1
|
Gutierrez S, Parker RA, Zhang M, Santi MD, Ye Y, Boada MD. Advanced cancer perineural invasion induces profound peripheral neuronal plasticity, pain, and somatosensory mechanical deactivation, unmitigated by the lack of TNFR1. Part 2. Biophysics and gene expression. Mol Pain 2025; 21:17448069251323666. [PMID: 39945101 PMCID: PMC11938870 DOI: 10.1177/17448069251323666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
Preclinical studies addressing the peripheral effects of cancer perineural invasion report severe neuronal availability and excitability changes. Oral cell squamous cell carcinoma perineural invasion (MOC2-PNI) shows similar effects, modulating the afferent's sensibility (tactile desensitization with concurrent nociceptive sensitization) and demyelination without inducing spontaneous activity (see Part 1.). The current study addresses the electrical status (normal or abnormal) of both active (low threshold mechano receptors (LT) and high threshold mechano receptors (HT)) and inactive (F-type and S-type) afferents. Concurrently, we have also evaluated changes in the genetic landscape that may help to understand the physiological dynamics behind MOC2-PNI-induced functional disruption of the peripheral sensory system. We have observed that the altered cell distribution and mechanical sensibility of the animal's somatosensory system cannot be explained by cellular electrical dysfunction or MOC2-PNI-induced apoptosis. Although PNI does modify the expression of several genes related to cellular hypersensitivity, these changes are insufficient to explain the MOC2-PNI-induced aberrant neuronal excitability state. Our results indicate that genetic markers provide limited information about the functional hyperexcitable state of the peripheral system. Importantly, our results also highlight the emerging role of plasma membrane Ca2+-ATPase activity (PMCA) in explaining several aspects of the observed gender-specific neuronal plasticity and the reported cellular distribution switch generated by MOC2-PNI.
Collapse
Affiliation(s)
- Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Renee A Parker
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Morgan Zhang
- Translational Research Center, Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Maria Daniela Santi
- Translational Research Center, Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Yi Ye
- Translational Research Center, Department of Oral Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Mario Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Boada MD, Gutierrez S, Eisenach JC. Effects of systemic oxytocin administration on ultraviolet B-induced nociceptive hypersensitivity and tactile hyposensitivity in mice. Mol Pain 2024; 20:17448069241226553. [PMID: 38172079 PMCID: PMC10846038 DOI: 10.1177/17448069241226553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Ultraviolet B (UVB) radiation induces cutaneous inflammation, leading to thermal and mechanical hypersensitivity. Here, we examine the mechanical properties and profile of tactile and nociceptive peripheral afferents functionally disrupted by this injury and the role of oxytocin (OXT) as a modulator of this disruption. We recorded intracellularly from L4 afferents innervating the irradiated area (5.1 J/cm2) in 4-6 old week male mice (C57BL/6J) after administering OXT intraperitoneally, 6 mg/Kg. The distribution of recorded neurons was shifted by UVB radiation to a pattern observed after acute and chronic injuries and reduced mechanical thresholds of A and C- high threshold mechanoreceptors while reducing tactile sensitivity. UVB radiation did not change somatic membrane electrical properties or fiber conduction velocity. OXT systemic administration rapidly reversed these peripheral changes toward normal in both low and high-threshold mechanoreceptors and shifted recorded neuron distribution toward normal. OXT and V1aR receptors were present on the terminals of myelinated and unmyelinated afferents innervating the skin. We conclude that UVB radiation, similar to local tissue surgical injury, cancer metastasis, and peripheral nerve injury, alters the distribution of low and high threshold mechanoreceptors afferents and sensitizes nociceptors while desensitizing tactile units. Acute systemic OXT administration partially returns all of those effects to normal.
Collapse
Affiliation(s)
- M Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - James C Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
3
|
Age-Related Changes in Neurons and Satellite Glial Cells in Mouse Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24032677. [PMID: 36769006 PMCID: PMC9916822 DOI: 10.3390/ijms24032677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The effects of aging on the nervous system are well documented. However, most previous studies on this topic were performed on the central nervous system. The present study was carried out on the dorsal root ganglia (DRGs) of mice, and focused on age-related changes in DRG neurons and satellite glial cells (SGCs). Intracellular electrodes were used for dye injection to examine the gap junction-mediated coupling between neurons and SGCs, and for intracellular electrical recordings from the neurons. Tactile sensitivity was assessed with von Frey hairs. We found that 3-23% of DRG neurons were dye-coupled to SGCs surrounding neighboring neurons in 8-24-month (Mo)-old mice, whereas in young adult (3 Mo) mice, the figure was 0%. The threshold current for firing an action potential in sensory neurons was significantly lower in DRGs from 12 Mo mice compared with those from 3 Mo mice. The percentage of neurons with spontaneous subthreshold membrane potential oscillation was greater by two-fold in 12 Mo mice. The withdrawal threshold was lower by 22% in 12 Mo mice compared with 3 Mo ones. These results show that in the aged mice, a proportion of DRG neurons is coupled to SGCs, and that the membrane excitability of the DRG neurons increases with age. We propose that augmented neuron-SGC communications via gap junctions are caused by low-grade inflammation associated with aging, and this may contribute to pain behavior.
Collapse
|
4
|
Banerjee P, Kubo F, Nakaoka H, Ajima R, Sato T, Hirata T, Iwasato T. Spontaneous activity in whisker-innervating region of neonatal mouse trigeminal ganglion. Sci Rep 2022; 12:16311. [PMID: 36175429 PMCID: PMC9522796 DOI: 10.1038/s41598-022-20068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Spontaneous activity during the early postnatal period is thought to be crucial for the establishment of mature neural circuits. It remains unclear if the peripheral structure of the developing somatosensory system exhibits spontaneous activity, similar to that observed in the retina and cochlea of developing mammals. By establishing an ex vivo calcium imaging system, here we found that neurons in the whisker-innervating region of the trigeminal ganglion (TG) of neonatal mice generate spontaneous activity. A small percentage of neurons showed some obvious correlated activity, and these neurons were mostly located close to one another. TG spontaneous activity was majorly exhibited by medium-to-large diameter neurons, a characteristic of mechanosensory neurons, and was blocked by chelation of extracellular calcium. Moreover, this activity was diminished by the adult stage. Spontaneous activity in the TG during the first postnatal week could be a source of spontaneous activity observed in the neonatal mouse barrel cortex.
