1
|
Luo W, Egger M, Cruz-Ochoa N, Tse A, Maloveczky G, Tamás B, Lukacsovich D, Seng C, Amrein I, Lukacsovich T, Wolfer D, Földy C. Activation of feedforward wiring in adult hippocampal neurons by the basic-helix-loop-helix transcription factor Ascl4. PNAS NEXUS 2024; 3:pgae174. [PMID: 38711810 PMCID: PMC11071515 DOI: 10.1093/pnasnexus/pgae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.
Collapse
Affiliation(s)
- Wenshu Luo
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Matteo Egger
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Natalia Cruz-Ochoa
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| | - Alice Tse
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Gyula Maloveczky
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Bálint Tamás
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Charlotte Seng
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
| | - Tamás Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
| | - David Wolfer
- Institute of Anatomy, Faculty of Medicine, University of Zürich, Zürich 8057, Switzerland
- Institute of Human Movement Sciences and Sport, D-HEST, ETH Zürich, Zürich 8057, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Zürich 8057, Switzerland
- Adaptive Brain Circuits in Development and Learning (AdaBD), University Research Priority Program (URPP), University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
2
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
3
|
Santos VR, Melo IS, Pacheco ALD, Castro OWD. Life and death in the hippocampus: What's bad? Epilepsy Behav 2021; 121:106595. [PMID: 31759972 DOI: 10.1016/j.yebeh.2019.106595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
Abstract
The hippocampal formation is crucial for the generation and regulation of several brain functions, including memory and learning processes; however, it is vulnerable to neurological disorders, such as epilepsy. Temporal lobe epilepsy (TLE), the most common type of epilepsy, changes the hippocampal circuitry and excitability, under the contribution of both neuronal degeneration and abnormal neurogenesis. Classically, neurodegeneration affects sensitive areas of the hippocampus, such as dentate gyrus (DG) hilus, as well as specific fields of the Ammon's horn, CA3, and CA1. In addition, the proliferation, migration, and abnormal integration of newly generated hippocampal granular cells (GCs) into the brain characterize TLE neurogenesis. Robust studies over the years have intensely discussed the effects of death and life in the hippocampus, though there are still questions to be answered about their possible benefits and risks. Here, we review the impacts of death and life in the hippocampus, discussing its influence on TLE, providing new perspectives or insights for the implementation of new possible therapeutic targets. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Victor Rodrigues Santos
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.
| | - Igor Santana Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | | | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil.
| |
Collapse
|
4
|
Sparks FT, Liao Z, Li W, Grosmark A, Soltesz I, Losonczy A. Hippocampal adult-born granule cells drive network activity in a mouse model of chronic temporal lobe epilepsy. Nat Commun 2020; 11:6138. [PMID: 33262339 PMCID: PMC7708476 DOI: 10.1038/s41467-020-19969-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is characterized by recurrent seizures driven by synchronous neuronal activity. The reorganization of the dentate gyrus (DG) in TLE may create pathological conduction pathways for synchronous discharges in the temporal lobe, though critical microcircuit-level detail is missing from this pathophysiological intuition. In particular, the relative contribution of adult-born (abGC) and mature (mGC) granule cells to epileptiform network events remains unknown. We assess dynamics of abGCs and mGCs during interictal epileptiform discharges (IEDs) in mice with TLE as well as sharp-wave ripples (SPW-Rs) in healthy mice, and find that abGCs and mGCs are desynchronized and differentially recruited by IEDs compared to SPW-Rs. We introduce a neural topic model to explain these observations, and find that epileptic DG networks organize into disjoint, cell-type specific pathological ensembles in which abGCs play an outsized role. Our results characterize identified GC subpopulation dynamics in TLE, and reveal a specific contribution of abGCs to IEDs.
Collapse
Affiliation(s)
- F T Sparks
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Z Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - W Li
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - A Grosmark
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - I Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - A Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- The Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
He J, Russell T, Qiu X, Hao F, Kyle M, Chin L, Zhao LR. The contribution of stem cell factor and granulocyte colony-stimulating factor in reducing neurodegeneration and promoting neurostructure network reorganization after traumatic brain injury. Brain Res 2020; 1746:147000. [PMID: 32579949 DOI: 10.1016/j.brainres.2020.147000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in young adults worldwide. TBI-induced long-term cognitive deficits represent a growing clinical problem. Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are involved in neuroprotection and neuronal plasticity. However, the knowledge concerning reparative efficacy of SCF + G-CSF treatment in post-acute TBI recovery remains incomplete. This study aims to determine the efficacy of SCF + G-CSF on post-acute TBI recovery in young adult mice. The controlled cortical impact model of TBI was used for inducing a severe damage in the motor cortex of the right hemisphere in 8-week-old male C57BL mice. SCF + G-CSF treatment was initiated 3 weeks after induction of TBI. Severe TBI led to persistent motor functional deficits (Rota-Rod test) and impaired spatial learning function (water maze test). SCF + G-CSF treatment significantly improved the severe TBI-impaired spatial learning function 6 weeks after treatment. TBI also caused significant increases of Fluoro-Jade C positive degenerating neurons in bilateral frontal cortex, striatum and hippocampus, and significant reductions in MAP2+ apical dendrites and overgrowth of SMI312+ axons in peri-TBI cavity frontal cortex and in the ipsilateral hippocampal CA1 at 24 weeks post-TBI. SCF + G-CSF treatment significantly reduced TBI-induced neurodegeneration in the contralateral frontal cortex and hippocampal CA1, increased MAP2+ apical dendrites in the peri-TBI cavity frontal cortex, and prevented TBI-induced axonal overgrowth in both the peri-TBI cavity frontal cortex and ipsilateral hippocampal CA1.These findings reveal a novel pathology of axonal overgrowth after severe TBI and demonstrate a therapeutic potential of SCF + G-CSF in ameliorating severe TBI-induced long-term neuronal pathology, neurostructural network malformation, and impairments in spatial learning.
Collapse
Affiliation(s)
- Junchi He
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Thomas Russell
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xuecheng Qiu
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Fei Hao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lawrence Chin
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
6
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
7
|
Chernigovskaya EV, Korotkov AA, Dorofeeva NA, Gorbacheva EL, Kulikov AA, Glazova MV. Delayed audiogenic seizure development in a genetic rat model is associated with overactivation of ERK1/2 and disturbances in glutamatergic signaling. Epilepsy Behav 2019; 99:106494. [PMID: 31493733 DOI: 10.1016/j.yebeh.2019.106494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 02/05/2023]
Abstract
Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizure are characterized by age-dependent expression of audiogenic seizures (AGS). It is known that the critical period of enhanced seizure susceptibility in rodents occurs at 2nd-3rd weeks of postnatal development. However, KM rats do not express AGS at this time-point, but start to demonstrate a stable AGS only after the age of 3 months. We hypothesized that this delay in AGS susceptibility in KM rats is genetically determined and may depend on some alterations in the development of the hippocampal glutamatergic system during the early postnatal period. We analyzed the expression and activity of seizure-related proteins, such as vesicular glutamate transporter 2 (VGLUT2), extracellular signal-regulated kinases 1 and 2 (ERK1/2), synapsin I, and NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor (NR2B) in the hippocampus of KM rats during postnatal development. A significantly higher activity of ERK1/2 in KM rats was observed at 14th, 30th, and 60th days of postnatal development (P14, P30, P60) in comparison with control Wistar rats of the corresponding ages, while in adult (P120) KM rats it was at the same level with Wistar rats. Despite the increased activity of ERK1/2 at P14 and P30, the phosphorylation of synapsin I at Ser62/67 was significantly lower in the hippocampus of KM rats than in Wistar rats of the same ages; however, at P60 and P120, the phosphorylation of synapsin I was enhanced. Our data also revealed the increase of VGLUT2 and NR2B expression at P14, which dramatically decreased at the later stages. Our data indicate that a genetically determined increase in ERK1/2 kinase activity during postnatal ontogenesis in KM rats may be associated with the disturbances in synthesis and activity of the proteins, which are responsible for glutamatergic transmission in the KM rat hippocampus during the seizure susceptibility development.
