the PLA General Hospital, Beijing, China
| | - Guo-Xing Huang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
| | - Kai-Ge Liu
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Yue
- Department of Disease Control and Prevention, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hao Li
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hai-Guan Lin
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Tao Zhang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Feng Yan
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Bing-Xin Xu
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Hong-Wei Sun
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jian-Wu Yang
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Shao-Yan Si
- Special Medical Laboratory Center, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Jin-Lian Zhou
- Department of Pathology, The Ninth Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cui
- Department of General Surgery, The Ninth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Di Filippo ES, Chiappalupi S, Falone S, Dolo V, Amicarelli F, Marchianò S, Carino A, Mascetti G, Valentini G, Piccirillo S, Balsamo M, Vukich M, Fiorucci S, Sorci G, Fulle S. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. NPJ Microgravity 2024; 10:92. [PMID: 39362881 PMCID: PMC11450100 DOI: 10.1038/s41526-024-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Marchianò
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Adriana Carino
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | | | | | | | - Michele Balsamo
- Kayser Italia S.r.l, Via di Popogna, 501, 57128, Livorno, Italy
| | - Marco Vukich
- European Space Agency, Keplerlaan 1, NL-2200, AG, Noordwijk, The Netherlands
| | - Stefano Fiorucci
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy.
| |
Collapse
|
28
|
Han H, Jia H, Wang YF, Song JP. Cardiovascular adaptations and pathological changes induced by spaceflight: from cellular mechanisms to organ-level impacts. Mil Med Res 2024; 11:68. [PMID: 39334239 PMCID: PMC11429428 DOI: 10.1186/s40779-024-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
The advancement in extraterrestrial exploration has highlighted the crucial need for studying how the human cardiovascular system adapts to space conditions. Human development occurs under the influence of gravity, shielded from space radiation by Earth's magnetic field, and within an environment characterized by 24-hour day-night cycles resulting from Earth's rotation, thus deviating from these conditions necessitates adaptive responses for survival. With upcoming manned lunar and Martian missions approaching rapidly, it is essential to understand the impact of various stressors induced by outer-space environments on cardiovascular health. This comprehensive review integrates insights from both actual space missions and simulated experiments on Earth, to analyze how microgravity, space radiation, and disrupted circadian affect cardiovascular well-being. Prolonged exposure to microgravity induces myocardial atrophy and endothelial dysfunction, which may be exacerbated by space radiation. Mitochondrial dysfunction and oxidative stress emerge as key underlying mechanisms along with disturbances in ion channel perturbations, cytoskeletal damage, and myofibril changes. Disruptions in circadian rhythms caused by factors such as microgravity, light exposure, and irregular work schedules, could further exacerbate cardiovascular issues. However, current research tends to predominantly focus on disruptions in the core clock gene, overlooking the multifactorial nature of circadian rhythm disturbances in space. Future space missions should prioritize targeted prevention strategies and early detection methods for identifying cardiovascular risks, to preserve astronaut health and ensure mission success.
Collapse
Affiliation(s)
- Han Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yi-Fan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiang-Ping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease; Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
29
|
Clément G, Moudy SC, Macaulay TR, Mulder E, Wood SJ. Effects of intermittent seating upright, lower body negative pressure, and exercise on functional tasks performance after head-down tilt bed rest. Front Physiol 2024; 15:1442239. [PMID: 39308978 PMCID: PMC11412840 DOI: 10.3389/fphys.2024.1442239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Bed rest can be used as a ground-based analog of the body unloading associated with spaceflight. In this study, we determined how strict head-down tilt bed rest affects subjects' performance of functional tests (sit-to-stand, tandem walk, walk-and-turn, dynamic posturography) that challenge astronauts' balance control systems immediately after they return from space. Methods Forty-seven participants were assessed before and a few hours after 30 days of 6° head down tilt bed rest at the DLR:envihab facility. During this bed rest study, called SANS-CM, the participants were divided into 4 groups that either a) were positioned in head-down tilt continuously throughout the 30 days; b) sat upright for 6 h a day; c) were exposed to lower body negative pressure (LBNP) for 6 h a day; or d) exercised for 60 min and then wore venous-occlusive cuffs for 6 h a day. Results Results showed that strict head-down tilt bed rest caused deficits in performance of functional tasks that were similar to those observed in astronauts after spaceflight. Seated upright posture mitigated these deficits, whereas exercise or LBNP and cuffs partly mitigated them. Discussion These data suggest that more direct, active sensorimotor-based countermeasures may be necessary to maintain preflight levels of functional performance after a long period of body unloading.
Collapse
Affiliation(s)
| | | | | | - Edwin Mulder
- DLR, Institute of Aerospace Medicine, Cologne, Germany
| | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
30
|
Li Y, Zhang X, Xu Z, Chu X, Hu Z, Ye Z, Li C, Wang Z, Zeng B, Pan J, Zhao Q, Zhou C, Lan Z, Kan G, He G, Xu X, Li W. Simulated weightlessness procedure, head-down bed rest has reversible effects on the metabolism of rhesus macaque. Mol Brain 2024; 17:65. [PMID: 39227961 PMCID: PMC11370317 DOI: 10.1186/s13041-024-01133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
It is a consensus in the international manned space field that factors such as microgravity during the space flight can cause anxiety, depression and other important brain function abnormalities in astronauts. However, the neural mechanism at the molecular level is still unclear. Due to the limitations of research conditions, studies of biological changes in the primate brain have been comparatively few. We took advantage of -6° head-down bed rest (HDBR), one of the most implemented space analogues on the ground, to investigate the effects of simulated weightlessness on non-human primate brain metabolites. The Rhesus Macaque monkeys in the experiment were divided into three groups: the control group, the 42-day simulated weightlessness group with HDBR, and the recovery group, which had 28 days of free activity in the home cage after the HDBR. Liquid chromatography-mass spectrometry (LC-MS) was used to perform metabolomics analysis on specific brain areas of the monkeys under three experimental conditions. Our results show that simulated weightlessness can cause neurotransmitter imbalances, the amino acid and energy metabolism disorders, and hormone disturbances. But these metabolomics changes are reversible after recovery. Our study suggests that long-term brain damage in space flight might be reversible at the metabolic level. This lays a technical foundation for ensuring brain health and enhancing the brain function in future space studies.