Collapse
Affiliation(s)
- Piu Banerjee
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan.,Department of Genetics, SOKENDAI, Mishima, Japan
| | - Fumi Kubo
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Systems Neuroscience, NIG, Mishima, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Tokyo, Japan
| | - Rieko Ajima
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Mammalian Development, NIG, Mishima, Japan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan
| | - Tatsumi Hirata
- Department of Genetics, SOKENDAI, Mishima, Japan.,Laboratory of Brain Function, NIG, Mishima, Japan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics (NIG), Mishima, Japan. .,Department of Genetics, SOKENDAI, Mishima, Japan.
| |
Collapse
|
5
|
Comes N, Gasull X, Callejo G. Proton Sensing on the Ocular Surface: Implications in Eye Pain. Front Pharmacol 2021; 12:773871. [PMID: 34899333 PMCID: PMC8652213 DOI: 10.3389/fphar.2021.773871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
Protons reaching the eyeball from exogenous acidic substances or released from damaged cells during inflammation, immune cells, after tissue injury or during chronic ophthalmic conditions, activate or modulate ion channels present in sensory nerve fibers that innervate the ocular anterior surface. Their identification as well as their role during disease is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies. Among the ion channels expressed in trigeminal nociceptors innervating the anterior surface of the eye (cornea and conjunctiva) and annex ocular structures (eyelids), members of the TRP and ASIC families play a critical role in ocular acidic pain. Low pH (pH 6) activates TRPV1, a polymodal ion channel also activated by heat, capsaicin and hyperosmolar conditions. ASIC1, ASIC3 and heteromeric ASIC1/ASIC3 channels present in ocular nerve terminals are activated at pH 7.2–6.5, inducing pain by moderate acidifications of the ocular surface. These channels, together with TRPA1, are involved in acute ocular pain, as well as in painful sensations during allergic keratoconjunctivitis or other ophthalmic conditions, as blocking or reducing channel expression ameliorates ocular pain. TRPV1, TRPA1 and other ion channels are also present in corneal and conjunctival cells, promoting inflammation of the ocular surface after injury. In addition to the above-mentioned ion channels, members of the K2P and P2X ion channel families are also expressed in trigeminal neurons, however, their role in ocular pain remains unclear to date. In this report, these and other ion channels and receptors involved in acid sensing during ocular pathologies and pain are reviewed.
Collapse
Affiliation(s)
- Núria Comes
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Callejo
- Neurophysiology Laboratory, Department of Biomedicine, Medical School, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Gutierrez S, Eisenach JC, Boada MD. Seeding of breast cancer cell line (MDA-MB-231 LUC+) to the mandible induces overexpression of substance P and CGRP throughout the trigeminal ganglion and widespread peripheral sensory neuropathy throughout all three of its divisions. Mol Pain 2021; 17:17448069211024082. [PMID: 34229504 PMCID: PMC8267036 DOI: 10.1177/17448069211024082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some types of cancer are commonly associated with intense pain even at the early stages of the disease. The mandible is particularly vulnerable to metastasis from breast cancer, and this process has been studied using a bioluminescent human breast cancer cell line (MDA-MB-231LUC+). Using this cell line and anatomic and neurophysiologic methods in the trigeminal ganglion (TG), we examined the impact of cancer seeding in the mandible on behavioral evidence of hypersensitivity and on trigeminal sensory neurons. Growth of cancer cells seeded to the mandible after arterial injection of the breast cancer cell line in Foxn1 animals (allogeneic model) induced behavioral hypersensitivity to mechanical stimulation of the whisker pad and desensitization of tactile and sensitization of nociceptive mechanically sensitive afferents. These changes were not restricted to the site of metastasis but extended to sensory afferents in all three divisions of the TG, accompanied by widespread overexpression of substance P and CGRP in neurons through the ganglion. Subcutaneous injection of supernatant from the MDA-MB-231LUC+ cell culture in normal animals mimicked some of the changes in mechanically responsive afferents observed with mandibular metastasis. We conclude that released products from these cancer cells in the mandible are critical for the development of cancer-induced pain and that the overall response of the system greatly surpasses these local effects, consistent with the widespread distribution of pain in patients. The mechanisms of neuronal plasticity likely occur in the TG itself and are not restricted to afferents exposed to the metastatic cancer microenvironment.
Collapse
Affiliation(s)
| | | | - M Danilo Boada
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Piezo2 Mediates Low-Threshold Mechanically Evoked Pain in the Cornea. J Neurosci 2020; 40:8976-8993. [PMID: 33055278 DOI: 10.1523/jneurosci.0247-20.2020] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Mammalian Piezo2 channels are essential for transduction of innocuous mechanical forces by proprioceptors and cutaneous touch receptors. In contrast, mechanical responses of somatosensory nociceptor neurons evoking pain, remain intact or are only partially reduced in Piezo2-deficient mice. In the eye cornea, comparatively low mechanical forces are detected by polymodal and pure mechanosensory trigeminal ganglion neurons. Their activation always evokes ocular discomfort or pain and protective reflexes, thus being a unique model to study mechanotransduction mechanisms in this particular class of nociceptive neurons. Cultured male and female mouse mechano- and polymodal nociceptor corneal neurons display rapidly, intermediately and slowly adapting mechanically activated currents. Immunostaining of the somas and peripheral axons of corneal neurons responding only to mechanical force (pure mechano-nociceptor) or also exhibiting TRPV1 (transient receptor potential cation channel subfamily V member 1) immunoreactivity (polymodal nociceptor) revealed that they express Piezo2. In sensory-specific Piezo2-deficient mice, the distribution of corneal neurons displaying the three types of mechanically evoked currents is similar to the wild type; however, the proportions of rapidly adapting neurons, and of intermediately and slowly adapting neurons were significantly reduced. Recordings of mechano- and polymodal-nociceptor nerve terminals in the corneal surface of Piezo2 conditional knock-out mice revealed a reduced number of mechano-sensitive terminals and lower frequency of nerve terminal impulse discharges under mechanical stimulation. Eye blinks evoked by von Frey filaments applied on the cornea were lower in Piezo2-deficient mice compared with wild type. Together, our results provide direct evidence that Piezo2 channels support mechanically activated currents of different kinetics in corneal trigeminal neurons and contributes to transduction of mechanical forces by corneal nociceptors.SIGNIFICANCE STATEMENT The cornea is a richly innervated and highly sensitive tissue. Low-threshold mechanical forces activate corneal receptors evoking discomfort or pain. To examine the contribution of Piezo2, a low-threshold mechanically activated channel, to acute ocular pain, we characterized the mechanosensitivity of corneal sensory neurons. By using Piezo2 conditional knock-out mice, we show that Piezo2 channels, present in the cell body and terminals of corneal neurons, are directly involved in acute corneal mechano-nociception. Inhibition of Piezo2 for systemic pain treatment is hindered because of its essential role for mechano-transduction processes in multiple body organs. Still, topical modulation of Piezo2 in the cornea may be useful to selectively relief unpleasant sensations and pain associated with mechanical irritation accompanying many ocular surface disorders.
