1
|
Mohamed N, Al-Amin M, Meredith FL, Kalmanson O, Dondzillo A, Cass S, Gubbels S, Rennie KJ. Electrophysiological properties of vestibular hair cells isolated from human crista. Front Neurol 2025; 15:1501914. [PMID: 39911744 PMCID: PMC11794080 DOI: 10.3389/fneur.2024.1501914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction The vast majority of cellular studies on mammalian vestibular hair cells have been carried out in rodent models due in part to the inaccessibility of human inner ear organs and reports describing electrophysiological recordings from human inner ear sensory hair cells are scarce. Here, we obtained freshly harvested vestibular neuroepithelia from adult translabyrinthine surgical patients to obtain electrophysiological recordings from human hair cells. Methods Whole cell patch clamp recordings were performed on hair cells mechanically isolated from human cristae to characterize voltage-dependent and pharmacological properties of membrane currents. Hair cells were classified as type I or type II according to morphological characteristics and/or their electrophysiological properties. Results Type I hair cells exhibited low voltage-activated K+ currents (IKLV) at membrane potentials around the mean resting membrane potential (-63 mV) and large slowly activating outward K+ currents in response to depolarizing voltage steps. Recordings from type II hair cells revealed delayed rectifier type outward K+ currents that activated above the average resting potential of -55 mV and often showed some inactivation at more depolarized potentials. Perfusion with the K+ channel blocker 4-aminopyridine (1 mM) substantially reduced outward current in both hair cell types. Additionally, extracellular application of 8-bromo-cGMP inhibited IKLV in human crista type I hair cells suggesting modulation via a nitric oxide/cGMP mechanism. A slow hyperpolarization-activated current (Ih) was observed in some hair cells in response to membrane hyperpolarization below -100 mV. Discussion In summary, whole cell recordings from isolated human hair cells revealed ionic currents that strongly resemble mature current phenotypes previously described in hair cells from rodent vestibular epithelia. Rapid access to surgically obtained adult human vestibular neuroepithelia allows translational studies crucial for improved understanding of human peripheral vestibular function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Katherine J. Rennie
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
2
|
Giunta R, Cheli G, Rispoli G, Russo G, Masetto S. Pimozide Inhibits Type II but Not Type I Hair Cells in Chicken Embryo and Adult Mouse Vestibular Organs. Biomedicines 2024; 12:2879. [PMID: 39767785 PMCID: PMC11673355 DOI: 10.3390/biomedicines12122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pimozide is a conventional antipsychotic drug of the diphenylbutylpiperidine class, widely used for treating schizophrenia and delusional disorders and for managing motor and phonic tics in Tourette's syndrome. Pimozide is known to block dopaminergic D2 receptors and various types of voltage-gated ion channels. Among its side effects, dizziness and imbalance are the most frequently observed, which may imply an effect of the drug on the vestibular sensory receptors, the hair cells. Amniotes possess two classes of vestibular hair cells, named type I and type II hair cells, which differ in terms of signal processing and transmission. We previously reported that Pimozide [3 μM] significantly increased a delayed outward rectifying K+ current (IK,V). METHODS AND RESULTS In the present study, using the whole-cell patch-clamp technique we additionally show that Pimozide decreases the inward rectifying K+ current (IK,1) and the mixed Na+/K+ current (Ih) of chicken embryo type II hair cells, whereas it does not affect type I hair cells' ionic currents. Since ion channels' expression can vary depending on age and animal species, in the present study, we also tested Pimozide in adult mouse vestibular hair cells. We found that, like in the chicken embryo, Pimozide significantly increases IK,V and decreases IK,1 and Ih in type II hair cells. However, in the adult mouse, Pimozide also slightly increased the outward rectifying K+ current in type I hair cells. CONCLUSIONS While providing a possible explanation for the vestibular side effects of Pimozide in humans, its inhibitory action on mammalian hair cells might be of interest for the local treatment of vestibular disorders characterized by altered vestibular input, like Ménière's disease.
Collapse
Affiliation(s)
- Roberta Giunta
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| | - Giulia Cheli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| |
Collapse
|
3
|
Chen SP, Hsu CL, Chen TH, Pan LLH, Wang YF, Ling YH, Chang HC, Chen YM, Fann CSJ, Wang SJ. A genome-wide association study identifies novel loci of vertigo in an Asian population-based cohort. Commun Biol 2024; 7:1034. [PMID: 39174713 PMCID: PMC11341872 DOI: 10.1038/s42003-024-06603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
The contributing genetic factors of vertigo remain poorly characterized, particularly in individuals of non-European ancestries. Here we show the genetic landscape of vertigo in an Asian population-based cohort. In a two-stage genome-wide association study (Ncase = 6199; Ncontrol = 54,587), we identify vertigo-associated genomic loci in DROSHA and ZNF91/LINC01224, with the latter replicating the findings in European ancestries. Gene-based association testing corroborates these findings. Interestingly, both genes are enriched in cerebellum, a key structure receiving sensory input from the vestibular system. Subjects carrying risk alleles from lead SNPs of DROSHA and ZNF91 incur a 1.74-fold risk of vertigo than those without. Moreover, composite clinical-polygenic risk scores allow differentiation between patients and controls, yielding an area under receiver operating characteristic curve of 0.69. This study identified novel genomic loci for vertigo in an Asian population-based cohort, which may help identifying high risk subjects and provide mechanistic insight in understanding the pathogenesis of vertigo.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Lin Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Huei Chen
- Department of Mathematics & Statistics, Laval University, Quebec City, QC, Canada
- Cervo Brain Research Centre, Quebec City, QC, Canada
| | - Li-Ling Hope Pan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Hsiang Ling
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsueh-Chen Chang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ming Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taichung Veterans General Hospital, Taipei, Taiwan
| | | | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Mohamed NMM, Meredith FL, Rennie KJ. Inhibition of Ionic Currents by Fluoxetine in Vestibular Calyces in Different Epithelial Loci. Int J Mol Sci 2024; 25:8801. [PMID: 39201487 PMCID: PMC11354711 DOI: 10.3390/ijms25168801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 μM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 μM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 μM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance.
Collapse
Affiliation(s)
| | | | - Katherine J. Rennie
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.M.M.M.); (F.L.M.)
| |
Collapse
|
5
|
Waldhaus J, Jiang L, Liu L, Liu J, Duncan RK. Mapping the developmental potential of mouse inner ear organoids at single-cell resolution. iScience 2024; 27:109069. [PMID: 38375227 PMCID: PMC10875570 DOI: 10.1016/j.isci.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Inner ear organoids recapitulate development and are intended to generate cell types of the otic lineage for applications such as basic science research and cell replacement strategies. Here, we use single-cell sequencing to study the cellular heterogeneity of late-stage mouse inner ear organoid sensory epithelia, which we validated by comparison with datasets of the mouse cochlea and vestibular epithelia. We resolved supporting cell sub-types, cochlear-like hair cells, and vestibular type I and type II-like hair cells. While cochlear-like hair cells aligned best with an outer hair cell trajectory, vestibular-like hair cells followed developmental trajectories similar to in vivo programs branching into type II and then type I extrastriolar hair cells. These results highlight the transcriptional accuracy of the organoid developmental program but will also inform future strategies to improve synaptic connectivity and regional specification.
Collapse
Affiliation(s)
- Joerg Waldhaus
- Department of Otolaryngology–Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Linghua Jiang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Liqian Liu
- Department of Otolaryngology–Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Robert Keith Duncan
- Department of Otolaryngology–Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Department of Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Meredith FL, Vu TA, Gehrke B, Benke TA, Dondzillo A, Rennie KJ. Expression of hyperpolarization-activated current ( Ih) in zonally defined vestibular calyx terminals of the crista. J Neurophysiol 2023; 129:1468-1481. [PMID: 37198134 PMCID: PMC10259860 DOI: 10.1152/jn.00135.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Tiffany A Vu
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Brandon Gehrke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
7
|
Quinn RK, Drury HR, Cresswell ET, Tadros MA, Nayagam BA, Callister RJ, Brichta AM, Lim R. Expression and Physiology of Voltage-Gated Sodium Channels in Developing Human Inner Ear. Front Neurosci 2021; 15:733291. [PMID: 34759790 PMCID: PMC8575412 DOI: 10.3389/fnins.2021.733291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Sodium channel expression in inner ear afferents is essential for the transmission of vestibular and auditory information to the central nervous system. During development, however, there is also a transient expression of Na+ channels in vestibular and auditory hair cells. Using qPCR analysis, we describe the expression of four Na+ channel genes, SCN5A (Nav1.5), SCN8A (Nav1.6), SCN9A (Nav1.7), and SCN10A (Nav1.8) in the human fetal cristae ampullares, utricle, and base, middle, and apex of the cochlea. Our data show distinct patterns of Na+ channel gene expression with age and between these inner ear organs. In the utricle, there was a general trend toward fold-change increases in expression of SCN8A, SCN9A, and SCN10A with age, while the crista exhibited fold-change increases in SCN5A and SCN8A and fold-change decreases in SCN9A and SCN10A. Fold-change differences of each gene in the cochlea were more complex and likely related to distinct patterns of expression based on tonotopy. Generally, the relative expression of SCN genes in the cochlea was greater than that in utricle and cristae ampullares. We also recorded Na+ currents from developing human vestibular hair cells aged 10-11 weeks gestation (WG), 12-13 WG, and 14+ WG and found there is a decrease in the number of vestibular hair cells that exhibit Na+ currents with increasing gestational age. Na+ current properties and responses to the application of tetrodotoxin (TTX; 1 μM) in human fetal vestibular hair cells are consistent with those recorded in other species during embryonic and postnatal development. Both TTX-sensitive and TTX-resistant currents are present in human fetal vestibular hair cells. These results provide a timeline of sodium channel gene expression in inner ear neuroepithelium and the physiological characterization of Na+ currents in human fetal vestibular neuroepithelium. Understanding the normal developmental timeline of ion channel gene expression and when cells express functional ion channels is essential information for regenerative technologies.