Collapse
Affiliation(s)
- Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Anatoly A Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Nadezhda A Dorofeeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Evgenia L Gorbacheva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia.
| |
Collapse
|
8
|
Zhou QG, Nemes AD, Lee D, Ro EJ, Zhang J, Nowacki AS, Dymecki SM, Najm IM, Suh H. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J Clin Invest 2018; 129:310-323. [PMID: 30507615 DOI: 10.1172/jci95731] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus-mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus-mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated-specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | | | - Daehoon Lee
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eun Jeoung Ro
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Zhang
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, and
| | - Hoonkyo Suh
- Department of Neurosciences, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Danzer SC. Contributions of Adult-Generated Granule Cells to Hippocampal Pathology in Temporal Lobe Epilepsy: A Neuronal Bestiary. Brain Plast 2018; 3:169-181. [PMID: 30151341 PMCID: PMC6091048 DOI: 10.3233/bpl-170056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hippocampal neurogenesis continues throughout life in mammals – including humans. During the development of temporal lobe epilepsy, newly-generated hippocampal granule cells integrate abnormally into the brain. Abnormalities include ectopic localization of newborn cells, de novo formation of abnormal basal dendrites, and disruptions of the apical dendritic tree. Changes in granule cell position and dendritic structure fundamentally alter the types of inputs these cells are able to receive, as well as the relative proportions of remaining inputs. Dendritic abnormalities also create new pathways for recurrent excitation in the hippocampus. These abnormalities are hypothesized to contribute to the development of epilepsy, and may underlie cognitive disorders associated with the disease as well. To test this hypothesis, investigators have used pharmacological and genetic strategies in animal models to alter neurogenesis rates, or ablate the newborn cells outright. While findings are mixed and many unanswered questions remain, numerous studies now demonstrate that ablating newborn granule cells can have disease modifying effects in epilepsy. Taken together, findings provide a strong rationale for continued work to elucidate the role of newborn granule cells in epilepsy: both to understand basic mechanisms underlying the disease, and as a potential novel therapy for epilepsy.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Upadhya D, Hattiangady B, Shetty GA, Zanirati G, Kodali M, Shetty AK. Neural Stem Cell or Human Induced Pluripotent Stem Cell-Derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2016; 38:2D.7.1-2D.7.47. [PMID: 27532817 PMCID: PMC5313261 DOI: 10.1002/cpsc.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Dinesh Upadhya
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Geetha A Shetty
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Gabriele Zanirati
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M University Health Science Center College of Medicine, Temple, Texas
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, Texas
| |
Collapse
|
11
|
Althaus AL, Zhang H, Parent JM. Axonal plasticity of age-defined dentate granule cells in a rat model of mesial temporal lobe epilepsy. Neurobiol Dis 2015; 86:187-96. [PMID: 26644085 DOI: 10.1016/j.nbd.2015.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
Dentate granule cell (DGC) mossy fiber sprouting (MFS) in mesial temporal lobe epilepsy (mTLE) is thought to underlie the creation of aberrant circuitry which promotes the generation or spread of spontaneous seizure activity. Understanding the extent to which populations of DGCs participate in this circuitry could help determine how it develops and potentially identify therapeutic targets for regulating aberrant network activity. In this study, we investigated how DGC birthdate influences participation in MFS and other aspects of axonal plasticity using the rat pilocarpine-induced status epilepticus (SE) model of mTLE. We injected a retrovirus (RV) carrying a synaptophysin-yellow fluorescent protein (syp-YFP) fusion construct to birthdate DGCs and brightly label their axon terminals, and compared DGCs born during the neonatal period with those generated in adulthood. We found that both neonatal and adult-born DGC populations participate, to a similar extent, in SE-induced MFS within the dentate gyrus inner molecular layer (IML). SE did not alter hilar MF bouton density compared to sham-treated controls, but adult-born DGC bouton density was greater in the IML than in the hilus after SE. Interestingly, we also observed MF axonal reorganization in area CA2 in epileptic rats, and these changes arose from DGCs generated both neonatally and in adulthood. These data indicate that both neonatal and adult-generated DGCs contribute to axonal reorganization in the rat pilocarpine mTLE model, and indicate a more complex relationship between DGC age and participation in seizure-related plasticity than was previously thought.
Collapse
Affiliation(s)
- A L Althaus
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, United States
| | - H Zhang
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, United States; VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - J M Parent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States; Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI, United States; VA Ann Arbor Healthcare System, Ann Arbor, MI, United States.
| |
Collapse
|
12
|
Singh SP, LaSarge CL, An A, McAuliffe JJ, Danzer SC. Clonal Analysis of Newborn Hippocampal Dentate Granule Cell Proliferation and Development in Temporal Lobe Epilepsy. eNeuro 2015; 2:ENEURO.0087-15.2015. [PMID: 26756038 PMCID: PMC4706641 DOI: 10.1523/eneuro.0087-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/21/2022] Open
Abstract
Hippocampal dentate granule cells are among the few neuronal cell types generated throughout adult life in mammals. In the normal brain, new granule cells are generated from progenitors in the subgranular zone and integrate in a typical fashion. During the development of epilepsy, granule cell integration is profoundly altered. The new cells migrate to ectopic locations and develop misoriented "basal" dendrites. Although it has been established that these abnormal cells are newly generated, it is not known whether they arise ubiquitously throughout the progenitor cell pool or are derived from a smaller number of "bad actor" progenitors. To explore this question, we conducted a clonal analysis study in mice expressing the Brainbow fluorescent protein reporter construct in dentate granule cell progenitors. Mice were examined 2 months after pilocarpine-induced status epilepticus, a treatment that leads to the development of epilepsy. Brain sections were rendered translucent so that entire hippocampi could be reconstructed and all fluorescently labeled cells identified. Our findings reveal that a small number of progenitors produce the majority of ectopic cells following status epilepticus, indicating that either the affected progenitors or their local microenvironments have become pathological. By contrast, granule cells with "basal" dendrites were equally distributed among clonal groups. This indicates that these progenitors can produce normal cells and suggests that global factors sporadically disrupt the dendritic development of some new cells. Together, these findings strongly predict that distinct mechanisms regulate different aspects of granule cell pathology in epilepsy.
Collapse
Affiliation(s)
- Shatrunjai P. Singh
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229
- Molecular and Developmental Biology Program, University of Cincinnati, Cincinnati, Ohio 45237
| | - Candi L. LaSarge
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229
| | - Amen An
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229
- Department of Neuroscience, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio 45221
| | - John J. McAuliffe
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229
- Molecular and Developmental Biology Program, University of Cincinnati, Cincinnati, Ohio 45237
- Departments of Anesthesia and Pediatrics, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
13
|
Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 2015; 6:6606. [PMID: 25808087 PMCID: PMC4375780 DOI: 10.1038/ncomms7606] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022] Open
Abstract
Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult. Aberrant hippocampal neurogenesis often occurs after acute seizures that produce epilepsy and cognitive impairment but the role of neurogenesis in the development of epilepsy is unclear. Here the authors suppress adult neurogenesis in mice preceding seizures and show that it reduces subsequent chronic seizure frequency and epilepsy-associated cognitive decline.