Collapse
|
8
|
Boada MD, Martin TJ, Parker R, Houle TT, Eisenach JC, Ririe DG. Recovery from nerve injury induced behavioral hypersensitivity in rats parallels resolution of abnormal primary sensory afferent signaling. Pain 2020; 161:949-959. [PMID: 32040074 PMCID: PMC7166146 DOI: 10.1097/j.pain.0000000000001781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pain and hypersensitivity months after peripheral injury reflect abnormal input from peripheral afferents likely in conjunction with central sensitization. We hypothesize that peripheral changes occur in defined sensory afferents and resolve as behavioral response to injury resolves. Male Sprague-Dawley rats underwent sham or partial L5 spinal nerve ligation, and paw withdrawal threshold (PWT) was sequentially measured during recovery. At 2, 4, 8, and 12 weeks after injury, randomized animals underwent electrophysiologic assessment of L4 fast-conducting high- and low-threshold mechanoreceptors, and individual neuronal mechanical thresholds (MTs) were contrasted with PWTs in the same animals. Paw withdrawal thresholds decreased after injury and resolved over time (P < 0.001). Similarly, MTs of fast-conducting high-threshold mechanoreceptors decreased after injury and resolved over time (P < 0.001). By contrast, MTs of low-threshold mechanoreceptors increased after injury and resolved over time (P < 0.001). Distributions of recordings from each afferent subtype were perturbed after injury, and this too resolved over time. After resolution of behavioral changes, several electrical abnormalities persisted in both neuronal subtypes. These data extend previous findings that mechanically sensitive nociceptors are sensitized, whereas tactile, largely Aβ afferents are desensitized after nerve injury by showing that the time course of resolution of these changes mirrors that of behavioral hypersensitivity in a surgical injury including neural damage. These data support a role of abnormal peripheral input, from both nociceptor and tactile afferents, during recovery from peripheral injury and underscore the potential importance of both classes of afferents as potential targets for pain treatment.
Collapse
Affiliation(s)
- M Danilo Boada
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas J Martin
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Renee Parker
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Timothy T Houle
- Department of Anesthesiology and Perioperative Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - James C Eisenach
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Douglas G Ririe
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Circuit-Specific Early Impairment of Proprioceptive Sensory Neurons in the SOD1 G93A Mouse Model for ALS. J Neurosci 2019; 39:8798-8815. [PMID: 31530644 DOI: 10.1523/jneurosci.1214-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system. Leveraging unique brainstem circuitry, we show in vitro evidence for reflex circuit-specific postnatal abnormalities in the jaw proprioceptive sensory neurons in the well-studied SOD1G93A mouse. These include impaired and arrhythmic action potential burst discharge associated with a deficit in Nav1.6 Na+ channels. However, the mechanoreceptive and nociceptive trigeminal ganglion neurons and the visual sensory retinal ganglion neurons were resistant to excitability changes in age-matched SOD1G93A mice. Computational modeling of the observed disruption in sensory patterns predicted asynchronous self-sustained motor neuron discharge suggestive of imminent reflexive defects, such as muscle fasciculations in ALS. These results demonstrate a novel reflex circuit-specific proprioceptive sensory abnormality in ALS.SIGNIFICANCE STATEMENT Neurodegenerative diseases have prolonged periods of disease development and progression. Identifying early markers of vulnerability can therefore help devise better diagnostic and treatment strategies. In this study, we examined postnatal abnormalities in the electrical excitability of muscle spindle afferent proprioceptive neurons in the well-studied SOD1G93A mouse model for neurodegenerative motor neuron disease, amyotrophic lateral sclerosis. Our findings suggest that these proprioceptive sensory neurons are exclusively afflicted early in the disease process relative to sensory neurons of other modalities. Moreover, they presented Nav1.6 Na+ channel deficiency, which contributed to arrhythmic burst discharge. Such sensory arrhythmia could initiate reflexive defects, such as muscle fasciculations in amyotrophic lateral sclerosis, as suggested by our computational model.
Collapse
|
10
|
Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium, L-Type Calcium and Shaker Potassium Channels. eNeuro 2019; 6:ENEURO.0181-19.2019. [PMID: 31253715 PMCID: PMC6709211 DOI: 10.1523/eneuro.0181-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20-60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
Collapse
|
11
|
Gutierrez S, Alvarado-Vázquez PA, Eisenach JC, Romero-Sandoval EA, Boada MD. Tachykinins modulate nociceptive responsiveness and sensitization: In vivo electrical characterization of primary sensory neurons in tachykinin knockout (Tac1 KO) mice. Mol Pain 2019; 15:1744806919845750. [PMID: 31012376 PMCID: PMC6505240 DOI: 10.1177/1744806919845750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023] Open
Abstract
Since the failure of specific substance P antagonists to induce analgesia, the role of tachykinins in the development of neuropathic pain states has been discounted. This conclusion was reached without studies on the role of tachykinins in normal patterns of primary afferents response and sensitization or the consequences of their absence on the modulation of primary mechanonociceptive afferents after injury. Nociceptive afferents from animals lacking tachykinins (Tac1 knockout) showed a disrupted pattern of activation to tonic suprathreshold mechanical stimulation. These nociceptors failed to encode the duration and magnitude of natural pronociceptive stimuli or to develop mechanical sensitization as consequence of this stimulation. Moreover, paw edema, hypersensitivity, and weight bearing were also reduced in Tac1 knockout mice 24 h after paw incision surgery. At this time, nociceptive afferents from these animals did not show the normal sensitization to mechanical stimulation or altered membrane electrical hyperexcitability as observed in wild-type animals. These changes occurred despite a similar increase in calcitonin gene-related peptide immunoreactivity in sensory neurons in Tac1 knockout and normal mice. Based on these observations, we conclude that tachykinins are critical modulators of primary nociceptive afferents, with a preeminent role in the electrical control of their excitability with sustained activation or injury.