Collapse
Affiliation(s)
- Rikki K Quinn
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, Australia
| | - Hannah R Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, Australia
| | - Ethan T Cresswell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, Australia
| | - Bryony A Nayagam
- Department of Audiology and Speech Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, Australia
| | - Alan M Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, The University of Newcastle, New Lambton Heights, NSW, Australia
| |
Collapse
|
8
|
Meredith FL, Rennie KJ. Persistent and resurgent Na + currents in vestibular calyx afferents. J Neurophysiol 2020; 124:510-524. [PMID: 32667253 DOI: 10.1152/jn.00124.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
9
|
Spaiardi P, Tavazzani E, Manca M, Russo G, Prigioni I, Biella G, Giunta R, Johnson SL, Marcotti W, Masetto S. K + Accumulation and Clearance in the Calyx Synaptic Cleft of Type I Mouse Vestibular Hair Cells. Neuroscience 2020; 426:69-86. [PMID: 31846752 PMCID: PMC6985899 DOI: 10.1016/j.neuroscience.2019.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 11/29/2022]
Abstract
Vestibular organs of Amniotes contain two types of sensory cells, named Type I and Type II hair cells. While Type II hair cells are contacted by several small bouton nerve terminals, Type I hair cells receive a giant terminal, called a calyx, which encloses their basolateral membrane almost completely. Both hair cell types release glutamate, which depolarizes the afferent terminal by binding to AMPA post-synaptic receptors. However, there is evidence that non-vesicular signal transmission also occurs at the Type I hair cell-calyx synapse, possibly involving direct depolarization of the calyx by K+ exiting the hair cell. To better investigate this aspect, we performed whole-cell patch-clamp recordings from mouse Type I hair cells or their associated calyx. We found that [K+] in the calyceal synaptic cleft is elevated at rest relative to the interstitial (extracellular) solution and can increase or decrease during hair cell depolarization or repolarization, respectively. The change in [K+] was primarily driven by GK,L, the low-voltage-activated, non-inactivating K+ conductance specifically expressed by Type I hair cells. Simple diffusion of K+ between the cleft and the extracellular compartment appeared substantially restricted by the calyx inner membrane, with the ion channels and active transporters playing a crucial role in regulating intercellular [K+]. Calyx recordings were consistent with K+ leaving the synaptic cleft through postsynaptic voltage-gated K+ channels involving KV1 and KV7 subunits. The above scenario is consistent with direct depolarization and hyperpolarization of the calyx membrane potential by intercellular K+.
Collapse
Affiliation(s)
- P Spaiardi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - E Tavazzani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - M Manca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - G Russo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - I Prigioni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - G Biella
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - R Giunta
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - S L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - W Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - S Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
10
|
Zhou Y, Xia C, Yin M, Wang X, Wu H, Ji Y. Distribution and Functional Characteristics of Voltage-Gated Sodium Channels in Immature Cochlear Hair Cells. Neurosci Bull 2020; 36:49-65. [PMID: 31388930 PMCID: PMC6940418 DOI: 10.1007/s12264-019-00415-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 04/15/2019] [Indexed: 12/01/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are transiently expressed in cochlear hair cells before hearing onset and play an indispensable role in shaping spontaneous activity. In this study, we showed that Na+ currents shaped the spontaneous action potentials in developing mouse inner hair cells (IHCs) by decreasing the time required for the membrane potential to reach the action-potential threshold. In immature IHCs, we identified 9 known VGSC subtypes (Nav1.1α-1.9α), among which Nav1.7α was the most highly expressed subtype and the main contributor to Na+ currents in developing hair cells. Electrophysiological recordings of two cochlea-specific Nav1.7 variants (CbmNav1.7a and CbmNav1.7b) revealed a novel loss-of-function mutation (C934R) at the extracellular linker between segments 5 and 6 of domain II. In addition, post-transcriptional modification events, such as alternative splicing and RNA editing, amended the gating properties and kinetic features of CbmNav1.7a(C934). These results provide molecular and functional characteristics of VGSCs in mammalian IHCs and their contributions to spontaneous physiological activity during cochlear maturation.
Collapse
Affiliation(s)
- You Zhou
- Department of Otolaryngology - Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200125, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125, China
| | - Chenchen Xia
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, 200444, China
| | - Manli Yin
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, 200444, China
| | - Xueling Wang
- Department of Otolaryngology - Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200125, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200125, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125, China
| | - Hao Wu
- Department of Otolaryngology - Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200125, China.
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200125, China.
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200125, China.
| | - Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, 200444, China.
- Translational Institute for Cancer Pain, Xinhua Hospital Chongming Branch, Shanghai, 202150, China.
| |
Collapse
|
11
|
Lee JH, Kang M, Park S, Perez-Flores MC, Zhang XD, Wang W, Gratton MA, Chiamvimonvat N, Yamoah EN. The local translation of KNa in dendritic projections of auditory neurons and the roles of KNa in the transition from hidden to overt hearing loss. Aging (Albany NY) 2019; 11:11541-11564. [PMID: 31812952 PMCID: PMC6932877 DOI: 10.18632/aging.102553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Local and privileged expression of dendritic proteins allows segregation of distinct functions in a single neuron but may represent one of the underlying mechanisms for early and insidious presentation of sensory neuropathy. Tangible characteristics of early hearing loss (HL) are defined in correlation with nascent hidden hearing loss (HHL) in humans and animal models. Despite the plethora of causes of HL, only two prevailing mechanisms for HHL have been identified, and in both cases, common structural deficits are implicated in inner hair cell synapses, and demyelination of the auditory nerve (AN). We uncovered that Na+-activated K+ (KNa) mRNA and channel proteins are distinctly and locally expressed in dendritic projections of primary ANs and genetic deletion of KNa channels (Kcnt1 and Kcnt2) results in the loss of proper AN synaptic function, characterized as HHL, without structural synaptic alterations. We further demonstrate that the local functional synaptic alterations transition from HHL to increased hearing-threshold, which entails changes in global Ca2+ homeostasis, activation of caspases 3/9, impaired regulation of inositol triphosphate receptor 1 (IP3R1), and apoptosis-mediated neurodegeneration. Thus, the present study demonstrates how local synaptic dysfunction results in an apparent latent pathological phenotype (HHL) and, if undetected, can lead to overt HL. It also highlights, for the first time, that HHL can precede structural synaptic dysfunction and AN demyelination. The stepwise cellular mechanisms from HHL to canonical HL are revealed, providing a platform for intervention to prevent lasting and irreversible age-related hearing loss (ARHL).
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Wenying Wang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Head and Neck Surgery, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
12
|
Wang T, Niwa M, Sayyid ZN, Hosseini DK, Pham N, Jones SM, Ricci AJ, Cheng AG. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol 2019; 17:e3000326. [PMID: 31260439 PMCID: PMC6602158 DOI: 10.1371/journal.pbio.3000326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells are mechanoreceptors required for hearing and balance functions. From embryonic development, hair cells acquire apical stereociliary bundles for mechanosensation, basolateral ion channels that shape receptor potential, and synaptic contacts for conveying information centrally. These key maturation steps are sequential and presumed coupled; however, whether hair cells emerging postnatally mature similarly is unknown. Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a vestibular organ detecting linear acceleration, acquired some mature somatic features but hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes with distinct morphological, electrophysiological and synaptic features. In both the undamaged and damaged utricle, fate-mapping and electrophysiology experiments showed that Plp1+ supporting cells took on type II hair cell properties based on molecular markers, basolateral conductances and synaptic properties yet stereociliary bundles were absent, or small and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological measurements showed that utricular function abolished by damage was partially regained during regeneration. Together, our data reveal a previously unrecognized aberrant maturation program for hair cells generated and regenerated postnatally and may have broad implications for inner ear regenerative therapies. During development, sensory hair cells undergo a series of critical maturation steps that are sequential and presumed coupled, but whether regenerated hair cells mature similarly is unknown. This study shows that regenerated vestibular hair cells acquired some mature somatic features, but the apical bundles remained immature.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mamiko Niwa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zahra N. Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| |
Collapse
|
13
|
Mattei C, Lim R, Drury H, Nasr B, Li Z, Tadros MA, D'Abaco GM, Stok KS, Nayagam BA, Dottori M. Generation of Vestibular Tissue-Like Organoids From Human Pluripotent Stem Cells Using the Rotary Cell Culture System. Front Cell Dev Biol 2019; 7:25. [PMID: 30891447 PMCID: PMC6413170 DOI: 10.3389/fcell.2019.00025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/12/2019] [Indexed: 01/17/2023] Open
Abstract
Hair cells are specialized mechanosensitive cells responsible for mediating balance and hearing within the inner ear. In mammals, hair cells are limited in number and do not regenerate. Human pluripotent stem cells (hPSCs) provide a valuable source for deriving human hair cells to study their development and design therapies to treat and/or prevent their degeneration. In this study we used a dynamic 3D Rotary Cell Culture System (RCCS) for deriving inner ear organoids from hPSCs. We show RCCS-derived organoids recapitulate stages of inner ear development and give rise to an enriched population of hair cells displaying vestibular-like morphological and physiological phenotypes, which resemble developing human fetal inner ear hair cells as well as the presence of accessory otoconia-like structures. These results show that hPSC-derived organoids can generate complex inner ear structural features and be a resource to study inner ear development.