Collapse
|
14
|
Zhang W, Thamattoor AK, LeRoy C, Buckmaster PS. Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy. Hippocampus 2014; 25:594-604. [PMID: 25488607 DOI: 10.1002/hipo.22396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 11/07/2022]
Abstract
Numerous hypotheses of temporal lobe epileptogenesis have been proposed, and several involve hippocampal mossy cells. Building on previous hypotheses we sought to test the possibility that after epileptogenic injuries surviving mossy cells develop into super-connected seizure-generating hub cells. If so, they might require more cellular machinery and consequently have larger somata, elongate their dendrites to receive more synaptic input, and display higher frequencies of miniature excitatory synaptic currents (mEPSCs). To test these possibilities pilocarpine-treated mice were evaluated using GluR2-immunocytochemistry, whole-cell recording, and biocytin-labeling. Epileptic pilocarpine-treated mice displayed substantial loss of GluR2-positive hilar neurons. Somata of surviving neurons were 1.4-times larger than in controls. Biocytin-labeled mossy cells also were larger in epileptic mice, but dendritic length per cell was not significantly different. The average frequency of mEPSCs of mossy cells recorded in the presence of tetrodotoxin and bicuculline was 3.2-times higher in epileptic pilocarpine-treated mice as compared to controls. Other parameters of mEPSCs were similar in both groups. Average input resistance of mossy cells in epileptic mice was reduced to 63% of controls, which is consistent with larger somata and would tend to make surviving mossy cells less excitable. Other intrinsic physiological characteristics examined were similar in both groups. Increased excitatory synaptic input is consistent with the hypothesis that surviving mossy cells develop into aberrantly super-connected seizure-generating hub cells, and soma hypertrophy is indirectly consistent with the possibility of axon sprouting. However, no obvious evidence of hyperexcitable intrinsic physiology was found. Furthermore, similar hypertrophy and hyper-connectivity has been reported for other neuron types in the dentate gyrus, suggesting mossy cells are not unique in this regard. Thus, findings of the present study reveal epilepsy-related changes in mossy cell anatomy and synaptic input but do not strongly support the hypothesis that mossy cells develop into seizure-generating hub cells.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | | | | |
Collapse
|
15
|
Yamawaki R, Thind K, Buckmaster PS. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. J Comp Neurol 2014; 523:281-97. [PMID: 25234294 DOI: 10.1002/cne.23681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022]
Abstract
Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so, other aberrant positive-feedback networks might develop. To test this possibility stereological electron microscopy was used to estimate the numbers of excitatory synapses in the inner molecular layer per hippocampus in pilocarpine-treated control mice, in mice 5 days after pilocarpine-induced status epilepticus, and after status epilepticus and daily treatment beginning 24 hours later with rapamycin or vehicle for 2 months. The optical fractionator method was used to estimate numbers of granule cells in Nissl-stained sections so that numbers of excitatory synapses in the inner molecular layer per granule cell could be calculated. Control mice had an average of 2,280 asymmetric synapses in the inner molecular layer per granule cell, which was reduced to 63% of controls 5 days after status epilepticus, recovered to 93% of controls in vehicle-treated mice 2 months after status epilepticus, but remained at only 63% of controls in rapamycin-treated mice. These findings reveal that rapamycin prevented excitatory axons from synapsing with proximal dendrites of granule cells and raise questions about the recurrent excitation hypothesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ruth Yamawaki
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305
| | | | | |
Collapse
|
16
|
Tejada J, Roque AC. Computational models of dentate gyrus with epilepsy-induced morphological alterations in granule cells. Epilepsy Behav 2014; 38:63-70. [PMID: 24613760 DOI: 10.1016/j.yebeh.2014.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/24/2023]
Abstract
Temporal lobe epilepsy provokes a number of different morphological alterations in granule cells of the hippocampus dentate gyrus. These alterations may be associated with the hyperactivity and hypersynchrony found in the epileptic dentate gyrus, and their study requires the use of different kinds of approaches including computational modeling. Conductance-based models of both normal and epilepsy-induced morphologically altered granule cells have been used in the construction of network models of dentate gyrus to study the effects of these alterations on epilepsy. Here, we review these models and discuss their contributions to the understanding of the association between alterations in neuronal morphology and epilepsy in the dentate gyrus.
Collapse
Affiliation(s)
- Julian Tejada
- Departamento de Física, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-901, Brazil; Departamento de Psicologia, DPS, Universidade Federal de Sergipe, SE 49100-000, Brazil.
| | - Antonio C Roque
- Departamento de Física, FFCLRP, Universidade de Sao Paulo, Ribeirao Preto, SP 14040-901, Brazil
| |
Collapse
|
17
|
Bielefeld P, van Vliet EA, Gorter JA, Lucassen PJ, Fitzsimons CP. Different subsets of newborn granule cells: a possible role in epileptogenesis? Eur J Neurosci 2013; 39:1-11. [DOI: 10.1111/ejn.12387] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Pascal Bielefeld
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Erwin A. van Vliet
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
- Epilepsy Institute in The Netherlands Foundation (Stichting Epilepsie Instellingen Nederland SEIN); Heemstede The Netherlands
| | - Jan A. Gorter
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Paul J. Lucassen
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Center for Neuroscience; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
18
|
Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J Neurosci 2013; 33:8926-36. [PMID: 23699504 DOI: 10.1523/jneurosci.5161-12.2013] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of abnormally integrated, adult-born, hippocampal dentate granule cells (DGCs) is hypothesized to contribute to the development of temporal lobe epilepsy (TLE). DGCs have long been implicated in TLE, because they regulate excitatory signaling through the hippocampus and exhibit neuroplastic changes during epileptogenesis. Furthermore, DGCs are unusual in that they are continually generated throughout life, with aberrant integration of new cells underlying the majority of restructuring in the dentate during epileptogenesis. Although it is known that these abnormal networks promote abnormal neuronal firing and hyperexcitability, it has yet to be established whether they directly contribute to seizure generation. If abnormal DGCs do contribute, a reasonable prediction would be that the severity of epilepsy will be correlated with the number or load of abnormal DGCs. To test this prediction, we used a conditional, inducible transgenic mouse model to fate map adult-generated DGCs. Mossy cell loss, also implicated in epileptogenesis, was assessed as well. Transgenic mice rendered epileptic using the pilocarpine-status epilepticus model of epilepsy were monitored continuously by video/EEG for 4 weeks to determine seizure frequency and severity. Positive correlations were found between seizure frequency and (1) the percentage of hilar ectopic DGCs, (2) the amount of mossy fiber sprouting, and (3) the extent of mossy cell death. In addition, mossy fiber sprouting and mossy cell death were correlated with seizure severity. These studies provide correlative evidence in support of the hypothesis that abnormal DGCs contribute to the development of TLE and also support a role for mossy cell loss.
Collapse
|
19
|
Licko T, Seeger N, Zellinger C, Russmann V, Matagne A, Potschka H. Lacosamide treatment following status epilepticus attenuates neuronal cell loss and alterations in hippocampal neurogenesis in a rat electrical status epilepticus model. Epilepsia 2013; 54:1176-85. [PMID: 23614482 DOI: 10.1111/epi.12196] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE The antiepileptic drug, lacosamide, exerts its therapeutic activity by enhancing slow inactivation of voltage-gated sodium channels. Because putative preventive or disease-modifying effects of drugs may affect epileptogenesis, intrinsic severity, and comorbidities, it is of particular interest to assess the effect of lacosamide on the development of epilepsy and associated cellular alterations. METHODS The effect of lacosamide was evaluated in an electrical rat status epilepticus (SE) model with a 24-day treatment phase following induction of SE. The impact of lacosamide on the development of spontaneous seizures based on continuous video-electroencephalography (EEG) monitoring, as well as the impact on neuronal cell loss and alterations in hippocampal neurogenesis, was assessed. KEY FINDINGS Neither low-dose nor high-dose lacosamide affected the development of spontaneous seizures. A dose-dependent neuroprotective effect of lacosamide with significant reduction of neuronal cell loss was observed in the hippocampal CA1 region, as well as in the piriform cortex. In addition, lacosamide attenuated the impact of SE on the rate of hippocampal cell neurogenesis. Moreover, lacosamide prevented a significant rise in the number of persistent basal dendrites. SIGNIFICANCE Our data do not support an antiepileptogenic effect of lacosamide. However, because lacosamide reduced SE-associated cellular alterations, it would be of interest to determine whether these effects indicate a putative disease-modifying effect of lacosamide in future studies.
Collapse
Affiliation(s)
- Thomas Licko
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Wang SQ, Li XJ, Zhou S, Sun DX, Wang H, Cheng PF, Ma XR, Liu L, Liu JX, Wang FF, Liang YF, Wu JM. Intervention effects of ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of neurotrophin-4 and N-cadherin. PLoS One 2013; 8:e61687. [PMID: 23637882 PMCID: PMC3634853 DOI: 10.1371/journal.pone.0061687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/13/2013] [Indexed: 01/15/2023] Open
Abstract
Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression.