Collapse
Affiliation(s)
| | | | | | | | - M Danilo Boada
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Telka MV, Rikhalsky OV, Veselovsky NS. EXCITABILITY PROPERTIES OF TRIGEMINAL GANGLION NEURONS. ACTA ACUST UNITED AC 2018. [PMID: 29537221 DOI: 10.15407/fz62.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The firing properties of small neurons (with diameters of soma less than 25 µm) were investigated using patch-clamp technique in whole-cell configuration in primary culture of trigeminal ganglia (TG) of postnatal rats. TG neurons were divided into three groups according to their firing responses to long-lasting depolarizing pulses: adaptive neurons (AN) characterized by a strongly adaptive responses; tonic neurons (TN) characterized by a multiple tonic firing; neurons with a delay before initiation of AP generation, namely, NDG. AN, TN and NDG also differed in AP electrophysiological and pharmacological characteristics. TN was distinguished by responses to hyperpolarization and the greatest value of input resistance. TN, AN and NDG were characterized by different active properties (amplitude of action potential and afterhyperpolarization, reobase, threshold). Each group of neurons was characterized by heterogeneity of AP duration and of frequency properties for TN. The application of tetrodotoxin (TTX) (250 nM) resulted in full or partial inhibition of AP generation and some neurons had TTX – insensitive firing responses. Neurons that were not affected by TTX had markedly longer AP. TTX had no effect on electrical activity of some AN and NDG. Based on sensitivity to TTX and their electrophysiological properties, AN and NDG seem to be C-fiber nococeptors.
Collapse
|
13
|
Manahan-Vaughan D. Special Considerations When Using Mice for In Vivo Electrophysiology and Long-Term Studies of Hippocampal Synaptic Plasticity During Behavior. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00003-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Abstract
Pain associated with mechanical, chemical, and thermal heat stimulation of the ocular surface is mediated by trigeminal ganglion neurons, while cold thermoreceptors detect wetness and reflexly maintain basal tear production and blinking rate. These neurons project into two regions of the trigeminal brain stem nuclear complex: ViVc, activated by changes in the moisture of the ocular surface and VcC1, mediating sensory-discriminative aspects of ocular pain and reflex blinking. ViVc ocular neurons project to brain regions that control lacrimation and spontaneous blinking and to the sensory thalamus. Secretion of the main lacrimal gland is regulated dominantly by autonomic parasympathetic nerves, reflexly activated by eye surface sensory nerves. These also evoke goblet cell secretion through unidentified efferent fibers. Neural pathways involved in the regulation of meibomian gland secretion or mucin release have not been identified. In dry eye disease, reduced tear secretion leads to inflammation and peripheral nerve damage. Inflammation causes sensitization of polymodal and mechano-nociceptor nerve endings and an abnormal increase in cold thermoreceptor activity, altogether evoking dryness sensations and pain. Long-term inflammation and nerve injury alter gene expression of ion channels and receptors at terminals and cell bodies of trigeminal ganglion and brainstem neurons, changing their excitability, connectivity and impulse firing. Perpetuation of molecular, structural and functional disturbances in ocular sensory pathways ultimately leads to dysestesias and neuropathic pain referred to the eye surface. Pain can be assessed with a variety of questionaires while the status of corneal nerves is evaluated with esthesiometry and with in vivo confocal microscopy.
Collapse
|
15
|
A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci Rep 2016; 6:25923. [PMID: 27184818 PMCID: PMC4869095 DOI: 10.1038/srep25923] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/25/2016] [Indexed: 01/30/2023] Open
Abstract
Proprioceptors are responsible for the conscious sensation of limb position and movement, muscle tension or force, and balance. Recent evidence suggests that Piezo2 is a low threshold mechanosensory receptor in the peripheral nervous system, acting as a transducer for touch sensation and proprioception. Thus, we characterized proprioceptive neurons in the mesencephalic trigeminal nucleus that are involved in processing proprioceptive information from the face and oral cavity. This is a specific population of neurons that produce rapidly adapting mechanically-activated currents that are fully dependent on Piezo2. As such, we analyzed the deficits in balance and coordination caused by the selective deletion of the channel in proprioceptors (conditional knockout). The data clearly shows that Piezo2 fulfills a critical role in a defined homogeneous population of proprioceptor neurons that innervate the head muscles, demonstrating that this ion channel is essential for mammalian proprioceptive mechanotransduction.
Collapse
|
16
|
Lo FS, Erzurumlu RS. Neonatal sensory nerve injury-induced synaptic plasticity in the trigeminal principal sensory nucleus. Exp Neurol 2016; 275 Pt 2:245-52. [PMID: 25956829 PMCID: PMC4636484 DOI: 10.1016/j.expneurol.2015.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 11/26/2022]
Abstract
Sensory deprivation studies in neonatal mammals, such as monocular eye closure, whisker trimming, and chemical blockade of the olfactory epithelium have revealed the importance of sensory inputs in brain wiring during distinct critical periods. But very few studies have paid attention to the effects of neonatal peripheral sensory nerve damage on synaptic wiring of the central nervous system (CNS) circuits. Peripheral somatosensory nerves differ from other special sensory afferents in that they are more prone to crush or severance because of their locations in the body. Unlike the visual and auditory afferents, these nerves show regenerative capabilities after damage. Uniquely, damage to a somatosensory peripheral nerve does not only block activity incoming from the sensory receptors but also mediates injury-induced neuro- and glial chemical signals to the brain through the uninjured central axons of the primary sensory neurons. These chemical signals can have both far more and longer lasting effects than sensory blockade alone. Here we review studies which focus on the consequences of neonatal peripheral sensory nerve damage in the principal sensory nucleus of the brainstem trigeminal complex.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Matsumoto A, Arisaka H, Hosokawa Y, Sakuraba S, Sugita T, Umezawa N, Kaku Y, Yoshida KI, Kuwana SI. Effect of carbamazepine and gabapentin on excitability in the trigeminal subnucleus caudalis of neonatal rats using a voltage-sensitive dye imaging technique. Biol Res 2015. [PMID: 26195075 PMCID: PMC4508818 DOI: 10.1186/s40659-015-0027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background The antiepileptic drugs
carbamazepine and gabapentin are effective in treating neuropathic pain and trigeminal neuralgia. In the present study, to analyze the effects of carbamazepine and gabapentin on neuronal excitation in the spinal trigeminal subnucleus caudalis (Sp5c) in the medulla oblongata, we recorded temporal changes in nociceptive afferent activity in the Sp5c of trigeminal nerve-attached brainstem slices of neonatal rats using a voltage-sensitive dye imaging technique. Results Electrical stimulation of the trigeminal nerve rootlet evoked changes in the fluorescence intensity of dye in the Sp5c. The optical signals were composed of two phases, a fast component with a sharp peak followed by a long-lasting component with a period of more than 500 ms. This evoked excitation was not influenced by administration of carbamazepine (10, 100 and 1,000 μM) or gabapentin (1 and 10 μM), but was increased by administration of 100 μM gabapentin. This evoked excitation was increased further in low Mg2+ (0.8 mM) conditions, and this effect of low Mg2+ concentration was antagonized by 30 μM DL-2-amino-5-phosphonopentanoic acid (AP5), a N-methyl-d-aspartate (NMDA) receptor blocker. The increased excitation in low Mg2+ conditions was also antagonized by carbamazepine (1,000 μM) and gabapentin (100 μM). Conclusion Carbamazepine and gabapentin did not decrease electrically evoked excitation in the Sp5c in control conditions. Further excitation in low Mg2+ conditions was antagonized by the NMDA receptor blocker AP5. Carbamazepine and gabapentin had similar effects to AP5 on evoked excitation in the Sp5c in low Mg2+ conditions. Thus, we concluded that carbamazepine and gabapentin may act by blocking NMDA receptors in the Sp5c, which contributes to its anti-hypersensitivity in neuropathic pain.