Collapse
Affiliation(s)
- Cristiana Mattei
- Centre for Neural Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah Drury
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Babak Nasr
- Centre for Neural Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Integrative Brain Function, The University of Melbourne, Melbourne, VIC, Australia
| | - Zihui Li
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Giovanna M D'Abaco
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn S Stok
- Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Bryony A Nayagam
- Departments of Audiology and Speech Pathology and Department of Medical Bionics, The University of Melbourne, Melbourne, VIC, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
14
|
Sodium-activated potassium channels shape peripheral auditory function and activity of the primary auditory neurons in mice. Sci Rep 2019; 9:2573. [PMID: 30796290 PMCID: PMC6384918 DOI: 10.1038/s41598-019-39119-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/17/2019] [Indexed: 11/08/2022] Open
Abstract
Potassium (K+) channels shape the response properties of neurons. Although enormous progress has been made to characterize K+ channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in situ hybridization, we localized expression of transcripts encoding the sodium-activated potassium channels KNa1.1 (SLO2.2/Slack) and KNa1.2 (SLO2.1/Slick) to the primary auditory neurons (spiral ganglion neurons, SGNs). To examine the contribution of these channels to function of the SGNs in vivo, we measured auditory brainstem responses in KNa1.1/1.2 double knockout (DKO) mice. Although auditory brainstem response (wave I) thresholds were not altered, the amplitudes of suprathreshold responses were reduced in DKO mice. This reduction in amplitude occurred despite normal numbers and molecular architecture of the SGNs and their synapses with the inner hair cells. Patch clamp electrophysiology of SGNs isolated from DKO mice displayed altered membrane properties, including reduced action potential thresholds and amplitudes. These findings show that KNa1 channel activity is essential for normal cochlear function and suggest that early forms of hearing loss may result from physiological changes in the activity of the primary auditory neurons.
Collapse
|
15
|
Eatock RA. Specializations for Fast Signaling in the Amniote Vestibular Inner Ear. Integr Comp Biol 2019; 58:341-350. [PMID: 29920589 DOI: 10.1093/icb/icy069] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During rapid locomotion, the vestibular inner ear provides head-motion signals that stabilize posture, gaze, and heading. Afferent nerve fibers from central and peripheral zones of vestibular sensory epithelia use temporal and rate encoding, respectively, to emphasize different aspects of head motion: central afferents adapt faster to sustained head position and favor higher stimulus frequencies, reflecting specializations at each stage from motion of the accessory structure to spike propagation to the brain. One specialization in amniotes is an unusual nonquantal synaptic mechanism by which type I hair cells transmit to large calyceal terminals of afferent neurons. The reduced synaptic delay of this mechanism may have evolved to serve reliable and fast input to reflex pathways that ensure stable locomotion on land.
Collapse
Affiliation(s)
- Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Meredith FL, Rennie KJ. Regional and Developmental Differences in Na + Currents in Vestibular Primary Afferent Neurons. Front Cell Neurosci 2018; 12:423. [PMID: 30487736 PMCID: PMC6246661 DOI: 10.3389/fncel.2018.00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/04/2023] Open
Abstract
The vestibular system relays information about head position via afferent nerve fibers to the brain in the form of action potentials. Voltage-gated Na+ channels in vestibular afferents drive the initiation and propagation of action potentials, but their expression during postnatal development and their contributions to firing in diverse mature afferent populations are unknown. Electrophysiological techniques were used to determine Na+ channel subunit types in vestibular calyx-bearing afferents at different stages of postnatal development. We used whole cell patch clamp recordings in thin slices of gerbil crista neuroepithelium to investigate Na+ channels and firing patterns in central zone (CZ) and peripheral zone (PZ) afferents. PZ afferents are exclusively dimorphic, innervating type I and type II hair cells, whereas CZ afferents can form dimorphs or calyx-only terminals which innervate type I hair cells alone. All afferents expressed tetrodotoxin (TTX)-sensitive Na+ currents, but TTX-sensitivity varied with age. During the fourth postnatal week, 200–300 nM TTX completely blocked sodium currents in PZ and CZ calyces. By contrast, in immature calyces [postnatal day (P) 5–11], a small component of peak sodium current remained in 200 nM TTX. Application of 1 μM TTX, or Jingzhaotoxin-III plus 200 nM TTX, abolished sodium current in immature calyces, suggesting the transient expression of voltage-gated sodium channel 1.5 (Nav1.5) during development. A similar TTX-insensitive current was found in early postnatal crista hair cells (P5–9) and constituted approximately one third of the total sodium current. The Nav1.6 channel blocker, 4,9-anhydrotetrodotoxin, reduced a component of sodium current in immature and mature calyces. At 100 nM 4,9-anhydrotetrodotoxin, peak sodium current was reduced on average by 20% in P5–14 calyces, by 37% in mature dimorphic PZ calyces, but by less than 15% in mature CZ calyx-only terminals. In mature PZ calyces, action potentials became shorter and broader in the presence of 4,9-anhydrotetrodotoxin implicating a role for Nav1.6 channels in firing in dimorphic afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
17
|
The Key Transcription Factor Expression in the Developing Vestibular and Auditory Sensory Organs: A Comprehensive Comparison of Spatial and Temporal Patterns. Neural Plast 2018; 2018:7513258. [PMID: 30410537 PMCID: PMC6205106 DOI: 10.1155/2018/7513258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/31/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022] Open
Abstract
Inner ear formation requires that a series of cell fate decisions and morphogenetic events occur in a precise temporal and spatial pattern. Previous studies have shown that transcription factors, including Pax2, Sox2, and Prox1, play important roles during the inner ear development. However, the temporospatial expression patterns among these transcription factors are poorly understood. In the current study, we present a comprehensive description of the temporal and spatial expression profiles of Pax2, Sox2, and Prox1 during auditory and vestibular sensory organ development in mice. Using immunohistochemical analyses, we show that Sox2 and Pax2 are both expressed in the prosensory cells (the developing hair cells), but Sox2 is later restricted to only the supporting cells of the organ of Corti. In the vestibular sensory organ, however, the Pax2 expression is localized in hair cells at postnatal day 7, while Sox2 is still expressed in both the hair cells and supporting cells at that time. Prox1 was transiently expressed in the presumptive hair cells and developing supporting cells, and lower Prox1 expression was observed in the vestibular sensory organ compared to the organ of Corti. The different expression patterns of these transcription factors in the developing auditory and vestibular sensory organs suggest that they play different roles in the development of the sensory epithelia and might help to shape the respective sensory structures.
Collapse
|
18
|
Parks XX, Contini D, Jordan PM, Holt JC. Confirming a Role for α9nAChRs and SK Potassium Channels in Type II Hair Cells of the Turtle Posterior Crista. Front Cell Neurosci 2017; 11:356. [PMID: 29200999 PMCID: PMC5696599 DOI: 10.3389/fncel.2017.00356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2017] [Indexed: 11/17/2022] Open
Abstract
In turtle posterior cristae, cholinergic vestibular efferent neurons (VENs) synapse on type II hair cells, bouton afferents innervating type II hair cells, and afferent calyces innervating type I hair cells. Electrical stimulation of VENs releases acetylcholine (ACh) at these synapses to exert diverse effects on afferent background discharge including rapid inhibition of bouton afferents and excitation of calyx-bearing afferents. Efferent-mediated inhibition is most pronounced in bouton afferents innervating type II hair cells near the torus, but becomes progressively smaller and briefer when moving longitudinally through the crista toward afferents innervating the planum. Sharp-electrode recordings have inferred that efferent-mediated inhibition of bouton afferents requires the sequential activation of alpha9-containing nicotinic ACh receptors (α9*nAChRs) and small-conductance, calcium-dependent potassium channels (SK) in type II hair cells. Gradations in the strength of efferent-mediated inhibition across the crista likely reflect variations in α9*nAChRs and/or SK activation in type II hair cells from those different regions. However, in turtle cristae, neither inference has been confirmed with direct recordings from type II hair cells. To address these gaps, we performed whole-cell, patch-clamp recordings from type II hair cells within a split-epithelial preparation of the turtle posterior crista. Here, we can easily visualize and record hair cells while maintaining their native location within the neuroepithelium. Consistent with α9*nAChR/SK activation, ACh-sensitive currents in type II hair cells were inward at hyperpolarizing potentials but reversed near −90 mV to produce outward currents that typically peaked around −20 mV. ACh-sensitive currents were largest in torus hair cells but absent from hair cells near the planum. In current clamp recordings under zero-current conditions, ACh robustly hyperpolarized type II hair cells. ACh-sensitive responses were reversibly blocked by the α9nAChR antagonists ICS, strychnine, and methyllycaconitine as well as the SK antagonists apamin and UCL1684. Intact efferent terminals in the split-epithelial preparation spontaneously released ACh that also activated α9*nAChRs/SK in type II hair cells. These release events were accelerated with high-potassium external solution and all events were blocked by strychnine, ICS, methyllycaconitine, and apamin. These findings provide direct evidence that activation of α9*nAChR/SK in turtle type II hair cells underlies efferent-mediated inhibition of bouton afferents.