Collapse
Affiliation(s)
- Yuting Li
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Zhang
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhen Xu
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xixia Chu
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiqiang Hu
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyang Ye
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Caiqin Li
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhenbo Wang
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Zeng
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China
| | - Jingyu Pan
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China
| | - Qian Zhao
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengbin Zhou
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhaohui Lan
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghan Kan
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China
| | - Guang He
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodan Xu
- National Key Laboratory of Human Factors Engineering, Astronaut Research and Training Center, Beijing, 100094, China.
| | - Weidong Li
- Bio-X Institutes (Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Brain Health and Brain Technology Research Center in Global Institute of Future Technology, Institute of Psychology and Behavioral Science, Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
- WLA Laboratories, World Laureates Association, Shanghai, 201203, China.
| |
Collapse
|
31
|
Iftime A, Tofolean IT, Pintilie V, Călinescu O, Busnatu S, Papacocea IR. Differential Functional Changes in Visual Performance during Acute Exposure to Microgravity Analogue and Their Potential Links with Spaceflight-Associated Neuro-Ocular Syndrome. Diagnostics (Basel) 2024; 14:1918. [PMID: 39272703 PMCID: PMC11394298 DOI: 10.3390/diagnostics14171918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Spaceflight-Associated Neuro-Ocular Syndrome (SANS) is a complex pathology threatening the health of astronauts, with incompletely understood causes and no current specific functional diagnostic or screening test. We investigated the use of the differential performance of the visual system (central vs. perimacular visual function) as a candidate marker of SANS-related pathology in a ground-based microgravity analogue. METHODS We used a simple reaction time (SRT) task to visual stimuli, presented in the central and perimacular field of view, as a measure of the overall performance of the visual function, during acute settings (first 10 min) of vertical, bed rest (BR), -6°, and -15° head-down tilt (HDT) presentations in healthy participants (n = 8). We built dose-response models linking the gravitational component to SRT distribution parameters in the central vs. perimacular areas. RESULTS Acute exposure to microgravity induces detectable changes between SRT distributions in the perimacular vs. central retina (increased mean, standard deviation, and tau component of the ex-Gaussian function) in HDT compared with vertical presentation. CONCLUSIONS Functional testing of the perimacular retina might be beneficial for the earlier detection of SANS-related ailments in addition to regular testing of the central vision. Future diagnostic tests should consider the investigation of the extra-macular areas, particularly towards the optic disc.
Collapse
Affiliation(s)
- Adrian Iftime
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Teodora Tofolean
- Ophthalmology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Emergency Eye Hospital, 010464 Bucharest, Romania
| | - Victor Pintilie
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Octavian Călinescu
- Biophysics Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Stefan Busnatu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", Emergency Hospital "Bagdasar-Arseni", 050474 Bucharest, Romania
- Center for Innovation and eHealth, Carol Davila University of Medicine and Pharmacy, 010451 Bucharest, Romania
| | - Ioana Raluca Papacocea
- Center for Innovation and eHealth, Carol Davila University of Medicine and Pharmacy, 010451 Bucharest, Romania
- Physiology III Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
32
|
Alessandro C, Sarabadani Tafreshi A, Riener R. Cardiovascular responses to leg-press exercises during head-down tilt. Front Sports Act Living 2024; 6:1396391. [PMID: 39290333 PMCID: PMC11406980 DOI: 10.3389/fspor.2024.1396391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Physical exercise and gravitational load affect the activity of the cardiovascular system. How these factors interact with one another is still poorly understood. Here we investigate how the cardiovascular system responds to leg-press exercise during head-down tilt, a posture that reduces orthostatic stress, limits gravitational pooling, and increases central blood volume. Methods Seventeen healthy participants performed leg-press exercise during head-down tilt at different combinations of resistive force, contraction frequency, and exercise duration (30 and 60 s), leading to different exercise power. Systolic (sBP), diastolic (dBP), mean arterial pressure (MAP), pulse pressure (PP) and heart rate (HR) were measured continuously. Cardiovascular responses were evaluated by comparing the values of these signals during exercise recovery to baseline. Mixed models were used to evaluate the effect of exercise power and of individual exercise parameter on the cardiovascular responses. Results Immediately after the exercise, we observed a clear undershoot in sBP (Δ = -7.78 ± 1.19 mmHg), dBP (Δ = -10.37 ± 0.84 mmHg), and MAP (Δ = -8.85 ± 0.85 mmHg), an overshoot in PP (Δ = 7.93 ± 1.13 mmHg), and elevated values of HR (Δ = 33.5 ± 0.94 bpm) compared to baseline (p < 0.0001). However, all parameters returned to similar baseline values 2 min following the exercise (p > 0.05). The responses of dBP, MAP and HR were significantly modulated by exercise power (correlation coefficients: rdBP = -0.34, rMAP = -0.25, rHR = 0.52, p < 0.001). All signals' responses were modulated by contraction frequency (p < 0.05), increasing the undershoot in sBP (Δ = -1.87 ± 0.98 mmHg), dBP (Δ = -4.85 ± 1.01 and Δ = -3.45 ± 0.98 mmHg for low and high resistive force respectively) and MAP (Δ = -3.31 ± 0.75 mmHg), and increasing the overshoot in PP (Δ = 2.57 ± 1.06 mmHg) as well as the value of HR (Δ = 16.8 ± 2.04 and Δ = 10.8 ± 2.01 bpm for low and high resistive force respectively). Resistive force affected only dBP (Δ = -4.96 ± 1.41 mmHg, p < 0.0001), MAP (Δ = -2.97 ± 1.07 mmHg, p < 0.05) and HR (Δ = 6.81 ± 2.81 bpm, p < 0.0001; Δ = 15.72 ± 2.86 bpm, p < 0.0001; Δ = 15.72 ± 2.86 bpm, p < 0.05, depending on the values of resistive force and contraction frequency), and exercise duration affected only HR (Δ = 9.64 ± 2.01 bpm, p < 0.0001). Conclusion Leg exercises caused only immediate cardiovascular responses, potentially due to facilitated venous return by the head-down tilt position. The modulation of dBP, MAP and HR responses by exercise power and that of all signals by contraction frequency may help optimizing exercise prescription in conditions of limited orthostatic stress.