Collapse
Affiliation(s)
- Akiko Matsumoto
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Hirofumi Arisaka
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Yuki Hosokawa
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0375, Japan.
| | - Shigeki Sakuraba
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Takeo Sugita
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Nobuo Umezawa
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Yuki Kaku
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Inashiki-gun, Ibaraki, 300-0394, Japan.
| | - Kazu-ichi Yoshida
- Division of Anesthesiology, Department of Clinical Care Medicine, Kanagawa Dental College, Yokosuka, Kanagawa, 238-8580, Japan.
| | - Shun-ichi Kuwana
- Faculty of Health Sciences, Uekusa Gakuen University, Ogura-cho, Wakaba-ku, Chiba, 264-0007, Japan.
| |
Collapse
|
18
|
Sdrulla AD, Xu Q, He SQ, Tiwari V, Yang F, Zhang C, Shu B, Shechter R, Raja SN, Wang Y, Dong X, Guan Y. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain 2015; 156:1008-1017. [PMID: 25974163 PMCID: PMC4437220 DOI: 10.1097/01.j.pain.0000460353.15460.a3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrical stimulation of low-threshold Aβ-fibers (Aβ-ES) is used clinically to treat neuropathic pain conditions that are refractory to pharmacotherapy. However, it is unclear how Aβ-ES modulates synaptic responses to high-threshold afferent inputs (C-, Aδ-fibers) in superficial dorsal horn. Substantia gelatinosa (SG) (lamina II) neurons are important for relaying and modulating converging spinal nociceptive inputs. We recorded C-fiber-evoked excitatory postsynaptic currents (eEPSCs) in spinal cord slices in response to paired-pulse test stimulation (500 μA, 0.1 millisecond, 400 milliseconds apart). We showed that 50-Hz and 1000-Hz, but not 4-Hz, Aβ-ES (10 μA, 0.1 millisecond, 5 minutes) induced prolonged inhibition of C-fiber eEPSCs in SG neurons in naive mice. Furthermore, 50-Hz Aβ-ES inhibited both monosynaptic and polysynaptic forms of C-fiber eEPSC in naive mice and mice that had undergone spinal nerve ligation (SNL). The paired-pulse ratio (amplitude second eEPSC/first eEPSC) increased only in naive mice after 50-Hz Aβ-ES, suggesting that Aβ-ES may inhibit SG neurons by different mechanisms under naive and nerve-injured conditions. Finally, 50-Hz Aβ-ES inhibited both glutamatergic excitatory and GABAergic inhibitory interneurons, which were identified by fluorescence in vGlut2-Td and glutamic acid decarboxylase-green fluorescent protein transgenic mice after SNL. These findings show that activities in Aβ-fibers lead to frequency-dependent depression of synaptic transmission in SG neurons in response to peripheral noxious inputs. However, 50-Hz Aβ-ES failed to induce cell-type-selective inhibition in SG neurons. The physiologic implication of this novel form of synaptic depression for pain modulation by Aβ-ES warrants further investigation.
Collapse
Affiliation(s)
- Andrei D. Sdrulla
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Vinod Tiwari
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Fei Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Chen Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Bin Shu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Ronen Shechter
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
- Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|
19
|
Boada MD, Gutierrez S, Aschenbrenner CA, Houle TT, Hayashida KI, Ririe DG, Eisenach JC. Nerve injury induces a new profile of tactile and mechanical nociceptor input from undamaged peripheral afferents. J Neurophysiol 2014; 113:100-9. [PMID: 25274350 DOI: 10.1152/jn.00506.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic pain after nerve injury is often accompanied by hypersensitivity to mechanical stimuli, yet whether this reflects altered input, altered processing, or both remains unclear. Spinal nerve ligation or transection results in hypersensitivity to mechanical stimuli in skin innervated by adjacent dorsal root ganglia, but no previous study has quantified the changes in receptive field properties of these neurons in vivo. To address this, we recorded intracellularly from L4 dorsal root ganglion neurons of anesthetized young adult rats, 1 wk after L5 partial spinal nerve ligation (pSNL) or sham surgery. One week after pSNL, hindpaw mechanical withdrawal threshold in awake, freely behaving animals was decreased in the L4 distribution on the nerve-injured side compared with sham controls. Electrophysiology revealed that high-threshold mechanoreceptive cells of A-fiber conduction velocity in L4 were sensitized, with a seven-fold reduction in mechanical threshold, a seven-fold increase in receptive field area, and doubling of maximum instantaneous frequency in response to peripheral stimuli, accompanied by reductions in after-hyperpolarization amplitude and duration. Only a reduction in mechanical threshold (minimum von Frey hair producing neuronal activity) was observed in C-fiber conduction velocity high-threshold mechanoreceptive cells. In contrast, low-threshold mechanoreceptive cells were desensitized, with a 13-fold increase in mechanical threshold, a 60% reduction in receptive field area, and a 40% reduction in instantaneous frequency to stimulation. No spontaneous activity was observed in L4 ganglia, and the likelihood of recording from neurons without a mechanical receptive field was increased after pSNL. These data suggest massively altered input from undamaged sensory afferents innervating areas of hypersensitivity after nerve injury, with reduced tactile and increased nociceptive afferent response. These findings differ importantly from previous preclinical studies, but are consistent with clinical findings in most patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- M Danilo Boada
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Silvia Gutierrez
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carol A Aschenbrenner
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Timothy T Houle
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ken-Ichiro Hayashida
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Douglas G Ririe
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James C Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
20
|
Optogenetic patterning of whisker-barrel cortical system in transgenic rat expressing channelrhodopsin-2. PLoS One 2014; 9:e93706. [PMID: 24695456 PMCID: PMC3973546 DOI: 10.1371/journal.pone.0093706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/05/2014] [Indexed: 01/03/2023] Open
Abstract
The rodent whisker-barrel system has been an ideal model for studying somatosensory representations in the cortex. However, it remains a challenge to experimentally stimulate whiskers with a given pattern under spatiotemporal precision. Recently the optogenetic manipulation of neuronal activity has made possible the analysis of the neuronal network with precise spatiotemporal resolution. Here we identified the selective expression of channelrhodopsin-2 (ChR2), an algal light-driven cation channel, in the large mechanoreceptive neurons in the trigeminal ganglion (TG) as well as their peripheral nerve endings innervating the whisker follicles of a transgenic rat. The spatiotemporal pattern of whisker irradiation thus produced a barrel-cortical response with a specific spatiotemporal pattern as evidenced by electrophysiological and functional MRI (fMRI) studies. Our methods of generating an optogenetic tactile pattern (OTP) can be expected to facilitate studies on how the spatiotemporal pattern of touch is represented in the somatosensory cortex, as Hubel and Wiesel did in the visual cortex.