Collapse
Affiliation(s)
- Xiaorong Xu Parks
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Donatella Contini
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Paivi M Jordan
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States.,Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
19
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
20
|
Kirk ME, Meredith FL, Benke TA, Rennie KJ. AMPA receptor-mediated rapid EPSCs in vestibular calyx afferents. J Neurophysiol 2017; 117:2312-2323. [PMID: 28298303 DOI: 10.1152/jn.00394.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/21/2023] Open
Abstract
In the vestibular periphery neurotransmission between hair cells and primary afferent nerves occurs via specialized ribbon synapses. Type I vestibular hair cells (HCIs) make synaptic contacts with calyx terminals, which enclose most of the HCI basolateral surface. To probe synaptic transmission, whole cell patch-clamp recordings were made from calyx afferent terminals isolated together with their mature HCIs from gerbil crista. Neurotransmitter release was measured as excitatory postsynaptic currents (EPSCs) in voltage clamp. Spontaneous EPSCs were classified as simple or complex. Simple events exhibited a rapid rise time and a fast monoexponential decay (time constant < 1 ms). The remaining events, constituting ~40% of EPSCs, showed more complex characteristics. Extracellular Sr2+ greatly increased EPSC frequency, and EPSCs were blocked by the AMPA receptor blocker NBQX. The role of presynaptic Ca2+ channels was assessed by application of the L-type Ca2+ channel blocker nifedipine (20 µM), which reduced EPSC frequency. In contrast, the L-type Ca2+ channel opener BAY K 8644 increased EPSC frequency. Cyclothiazide increased the decay time constant of averaged simple EPSCs by approximately twofold. The low-affinity AMPA receptor antagonist γ-d-glutamylglycine (2 mM) reduced the proportion of simple EPSCs relative to complex events, indicating glutamate accumulation in the restricted cleft between HCI and calyx. In crista slices EPSC frequency was greater in central compared with peripheral calyces, which may be due to greater numbers of presynaptic ribbons in central hair cells. Our data support a role for L-type Ca2+ channels in spontaneous release and demonstrate regional variations in AMPA-mediated quantal transmission at the calyx synapse.NEW & NOTEWORTHY In vestibular calyx terminals of mature cristae we find that the majority of excitatory postsynaptic currents (EPSCs) are rapid monophasic events mediated by AMPA receptors. Spontaneous EPSCs are reduced by an L-type Ca2+ channel blocker and notably enhanced in extracellular Sr2+ EPSC frequency is greater in central areas of the crista compared with peripheral areas and may be associated with more numerous presynaptic ribbons in central hair cells.
Collapse
Affiliation(s)
- Matthew E Kirk
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Departments of Pediatrics, Neurology, and Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; .,Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
21
|
Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH. Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 2017; 117:1969-1986. [PMID: 28202575 DOI: 10.1152/jn.00895.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/10/2017] [Indexed: 01/14/2023] Open
Abstract
Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420-2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents.NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational modeling provides insights into how morphology impacts excitability and also reveals a new explanation for spike train irregularity based on relative numbers of multiple bouton contacts per hair cell. This mechanism is independent of other proposed mechanisms for spike train irregularity based on ionic conductances and can explain irregularity in dimorphic units and calyx endings.
Collapse
Affiliation(s)
- William R Holmes
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Janice A Huwe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Barbara Williams
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Michael H Rowe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - Ellengene H Peterson
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| |
Collapse
|
22
|
McLean WJ, McLean DT, Eatock RA, Edge ASB. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development 2016; 143:4381-4393. [PMID: 27789624 DOI: 10.1242/dev.139840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/11/2016] [Indexed: 01/16/2023]
Abstract
Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear - the vestibular and cochlear sensory epithelia and the spiral ganglion - by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin.
Collapse
Affiliation(s)
- Will J McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA
| | - Dalton T McLean
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA.,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA .,Eaton-Peabody Laboratories of Auditory Physiology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard & MIT, Cambridge, MA 02139, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
23
|
Channeling your inner ear potassium: K+ channels in vestibular hair cells. Hear Res 2016; 338:40-51. [DOI: 10.1016/j.heares.2016.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/05/2023]
|
24
|
Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun 2016; 7:11508. [PMID: 27215798 PMCID: PMC4890183 DOI: 10.1038/ncomms11508] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/05/2016] [Indexed: 12/28/2022] Open
Abstract
Inner ear sensory epithelia contain mechanosensitive hair cells that transmit information to the brain through innervation with bipolar neurons. Mammalian hair cells do not regenerate and are limited in number. Here we investigate the potential to generate mechanosensitive hair cells from mouse embryonic stem cells in a three-dimensional (3D) culture system. The system faithfully recapitulates mouse inner ear induction followed by self-guided development into organoids that morphologically resemble inner ear vestibular organs. We find that organoid hair cells acquire mechanosensitivity equivalent to functionally mature hair cells in postnatal mice. The organoid hair cells also progress through a similar dynamic developmental pattern of ion channel expression, reminiscent of two subtypes of native vestibular hair cells. We conclude that our 3D culture system can generate large numbers of fully functional sensory cells which could be used to investigate mechanisms of inner ear development and disease as well as regenerative mechanisms for inner ear repair. Sensory hair cells from the mammalian inner ear do not regenerate. Here, the authors induce direct hair cell formation from mouse embryonic stem cells using a three-dimensional culture system and observe differentiation of Type I and Type II vestibular hair cells and establishment of synapses with neurons.
Collapse
|
25
|
Hight AE, Kalluri R. A biophysical model examining the role of low-voltage-activated potassium currents in shaping the responses of vestibular ganglion neurons. J Neurophysiol 2016; 116:503-21. [PMID: 27121577 DOI: 10.1152/jn.00107.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/21/2016] [Indexed: 02/06/2023] Open
Abstract
The vestibular nerve is characterized by two broad groups of neurons that differ in the timing of their interspike intervals; some fire at highly regular intervals, whereas others fire at highly irregular intervals. Heterogeneity in ion channel properties has been proposed as shaping these firing patterns (Highstein SM, Politoff AL. Brain Res 150: 182-187, 1978; Smith CE, Goldberg JM. Biol Cybern 54: 41-51, 1986). Kalluri et al. (J Neurophysiol 104: 2034-2051, 2010) proposed that regularity is controlled by the density of low-voltage-activated potassium currents (IKL). To examine the impact of IKL on spike timing regularity, we implemented a single-compartment model with three conductances known to be present in the vestibular ganglion: transient sodium (gNa), low-voltage-activated potassium (gKL), and high-voltage-activated potassium (gKH). Consistent with in vitro observations, removing gKL depolarized resting potential, increased input resistance and membrane time constant, and converted current step-evoked firing patterns from transient (1 spike at current onset) to sustained (many spikes). Modeled neurons were driven with a time-varying synaptic conductance that captured the random arrival times and amplitudes of glutamate-driven synaptic events. In the presence of gKL, spiking occurred only in response to large events with fast onsets. Models without gKL exhibited greater integration by responding to the superposition of rapidly arriving events. Three synaptic conductance were modeled, each with different kinetics to represent a variety of different synaptic processes. In response to all three types of synaptic conductance, models containing gKL produced spike trains with irregular interspike intervals. Only models lacking gKL when driven by rapidly arriving small excitatory postsynaptic currents were capable of generating regular spiking.