Collapse
Affiliation(s)
- Cristiano Alessandro
- School of Medicine and Surgery, Sport and Exercise Medicine, University of Milano-Bicocca, Milan, Italy
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Amirehsan Sarabadani Tafreshi
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory-Motor Systems Lab, Department of Health Sciences and Technology, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Swain P, Caplan N, Hughes L. Blood flow restriction: The acute effects of body tilting and reduced gravity analogues on limb occlusion pressure. Exp Physiol 2024. [PMID: 39153209 DOI: 10.1113/ep091874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Blood flow restriction (BFR) has been identified as a potential countermeasure to mitigate physiological deconditioning during spaceflight. Guidelines recommend that tourniquet pressure be prescribed relative to limb occlusion pressure (LOP); however, it is unclear whether body tilting or reduced gravity analogues influence LOP. We examined LOP at the leg and arm during supine bedrest and bodyweight suspension (BWS) at 6° head-down tilt (HDT), horizontal (0°), and 9.5° head-up tilt (HUT) positions. Twenty-seven adults (age, 26 ± 5 years; height, 1.75 ± 0.08 m; body mass, 73 ± 12 kg) completed all tilts during bedrest. A subgroup (n = 15) additionally completed the tilts during BWS. In each position, LOP was measured twice in the leg and arm using the Delfi Personalized Tourniquet System after 5 min of rest and again after a further 5 min. The LOP at the leg increased significantly from 6° HDT to 9.5° HUT in bedrest and BWS by 9-15 mmHg (Cohen's d = 0.7-1.0). Leg LOP was significantly higher during BWS at horizontal and 9.5° HUT postures relative to the same angles during bedrest by 8 mmHg (Cohen's d = 0.6). Arm LOP remained unchanged between body tilts and analogues. Intraclass correlation coefficients for LOP measurements taken after an initial and subsequent 5 min rest period in all conditions ranged between 0.91-0.95 (leg) and 0.83-0.96 (arm). It is advised that LOP be measured before the application of a vascular occlusion in the same body tilt/setting to which it is applied to minimize discrepancies between the actual and prescribed tourniquet pressure.
Collapse
Affiliation(s)
- Patrick Swain
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Luke Hughes
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Ibrahim Z, Khan NA, Siddiqui R, Qaisar R, Marzook H, Soares NC, Elmoselhi AB. Gut matters in microgravity: potential link of gut microbiota and its metabolites to cardiovascular and musculoskeletal well-being. Nutr Metab (Lond) 2024; 21:66. [PMID: 39123239 PMCID: PMC11316329 DOI: 10.1186/s12986-024-00836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The gut microbiota and its secreted metabolites play a significant role in cardiovascular and musculoskeletal health and diseases. The dysregulation of the intestinal microbiota poses a significant threat to cardiovascular and skeletal muscle well-being. Nonetheless, the precise molecular mechanisms underlying these changes remain unclear. Furthermore, microgravity presents several challenges to cardiovascular and musculoskeletal health compromising muscle strength, endothelial dysfunction, and metabolic changes. The purpose of this review is to critically examine the role of gut microbiota metabolites on cardiovascular and skeletal muscle functions and dysfunctions. It also explores the molecular mechanisms that drive microgravity-induced deconditioning in both cardiovascular and skeletal muscle. Key findings in this review highlight that several alterations in gut microbiota and secreted metabolites in microgravity mirror characteristics seen in cardiovascular and skeletal muscle diseases. Those alterations include increased levels of Firmicutes/Bacteroidetes (F/B) ratio, elevated lipopolysaccharide levels (LPS), increased in para-cresol (p-cresol) and secondary metabolites, along with reduction in bile acids and Akkermansia muciniphila bacteria. Highlighting the potential, modulating gut microbiota in microgravity conditions could play a significant role in mitigating cardiovascular and skeletal muscle diseases not only during space flight but also in prolonged bed rest scenarios here on Earth.
Collapse
Affiliation(s)
- Zeinab Ibrahim
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Naveed A Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS,, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Rizwan Qaisar
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hezlin Marzook
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Nelson C Soares
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid university of Medicine and Health Sciences, Dubai, 0000, United Arab Emirates
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Av Padre Cruz, Lisbon, 1649-016, Portugal
| | - Adel B Elmoselhi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, UAE.