Collapse
|
21
|
Lo FS, Zhao S, Erzurumlu RS. Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional recovery. J Neurophysiol 2014; 111:1590-600. [PMID: 24478162 DOI: 10.1152/jn.00658.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infraorbital nerve (ION) transection in neonatal rats leads to disruption of whisker-specific neural patterns (barrelettes), conversion of functional synapses into silent synapses, and reactive gliosis in the brain stem trigeminal principal nucleus (PrV). Here we tested the hypothesis that neonatal peripheral nerve crush injuries permit better functional recovery of associated central nervous system (CNS) synaptic circuitry compared with nerve transection. We developed an in vitro whisker pad-trigeminal ganglion (TG)-brain stem preparation in neonatal rats and tested functional recovery in the PrV following ION crush. Intracellular recordings revealed that 68% of TG cells innervate the whisker pad. We used the proportion of whisker pad-innervating TG cells as an index of ION function. The ION function was blocked by ∼64%, immediately after mechanical crush, then it recovered beginning after 3 days postinjury and was complete by 7 days. We used this reversible nerve-injury model to study peripheral nerve injury-induced CNS synaptic plasticity. In the PrV, the incidence of silent synapses increased to ∼3.5 times of control value by 2-3 days postinjury and decreased to control levels by 5-7 days postinjury. Peripheral nerve injury-induced reaction of astrocytes and microglia in the PrV was also reversible. Neonatal ION crush disrupted barrelette formation, and functional recovery was not accompanied by de novo barrelette formation, most likely due to occurrence of recovery postcritical period (P3) for pattern formation. Our results suggest that nerve crush is more permissive for successful regeneration and reconnection (collectively referred to as "recovery" here) of the sensory inputs between the periphery and the brain stem.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
22
|
Tel’ka MV, Rykhal’skii OV, Veselovskii NS. Electrophysiological Properties of Cultured Neurons of the Rat Trigeminal Ganglion. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Gap junctions in dorsal root ganglia: Possible contribution to visceral pain. Eur J Pain 2012; 14:49.e1-11. [DOI: 10.1016/j.ejpain.2009.02.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 01/08/2023]
|
24
|
Cho HJ, Furness JB, Jennings EA. Postnatal maturation of the hyperpolarization-activated cation current, I(h), in trigeminal sensory neurons. J Neurophysiol 2011; 106:2045-56. [PMID: 21753027 DOI: 10.1152/jn.00798.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hyperpolarization-activated inward currents (I(h)) contribute to neuronal excitability in sensory neurons. Four subtypes of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate I(h), with different activation kinetics and cAMP sensitivities. The aim of the present study was to examine the postnatal development of I(h) and HCN channel subunits in trigeminal ganglion (TG) neurons. I(h) was investigated in acutely dissociated TG neurons from rats aged between postnatal day (P)1 and P35 with whole cell patch-clamp electrophysiology. In voltage-clamp studies, I(h) was activated by a series of hyperpolarizing voltage steps from -40 mV to -120 mV in -10-mV increments. Tail currents from a common voltage step (-100 mV) were used to determine I(h) voltage dependence. I(h) activation was faster in older rats and occurred at more depolarized potentials; the half-maximal activation voltage (V(1/2)) changed from -89.4 mV (P1) to -81.6 mV (P35). In current-clamp studies, blocking I(h) with ZD7288 caused membrane hyperpolarization and increases in action potential half-duration at all postnatal ages examined. ZD7288 also reduced the action potential firing frequency in multiple-firing neurons. Western blot analysis of the TG detected immunoreactive bands corresponding to all HCN subtypes. HCN1 and HCN2 band density increased with postnatal age, whereas the low-intensity HCN3 and moderate-intensity HCN4 bands were not changed. This study suggests that functional I(h) are activated in rat trigeminal sensory neurons from P1 during postnatal development, have an increasing role with age, and modify neuronal excitability.
Collapse
Affiliation(s)
- Hyun-Jung Cho
- Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
25
|
Donnelly DF. Developmental changes in the magnitude and activation characteristics of Na(+) currents of petrosal neurons projecting to the carotid body. Respir Physiol Neurobiol 2011; 177:284-93. [PMID: 21596159 DOI: 10.1016/j.resp.2011.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/11/2011] [Accepted: 05/03/2011] [Indexed: 12/15/2022]
Abstract
Carotid bodies mediate hypoxia sensing for the respiratory system and increase their sensitivity in the post-natal period. The present study examined the characteristics and developmental change of fast Na(+) currents of chemoreceptor afferent neurons. Rat carotid bodies (P2-P19) were harvested intact with the petrosal ganglia and whole-cell recordings obtained from petrosal somas whose axons projected to the carotid body. The magnitude of Na(+) current increased in the post-natal period in parallel with increased conduction velocity and somal size. Voltage-dependence of activation significantly shifted towards negative potentials but no significant change occurred in the voltage dependence of inactivation or the slope factors for activation or inactivation. The leftward shift in activation increased slowly or non-inactivating currents around resting potential which increases afferent neuron excitability, a result confirmed in current clamp recordings. These results suggest that a developmental shift in Na(+) current activation plays a role in chemoreceptor maturation by enhancing excitability of the afferent neuron.