Collapse
Affiliation(s)
- Shu-Qiu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Children Neural Rehabilitation Laboratory of Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- * E-mail:
| | - Xiao-Jie Li
- School of Rehabilitation Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Children Neural Rehabilitation Laboratory of Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Shaobo Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Department of Life Science, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Di-Xiang Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Hui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Peng-Fei Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Xiao-Ru Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Lei Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Jun-Xing Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Fang-Fang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Yan-Feng Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Jia-Mei Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| |
Collapse
|
21
|
Runaway dendrites: blame the older siblings. Epilepsy Curr 2013; 12:222-4. [PMID: 23447717 DOI: 10.5698/1535-7511-12.6.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Computational models of epilepsy. Seizure 2012; 21:748-59. [DOI: 10.1016/j.seizure.2012.08.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 08/29/2012] [Accepted: 08/29/2012] [Indexed: 11/23/2022] Open
|
23
|
Schneider CJ, Bezaire M, Soltesz I. Toward a full-scale computational model of the rat dentate gyrus. Front Neural Circuits 2012; 6:83. [PMID: 23162433 PMCID: PMC3499761 DOI: 10.3389/fncir.2012.00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/27/2012] [Indexed: 11/13/2022] Open
Abstract
Recent advances in parallel computing, including the creation of the parallel version of the NEURON simulation environment, have allowed for a previously unattainable level of complexity and detail in neural network models. Previously, we published a functional NEURON model of the rat dentate gyrus with over 50,000 biophysically realistic, multicompartmental neurons, but network simulations could only utilize a single processor. By converting the model to take advantage of parallel NEURON, we are now able to utilize greater computational resources and are able to simulate the full-scale dentate gyrus, containing over a million neurons. This has eliminated the previous necessity for scaling adjustments and allowed for a more direct comparison to experimental techniques and results. The translation to parallel computing has provided a superlinear speedup of computation time and dramatically increased the overall computer memory available to the model. The incorporation of additional computational resources has allowed for more detail and elements to be included in the model, bringing the model closer to a more complete and accurate representation of the biological dentate gyrus. As an example of a major step toward an increasingly accurate representation of the biological dentate gyrus, we discuss the incorporation of realistic granule cell dendrites into the model. Our previous model contained simplified, two-dimensional dendritic morphologies that were identical for neurons of the same class. Using the software tools L-Neuron and L-Measure, we are able to introduce cell-to-cell variability by generating detailed, three-dimensional granule cell morphologies that are based on biological reconstructions. Through these and other improvements, we aim to construct a more complete full-scale model of the rat dentate gyrus, to provide a better tool to delineate the functional role of cell types within the dentate gyrus and their pathological changes observed in epilepsy.
Collapse
Affiliation(s)
- Calvin J Schneider
- Department of Anatomy and Neurobiology, University of California Irvine Irvine, CA, USA
| | | | | |
Collapse
|
24
|
Cell-autonomous inactivation of the reelin pathway impairs adult neurogenesis in the hippocampus. J Neurosci 2012; 32:12051-65. [PMID: 22933789 DOI: 10.1523/jneurosci.1857-12.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis is thought to be essential for learning and memory, and has been implicated in the pathogenesis of several disorders. Although recent studies have identified key factors regulating neuroprogenitor proliferation in the adult hippocampus, the mechanisms that control the migration and integration of adult-born neurons into circuits are largely unknown. Reelin is an extracellular matrix protein that is vital for neuronal development. Activation of the Reelin cascade leads to phosphorylation of Disabled-1, an adaptor protein required for Reelin signaling. Here we used transgenic mouse and retroviral reporters along with Reelin signaling gain-of-function and loss-of-function studies to show that the Reelin pathway regulates migration and dendritic development of adult-generated hippocampal neurons. Whereas overexpression of Reelin accelerated dendritic maturation, inactivation of the Reelin signaling pathway specifically in adult neuroprogenitor cells resulted in aberrant migration, decreased dendrite development, formation of ectopic dendrites in the hilus, and the establishment of aberrant circuits. Our findings support a cell-autonomous and critical role for the Reelin pathway in regulating dendritic development and the integration of adult-generated granule cells and point to this pathway as a key regulator of adult neurogenesis. Moreover, our data reveal a novel role of the Reelin cascade in adult brain function with potential implications for the pathogenesis of several neurological and psychiatric disorders.
Collapse
|
25
|
Houser CR, Zhang N, Peng Z, Huang CS, Cetina Y. Neuroanatomical clues to altered neuronal activity in epilepsy: from ultrastructure to signaling pathways of dentate granule cells. Epilepsia 2012; 53 Suppl 1:67-77. [PMID: 22612811 DOI: 10.1111/j.1528-1167.2012.03477.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dynamic aspects of epilepsy, in which seizures occur sporadically and are interspersed with periods of relatively normal brain function, present special challenges for neuroanatomical studies. Although numerous morphologic changes can be identified during the chronic period, the relationship of many of these changes to seizure generation and propagation remains unclear. Mossy fiber sprouting is an example of a frequently observed morphologic change for which a functional role in epilepsy continues to be debated. This review focuses on neuroanatomically identified changes that would support high levels of activity in reorganized mossy fibers and potentially associated granule cell activation. Early ultrastructural studies of reorganized mossy fiber terminals in human temporal lobe epilepsy tissue have identified morphologic substrates for highly efficacious excitatory connections among granule cells. If similar connections in animal models contribute to seizure activity, activation of granule cells would be expected. Increased labeling with two activity-related markers, Fos and phosphorylated extracellular signal-regulated kinase, has suggested increased activity of dentate granule cells at the time of spontaneous seizures in a mouse model of epilepsy. However, neuroanatomical support for a direct link between activation of reorganized mossy fiber terminals and increased granule cell activity remains elusive. As novel activity-related markers are developed, it may yet be possible to demonstrate such functional links and allow mapping of seizure activity throughout the brain. Relating patterns of neuronal activity during seizures to the underlying morphologic changes could provide important new insights into the basic mechanisms of epilepsy and seizure generation.
Collapse
Affiliation(s)
- Carolyn R Houser
- Department of Neurobiology, David Geffen School of Medicine at the University of California-Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095-1763, U.S.A.
| | | | | | | | | |
Collapse
|
26
|
Buckmaster PS. Mossy cell dendritic structure quantified and compared with other hippocampal neurons labeled in rats in vivo. Epilepsia 2012; 53 Suppl 1:9-17. [PMID: 22612804 DOI: 10.1111/j.1528-1167.2012.03470.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mossy cells are likely to contribute to normal hippocampal function and to the pathogenesis of neurologic disorders that involve the hippocampus, including epilepsy. Mossy cells are the least well-characterized excitatory neurons in the hippocampus. Their somatic and dendritic morphology has been described qualitatively but not quantitatively. In the present study rat mossy cells were labeled intracellularly with biocytin in vivo. Somatic and dendritic structure was reconstructed three-dimensionally. For comparison, granule cells, CA3 pyramidal cells, and CA1 pyramidal cells were labeled and analyzed using the same approach. Among the four types of hippocampal neurons, granule cells had the smallest somata, fewest primary dendrites and dendritic branches, and shortest total dendritic length. CA1 pyramidal cells had the most dendritic branches and longest total dendritic length. Mossy cells and CA3 pyramidal cells both had large somata and similar total dendritic lengths. However, mossy cell dendrites branched less than CA3 pyramidal cells, especially close to the soma. These findings suggest that mossy cells have dendritic features that are not identical to any other type of hippocampal neuron. Therefore, electrotonic properties that depend on soma-dendritic structure are likely to be distinct in mossy cells compared to other neurons.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Department of Comparative Medicine, Stanford University,300 Pasteur Drive, Stanford, CA 94305-5342, U.S.A.
| |
Collapse
|
27
|
Murphy BL, Hofacer RD, Faulkner CN, Loepke AW, Danzer SC. Abnormalities of granule cell dendritic structure are a prominent feature of the intrahippocampal kainic acid model of epilepsy despite reduced postinjury neurogenesis. Epilepsia 2012; 53:908-21. [PMID: 22533643 DOI: 10.1111/j.1528-1167.2012.03463.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Aberrant plastic changes among adult-generated hippocampal dentate granule cells are hypothesized to contribute to the development of temporal lobe epilepsy. Changes include formation of basal dendrites projecting into the dentate hilus. Innervation of these processes by granule cell mossy fiber axons leads to the creation of recurrent excitatory circuits within the dentate. The destabilizing effect of these recurrent circuits may contribute to hyperexcitability and seizures. Although basal dendrites have been identified in status epilepticus models of epilepsy associated with increased neurogenesis, we do not know whether similar changes are present in the intrahippocampal kainic acid model of epilepsy, which is associated with reduced neurogenesis. METHODS In the present study, we used Thy1-YFP-expressing transgenic mice to determine whether hippocampal dentate granule cells develop hilar-projecting basal dendrites in the intrahippocampal kainic acid model. Brain sections were examined 2 weeks after treatment. Tissue was also examined using ZnT-3 immunostaining for granule cell mossy fiber terminals to assess recurrent connectivity. Adult neurogenesis was assessed using the proliferative marker Ki-67 and the immature granule cell marker calretinin. KEY FINDINGS Significant numbers of cells with basal dendrites were found in this model, but their structure was distinct from basal dendrites seen in other epilepsy models, often ending in complex tufts of short branches and spines. Even more unusual, a subset of cells with basal dendrites had an inverted appearance; they completely lacked apical dendrites. Spines on basal dendrites were found to be apposed to ZnT-3 immunoreactive puncta, suggestive of recurrent mossy fiber input. Finally, YFP-expressing abnormal granule cells did not colocalize Ki-67 or calretinin, indicating that these cells were more than a few weeks old, but were found almost exclusively in proximity to the neurogenic subgranular zone, where the youngest granule cells are located. SIGNIFICANCE Recent studies have demonstrated in other models of epilepsy that dentate pathology develops following the aberrant integration of immature, adult-generated granule cells. Given these findings, one might predict that the intrahippocampal kainic acid model of epilepsy, which is associated with a dramatic reduction in adult neurogenesis, would not exhibit these changes. Herein we demonstrate that hilar basal dendrites are a common feature of this model, with the abnormal cells likely resulting from the disruption of juvenile granule cell born in the weeks before the insult. These studies demonstrate that postinjury neurogenesis is not required for the accumulation of large numbers of abnormal granule cells.