- Basic Medical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
35
|
Mastrandrea CJ, Hedge ET, Hughson RL. The Detrimental Effects of Bedrest: Premature Cardiovascular Aging and Dysfunction. Can J Cardiol 2024; 40:1468-1482. [PMID: 38759726 DOI: 10.1016/j.cjca.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Bedrest as an experimental paradigm or as an in-patient stay for medical reasons has negative consequences for cardiovascular health. The effects of severe inactivity parallel many of the changes experienced with natural aging but over a much shorter duration. Cardiac function is reduced, arteries stiffen, neural reflex responses are impaired, and metabolic and oxidative stress responses impose burden on the heart and vascular systems. The effect of these changes is revealed in studies of integrative function. Aerobic fitness progressively deteriorates with bedrest and tolerance of upright posture is rapidly impaired. In this review we consider the similarities of aging and bedrest-induced cardiovascular deconditioning. We concur with many recent clinical recommendations that early and regular mobility with upright posture will reduce likelihood of hospital-associated disability related to bedrest.
Collapse
Affiliation(s)
- Carmelo J Mastrandrea
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada; Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada.
| |
Collapse
|
36
|
Mendes Zambetta R, Signini ÉDF, Ocamoto GN, Catai AM, Uliam NR, Santarnecchi E, Russo TL. Effects of weightlessness on the cardiovascular system: a systematic review and meta-analysis. Front Physiol 2024; 15:1438089. [PMID: 39129756 PMCID: PMC11310543 DOI: 10.3389/fphys.2024.1438089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Background: The microgravity environment has a direct impact on the cardiovascular system due to the fluid shift and weightlessness that results in cardiac dysfunction, vascular remodeling, and altered Cardiovascular autonomic modulation (CAM), deconditioning and poor performance on space activities, ultimately endangering the health of astronauts. Objective: This study aimed to identify the acute and chronic effects of microgravity and Earth analogues on cardiovascular anatomy and function and CAM. Methods: CINAHL, Cochrane Library, Scopus, Science Direct, PubMed, and Web of Science databases were searched. Outcomes were grouped into cardiovascular anatomic, functional, and autonomic alterations, and vascular remodeling. Studies were categorized as Spaceflight (SF), Chronic Simulation (CS), or Acute Simulation (AS) based on the weightlessness conditions. Meta-analysis was performed for the most frequent outcomes. Weightlessness and control groups were compared. Results: 62 articles were included with a total of 963 participants involved. The meta-analysis showed that heart rate increased in SF [Mean difference (MD) = 3.44; p = 0.01] and in CS (MD = 4.98; p < 0.0001), whereas cardiac output and stroke volume decreased in CS (MD = -0.49; p = 0.03; and MD = -12.95; p < 0.0001, respectively), and systolic arterial pressure decreased in AS (MD = -5.20; p = 0.03). According to the qualitative synthesis, jugular vein cross-sectional area (CSA) and volume were greater in all conditions, and SF had increased carotid artery CSA. Heart rate variability and baroreflex sensitivity, in general, decreased in SF and CS, whereas both increased in AS. Conclusion: This review indicates that weightlessness impairs the health of astronauts during and after spaceflight, similarly to the effects of aging and immobility, potentially increasing the risk of cardiovascular diseases. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020215515.
Collapse
Affiliation(s)
| | - Étore De Favari Signini
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Gabriela Nagai Ocamoto
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
- Brain4care Inc., São Carlos, SP, Brazil
| | - Aparecida Maria Catai
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | - Nicoly Ribeiro Uliam
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| | | | - Thiago Luiz Russo
- Physical Therapy Department, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
| |
Collapse
|
37
|
Tölgyesi B, Altbäcker A, Barkaszi I, Stuckenschneider T, Braunsmann L, Takács E, Ehmann B, Balázs L, Abeln V. Effect of artificial gravity on neurocognitive performance during head-down tilt bedrest. NPJ Microgravity 2024; 10:59. [PMID: 38839787 PMCID: PMC11153507 DOI: 10.1038/s41526-024-00405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
This study evaluated the acute and chronic effects of intermittent and continuous Artificial Gravity (AG) on cognitive performance during 60 days of Head-down tilt bedrest (HDTBR), a well-established ground-based spaceflight analogue method. Participants were randomly assigned to three groups: intermittent AG, continuous AG, and HDTBR control group without AG exposure. Task performance and electrophysiological measures of attention and working memory were investigated during Simple and Complex tasks in the Visual and the Auditory modality. Compared to baseline, faster reaction time and better accuracy was present during HDTBR regarding the Complex tasks, however, the practice effect was diminished in the three HDTBR groups compared to an ambulatory control group. Brain potentials showed a modality-specific decrease, as P3a was decreased only in the Auditory, while P3b decreased in the Visual modality. No evidence for acute or chronic AG-related cognitive impairments during HDTBR was found.
Collapse
Affiliation(s)
- Borbála Tölgyesi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Interaction and Immersion Hub, Innovation Center, Moholy-Nagy University of Art and Design, Budapest, Hungary
| | - Anna Altbäcker
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Irén Barkaszi
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Tim Stuckenschneider
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
- Geriatric Medicine, Department for Health, Services Research, School of Medicine and Health Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Leonard Braunsmann
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
| | - Endre Takács
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Bea Ehmann
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - László Balázs
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Vera Abeln
- Institute of Movement and Neurosciences, Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University Cologne, Cologne, Germany
| |
Collapse
|
38
|
Murgia M, Rittweger J, Reggiani C, Bottinelli R, Mann M, Schiaffino S, Narici MV. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. NPJ Microgravity 2024; 10:60. [PMID: 38839773 PMCID: PMC11153545 DOI: 10.1038/s41526-024-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Skeletal muscle undergoes atrophy and loss of force during long space missions, when astronauts are persistently exposed to altered gravity and increased ionizing radiation. We previously carried out mass spectrometry-based proteomics from skeletal muscle biopsies of two astronauts, taken before and after a mission on the International Space Station. The experiments were part of an effort to find similarities between spaceflight and bed rest, a ground-based model of unloading, focused on proteins located at the costameres. We here extend the data analysis of the astronaut dataset and show compartment-resolved changes in the mitochondrial proteome, remodeling of the extracellular matrix and of the antioxidant response. The astronauts differed in their level of onboard physical exercise, which correlated with their respective preservation of muscle mass and force at landing in previous analyses. We show that the mitochondrial proteome downregulation during spaceflight, particularly the inner membrane and matrix, was dramatic for both astronauts. The expression of autophagy regulators and reactive oxygen species scavengers, however, showed partially opposite expression trends in the two subjects, possibly correlating with their level of onboard exercise. As mitochondria are primarily affected in many different tissues during spaceflight, we hypothesize that reactive oxygen species (ROS) rather than mechanical unloading per se could be the primary cause of skeletal muscle mitochondrial damage in space. Onboard physical exercise might have a strong direct effect on the prevention of muscle atrophy through mechanotransduction and a subsidiary effect on mitochondrial quality control, possibly through upregulation of autophagy and anti-oxidant responses.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy.
- Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany.
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Matthias Mann
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, 35131, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
- CIR-MYO Myology Center, 35121, Padua, Italy
| |
Collapse
|
39
|
Semenov YS, Melnikov IS, Luzhnov PV, Dyachenko AI. Oscillations of Hemodynamic Parameters Induced by Negative Pressure Breathing in Healthy Humans. Aerosp Med Hum Perform 2024; 95:297-304. [PMID: 38790119 DOI: 10.3357/amhp.6419.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
INTRODUCTION: Negative pressure breathing is breathing with decreased pressure in the respiratory tract without lowering pressure acting on the torso. We lowered air pressure only during inspiration (NPBin). NPBin, used to increase venous return to the heart, is considered a countermeasure against redistribution of body fluids toward the head during spaceflight. We studied NPBin effects on circulation in healthy humans with an emphasis on NPBin-induced oscillations of hemodynamic parameters synchronous with breathing. We propose an approach to analyze the oscillations based on coherent averaging.METHODS: Eight men ages 24-42 yr participated in the NPBin and control series. During the series, to reproduce fluids shift observed under microgravity, subjects were supine and head down (-8°). Duration of NPBin was 20 min, rarefaction -20 cm H₂O. Hemodynamic parameters were measured by Finometer. Electrical impedance measurements were used to estimate changes in blood filling of cerebral vessels.RESULTS: Mean values of hemodynamic parameters virtually did not change under NPBin, but NPBin induced oscillations of the parameters synchronous with respiration. Peak-to-peak amplitude under NPBin were: mean arterial pressure, 4 ± 1 (mmHg); stroke volume, 7 ± 3 (mL); and heart rate, 4 ± 1 (bpm). Electrical impedance of the head increased during inspiration. The increase under NPBin was three times greater than under normal breathing.DISCUSSION: Analysis of oscillations gives more information than analysis of mean values. NPBin induces short-term decrease in left ventricle stroke volume and arterial blood pressure during each inspiration; the decrease is compensated by increase after inspiration. NPBin facilitates redistribution of body fluids away from the head.Semenov YS, Melnikov IS, Luzhnov PV, Dyachenko AI. Oscillations of hemodynamic parameters induced by negative pressure breathing in healthy humans. Aerosp Med Hum Perform. 2024; 95(6):297-304.
Collapse
|
40
|
Mackenzie SW, Smith CP, Tremblay MF, Day BL, Reynolds RF. Bed rest impairs the vestibular control of balance. J Physiol 2024; 602:2985-2998. [PMID: 38766932 DOI: 10.1113/jp285834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Prolonged bed rest impairs standing balance but the underlying mechanisms are uncertain. Previous research suggests strength loss is not the cause, leaving impaired sensorimotor control as an alternative. Here we examine vestibular control of posture in 18 male volunteers before and after 60 days of bed rest. Stochastic vestibular stimulation (SVS) was used to evoke sway responses before, 1 and 6 days after bed rest under different head yaw orientations. The directional accuracy and precision of these responses were calculated from ground reaction force vectors. Bed rest caused up to 63% increases in spontaneous standing sway and 31% reductions in leg strength, changes which were uncorrelated. The increase in sway was exacerbated when the eyes were closed. Mean directions of SVS-evoked sway responses were unaffected, being directed towards the anodal ear and rotating in line with head orientation in the same way before and after bed rest. However, individual trial analysis revealed 25%-30% increases in directional variability, which were significantly correlated with the increase in spontaneous sway (r = 0.48-0.71; P ≤ 0.044) and were still elevated on day 6 post-bed rest. This reveals that individual sway responses may be inappropriately oriented, a finding masked by the averaging process. Our results confirm that impaired balance following prolonged bedrest is not related to loss of strength. Rather, they demonstrate that the sensorimotor transformation process which converts vestibular feedback into appropriately directed balance responses is impaired. KEY POINTS: Prolonged inactivity impairs balance but previous research suggests this is not caused by loss of strength. Here we investigated vestibular control of balance before and after 60 days of bed rest using electrical vestibular stimulation (EVS) to evoke sway responses. Spontaneous sway significantly increased and muscle strength reduced following bed rest, but, in keeping with previous research, these two effects were not correlated. While the overall accuracy of EVS-evoked sway responses was unaffected, their directional variability significantly increased following bed rest, and this was correlated with the increases in spontaneous sway. We have shown that the ability to transform head-centred vestibular feedback into an appropriately directed body sway response is negatively affected by prolonged inactivity; this may contribute to the impaired balance commonly observed following bed rest.