Collapse
Affiliation(s)
- David F Donnelly
- Department of Pediatrics, Division of Respiratory Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F. The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurones. J Physiol 2008; 586:5101-18. [PMID: 18772201 PMCID: PMC2652152 DOI: 10.1113/jphysiol.2008.159384] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/29/2008] [Indexed: 01/13/2023] Open
Abstract
In adult mouse trigeminal ganglion (TG) neurones we identified three neuronal subpopulations, defined in terms of their firing response to protracted depolarizations, namely MF neurones, characterized by a multiple tonic firing; DMF neurones, characterized by a delay before the beginning of repetitive firing; and SS neurones, characterized by a strongly adapting response. The three subpopulations also differed in several other properties important for defining their functional role in vivo, namely soma size, action potential (AP) shape and capsaicin sensitivity. MF neurones had small soma, markedly long AP and mostly responded to capsaicin, properties typical of a subgroup of C-type nociceptors. SS neurones had large soma, short AP duration and were mostly capsaicin insensitive, suggesting that most of them have functions other than nociception. DMF neurones were all capsaicin insensitive, had a small soma size and intermediate AP duration, making them functionally distinct from both MF and SS neurones. We investigated the ionic basis underlying the delay to the generation of the first AP of DMF neurones, and the strong adaptation of SS neurones. We found that the expression of a fast-inactivating, 4-AP- and CP-339,818-sensitive K+ current (I(A)) in DMF neurones plays a critical role in the generation of the delay, whereas a DTX-sensitive K+ current (I(DTX)) selectively expressed in SS neurones appeared to be determinant for their strong firing adaptation. A minimal theoretical model of TG neuronal excitability confirmed that I(A) and I(DTX) have properties congruent with their suggested role.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Dipartimento Biologia Cellulare e Ambientale, Universitá di Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
27
|
Lo FS, Erzurumlu RS. Conversion of functional synapses into silent synapses in the trigeminal brainstem after neonatal peripheral nerve transection. J Neurosci 2007; 27:4929-34. [PMID: 17475801 PMCID: PMC3556570 DOI: 10.1523/jneurosci.5342-06.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the major consequences of neonatal infraorbital nerve damage is irreversible morphological reorganization in the principal sensory nucleus (PrV) of the trigeminal nerve in the brainstem. We used the voltage-clamp technique to study synaptic transmission in the normal and the denervated PrV of neonatal rats in an in vitro brainstem preparation. Most of the synapses in the PrV are already functional at birth. Three days after peripheral deafferentation, functional synapses become silent, lacking AMPA receptor-mediated currents. Without sensory inputs from the whiskers, silent synapses persist through the second postnatal week, indicating that the maintenance of AMPA receptor function depends on sensory inputs. High-frequency (50 Hz) electrical stimulation of the afferent pathway, which mimics sensory input, restores synaptic function, whereas low-frequency (1 Hz) stimulation has no effect. Application of glycine, which promotes AMPA receptor exocytosis, also restores synaptic function. Therefore, normal synaptic function in the developing PrV requires incoming activity via sensory afferents and/or enhanced AMPA receptor exocytosis. Sensory deprivation most likely results in AMPA receptor endocytosis and/or lateral diffusion to the extrasynaptic membrane.
Collapse
Affiliation(s)
- Fu-Sun Lo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Reha S. Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
28
|
Li BY, Schild JH. Electrophysiological and pharmacological validation of vagal afferent fiber type of neurons enzymatically isolated from rat nodose ganglia. J Neurosci Methods 2007; 164:75-85. [PMID: 17512602 PMCID: PMC2003207 DOI: 10.1016/j.jneumeth.2007.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/26/2007] [Accepted: 04/02/2007] [Indexed: 11/26/2022]
Abstract
An unavoidable consequence of enzymatic dispersion of sensory neurons from intact ganglia is loss of the axon and thus the ability to classify afferent fiber type based upon conduction velocity (CV). An intact rat nodose ganglion preparation was used to randomly sample neurons (n=76) using the patch clamp technique. Reliable electrophysiological and chemophysiological correlates of afferent fiber type were established for use with isolated neuron preparations. Myelinated afferents (approximately 25%) formed two groups exhibiting strikingly different functional profiles. One group (n=10) exhibited CVs in excess of 10 m/s and narrow (<1 ms) action potentials (APs) while the other (n=9) had CVs as low as 4m/s and broad (>2 ms) APs that closely approximated those identified as unmyelinated afferents (n=57) with CVs less than 1m/s. A cluster analysis of select measures from the AP waveforms strongly correlated with CV, producing three statistically unique populations (p<0.05). These groupings aligned with our earlier hypothesis (Jin et al., 2004) that a differential sensitivity to the selective purinergic and vanilloid receptor agonists can be used as reliable pharmacological indicators of vagal afferent fiber type. These metrics were further validated using an even larger population of isolated (n=240) nodose neurons. Collectively, these indicators of afferent fiber type can be used to provide valuable insight concerning the relavence of isolated cellular observations to integrated afferent function of visceral organ systems.