Collapse
Affiliation(s)
- Brian L Murphy
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| | | | | | | | | |
Collapse
|
28
|
Jiang M, Zhu J, Liu Y, Yang M, Tian C, Jiang S, Wang Y, Guo H, Wang K, Shu Y. Enhancement of asynchronous release from fast-spiking interneuron in human and rat epileptic neocortex. PLoS Biol 2012; 10:e1001324. [PMID: 22589699 PMCID: PMC3348166 DOI: 10.1371/journal.pbio.1001324] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/27/2012] [Indexed: 11/19/2022] Open
Abstract
Down-regulation of GABAergic inhibition may result in the generation of epileptiform activities. Besides spike-triggered synchronous GABA release, changes in asynchronous release (AR) following high-frequency discharges may further regulate epileptiform activities. In brain slices obtained from surgically removed human neocortical tissues of patients with intractable epilepsy and brain tumor, we found that AR occurred at GABAergic output synapses of fast-spiking (FS) neurons and its strength depended on the type of connections, with FS autapses showing the strongest AR. In addition, we found that AR depended on residual Ca²⁺ at presynaptic terminals but was independent of postsynaptic firing. Furthermore, AR at FS autapses was markedly elevated in human epileptic tissue as compared to non-epileptic tissue. In a rat model of epilepsy, we found similar elevation of AR at both FS autapses and synapses onto excitatory neurons. Further experiments and analysis showed that AR elevation in epileptic tissue may result from an increase in action potential amplitude in the FS neurons and elevation of residual Ca²⁺ concentration. Together, these results revealed that GABAergic AR occurred at both human and rat neocortex, and its elevation in epileptic tissue may contribute to the regulation of epileptiform activities.
Collapse
Affiliation(s)
- Man Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaping Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingpo Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cuiping Tian
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Guo
- Department of Neurosurgery, Shanghai Quyang Hospital, Tongji University, Shanghai, China
| | - Kaiyan Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yousheng Shu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
29
|
Hattiangady B, Shetty AK. Neural stem cell grafting in an animal model of chronic temporal lobe epilepsy. ACTA ACUST UNITED AC 2012; Chapter 2:Unit2D.7. [PMID: 21913169 DOI: 10.1002/9780470151808.sc02d07s18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neural stem cell (NSC) transplantation into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts ∼30% of mesial temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs). However, to provide a comprehensive methodology involved in testing the efficacy of transplantation of NSCs in a rat model of chronic TLE, NSCs derived from the embryonic medial ganglionic eminence (MGE) are taken as an example in this unit. The topics comprise description of the required materials, reagents and equipment, and protocols for expanding MGE-NSCs in culture, generating chronically epileptic rats, the intrahippocampal grafting, post-grafting evaluation of the effects of NSC grafts on spontaneous recurrent seizures and cognitive impairments, analyses of the yield and the fate of graft-derived cells, and the effects of NSC grafts on the host hippocampus.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A&M Health Science Center Temple, TX, USA
| | | |
Collapse
|
30
|
Danzer SC. Depression, stress, epilepsy and adult neurogenesis. Exp Neurol 2012; 233:22-32. [PMID: 21684275 PMCID: PMC3199026 DOI: 10.1016/j.expneurol.2011.05.023] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 05/12/2011] [Accepted: 05/28/2011] [Indexed: 12/16/2022]
Abstract
Epilepsy and depression share an unusually high coincidence suggestive of a common etiology. Disrupted production of adult-born hippocampal granule cells in both disorders may contribute to this high coincidence. Chronic stress and depression are associated with decreased granule cell neurogenesis. Epilepsy is associated with increased production - but aberrant integration - of new cells early in the disease and decreased production late in the disease. In both cases, the literature suggests these changes in neurogenesis play important roles in their respective diseases. Aberrant integration of adult-generated cells during the development of epilepsy may impair the ability of the dentate gyrus to prevent excess excitatory activity from reaching hippocampal pyramidal cells, thereby promoting seizures. Effective treatment of a subset of depressive symptoms, on the other hand, may require increased granule cell neurogenesis, indicating that adult-generated granule cells can modulate mood and affect. Given the robust changes in adult neurogenesis evident in both disorders, competing effects on brain structure are likely. Changes in relative risk, disease course or response to treatment seem probable, but complex and changing patterns of neurogenesis in both conditions will require sophisticated experimental designs to test these ideas. Despite the challenges, this area of research is critical for understanding and improving treatment for patients suffering from these disorders.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
31
|
Ono T, Galanopoulou AS. Epilepsy and epileptic syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:99-113. [PMID: 22411237 DOI: 10.1007/978-1-4614-0653-2_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epilepsy is one of the most common neurological disorders. In most patients with epilepsy, seizures respond to available medications. However, a significant number of patients, especially in the setting of medically-intractable epilepsies, may experience different degrees of memory or cognitive impairment, behavioral abnormalities or psychiatric symptoms, which may limit their daily functioning. As a result, in many patients, epilepsy may resemble a neurodegenerative disease. Epileptic seizures and their potential impact on brain development, the progressive nature of epileptogenesis that may functionally alter brain regions involved in cognitive processing, neurodegenerative processes that relate to the underlying etiology, comorbid conditions or epigenetic factors, such as stress, medications, social factors, may all contribute to the progressive nature of epilepsy. Clinical and experimental studies have addressed the pathogenetic mechanisms underlying epileptogenesis and neurodegeneration.We will primarily focus on the findings derived from studies on one of the most common causes of focal onset epilepsy, the temporal lobe epilepsy, which indicate that both processes are progressive and utilize common or interacting pathways. In this chapter we will discuss some of these studies, the potential candidate targets for neuroprotective therapies as well as the attempts to identify early biomarkers of progression and epileptogenesis, so as to implement therapies with early-onset disease-modifying effects.
Collapse
Affiliation(s)
- Tomonori Ono
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
32
|
Cameron MC, Zhan RZ, Nadler JV. Morphologic integration of hilar ectopic granule cells into dentate gyrus circuitry in the pilocarpine model of temporal lobe epilepsy. J Comp Neurol 2011; 519:2175-92. [PMID: 21455997 DOI: 10.1002/cne.22623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
After pilocarpine-induced status epilepticus, many granule cells born into the postseizure environment migrate aberrantly into the dentate hilus. Hilar ectopic granule cells (HEGCs) are hyperexcitable and may therefore increase circuit excitability. This study determined the distribution of their axons and dendrites. HEGCs and normotopic granule cells were filled with biocytin during whole-cell patch clamp recording in hippocampal slices from pilocarpine-treated rats. The apical dendrite of 86% of the biocytin-labeled HEGCs extended to the outer edge of the dentate molecular layer. The total length and branching of HEGC apical dendrites that penetrated the molecular layer were significantly reduced compared with apical dendrites of normotopic granule cells. HEGCs were much more likely to have a hilar basal dendrite than normotopic granule cells. They were about as likely as normotopic granule cells to project to CA3 pyramidal cells within the slice, but were much more likely to send at least one recurrent mossy fiber into the molecular layer. HEGCs with burst capability had less well-branched apical dendrites than nonbursting HEGCs, their dendrites were more likely to be confined to the hilus, and some exhibited dendritic features similar to those of immature granule cells. HEGCs thus have many paths along which to receive synchronized activity from normotopic granule cells and to transmit their own hyperactivity to both normotopic granule cells and CA3 pyramidal cells. They may therefore contribute to the highly interconnected granule cell hubs that have been proposed as crucial to development of a hyperexcitable, potentially seizure-prone circuit.