Collapse
Affiliation(s)
- Stuart W Mackenzie
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Craig P Smith
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Malcom F Tremblay
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Brian L Day
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Raymond F Reynolds
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
41
|
Vora PM, Prabhu S. Exploring the influence of microgravity on chemotherapeutic drug response in cancer: Unveiling new perspectives. J Cell Mol Med 2024; 28:e18347. [PMID: 38693857 PMCID: PMC11063729 DOI: 10.1111/jcmm.18347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
Microgravity, an altered gravity condition prevailing in space, has been reported to have a profound impact on human health. Researchers are very keen to comprehensively investigate the impact of microgravity and its intricate involvement in inducing physiological changes. Evidenced transformations were observed in the internal architecture including cytoskeletal organization and cell membrane morphology. These alterations can significantly influence cellular function, signalling pathways and overall cellular behaviour. Further, microgravity has been reported to alter in the expression profile of genes and metabolic pathways related to cellular processes, signalling cascades and structural proteins in cancer cells contributing to the overall changes in the cellular architecture. To investigate the effect of microgravity on cellular and molecular levels numerous ground-based simulation systems employing both in vitro and in vivo models are used. Recently, researchers have explored the possibility of leveraging microgravity to potentially modulate cancer cells against chemotherapy. These findings hold promise for both understanding fundamental processes and could potentially lead to the development of more effective, personalized and innovative approaches in therapeutic advancements against cancer.
Collapse
Affiliation(s)
- Preksha Manish Vora
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| | - Sudharshan Prabhu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationManipalIndia
| |
Collapse
|
42
|
Fernandez‐Gonzalo R, Deane CS, Bailey DM. Experimental bed rest as a model to investigate mechanisms of, and countermeasures against, microgravity and disease-free inactivity. Exp Physiol 2024; 109:647-649. [PMID: 38477070 PMCID: PMC11061622 DOI: 10.1113/ep091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Rodrigo Fernandez‐Gonzalo
- Department of Laboratory Medicine, Division of Clinical PhysiologyKarolinska InstitutetStockholmSweden
- Unit of Clinical PhysiologyKarolinska University HospitalStockholmSweden
| | - Colleen S. Deane
- Human Development & Health, Faculty of MedicineUniversity of Southampton, Southampton General HospitalSouthamptonUK
| | - Damian Miles Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesPontypriddUK
| |
Collapse
|
43
|
Tays GD, Hupfeld KE, McGregor HR, Beltran NE, De Dios YE, Mulder E, Bloomberg JJ, Mulavara AP, Wood SJ, Seidler RD. Daily artificial gravity partially mitigates vestibular processing changes associated with head-down tilt bedrest. NPJ Microgravity 2024; 10:27. [PMID: 38472244 PMCID: PMC10933323 DOI: 10.1038/s41526-024-00367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Microgravity alters vestibular signaling and reduces body loading, driving sensory reweighting. The unloading effects can be modelled using head-down tilt bedrest (HDT). Artificial gravity (AG) has been hypothesized to serve as an integrated countermeasure for the declines associated with HDT and spaceflight. Here, we examined the efficacy of 30 min of daily AG to counteract brain and behavior changes from 60 days of HDT. Two groups received 30 min of AG delivered via short-arm centrifuge daily (n = 8 per condition), either in one continuous bout, or in 6 bouts of 5 min. To improve statistical power, we combined these groups (AG; n = 16). Another group served as controls in HDT with no AG (CTRL; n = 8). We examined how HDT and AG affect vestibular processing by collecting fMRI scans during vestibular stimulation. We collected these data prior to, during, and post-HDT. We assessed brain activation initially in 12 regions of interest (ROIs) and then conducted an exploratory whole brain analysis. The AG group showed no changes in activation during vestibular stimulation in a cerebellar ROI, whereas the CTRL group showed decreased activation specific to HDT. Those that received AG and showed little pre- to post-HDT changes in left vestibular cortex activation had better post-HDT balance performance. Whole brain analyses identified increased pre- to during-HDT activation in CTRLs in the right precentral gyrus and right inferior frontal gyrus, whereas AG maintained pre-HDT activation levels. These results indicate that AG could mitigate activation changes in vestibular processing that is associated with better balance performance.
Collapse
Affiliation(s)
- G D Tays
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - H R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | | | | | - E Mulder
- German Aerospace Center (DLR), Cologne, Germany
| | | | | | - S J Wood
- NASA Johnson Space Center, Houston, TX, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
44
|
Buescher FM, Schmitz MT, Frett T, Kramme J, de Boni L, Elmenhorst EM, Mulder E, Moestl S, Heusser K, Frings-Meuthen P, Jordan J, Rittweger J, Pesta D. Effects of 30 days bed rest and exercise countermeasures on PBMC bioenergetics. Acta Physiol (Oxf) 2024; 240:e14102. [PMID: 38294173 DOI: 10.1111/apha.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
AIM Altered mitochondrial function across various tissues is a key determinant of spaceflight-induced physical deconditioning. In comparison to tissue biopsies, blood cell bioenergetics holds promise as a systemic and more readily accessible biomarker, which was evaluated during head-down tilt bed rest (HDTBR), an established ground-based analog for spaceflight-induced physiological changes in humans. More specifically, this study explored the effects of HDTBR and an exercise countermeasure on mitochondrial respiration in peripheral blood mononuclear cells (PBMCs). METHODS We subjected 24 healthy participants to a strict 30-day HDTBR protocol. The control group (n = 12) underwent HDTBR only, while the countermeasure group (n = 12) engaged in regular supine cycling exercise followed by veno-occlusive thigh cuffs post-exercise for 6 h. We assessed routine blood parameters 14 days before bed rest, the respiratory capacity of PBMCs via high-resolution respirometry, and citrate synthase activity 2 days before and at day 30 of bed rest. We confirmed PBMC composition by flow cytometry. RESULTS The change of the PBMC maximal oxidative phosphorylation capacity (OXPHOS) amounted to an 11% increase in the countermeasure group, while it decreased by 10% in the control group (p = 0.04). The limitation of OXPHOS increased in control only while other respiratory states were not affected by either intervention. Correlation analysis revealed positive associations between white blood cells, lymphocytes, and basophils with PBMC bioenergetics in both groups. CONCLUSION This study reveals that a regular exercise countermeasure has a positive impact on PBMC mitochondrial function, confirming the potential application of blood cell bioenergetics for human spaceflight.