Collapse
Affiliation(s)
- Ariel E Hight
- Division of Communications Auditory Neuroscience, House Research Institute, Los Angeles, California; and
| | - Radha Kalluri
- Division of Communications Auditory Neuroscience, House Research Institute, Los Angeles, California; and Department of Otolaryngology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
| |
Collapse
|
26
|
Liu XP, Wooltorton JRA, Gaboyard-Niay S, Yang FC, Lysakowski A, Eatock RA. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents. J Neurophysiol 2016; 115:2536-55. [PMID: 26936982 DOI: 10.1152/jn.00902.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/02/2016] [Indexed: 01/02/2023] Open
Abstract
Firing patterns differ between subpopulations of vestibular primary afferent neurons. The role of sodium (NaV) channels in this diversity has not been investigated because NaV currents in rodent vestibular ganglion neurons (VGNs) were reported to be homogeneous, with the voltage dependence and tetrodotoxin (TTX) sensitivity of most neuronal NaV channels. RT-PCR experiments, however, indicated expression of diverse NaV channel subunits in the vestibular ganglion, motivating a closer look. Whole cell recordings from acutely dissociated postnatal VGNs confirmed that nearly all neurons expressed NaV currents that are TTX-sensitive and have activation midpoints between -30 and -40 mV. In addition, however, many VGNs expressed one of two other NaV currents. Some VGNs had a small current with properties consistent with NaV1.5 channels: low TTX sensitivity, sensitivity to divalent cation block, and a relatively negative voltage range, and some VGNs showed NaV1.5-like immunoreactivity. Other VGNs had a current with the properties of NaV1.8 channels: high TTX resistance, slow time course, and a relatively depolarized voltage range. In two NaV1.8 reporter lines, subsets of VGNs were labeled. VGNs with NaV1.8-like TTX-resistant current also differed from other VGNs in the voltage dependence of their TTX-sensitive currents and in the voltage threshold for spiking and action potential shape. Regulated expression of NaV channels in primary afferent neurons is likely to selectively affect firing properties that contribute to the encoding of vestibular stimuli.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Speech and Hearing Bioscience and Technology Program, Harvard-Massachusetts Institute of Technology Health Sciences and Technology Program, Cambridge, Massachusetts; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts
| | | | - Sophie Gaboyard-Niay
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Fu-Chia Yang
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois; Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Ruth Anne Eatock
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts; and Department of Otolaryngology-Head and Neck Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Abstract
In the vestibular periphery a unique postsynaptic terminal, the calyx, completely covers the basolateral walls of type I hair cells and receives input from multiple ribbon synapses. To date, the functional role of this specialized synapse remains elusive. There is limited data supporting glutamatergic transmission, K(+) or H(+) accumulation in the synaptic cleft as mechanisms of transmission. Here the role of glutamatergic transmission at the calyx synapse is investigated. Whole-cell patch-clamp recordings from calyx endings were performed in an in vitro whole-tissue preparation of the rat vestibular crista, the sensory organ of the semicircular canals that sense head rotation. AMPA-mediated EPSCs showed an unusually wide range of decay time constants, from <5 to >500 ms. Decay time constants of EPSCs increased (or decreased) in the presence of a glutamate transporter blocker (or a competitive glutamate receptor blocker), suggesting a role for glutamate accumulation and spillover in synaptic transmission. Glutamate accumulation caused slow depolarizations of the postsynaptic membrane potentials, and thereby substantially increased calyx firing rates. Finally, antibody labelings showed that a high percentage of presynaptic ribbon release sites and postsynaptic glutamate receptors were not juxtaposed, favoring a role for spillover. These findings suggest a prominent role for glutamate spillover in integration of inputs and synaptic transmission in the vestibular periphery. We propose that similar to other brain areas, such as the cerebellum and hippocampus, glutamate spillover may play a role in gain control of calyx afferents and contribute to their high-pass properties.
Collapse
|
28
|
Meredith FL, Rennie KJ. Zonal variations in K+ currents in vestibular crista calyx terminals. J Neurophysiol 2014; 113:264-76. [PMID: 25343781 DOI: 10.1152/jn.00399.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na(+) but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K(+) currents were observed at potentials above -60 mV. K(+) currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K(+) channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K(+) channel blocker 4-aminopyridine (10-50 μM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K(+) conductances may contribute to different firing responses in calyx afferents.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado; and Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
29
|
Lim R, Drury HR, Camp AJ, Tadros MA, Callister RJ, Brichta AM. Preliminary characterization of voltage-activated whole-cell currents in developing human vestibular hair cells and calyx afferent terminals. J Assoc Res Otolaryngol 2014; 15:755-66. [PMID: 24942706 PMCID: PMC4164689 DOI: 10.1007/s10162-014-0471-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/28/2014] [Indexed: 11/28/2022] Open
Abstract
We present preliminary functional data from human vestibular hair cells and primary afferent calyx terminals during fetal development. Whole-cell recordings were obtained from hair cells or calyx terminals in semi-intact cristae prepared from human fetuses aged between 11 and 18 weeks gestation (WG). During early fetal development (11–14 WG), hair cells expressed whole-cell conductances that were qualitatively similar but quantitatively smaller than those observed previously in mature rodent type II hair cells. As development progressed (15–18 WG), peak outward conductances increased in putative type II hair cells but did not reach amplitudes observed in adult human hair cells. Type I hair cells express a specific low-voltage activating conductance, GK,L. A similar current was first observed at 15 WG but remained relatively small, even at 18 WG. The presence of a “collapsing” tail current indicates a maturing type I hair cell phenotype and suggests the presence of a surrounding calyx afferent terminal. We were also able to record from calyx afferent terminals in 15–18 WG cristae. In voltage clamp, these terminals exhibited fast inactivating inward as well as slower outward conductances, and in current clamp, discharged a single action potential during depolarizing steps. Together, these data suggest the major functional characteristics of type I and type II hair cells and calyx terminals are present by 18 WG. Our study also describes a new preparation for the functional investigation of key events that occur during maturation of human vestibular organs.
Collapse
Affiliation(s)
- Rebecca Lim
- The School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, 2308, Australia,
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Afferent nerve fibers in the central zones of vestibular epithelia form calyceal endings around type I hair cells and have phasic response properties that emphasize fast head motions. We investigated how stages from hair-cell transduction to calyceal spiking contribute tuning and timing to central (striolar)-zone afferents of the rat saccular epithelium. In an excised preparation, we deflected individual hair bundles with rigid probes driven with steps and sinusoids (0.5-500 Hz) and recorded whole-cell responses from hair cells and calyces at room temperature and body temperature. In immature hair cells and calyces (postnatal days (P)1-P4), tuning sharpened at each stage. Transducer adaptation and membrane-charging time produced bandpass filtering of the receptor potential with best frequencies of 10-30 Hz and phase leads below 10 Hz. For small stimuli, electrical resonances sharply tuned the hair-cell membrane in the frequency range of 5-40 Hz. The synaptic delay of quantal transmission added a phase lag at frequencies above 10 Hz. The influence of spike thresholds at the calyceal spike initiation stage sharpened tuning and advanced response phase. Two additional mechanisms strongly advanced response phase above 10 Hz when present: (1) maturing (P7-P9) type I hair cells acquired low-voltage-activated channels that shortened the rise time of the receptor potential and (2) some calyces had nonquantal transmission with little synaptic delay. By reducing response time, the identified inner-ear mechanisms (transducer adaptation, low-voltage-activated channels, nonquantal transmission, and spike triggering) may compensate for transmission delays in vestibular reflex pathways and help stabilize posture and gaze during rapid head motions.
Collapse
|
31
|
Cervantes B, Vega R, Limón A, Soto E. Identity, expression and functional role of the sodium-activated potassium current in vestibular ganglion afferent neurons. Neuroscience 2013; 240:163-75. [PMID: 23466807 DOI: 10.1016/j.neuroscience.2013.02.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
Vestibular afferent neurons (VANs) transmit information from the vestibular end organs to the central nuclei. This information is encoded within the firing pattern of these cells and is heavily influenced by the K⁺ conductances expressed by vestibular neurons. In the present study, we describe the presence of a previously unidentified Na⁺-activated K⁺ conductance (KNa) in these cells. We observed that the blocking of Na⁺ channels by tetrodotoxin (TTX) or the substitution of choline for Na⁺ in the extracellular solution during voltage clamp pulses resulted in the reduction of a sustained outward current that was dependent on the Na⁺ current. Furthermore, increases in the intracellular concentration of Na⁺ that were made by blocking the Na⁺/K⁺ ATPase with ouabain increased the amplitude of the outward current, and reduction of the intracellular Cl⁻ concentration reduced the TTX-sensitive outward current. The substitution of Li⁺ for Na⁺ in the extracellular solution significantly reduced the amplitude of the outward current in voltage clamp pulses and decreased the afterhyperpolarization (AHP) of the action potentials in current clamp experiments. These electrophysiological results are consistent with the presence of mRNA transcripts for the KNa subunits Slick and Slack in the vestibular ganglia and in the sensory epithelium, which were detected using reverse-transcription polymerase chain reaction (RT-PCR). These results are also consistent with the immunolabeling of Slick and Slack protein in isolated vestibular neurons, in the vestibular ganglion and in the vestibular sensory epithelium. These results indicate that KNa channels are expressed in VANs and in their terminals. Furthermore, these data indicate that these channels may contribute to the firing pattern of vestibular neurons.
Collapse
Affiliation(s)
- B Cervantes
- Instituto de Fisiología, Universidad Autónoma de Puebla, 14 Sur 6301, Puebla C.P. 72570, Pue., Mexico
| | | | | | | |
Collapse
|
32
|
Mann SE, Johnson M, Meredith FL, Rennie KJ. Inhibition of K+ Currents in Type I Vestibular Hair Cells by Gentamicin and Neomycin. ACTA ACUST UNITED AC 2013; 18:317-26. [DOI: 10.1159/000354056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022]
|
33
|
Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx. Neuroscience 2012; 227:232-46. [PMID: 23032932 DOI: 10.1016/j.neuroscience.2012.09.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023]
Abstract
Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements.