Collapse
Affiliation(s)
- Michael C Cameron
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
33
|
Impact of the erythropoietin-derived peptide mimetic Epotris on the histopathological consequences of status epilepticus. Epilepsy Res 2011; 96:241-9. [DOI: 10.1016/j.eplepsyres.2011.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 11/18/2022]
|
34
|
Impact of the NCAM derived mimetic peptide plannexin on the acute cellular consequences of a status epilepticus. Neurosci Lett 2011; 501:173-8. [PMID: 21787839 DOI: 10.1016/j.neulet.2011.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/27/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022]
Abstract
Plannexin represents a NCAM-derived peptide mimicking trans-homophilic NCAM interaction, which proved to exert neuroprotective effects in vitro. The effect of plannexin was evaluated in a rat status epilepticus model. As expected, prolonged seizure activity resulted in a pronounced cell loss in hippocampal subregions. The comparison between the vehicle- and plannexin-treated animals with status epilepticus did not reveal neuroprotective effects of plannexin on mature neurons. However, treatment with plannexin partially prevented the reduction in the number of doublecortin-labeled neuronal progenitor cells, which was evident 48h following status epilepticus. In conclusion, the data might give first evidence that plannexin can protect immature neurons in vivo. Future studies are necessary to evaluate whether disease-modifying or preventive effects are observed in models of epileptogenesis.
Collapse
|
35
|
Brown KM, Barrionuevo G, Canty AJ, De Paola V, Hirsch JA, Jefferis GSXE, Lu J, Snippe M, Sugihara I, Ascoli GA. The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics 2011; 9:143-57. [PMID: 21249531 PMCID: PMC4342109 DOI: 10.1007/s12021-010-9095-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The comprehensive characterization of neuronal morphology requires tracing extensive axonal and dendritic arbors imaged with light microscopy into digital reconstructions. Considerable effort is ongoing to automate this greatly labor-intensive and currently rate-determining process. Experimental data in the form of manually traced digital reconstructions and corresponding image stacks play a vital role in developing increasingly more powerful reconstruction algorithms. The DIADEM challenge (short for DIgital reconstruction of Axonal and DEndritic Morphology) successfully stimulated progress in this area by utilizing six data set collections from different animal species, brain regions, neuron types, and visualization methods. The original research projects that provided these data are representative of the diverse scientific questions addressed in this field. At the same time, these data provide a benchmark for the types of demands automated software must meet to achieve the quality of manual reconstructions while minimizing human involvement. The DIADEM data underwent extensive curation, including quality control, metadata annotation, and format standardization, to focus the challenge on the most substantial technical obstacles. This data set package is now freely released ( http://diademchallenge.org ) to train, test, and aid development of automated reconstruction algorithms.
Collapse
Affiliation(s)
- Kerry M. Brown
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| | - Germán Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison J. Canty
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | - Judith A. Hirsch
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Ju Lu
- Department of Biological Sciences, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA, USA
| | - Marjolein Snippe
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Izumi Sugihara
- Department of Physiology, Tokyo Medical and Dental University School of Medicine, Tokyo, Japan
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
36
|
Armstrong C, Szabadics J, Tamás G, Soltesz I. Neurogliaform cells in the molecular layer of the dentate gyrus as feed-forward γ-aminobutyric acidergic modulators of entorhinal-hippocampal interplay. J Comp Neurol 2011; 519:1476-91. [PMID: 21452204 DOI: 10.1002/cne.22577] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Feed-forward inhibition from molecular layer interneurons onto granule cells (GCs) in the dentate gyrus is thought to have major effects regulating entorhinal-hippocampal interactions, but the precise identity, properties, and functional connectivity of the GABAergic cells in the molecular layer are not well understood. We used single and paired intracellular patch clamp recordings from post-hoc-identified cells in acute rat hippocampal slices and identified a subpopulation of molecular layer interneurons that expressed immunocytochemical markers present in members of the neurogliaform cell (NGFC) class. Single NGFCs displayed small dendritic trees, and their characteristically dense axonal arborizations covered significant portions of the outer and middle one-thirds of the molecular layer, with frequent axonal projections across the fissure into the CA1 and subicular regions. Typical NGFCs exhibited a late firing pattern with a ramp in membrane potential prior to firing action potentials, and single spikes in NGFCs evoked biphasic, prolonged GABA(A) and GABA(B) postsynaptic responses in GCs. In addition to providing dendritic GABAergic inputs to GCs, NGFCs also formed chemical synapses and gap junctions with various molecular layer interneurons, including other NGFCs. NGFCs received low-frequency spontaneous synaptic events, and stimulation of perforant path fibers revealed direct, facilitating synaptic inputs from the entorhinal cortex. Taken together, these results indicate that NGFCs form an integral part of the local molecular layer microcircuitry generating feed-forward inhibition and provide a direct GABAergic pathway linking the dentate gyrus to the CA1 and subicular regions through the hippocampal fissure.
Collapse
Affiliation(s)
- Caren Armstrong
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|
37
|
Pallud J, Häussler U, Langlois M, Hamelin S, Devaux B, Deransart C, Depaulis A. Dentate gyrus and hilus transection blocks seizure propagation and granule cell dispersion in a mouse model for mesial temporal lobe epilepsy. Hippocampus 2011; 21:334-43. [DOI: 10.1002/hipo.20795] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
|
39
|
Halabisky B, Parada I, Buckmaster PS, Prince DA. Excitatory input onto hilar somatostatin interneurons is increased in a chronic model of epilepsy. J Neurophysiol 2010; 104:2214-23. [PMID: 20631216 PMCID: PMC3774571 DOI: 10.1152/jn.00147.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 07/12/2010] [Indexed: 11/22/2022] Open
Abstract
The density of somatostatin (SOM)-containing GABAergic interneurons in the hilus of the dentate gyrus is significantly decreased in both human and experimental temporal lobe epilepsy. We used the pilocarpine model of status epilepticus and temporal lobe epilepsy in mice to study anatomical and electrophysiological properties of surviving somatostatin interneurons and determine whether compensatory functional changes occur that might offset loss of other inhibitory neurons. Using standard patch-clamp techniques and pipettes containing biocytin, whole cell recordings were obtained in hippocampal slices maintained in vitro. Hilar SOM cells containing enhanced green fluorescent protein (EGFP) were identified with fluorescent and infrared differential interference contrast video microscopy in epileptic and control GIN (EGFP-expressing Inhibitory Neurons) mice. Results showed that SOM cells from epileptic mice had 1) significant increases in somatic area and dendritic length; 2) changes in membrane properties, including a small but significant decrease in resting membrane potential, and increases in time constant and whole cell capacitance; 3) increased frequency of slowly rising spontaneous excitatory postsynaptic currents (sEPSCs) due primarily to increased mEPSC frequency, without changes in the probability of release; 4) increased evoked EPSC amplitude; and 5) increased spontaneous action potential generation in cell-attached recordings. Results suggest an increase in excitatory innervation, perhaps on distal dendrites, considering the slower rising EPSCs and increased output of hilar SOM cells in this model of epilepsy. In sum, these changes would be expected to increase the inhibitory output of surviving SOM interneurons and in part compensate for interneuronal loss in the epileptogenic hippocampus.
Collapse
Affiliation(s)
- Brian Halabisky
- Stanford University School of Medicine, Department of Neurology, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
40
|
Pekcec A, Lüpke M, Baumann R, Seifert H, Potschka H. Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression. Hippocampus 2010; 21:866-76. [PMID: 20865736 DOI: 10.1002/hipo.20802] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2010] [Indexed: 12/31/2022]
Abstract
Changes in the rate of dentate granule cell neurogenesis and in the fate of newborn granule cells have been implicated in the development and progression of epilepsies. Strategies to normalize neurogenesis in chronic epilepsy models are thought to increase our understanding of the functional consequences of aberrant neurogenesis in the epileptic brain. Therefore, we modulated neurogenesis in an amygdala kindling paradigm in rats by targeted irradiation of the hippocampus using a medical linear accelerator device. Selective irradiation normalized the hippocampal cell proliferation rate in kindled animals. Both, in kindled and nonkindled rats the number of BrdU/NeuN-labeled newborn neurons was reduced in response to irradiation. Whereas kindling resulted in a pronounced increase in the number of neuroblasts identified based on doublecortin-labeling, irradiation prevented the expansion of the neuroblast population. Moreover, irradiation counteracted the kindling-associated increase in hilar basal dendrites, and kept the fraction of cells with basal dendrites at control levels. Despite the efficacious modulation of neurogenesis, irradiation did not affect the rate of kindling progression. Both, the number of stimulations as well as the cumulative afterdischarge duration to reach respective seizure stages were comparable in animals with and without irradiation. In addition, pre- and postkindling thresholds as well as seizure parameters recorded at threshold stimulation remained unaffected by irradiation. In conclusion, the fact that the efficacious modulation of neurogenesis by irradiation did not exert any effects on kindling acquisition and kindled seizures suggests that newborn neurons do not critically contribute to the hyperexcitable state in the chronic epilepsy model used.