Collapse
Affiliation(s)
- F-M Buescher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - M T Schmitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - T Frett
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - J Kramme
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
| | - L de Boni
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - E M Elmenhorst
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - E Mulder
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - S Moestl
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - K Heusser
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - P Frings-Meuthen
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - J Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - J Rittweger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - D Pesta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Richmond SB, Seidler RD, Iliff JJ, Schwartz DL, Luther M, Silbert LC, Wood SJ, Bloomberg JJ, Mulder E, Lee JK, De Luca A, Piantino J. Dynamic changes in perivascular space morphology predict signs of spaceflight-associated neuro-ocular syndrome in bed rest. NPJ Microgravity 2024; 10:24. [PMID: 38429289 PMCID: PMC10907584 DOI: 10.1038/s41526-024-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
During long-duration spaceflight, astronauts experience headward fluid shifts and expansion of the cerebral perivascular spaces (PVS). A major limitation to our understanding of the changes in brain structure and physiology induced by spaceflight stems from the logistical difficulties of studying astronauts. The current study aimed to determine whether PVS changes also occur on Earth with the spaceflight analog head-down tilt bed rest (HDBR). We examined how the number and morphology of magnetic resonance imaging-visible PVS (MV-PVS) are affected by HDBR with and without elevated carbon dioxide (CO2). These environments mimic the headward fluid shifts, body unloading, and elevated CO2 observed aboard the International Space Station. Additionally, we sought to understand how changes in MV-PVS are associated with signs of Spaceflight Associated Neuro-ocular Syndrome (SANS), ocular structural alterations that can occur with spaceflight. Participants were separated into two bed rest campaigns: HDBR (60 days) and HDBR + CO2 (30 days with elevated ambient CO2). Both groups completed multiple magnetic resonance image acquisitions before, during, and post-bed rest. We found that at the group level, neither spaceflight analog affected MV-PVS quantity or morphology. However, when taking into account SANS status, persons exhibiting signs of SANS showed little or no MV-PVS changes, whereas their No-SANS counterparts showed MV-PVS morphological changes during the HDBR + CO2 campaign. These findings highlight spaceflight analogs as models for inducing changes in MV-PVS and implicate MV-PVS dynamic compliance as a mechanism underlying SANS. These findings may lead to countermeasures to mitigate health risks associated with human spaceflight.
Collapse
Affiliation(s)
- Sutton B Richmond
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Jeffrey J Iliff
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA
| | - Daniel L Schwartz
- Layton-NIA Oregon Aging and Alzheimer's Disease Research Center, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Madison Luther
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA
| | - Lisa C Silbert
- Layton-NIA Oregon Aging and Alzheimer's Disease Research Center, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Veteran's Affairs Portland Health Care System, Neurology, Portland, OR, USA
| | | | | | | | - Jessica K Lee
- Department of Applied Physiology and Kinesiology, University of Florida, 1864, Stadium Rd., Gainesville, FL, USA
- German Aerospace Center (DLR), Cologne, Germany
| | - Alberto De Luca
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Juan Piantino
- Department of Pediatrics, Division of Child Neurology, Doernbecher Children's Hospital, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
46
|
Neukart F. Towards sustainable horizons: A comprehensive blueprint for Mars colonization. Heliyon 2024; 10:e26180. [PMID: 38404830 PMCID: PMC10884476 DOI: 10.1016/j.heliyon.2024.e26180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
This paper thoroughly explores the feasibility, challenges, and proposed solutions for establishing a sustainable human colony on Mars. We quantitatively and qualitatively analyze the Martian environment, highlighting key challenges such as radiation exposure, which astronauts could experience at minimum levels of 0.66 sieverts during a round trip, and the complications arising from Mars' thin atmosphere and extreme temperature variations. Technological advancements are examined, including developing Martian concrete, which utilizes sulfur as a binding agent, and innovative life support strategies like aeroponics and algae bioreactors. The human aspect of colonization is addressed, focusing on long-term space habitation's psychological and physiological impacts. We also present a cost-benefit analysis of in-situ resource utilization versus Earth-based supply missions, emphasizing economic viability with the potential reduction in launch costs through reusable rocket technology. A timeline for the colonization process is suggested, spanning preliminary unmanned missions for resource assessment, followed by short-term manned missions leading to sustainable settlements over several decades. The paper concludes with recommendations for future research, particularly in refining resource utilization techniques and advancing health and life support systems, to solidify the foundation for Mars colonization. This comprehensive assessment aims to guide researchers, policymakers, and stakeholders in planning and executing a strategic and informed approach to making Mars colonization a reality.