Collapse
|
34
|
Eckrich T, Varakina K, Johnson SL, Franz C, Singer W, Kuhn S, Knipper M, Holley MC, Marcotti W. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells. PLoS One 2012; 7:e45732. [PMID: 23029208 PMCID: PMC3446918 DOI: 10.1371/journal.pone.0045732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/14/2012] [Indexed: 12/19/2022] Open
Abstract
Inner hair cells (IHCs), the primary sensory receptors of the mammalian cochlea, fire spontaneous Ca2+ action potentials before the onset of hearing. Although this firing activity is mainly sustained by a depolarizing L-type (CaV1.3) Ca2+ current (ICa), IHCs also transiently express a large Na+ current (INa). We aimed to investigate the specific contribution of INa to the action potentials, the nature of the channels carrying the current and whether the biophysical properties of INa differ between low- and high-frequency IHCs. We show that INa is highly temperature-dependent and activates at around −60 mV, close to the action potential threshold. Its size was larger in apical than in basal IHCs and between 5% and 20% should be available at around the resting membrane potential (−55 mV/−60 mV). However, in vivo the availability of INa could potentially increase to >60% during inhibitory postsynaptic potential activity, which transiently hyperpolarize IHCs down to as far as −70 mV. When IHCs were held at −60 mV and INa elicited using a simulated action potential as a voltage command, we found that INa contributed to the subthreshold depolarization and upstroke of an action potential. We also found that INa is likely to be carried by the TTX-sensitive channel subunits NaV1.1 and NaV1.6 in both apical and basal IHCs. The results provide insight into how the biophysical properties of INa in mammalian cochlear IHCs could contribute to the spontaneous physiological activity during cochlear maturation in vivo.
Collapse
Affiliation(s)
- Tobias Eckrich
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Ksenya Varakina
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Christoph Franz
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Stephanie Kuhn
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Center, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (MH); (WM)
| |
Collapse
|
35
|
Functional features of trans-differentiated hair cells mediated by Atoh1 reveals a primordial mechanism. J Neurosci 2012; 32:3712-25. [PMID: 22423092 DOI: 10.1523/jneurosci.6093-11.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Evolution has transformed a simple ear with few vestibular maculae into a complex three-dimensional structure consisting of nine distinct endorgans. It is debatable whether the sensory epithelia underwent progressive segregation or emerged from distinct sensory patches. To address these uncertainties we examined the morphological and functional phenotype of trans-differentiated rat hair cells to reveal their primitive or endorgan-specific origins. Additionally, it is uncertain how Atoh1-mediated trans-differentiated hair cells trigger the processes that establish their neural ranking from the vestibulocochlear ganglia. We have demonstrated that the morphology and functional expression of ionic currents in trans-differentiated hair cells resemble those of "ancestral" hair cells, even at the lesser epithelia ridge aspects of the cochlea. The structures of stereociliary bundles of trans-differentiated hair cells were in keeping with cells in the vestibule. Functionally, the transient expression of Na⁺ and I(h) currents initiates and promotes evoked spikes. Additionally, Ca²⁺ current was expressed and underwent developmental changes. These events correlate well with the innervation of ectopic hair cells. New "born" hair cells at the abneural aspects of the cochlea are innervated by spiral ganglion neurons, presumably under the tropic influence of chemoattractants. The disappearance of inward currents coincides well with the attenuation of evoked electrical activity, remarkably recapitulating the development of hair cells. Ectopic hair cells underwent stepwise changes in the magnitude and kinetics of transducer currents. We propose that Atoh1 mediates trans-differentiation of morphological and functional "ancestral" hair cells that are likely to undergo diversification in an endorgan-specific manner.
Collapse
|
36
|
HCN channels expressed in the inner ear are necessary for normal balance function. J Neurosci 2012; 31:16814-25. [PMID: 22090507 DOI: 10.1523/jneurosci.3064-11.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HCN1-4 subunits form Na+/K+-permeable ion channels that are activated by hyperpolarization and carry the current known as I(h). I(h) has been characterized in vestibular hair cells of the inner ear, but its molecular correlates and functional contributions have not been elucidated. We examined Hcn mRNA expression and immunolocalization of HCN protein in the mouse utricle, a mechanosensitive organ that contributes to the sense of balance. We found that HCN1 is the most highly expressed subunit, localized to the basolateral membranes of type I and type II hair cells. We characterized I(h) using the whole-cell, voltage-clamp technique and found the current expressed in 84% of the cells with a mean maximum conductance of 4.4 nS. I(h) was inhibited by ZD7288, cilobradine, and by adenoviral expression of a dominant-negative form of HCN2. To determine which HCN subunits carried I(h), we examined hair cells from mice deficient in Hcn1, 2, or both. I(h) was completely abolished in hair cells of Hcn1⁻/⁻ mice and Hcn1/2⁻/⁻ mice but was similar to wild-type in Hcn2⁻/⁻ mice. To examine the functional contributions of I(h), we recorded hair cell membrane responses to small hyperpolarizing current steps and found that activation of I(h) evoked a 5-10 mV sag depolarization and a subsequent 15-20 mV rebound upon termination. The sag and rebound were nearly abolished in Hcn1-deficient hair cells. We also found that Hcn1-deficient mice had deficits in vestibular-evoked potentials and balance assays. We conclude that HCN1 contributes to vestibular hair cell function and the sense of balance.
Collapse
|
37
|
Eatock RA, Songer JE. Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 2011; 34:501-34. [PMID: 21469959 DOI: 10.1146/annurev-neuro-061010-113710] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vestibular epithelia of the inner ear detect head motions over a wide range of amplitudes and frequencies. In mammals, afferent nerve fibers from central and peripheral zones of vestibular epithelia form distinct populations with different response dynamics and spike timing. Central-zone afferents are large, fast conduits for phasic signals encoded in irregular spike trains. The finer afferents from peripheral zones conduct more slowly and encode more tonic, linear signals in highly regular spike trains. The hair cells are also of two types, I and II, but the two types do not correspond directly to the two afferent populations. Zonal differences in afferent response dynamics may arise at multiple stages, including mechanoelectrical transduction, voltage-gated channels in hair cells and afferents, afferent transmission at calyceal and bouton synapses, and spike generation in regular and irregular afferents. In contrast, zonal differences in spike timing may depend more simply on the selective expression of low-voltage-activated ion channels by irregular afferents.
Collapse
Affiliation(s)
- Ruth Anne Eatock
- Department of Otology and Laryngology, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
38
|
Abstract
Many primary vestibular afferents form large cup-shaped postsynaptic terminals (calyces) that envelope the basolateral surfaces of type I hair cells. The calyceal terminals both respond to glutamate released from ribbon synapses in the type I cells and initiate spikes that propagate to the afferent's central terminals in the brainstem. The combination of synaptic and spike initiation functions in these unique sensory endings distinguishes them from the axonal nodes of central neurons and peripheral nerves, such as the sciatic nerve, which have provided most of our information about nodal specializations. We show that rat vestibular calyces express an unusual mix of voltage-gated Na and K channels and scaffolding, cell adhesion, and extracellular matrix proteins, which may hold the ion channels in place. Protein expression patterns form several microdomains within the calyx membrane: a synaptic domain facing the hair cell, the heminode abutting the first myelinated internode, and one or two intermediate domains. Differences in the expression and localization of proteins between afferent types and zones may contribute to known variations in afferent physiology.