Collapse
Affiliation(s)
- Anton Pekcec
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
41
|
Taxidis J, Coomber B, Mason R, Owen M. Assessing cortico-hippocampal functional connectivity under anesthesia and kainic acid using generalized partial directed coherence. BIOLOGICAL CYBERNETICS 2010; 102:327-40. [PMID: 20204395 DOI: 10.1007/s00422-010-0370-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/08/2010] [Indexed: 05/28/2023]
Abstract
A significant challenge in modern neuroscience lies in determining the functional connectivity between discrete populations of neurones and brain regions. In this study, a variation of partial directed coherence, the generalized partial directed coherence (gPDC), along with a newly proposed critical value for gPDC, were applied on recorded local field potentials (LFPs) and single-unit activity, in order to assess information flow between medial prefrontal cortex (mPFC) and hippocampus and within the hippocampus of the rat brain, under isoflurane anesthesia and kainic acid-induced enhanced neuronal activity. Our findings suggest that, under anesthesia, there exists a continuous information flow from hippocampus towards mPFC, reversed mostly during activity bursts occurring in the mPFC. Moreover, there was a clear directional connection from the lateral towards medial dorsal hippocampus, most prominent in the beta frequency band (10-30 Hz). Kainic acid resulted in partially disrupting the reciprocal cortico-hippocampal connectivity and reversing the intra-hippocampal one. The biological implications of these findings on the effects of anesthesia and kainic acid in brain connectivity, along with implementation issues of gPDC analysis on field potentials and spike trains, are extensively discussed.
Collapse
Affiliation(s)
- Jiannis Taxidis
- School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | | | | | | |
Collapse
|
42
|
Thind KK, Yamawaki R, Phanwar I, Zhang G, Wen X, Buckmaster PS. Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. J Comp Neurol 2010; 518:647-67. [PMID: 20034063 DOI: 10.1002/cne.22235] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many patients with temporal lobe epilepsy display neuron loss in the dentate gyrus. One potential epileptogenic mechanism is loss of GABAergic interneurons and inhibitory synapses with granule cells. Stereological techniques were used to estimate numbers of gephyrin-positive punctae in the dentate gyrus, which were reduced short-term (5 days after pilocarpine-induced status epilepticus) but later rebounded beyond controls in epileptic rats. Stereological techniques were used to estimate numbers of synapses in electron micrographs of serial sections processed for postembedding GABA-immunoreactivity. Adjacent sections were used to estimate numbers of granule cells and glutamic acid decarboxylase-positive neurons per dentate gyrus. GABAergic neurons were reduced to 70% of control levels short-term, where they remained in epileptic rats. Integrating synapse and cell counts yielded average numbers of GABAergic synapses per granule cell, which decreased short-term and rebounded in epileptic animals beyond control levels. Axo-shaft and axo-spinous GABAergic synapse numbers in the outer molecular layer changed most. These findings suggest interneuron loss initially reduces numbers of GABAergic synapses with granule cells, but later, synaptogenesis by surviving interneurons overshoots control levels. In contrast, the average number of excitatory synapses per granule cell decreased short-term but recovered only toward control levels, although in epileptic rats excitatory synapses in the inner molecular layer were larger than in controls. These findings reveal a relative excess of GABAergic synapses and suggest that reports of reduced functional inhibitory synaptic input to granule cells in epilepsy might be attributable not to fewer but instead to abundant but dysfunctional GABAergic synapses.
Collapse
Affiliation(s)
- Khushdev K Thind
- Department of Comparative Medicine, Stanford University, California 94305, USA
| | | | | | | | | | | |
Collapse
|
43
|
The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. J Neurosci 2010; 30:2051-9. [PMID: 20147533 DOI: 10.1523/jneurosci.5655-09.2010] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dentate granule cell (DGC) neurogenesis persists throughout life in the hippocampal dentate gyrus. In rodent temporal lobe epilepsy models, status epilepticus (SE) stimulates neurogenesis, but many newborn DGCs integrate aberrantly and are hyperexcitable, whereas others may integrate normally and restore inhibition. The overall influence of altered neurogenesis on epileptogenesis is therefore unclear. To better understand the role DGC neurogenesis plays in seizure-induced plasticity, we injected retroviral (RV) reporters to label dividing DGC progenitors at specific times before or after SE, or used x-irradiation to suppress neurogenesis. RV injections 7 weeks before SE to mark DGCs that had matured by the time of SE labeled cells with normal placement and morphology 4 weeks after SE. RV injections 2 or 4 weeks before seizure induction to label cells still developing during SE revealed normally located DGCs exhibiting hilar basal dendrites and mossy fiber sprouting (MFS) when observed 4 weeks after SE. Cells labeled by injecting RV after SE displayed hilar basal dendrites and ectopic migration, but not sprouting, at 28 d after SE; when examined 10 weeks after SE, however, these cells showed robust MFS. Eliminating cohorts of newborn DGCs by focal brain irradiation at specific times before or after SE decreased MFS or hilar ectopic DGCs, supporting the RV labeling results. These findings indicate that developing DGCs exhibit maturation-dependent vulnerability to SE, indicating that abnormal DGC plasticity derives exclusively from aberrantly developing DGCs. Treatments that restore normal DGC development after epileptogenic insults may therefore ameliorate epileptogenic network dysfunction and associated morbidities.
Collapse
|
44
|
Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J Neurosci 2009; 29:14247-56. [PMID: 19906972 DOI: 10.1523/jneurosci.3842-09.2009] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, seizures initiate in or near the hippocampus, which frequently displays loss of neurons, including inhibitory interneurons. It is unclear whether surviving interneurons function normally, are impaired, or develop compensatory mechanisms. We evaluated GABAergic interneurons in the hilus of the dentate gyrus of epileptic pilocarpine-treated GIN mice, specifically a subpopulation of somatostatin interneurons that expresses enhanced green fluorescence protein (GFP). GFP-immunocytochemistry and stereological analyses revealed substantial loss of GFP-positive hilar neurons (GPHNs) but increased GFP-positive axon length per dentate gyrus in epileptic mice. Individual biocytin-labeled GPHNs in hippocampal slices from epileptic mice also had larger somata, more axon in the molecular layer, and longer dendrites than controls. Dual whole-cell patch recording was used to test for monosynaptic connections from hilar GPHNs to granule cells. Unitary IPSCs (uIPSCs) recorded in control and epileptic mice had similar average rise times, amplitudes, charge transfers, and decay times. However, the probability of finding monosynaptically connected pairs and evoking uIPSCs was 2.6 times higher in epileptic mice compared to controls. Together, these findings suggest that surviving hilar somatostatin interneurons enlarge, extend dendrites, sprout axon collaterals in the molecular layer, and form new synapses with granule cells. These epilepsy-related changes in cellular morphology and connectivity may be mechanisms for surviving hilar interneurons to inhibit more granule cells and compensate for the loss of vulnerable interneurons.
Collapse
|
45
|
Díaz-Cintra S, Xue B, Spigelman I, Van K, Wong AM, Obenaus A, Ribak CE. Dentate granule cells form hilar basal dendrites in a rat model of hypoxia-ischemia. Brain Res 2009; 1285:182-7. [PMID: 19539612 PMCID: PMC2725785 DOI: 10.1016/j.brainres.2009.06.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 01/04/2023]
Abstract
Hilar basal dendrites form on dentate granule cells following seizures. To determine whether other brain insults cause the formation of hilar basal dendrites, a model of global cerebral hypoxia/ischemia was used. Rats underwent a transient induction of ischemia by occlusion of both common carotid arteries followed by reperfusion. Hippocampal slices were prepared from these animals 1 month after the ischemic insult, and granule cells were labeled with a retrograde tracing technique after biocytin injections into stratum lucidum of CA3b. Ischemic rats had numerous biocytin-labeled granule cells with hilar basal dendrites located at the hilar border of the granule cell layer. Quantitative analysis of ischemic rats compared to controls showed a significant increase in the percentage of biocytin-labeled granule cells with hilar basal dendrites. These data demonstrate that other brain insults in addition to epilepsy may result in the formation of hilar basal dendrites on granule cells.