Collapse
Affiliation(s)
- Florian Neukart
- Leiden Institute of Advanced Computer Science, Snellius Gebouw, Niels Bohrweg 1, Leiden, 2333 CA, South Holland, Netherlands
- Terra Quantum AG, Kornhausstrasse 25, St. Gallen, 9000, St. Gallen, Switzerland
| |
Collapse
|
47
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
48
|
Zhu D, Qiao P, Zhou Q, Sun H, Xin B, Wu B, Tang C. Effect of 15 days -6° head-down bed rest on microbial communities of supragingival plaque in young men. Front Microbiol 2024; 15:1331023. [PMID: 38328428 PMCID: PMC10849213 DOI: 10.3389/fmicb.2024.1331023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction The microgravity environment astronauts experience during spaceflight can lead to an increased risk of oral diseases and possible changes in oral microecology. In this study, we aimed to assess changes in the microbial community of supragingival plaques to explore the effects of spaceflight microgravity environment on oral microecology. Methods Sixteen healthy male volunteers were recruited, and supragingival plaque samples were collected under -6° head-down bed rest (HDBR) at five-time points: day 1 before HDBR; days 5, 10, and 15 of HDBR; and day 6 of recovery. Bacterial genomic DNA was sequenced using gene sequencing technology with 16S ribosomal ribonucleic acid V3-V4 hypervariable region amplification and the obtained data were analyzed bioinformatically. Results Alpha diversity analysis showed a significant increase in species richness in supragingival plaque samples on day 15 of HDBR compared with that at pre-HDBR. Beta diversity analysis revealed that the community composition differed among the groups. Species distribution showed that, compared with those at pre-HDBR, the relative abundances of Corynebacterium and Aggregatibacter increased significantly during HDBR, while those of Veillonella, Streptococcus, and Lautropia decreased significantly. Moreover, compared with those at pre-HDBR, the relative abundance of Leptotrichia increased significantly on day 6 of recovery, whereas the relative abundances of Porphyromonas and Streptococcus decreased significantly. Network analysis showed that the interaction relationship between the dominant genera became simpler during HDBR, and the positive and negative correlations between them showed dynamic changes. Phylogenetic investigation of communities by reconstruction of unobserved states analysis showed that the amino acid metabolism function of plaque microorganisms was more enriched during HDBR. Discussion In summary, in a 15-day simulated microgravity environment, the diversity, species distribution, interaction relationship, and metabolic function of the supragingival plaque microbial community changed, which suggests that microgravity may affect the oral microecosystem by changing the balance of supragingival plaque microbial communities and further leading to the occurrence and development of oral diseases.
Collapse
Affiliation(s)
- Di Zhu
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, China
| | - Pengyan Qiao
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, China
| | - Qian Zhou
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, China
| | - Hui Sun
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, China
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute, Shenzhen, China
| | - Bin Wu
- China Astronaut Research and Training Center, Beijing, China
| | - Chuhua Tang
- 306th Clinical College of PLA, The Fifth Clinical College, Anhui Medical University, Beijing, China
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
49
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
50
|
Saloň A, Çiftci GM, Zubac D, Šimunič B, Pišot R, Narici M, Fredriksen PM, Nkeh-Chungag BN, Sourij H, Šerý O, Schmid-Zalaudek K, Steuber B, De Boever P, Goswami N. Retinal venular vessel diameters are smaller during ten days of bed rest. Sci Rep 2023; 13:19258. [PMID: 37935771 PMCID: PMC10630473 DOI: 10.1038/s41598-023-46177-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
Older individuals experience cardiovascular dysfunction during extended bedridden hospital or care home stays. Bed rest is also used as a model to simulate accelerated vascular deconditioning occurring during spaceflight. This study investigates changes in retinal microcirculation during a ten-day bed rest protocol. Ten healthy young males (22.9 ± 4.7 years; body mass index: 23.6 ± 2.5 kg·m-2) participated in a strictly controlled repeated-measures bed rest study lasting ten days. High-resolution images were obtained using a hand-held fundus camera at baseline, daily during the 10 days of bed rest, and 1 day after re-ambulation. Retinal vessel analysis was performed using a semi-automated software system to obtain metrics for retinal arteriolar and venular diameters, central retinal artery equivalent and central retinal vein equivalent, respectively. Data analysis employed a mixed linear model. At the end of the bed rest period, a significant decrease in retinal venular diameter was observed, indicated by a significantly lower central retinal vein equivalent (from 226.1 µm, CI 8.90, to 211.4 µm, CI 8.28, p = .026), while no significant changes in central retinal artery equivalent were noted. Prolonged bed rest confinement resulted in a significant (up to 6.5%) reduction in retinal venular diameter. These findings suggest that the changes in retinal venular diameter during bedrest may be attributed to plasma volume losses and reflect overall (cardio)-vascular deconditioning.
Collapse
Affiliation(s)
- Adam Saloň
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria
- Research Unit "Gravitational Physiology and Medicine", Physiology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/D.05, 8010, Graz, Austria
| | - Göktuğ Mert Çiftci
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria
- Department of Psychiatry, University Hospital Münster, Münster, Germany
| | - Damir Zubac
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
- Department 1 of Internal Medicine, Centre for Integrated Oncology, Aachen, Bonn, Cologne, Düsseldorf, University Hospital of Cologne, Cologne, Germany
| | - Boštjan Šimunič
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Rado Pišot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Marco Narici
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Per Morten Fredriksen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Benedicta Ngwenchi Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Harald Sourij
- Internal Medicine, Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Karin Schmid-Zalaudek
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria
- Research Unit "Gravitational Physiology and Medicine", Physiology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/D.05, 8010, Graz, Austria
| | - Bianca Steuber
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria
- Research Unit "Gravitational Physiology and Medicine", Physiology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/D.05, 8010, Graz, Austria
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Nandu Goswami
- Division of Physiology & Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology, and Inflammation, Medical University of Graz, Graz, Austria.
- Research Unit "Gravitational Physiology and Medicine", Physiology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/D.05, 8010, Graz, Austria.
- Integrative Health, Alma Mater Europaea Maribor, Maribor, Slovenia.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|