Collapse
|
39
|
Sekerková G, Richter CP, Bartles JR. Roles of the espin actin-bundling proteins in the morphogenesis and stabilization of hair cell stereocilia revealed in CBA/CaJ congenic jerker mice. PLoS Genet 2011; 7:e1002032. [PMID: 21455486 PMCID: PMC3063760 DOI: 10.1371/journal.pgen.1002032] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/02/2011] [Indexed: 01/19/2023] Open
Abstract
Hearing and vestibular function depend on mechanosensory staircase collections of hair cell stereocilia, which are produced from microvillus-like precursors as their parallel actin bundle scaffolds increase in diameter and elongate or shorten. Hair cell stereocilia contain multiple classes of actin-bundling protein, but little is known about what each class contributes. To investigate the roles of the espin class of actin-bundling protein, we used a genetic approach that benefited from a judicious selection of mouse background strain and an examination of the effects of heterozygosity. A congenic jerker mouse line was prepared by repeated backcrossing into the inbred CBA/CaJ strain, which is known for excellent hearing and minimal age-related hearing loss. We compared stereocilia in wild-type CBA/CaJ mice, jerker homozygotes that lack espin proteins owing to a frameshift mutation in the espin gene, and jerker heterozygotes that contain reduced espin levels. The lack of espins radically impaired stereociliary morphogenesis, resulting in stereocilia that were abnormally thin and short, with reduced differential elongation to form a staircase. Mean stereociliary diameter did not increase beyond ∼0.10–0.14 µm, making stereocilia ∼30%–60% thinner than wild type and suggesting that they contained ∼50%–85% fewer actin filaments. These characteristics indicate a requirement for espins in the appositional growth and differential elongation of the stereociliary parallel actin bundle and fit the known biological activities of espins in vitro and in transfected cells. The stereocilia of jerker heterozygotes showed a transient proximal-distal tapering suggestive of haploinsufficiency and a slowing of morphogenesis that revealed previously unrecognized assembly steps and intermediates. The lack of espins also led to a region-dependent degeneration of stereocilia involving shortening and collapse. We conclude that the espin actin-bundling proteins are required for the assembly and stabilization of the stereociliary parallel actin bundle. Stereocilia are the fingerlike projections of inner ear hair cells that detect sound and motion. Stereocilia grow to specific lengths and diameters and form staircase-like arrays. The changes in size appear to be driven by matching alterations in the dimensions of an underlying molecular scaffold consisting of a bundle of actin filaments cross-linked by actin-bundling proteins. To elucidate the roles of the espin actin-bundling proteins in hair cell stereocilia, we carry out an in-depth accounting of stereociliary size and shape in the jerker mutant mouse, which lacks the espin proteins because of a mutation in the espin gene. We examine a new and improved jerker mouse with a genetic background known for high-quality lifelong hearing. We find that, in the absence of espins, stereocilia do not increase in diameter or complete their elongation, but instead bend, shorten, and disappear. Although the specifics vary according to inner ear region, the stereociliary defects are profound and can readily account for the deafness and balance problems of jerker mice and humans with certain espin gene mutations. Even reducing espin levels by one-half leads to temporary defects in stereociliary diameter. Thus, espins play crucial roles in the formation and maintenance of hair cell stereocilia.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - James R. Bartles
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Kalluri R, Xue J, Eatock RA. Ion channels set spike timing regularity of mammalian vestibular afferent neurons. J Neurophysiol 2010; 104:2034-51. [PMID: 20660422 DOI: 10.1152/jn.00396.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the mammalian vestibular nerve, some afferents have highly irregular interspike intervals and others have highly regular intervals. To investigate whether spike timing is determined by the afferents' ion channels, we studied spiking activity in their cell bodies, isolated from the vestibular ganglia of young rats. Whole cell recordings were made with the perforated-patch method. As previously reported, depolarizing current steps revealed distinct firing patterns. Transient neurons fired one or two onset spikes, independent of current level. Sustained neurons were more heterogeneous, firing either trains of spikes or a spike followed by large voltage oscillations. We show that the firing pattern categories are robust, occurring at different temperatures and ages, both in mice and in rats. A difference in average resting potential did not cause the difference in firing patterns, but contributed to differences in afterhyperpolarizations. A low-voltage-activated potassium current (I(LV)) was previously implicated in the transient firing pattern. We show that I(LV) grew from the first to second postnatal week and by the second week comprised Kv1 and Kv7 (KCNQ) components. Blocking I(LV) converted step-evoked firing patterns from transient to sustained. Separated from their normal synaptic inputs, the neurons did not spike spontaneously. To test whether the firing-pattern categories might correspond to afferent populations of different regularity, we injected simulated excitatory postsynaptic currents at pseudorandom intervals. Sustained neurons responded to a given pattern of input with more regular firing than did transient neurons. Pharmacological block of I(LV) made firing more regular. Thus ion channel differences that produce transient and sustained firing patterns in response to depolarizing current steps can also produce irregular and regular spike timing.
Collapse
Affiliation(s)
- Radha Kalluri
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA.
| | | | | |
Collapse
|
41
|
Gittis AH, Moghadam SH, du Lac S. Mechanisms of sustained high firing rates in two classes of vestibular nucleus neurons: differential contributions of resurgent Na, Kv3, and BK currents. J Neurophysiol 2010; 104:1625-34. [PMID: 20592126 DOI: 10.1152/jn.00378.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To fire at high rates, neurons express ionic currents that work together to minimize refractory periods by ensuring that sodium channels are available for activation shortly after each action potential. Vestibular nucleus neurons operate around high baseline firing rates and encode information with bidirectional modulation of firing rates up to several hundred Hz. To determine the mechanisms that enable these neurons to sustain firing at high rates, ionic currents were measured during firing by using the action potential clamp technique in vestibular nucleus neurons acutely dissociated from transgenic mice. Although neurons from the YFP-16 line fire at rates higher than those from the GIN line, both classes of neurons express Kv3 and BK currents as well as both transient and resurgent Na currents. In the fastest firing neurons, Kv3 currents dominated repolarization at all firing rates and minimized Na channel inactivation by rapidly transitioning Na channels from the open to the closed state. In slower firing neurons, BK currents dominated repolarization at the highest firing rates and sodium channel availability was protected by a resurgent blocking mechanism. Quantitative differences in Kv3 current density across neurons and qualitative differences in immunohistochemically detected expression of Kv3 subunits could account for the difference in firing range within and across cell classes. These results demonstrate how divergent firing properties of two neuronal populations arise through the interplay of at least three ionic currents.
Collapse
Affiliation(s)
- Aryn H Gittis
- Salk Institute for Biological Studies, Howard Hughes Medical Institute, Systems Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
42
|
K+ currents in isolated vestibular afferent calyx terminals. J Assoc Res Otolaryngol 2010; 11:463-76. [PMID: 20407915 DOI: 10.1007/s10162-010-0213-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022] Open
Abstract
Vestibular hair cells transduce mechanical displacements of their hair bundles into an electrical receptor potential which modulates transmitter release and subsequent action potential firing in afferent neurons. To probe ionic mechanisms underlying sensory coding in vestibular calyces, we used the whole-cell patch-clamp technique to record action potentials and K(+) currents from afferent calyx terminals isolated from the semicircular canals of Mongolian gerbils. Calyx terminals showed minimal current at the mean zero-current potential (-60 mV), but two types of outward K(+) currents were identified at potentials above -50 mV. The first current was a rapidly activating and inactivating K(+) current that was blocked by 4-aminopyridine (4-AP, 2.5 mM) and BDS-I (up to 250 nM). The time constant for activation of this current decreased with membrane depolarization to a minimum value of approximately 1 ms. The 4-AP-sensitive current showed steady-state inactivation with a half-inactivation of approximately -70 mV. A second, more slowly activating current (activation time constant was 8.5 +/- 0.7 ms at -8 mV) was sensitive to TEA (30 mM). The TEA-sensitive current also showed steady-state inactivation with a half-inactivation of -95.4 +/- 1.4 mV, following 500-ms duration conditioning pulses. A combination of 4-AP and TEA blocked approximately 90% of the total outward current. In current clamp, single Na(+)-dependent action potentials were evoked following hyperpolarization to potentials more negative than the resting potential. 4-AP application increased action potential width, whereas TEA both increased the width and greatly reduced repolarization of the action potential.
Collapse
|
43
|
Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive. J Neurosci 2010; 30:2039-50. [PMID: 20147532 DOI: 10.1523/jneurosci.2385-09.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Principal neurons of the medial superior olive (MSO) compute azimuthal sound location by integrating phase-locked inputs from each ear. While previous experimental and modeling studies have proposed that voltage-gated sodium channels (VGSCs) play an important role in synaptic integration in the MSO, these studies appear at odds with the unusually weak active backpropagation of action potentials into the soma and dendrites. To understand the spatial localization and biophysical properties of VGSCs, we isolated sodium currents in MSO principal neurons in gerbil brainstem slices. Nucleated and cell-attached patches revealed that VGSC density at the soma is comparable to that of many other neuron types, but channel expression is largely absent from the dendrites. Further, while somatic VGSCs activated with conventional voltage dependence (V(1/2) = -30 mV), they exhibited an unusually negative range of steady-state inactivation (V(1/2) = -77 mV), leaving approximately 92% of VGSCs inactivated at the resting potential (approximately -58 mV). In current-clamp experiments, non-inactivated VGSCs were sufficient to amplify subthreshold EPSPs near action potential threshold, counterbalancing the suppression of EPSP peaks by low voltage-activated potassium channels. EPSP amplification was restricted to the perisomatic region of the neuron, and relatively insensitive to preceding inhibition. Finally, computational modeling showed that the exclusion of VGSCs from the dendrites equalizes somatic EPSP amplification across synaptic locations and lowered the threshold for bilateral versus unilateral excitatory synaptic inputs. Together, these findings suggest that the pattern of sodium channel expression in MSO neurons contributes to these neurons' selectivity for coincident binaural inputs.
Collapse
|
44
|
Li GQ, Meredith FL, Rennie KJ. Development of K(+) and Na(+) conductances in rodent postnatal semicircular canal type I hair cells. Am J Physiol Regul Integr Comp Physiol 2009; 298:R351-8. [PMID: 19939976 DOI: 10.1152/ajpregu.00460.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rodent vestibular system is immature at birth. During the first postnatal week, vestibular type I and type II hair cells start to acquire their characteristic morphology and afferent innervation. We have studied postnatal changes in the membrane properties of type I hair cells acutely isolated from the semicircular canals (SCC) of gerbils and rats using whole cell patch clamp and report for the first time developmental changes in ionic conductances in these cells. At postnatal day (P) 5 immature hair cells expressed a delayed rectifier K(+) conductance (G(DR)) which activated at potentials above approximately -50 mV in both species. Hair cells also expressed a transient Na(+) conductance (G(Na)) with a mean half-inactivation of approximately -90 mV. At P6 in rat and P7 in gerbil, a low-voltage activated K(+) conductance (G(K,L)) was first observed and conferred a low-input resistance, typical of adult type I hair cells, on SCC type I hair cells. G(K,L) expression in hair cells increased markedly during the second postnatal week and was present in all rat type I hair cells by P14. In gerbil hair cells, G(K,L) appeared later and was present in all type I hair cells by P19. During the third postnatal week, G(Na) expression declined and was absent by the fourth postnatal week in rat and the sixth postnatal week in gerbils. Understanding the ionic changes associated with hair cell maturation could help elucidate development and regeneration mechanisms in the inner ear.