Collapse
Affiliation(s)
- Sofia Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro, C.P. 76230, México
| | - Baogang Xue
- Department of Anatomy & Neurobiology, School of Medicine, University of California at Irvine, Irvine, CA 92697-1275
| | - Igor Spigelman
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095
| | - K. Van
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095
| | - Alan M. Wong
- Department of Anatomy & Neurobiology, School of Medicine, University of California at Irvine, Irvine, CA 92697-1275
| | - Andre Obenaus
- Radiation Medicine and Radiology, Loma Linda University, Loma Linda, CA
| | - Charles E. Ribak
- Department of Anatomy & Neurobiology, School of Medicine, University of California at Irvine, Irvine, CA 92697-1275
| |
Collapse
|
46
|
Epsztein J, Sola E, Represa A, Ben-Ari Y, Crépel V. A selective interplay between aberrant EPSPKA and INaP reduces spike timing precision in dentate granule cells of epileptic rats. ACTA ACUST UNITED AC 2009; 20:898-911. [PMID: 19684246 PMCID: PMC2837093 DOI: 10.1093/cercor/bhp156] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spike timing precision is a fundamental aspect of neuronal information processing in the brain. Here we examined the temporal precision of input–output operation of dentate granule cells (DGCs) in an animal model of temporal lobe epilepsy (TLE). In TLE, mossy fibers sprout and establish recurrent synapses on DGCs that generate aberrant slow kainate receptor–mediated excitatory postsynaptic potentials (EPSPKA) not observed in controls. We report that, in contrast to time-locked spikes generated by EPSPAMPA in control DGCs, aberrant EPSPKA are associated with long-lasting plateaus and jittered spikes during single-spike mode firing. This is mediated by a selective voltage-dependent amplification of EPSPKA through persistent sodium current (INaP) activation. In control DGCs, a current injection of a waveform mimicking the slow shape of EPSPKA activates INaP and generates jittered spikes. Conversely in epileptic rats, blockade of EPSPKA or INaP restores the temporal precision of EPSP–spike coupling. Importantly, EPSPKA not only decrease spike timing precision at recurrent mossy fiber synapses but also at perforant path synapses during synaptic integration through INaP activation. We conclude that a selective interplay between aberrant EPSPKA and INaP severely alters the temporal precision of EPSP–spike coupling in DGCs of chronic epileptic rats.
Collapse
Affiliation(s)
- Jérôme Epsztein
- INMED, INSERM U901, Université de La Méditerranée, Parc scientifique de Luminy, BP 13, 13273, Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
47
|
Scharfman HE, McCloskey DP. Postnatal neurogenesis as a therapeutic target in temporal lobe epilepsy. Epilepsy Res 2009; 85:150-61. [PMID: 19369038 PMCID: PMC2713813 DOI: 10.1016/j.eplepsyres.2009.03.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/08/2009] [Accepted: 03/08/2009] [Indexed: 01/30/2023]
Abstract
After it was first identified that seizures increase neurogenesis in the adult brain of laboratory animals, the idea that postnatal neurogenesis may be involved in epilepsy became a topic of widespread interest. Since that time, two perspectives have developed. They primarily address temporal lobe epilepsy (TLE), because the data have either been based on animal models of TLE or patients with intractable TLE. The first perspective is that postnatal neurogenesis contributes to the predisposition for seizures in TLE. This premise is founded in the observations showing that there is a dramatic rise in neurogenesis after many types of insults or injuries which ultimately lead to TLE. As a result of the increase in neurogenesis, several changes in the dentate gyrus occur, and the net effect appears to be an increase in excitability. One of the changes is the formation of a population of granule cells (GCs) that mismigrate, leading to ectopic granule cells in the hilus (hilar EGCs) that exhibit periodic bursts of action potentials, and contribute to recurrent excitatory circuitry. Atypical dendrites also form on a subset of GCs, and project into the hilus (hilar basal dendrites). Hilar basal dendrites appear to preferentially increase the glutamatergic input relative to GABAergic synapses, increasing excitability of the subset of GCs that form hilar basal dendrites. The alternate view is that postnatal neurogenesis is a homeostatic mechanism in epilepsy that maintains normal excitability. This idea is supported by studies showing that some of the new GCs that are born after seizures, and migrate into the correct location, have normal or reduced excitability. Here we suggest that both perspectives may be important when considering a therapeutic strategy. It would seem advantageous to limit the numbers of mismigrating GCs and hilar basal dendrites, but maintain normal neurogenesis because it is potentially homeostatic. Maintaining normal neurogenesis is also important because it has been suggested that a decrease in dentate gyrus neurogenesis contributes to depression. It is challenging to design a strategy that would achieve these goals, and it is also difficult to propose how one could administer such a therapy prophylactically, that is, as an "antiepileptogenic" approach. Another issue to address is how a therapeutic intervention with these goals could be successful if it were administered after chronic seizures develop, when most patients seek therapy. Although difficult, a number of approaches are possible, and technical advances suggest that there are more on the horizon.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
48
|
Coomber B, O'Donoghue MF, Mason R. Inhibition of endocannabinoid metabolism attenuates enhanced hippocampal neuronal activity induced by kainic acid. Synapse 2009; 62:746-55. [PMID: 18651640 DOI: 10.1002/syn.20547] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The endogenous cannabinoid system regulates neuronal excitability. The effects of inhibiting fatty acid amide hydrolase (FAAH), the enzyme responsible for metabolism of the endocannabinoid anandamide, on kainic acid (KA)-induced neuronal activity were investigated in the rat in vivo, using the selective FAAH inhibitor URB597. Hippocampal neuronal ensemble unit activity was recorded in isoflurane-anesthetized rats using 16-wire microelectrode arrays. Separate groups of rats were administered with single doses of KA alone, KA and URB597 (0.3 or 1 mg kg(-1), i.p.), or URB597 (1 mg kg(-1)) alone. The role of the cannabinoid CB1 receptor in mediating the effects of URB597 was explored using the CB1 selective antagonists AM251, either alone or prior to KA and URB597 (1 mg kg(-1)) administration, and SR141716A, administered prior to KA and URB597 (1 mg kg(-1)). Neuronal firing and burst firing rates were examined in animals with confirmed dorsal hippocampal placements. KA induced an increase in both firing and burst firing rates, effects which were attenuated by URB597 in a dose-related manner. Pretreatment with AM251 or SR141716A partly attenuated the URB597-mediated effects on firing and burst firing rate. Rats treated with AM251 or URB597 alone did not exhibit any significant change in either firing or burst firing rates compared with basal activity. These results suggest that the inhibition of endocannabinoid metabolism can suppress hyperexcitability in the rat hippocampus, partly via a CB1 receptor-mediated mechanism.
Collapse
Affiliation(s)
- Ben Coomber
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | | | |
Collapse
|
49
|
Abstract
The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases.
Collapse
Affiliation(s)
- Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
50
|
Thind KK, Ribak CE, Buckmaster PS. Synaptic input to dentate granule cell basal dendrites in a rat model of temporal lobe epilepsy. J Comp Neurol 2008; 509:190-202. [PMID: 18461605 PMCID: PMC2667124 DOI: 10.1002/cne.21745] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In patients with temporal lobe epilepsy some dentate granule cells develop basal dendrites. The extent of excitatory synaptic input to basal dendrites is unclear, nor is it known whether basal dendrites receive inhibitory synapses. We used biocytin to intracellularly label individual granule cells with basal dendrites in epileptic pilocarpine-treated rats. An average basal dendrite had 3.9 branches, was 612 microm long, and accounted for 16% of a cell's total dendritic length. In vivo intracellular labeling and postembedding GABA-immunocytochemistry were used to evaluate synapses with basal dendrites reconstructed from serial electron micrographs. An average of 7% of 1,802 putative synapses were formed by GABA-positive axon terminals, indicating synaptogenesis by interneurons. Ninety-three percent of the identified synapses were GABA-negative. Most GABA-negative synapses were with spines, but at least 10% were with dendritic shafts. Multiplying basal dendrite length/cell and synapse density yielded an estimate of 180 inhibitory and 2,140 excitatory synapses per granule cell basal dendrite. Based on previous estimates of synaptic input to granule cells in control rats, these findings suggest an average basal dendrite receives approximately 14% of the total inhibitory and 19% of excitatory synapses of a cell. These findings reveal that basal dendrites are a novel source of inhibitory input, but they primarily receive excitatory synapses.
Collapse
Affiliation(s)
- Khushdev K Thind
- Department of Comparative Medicine, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|