Collapse
Affiliation(s)
- Gang Q Li
- Department of Otolaryngology, University of Colorado Denver, Aurora, Colorado, USA
| | | | | |
Collapse
|
45
|
Hill AS, Nishino A, Nakajo K, Zhang G, Fineman JR, Selzer ME, Okamura Y, Cooper EC. Ion channel clustering at the axon initial segment and node of Ranvier evolved sequentially in early chordates. PLoS Genet 2008; 4:e1000317. [PMID: 19112491 PMCID: PMC2597720 DOI: 10.1371/journal.pgen.1000317] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/24/2008] [Indexed: 11/27/2022] Open
Abstract
In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin-spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws. The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural signaling, active behavior, and evolutionary success of vertebrates.
Collapse
Affiliation(s)
- Alexis S. Hill
- Penn Epilepsy Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Mahoney Institute of Neurological Sciences, Philadelphia, Pennsylvania, United States of America
| | - Atsuo Nishino
- Laboratory of Developmental Biology, Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koichi Nakajo
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Giuxin Zhang
- Penn Epilepsy Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Mahoney Institute of Neurological Sciences, Philadelphia, Pennsylvania, United States of America
| | - Jaime R. Fineman
- Penn Epilepsy Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Mahoney Institute of Neurological Sciences, Philadelphia, Pennsylvania, United States of America
| | - Michael E. Selzer
- Penn Epilepsy Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Mahoney Institute of Neurological Sciences, Philadelphia, Pennsylvania, United States of America
- Office of Research and Development, US Department of Veterans Affairs, Washington, D.C., United States of America
| | - Yasushi Okamura
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Edward C. Cooper
- Penn Epilepsy Center, Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Mahoney Institute of Neurological Sciences, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
46
|
Eatock RA, Xue J, Kalluri R. Ion channels in mammalian vestibular afferents may set regularity of firing. J Exp Biol 2008; 211:1764-74. [PMID: 18490392 PMCID: PMC3311106 DOI: 10.1242/jeb.017350] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rodent vestibular afferent neurons offer several advantages as a model system for investigating the significance and origins of regularity in neuronal firing interval. Their regularity has a bimodal distribution that defines regular and irregular afferent classes. Factors likely to be involved in setting firing regularity include the morphology and physiology of the afferents' contacts with hair cells, which may influence the averaging of synaptic noise and the afferents' intrinsic electrical properties. In vitro patch clamp studies on the cell bodies of primary vestibular afferents reveal a rich diversity of ion channels, with indications of at least two neuronal populations. Here we suggest that firing patterns of isolated vestibular ganglion somata reflect intrinsic ion channel properties, which in vivo combine with hair cell synaptic drive to produce regular and irregular firing.
Collapse
Affiliation(s)
- Ruth Anne Eatock
- Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
47
|
Development and regeneration of hair cells share common functional features. Proc Natl Acad Sci U S A 2007; 104:19108-13. [PMID: 18025474 DOI: 10.1073/pnas.0705927104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structural phenotype of neural connections in the auditory brainstem is sculpted by spontaneous and stimulus-induced neural activities during development. However, functional and molecular mechanisms of spontaneous action potentials (SAPs) in the developing cochlea are unknown. Additionally, it is unclear how regenerating hair cells establish their neural ranking in the constellation of neurons in the brainstem. We have demonstrated that a transient Ca(2+) current produced by the Ca(v)3.1 channel is expressed early in development to initiate spontaneous Ca(2+) spikes. Ca(v)1.3 currents, typical of mature hair cells, appeared later in development. Moreover, there is a surprising disappearance of the Ca(v)3.1 current that coincides with the attenuation of the transient Ca(2+) current as the electrical properties of hair cells transition to the mature phenotype. Remarkably, this process is recapitulated during hair-cell regeneration, suggesting that the transient expression of Ca(v)3.1 and the ensuing SAPs are signatures of hair cell development and regeneration.
Collapse
|
48
|
Gabashvili IS, Sokolowski BHA, Morton CC, Giersch ABS. Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol 2007; 8:305-28. [PMID: 17541769 PMCID: PMC2538437 DOI: 10.1007/s10162-007-0082-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 04/23/2007] [Indexed: 12/13/2022] Open
Abstract
The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms.
Collapse
|
49
|
Holt JC, Chatlani S, Lysakowski A, Goldberg JM. Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista. J Neurophysiol 2007; 98:1083-101. [PMID: 17596419 PMCID: PMC3397384 DOI: 10.1152/jn.00332.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Intracellular recordings were made from nerve fibers in the posterior ampullary nerve near the neuroepithelium. Calyx-bearing afferents were identified by their distinctive efferent-mediated responses. Such fibers receive inputs from both type I and type II hair cells. Type II inputs are made by synapses on the outer face of the calyx ending and on the boutons of dimorphic fibers. Quantal activity, consisting of brief mEPSPs, is reduced by lowering the external concentration of Ca2+ and blocked by the AMPA-receptor antagonist CNQX. Poisson statistics govern the timing of mEPSPs, which occur at high rates (250-2,500/s) in the absence of mechanical stimulation. Excitation produced by canal-duct indentation can increase mEPSP rates to nearly 5,000/s. As the rate increases, mEPSPs can change from a monophasic depolarization to a biphasic depolarizing-hyperpolarizing sequence, both of whose components are blocked by CNQX. Blockers of voltage-gated currents affect mEPSP size, which is decreased by TTX and is increased by linopirdine. mEPSP size decreases severalfold after impalement. The size decrease, although it may be triggered by the depolarization occurring during impalement, persists even at hyperpolarized membrane potentials. Nonquantal transmission is indicated by shot-noise calculations and by the presence of voltage modulations after quantal activity is abolished pharmacologically. An ultrastructural study shows that inner-face inputs from type I hair cells outnumber outer-face inputs from type II hair cells by an almost 6:1 ratio.
Collapse
Affiliation(s)
- Joseph C Holt
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | |
Collapse
|
50
|
Winter H, Braig C, Zimmermann U, Engel J, Rohbock K, Knipper M. Thyroid hormone receptor alpha1 is a critical regulator for the expression of ion channels during final differentiation of outer hair cells. Histochem Cell Biol 2007; 128:65-75. [PMID: 17520268 DOI: 10.1007/s00418-007-0294-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2007] [Indexed: 11/30/2022]
Abstract
Cochlear outer hair cells (OHCs) terminally differentiate prior to the onset of hearing. During this time period, thyroid hormone (TH) dramatically influences inner ear development. It has been shown recently that TH enhances the expression of the motor protein prestin via liganded TH receptor beta (TRbeta) while in contrast the expression of the potassium channel KCNQ4 is repressed by unliganded TRalpha1. These different mechanisms of TH regulation by TRalpha1 or TRbeta prompted us to analyse other ion channels that are required for the final differentiation of OHCs. We analysed the onset of expression of the Ca(2+) channel Ca(V)1.3, and the K(+) channels SK2 and BK and correlated the results with the regulation via TRalpha1 or TRbeta. The data support the hypothesis that proteins expressed in rodents prior to or briefly after birth like Ca(V)1.3 and prestin are either independent of TH (e.g. Ca(V)1.3) or enhanced through TRbeta (e.g. prestin). In contrast, proteins expressed in rodents later than P6 like KCNQ4 ( approximately P6), SK2 ( approximately P9) and BK ( approximately P11) are repressed through TRalpha1. We hypothesise that the precise regulation of expression of the latter genes requires a critical local TH level to overcome the TRalpha1 repression.
Collapse
MESH Headings
- Animals
- Antithyroid Agents
- Cell Differentiation/physiology
- Cochlea/cytology
- Cochlea/growth & development
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/physiology
- Hypothyroidism/chemically induced
- Hypothyroidism/metabolism
- Immunohistochemistry
- Ion Channels/biosynthesis
- Methimazole
- Mice
- Mice, Knockout
- Models, Statistical
- Rats
- Species Specificity
- Thyroid Hormone Receptors alpha/genetics
- Thyroid Hormone Receptors alpha/physiology
- Thyroid Hormone Receptors beta/genetics
- Thyroid Hormone Receptors beta/physiology
- Thyroid Hormones/blood
- Thyroid Hormones/pharmacology
- Up-Regulation/physiology
- Vestibule, Labyrinth/metabolism
Collapse
Affiliation(s)
- Harald Winter
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Laboratory of Molecular Neurobiology and Cell Biology of the Inner Ear, University of Tübingen, Elfriede-Aulhorn-Strasse 5, 72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|