Collapse
Affiliation(s)
- Bai-Yan Li
- Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
- Dept. of Pharmacology, Harbin Medical University, Harbin, 150081, CHINA
| | - John H Schild
- Dept. of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202
- *Corresponding author Address: 723 W. Michigan St., Suite SL174, Indianapolis, IN 46202, E-mail: (J.H. Schild). Phone: 317-274-9747
| |
Collapse
|
29
|
Gover TD, Moreira THV, Kao JPY, Weinreich D. Calcium homeostasis in trigeminal ganglion cell bodies. Cell Calcium 2006; 41:389-96. [PMID: 17046058 DOI: 10.1016/j.ceca.2006.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/17/2006] [Accepted: 08/20/2006] [Indexed: 11/18/2022]
Abstract
In primary sensory afferent neurons, Ca2+ plays a vital role in the regulation of cellular processes including receptor and synaptic plasticity, neurotransmitter and trophic factor release and gene regulation. Current understanding of the mechanisms underlying Ca2+ homeostasis of primary sensory afferent neurons is mostly derived from studies on dorsal root ganglia and nodose ganglia neuron cell bodies. Little is known about Ca2+ homeostasis in trigeminal ganglion neurons (TGNs). To determine what cellular processes contribute to electrically-evoked Ca2+ transients in TGNs, we probed Ca2+ regulatory mechanisms in TGN cell bodies from the ophthalmic division with a panel of pharmacological reagents. Ca2+ transients were evoked in fura-2 loaded TGNs by depolarizing the plasma membrane with brief (500 ms) puffs of 50 mM KCl. Cyclopiazonic acid (CPA; 5 microM), an inhibitor of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), significantly decreased the peak amplitude, and slowed the decay, of the KCl-evoked Ca2+ transients in TGNs. The mitochondrial protonophore, carbonyl cyanide 3-chloro-phenylhydrazone (CCCP; 5 microM) significantly increased the peak amplitude of KCl-evoked Ca2+ transients. These data demonstrate that Ca2+ stores do play a major role in Ca2+ homeostasis in TGN cell bodies. To determine the role of the sodium-calcium exchanger (NCX) in KCl-evoked Ca2+ transients in TGNs, we inhibited the exchanger with KB-R7943 (10 microM), or by replacing Na+ with Li+. NCX inhibition did not affect either the peak amplitude or the decay kinetics of the KCl-evoked Ca2+ transients. Therefore, the NCX does not play a significant role in removing cytosolic Ca2+ from TGNs. To test whether the plasma membrane calcium-ATPase (PMCA) contributes to Ca2+ extrusion, we inhibited its activity by a shift to alkaline pH (9.0). At pH 9.0, both the peak amplitude and decay time of the KCl-evoked Ca2+ transient were increased significantly. These data suggest that, in TGNs, the PMCA is the major mechanism for removing cytosolic Ca2+ following electrical activity.
Collapse
Affiliation(s)
- Tony D Gover
- The Neuroscience Program, University of Maryland, School of Medicine, Baltimore, MD 21201-1559, United States
| | | | | | | |
Collapse
|
30
|
Carrascal L, Nieto-Gonzalez JL, Núñez-Abades P, Torres B. Temporal sequence of changes in electrophysiological properties of oculomotor motoneurons during postnatal development. Neuroscience 2006; 140:1223-37. [PMID: 16631312 DOI: 10.1016/j.neuroscience.2006.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/13/2006] [Accepted: 03/01/2006] [Indexed: 01/19/2023]
Abstract
The temporal sequence of changes in electrophysiological properties during postnatal development in different neuronal populations has been the subject of previous studies. Those studies demonstrated major physiological modifications with age, and postnatal periods in which such changes are more pronounced. Until now, no similar systematic study has been performed in motoneurons of the oculomotor nucleus. This work has two main aims: first, to determine whether the physiological changes in oculomotor nucleus motoneurons follow a similar time course for different parameters; and second, to compare the temporal sequence with that in other neuronal populations. We recorded the electrophysiological properties of 134 identified oculomotor nucleus motoneurons from 1 to 40 days postnatal in brain slices of rats. The resting membrane potential did not significantly change with postnatal development, and it had a mean value of -61.8 mV. The input resistance and time constant diminished from 82.9-53.1 M omega and from 9.4-4.9 ms respectively with age. These decrements occurred drastically in a short time after birth (1-5 days postnatally). The motoneurons' rheobase gradually decayed from 0.29-0.11 nA along postnatal development. From birth until postnatal day 15 and postnatal day 20 respectively, the action potential shortened from 2.3-1.2 ms, and the medium afterhyperpolarization from 184.8-94.4 ms. The firing gain and the maximum discharge increased with age. The former rose continuously, while the increase in maximum discharge was most pronounced between postnatal day 16 and postnatal day 20. We conclude that the developmental sequence was not similar for all electrophysiological properties, and was unique for each neuronal population.
Collapse
Affiliation(s)
- L Carrascal
- Department of Physiology and Zoology, University of Seville, Avenida Reina Mercedes, 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
31
|
Drobyshevsky A, Song SK, Gamkrelidze G, Wyrwicz AM, Derrick M, Meng F, Li L, Ji X, Trommer B, Beardsley DJ, Luo NL, Back SA, Tan S. Developmental changes in diffusion anisotropy coincide with immature oligodendrocyte progression and maturation of compound action potential. J Neurosci 2006; 25:5988-97. [PMID: 15976088 PMCID: PMC6724805 DOI: 10.1523/jneurosci.4983-04.2005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Disruption of oligodendrocyte lineage progression is implicated in the white-matter injury that occurs in cerebral palsy. We have previously published a model in rabbits consistent with cerebral palsy. Little is known of normal white-matter development in perinatal rabbits. Using a multidimensional approach, we defined the relationship of oligodendrocyte lineage progression and functional maturation of axons to structural development of selected cerebral white-matter tracts as determined by diffusion tensor imaging (DTI). Immunohistochemical studies showed that late oligodendrocyte progenitors appear at gestational age 22 [embryonic day 22 (E22)], whereas immature oligodendrocytes appear at E25, and both increase rapidly with time (approximately 13 cells/mm2/d) until the onset of myelination. Myelination began at postnatal day 5 (P5) (E36) in the internal capsule (IC) and at P11 in the medial corpus callosum (CC), as determined by localization of sodium channels and myelin basic protein. DTI of the CC and IC showed that fractional anisotropy (FA) increased rapidly between E25 and P1 (E32) (11% per day) and plateaued (<5% per day) after the onset of myelination. Postnatal maturation of the compound action potential (CAP) showed a developmental pattern similar to FA, with a rapid rise between E29 and P5 (in the CC, 18% per day) and a slower rise from P5 to P11 (in the CC, <5% per day). The development of immature oligodendrocytes after E29 coincides with changes in FA and CAP area in both the CC and IC. These findings suggest that developmental expansion of immature oligodendrocytes during the premyelination period may be important in defining structural and functional maturation of the white matter.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Departments of Pediatrics, Northwestern University and Evanston Northwestern Healthcare, Evanston, Illinois 60201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Erzurumlu RS, Chen ZF, Jacquin MF. Molecular determinants of the face map development in the trigeminal brainstem. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:121-34. [PMID: 16432893 PMCID: PMC3556733 DOI: 10.1002/ar.a.20285] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The perception of external sensory information by the brain requires highly ordered synaptic connectivity between peripheral sensory neurons and their targets in the central nervous system. Since the discovery of the whisker-related barrel patterns in the mouse cortex, the trigeminal system has become a favorite model for study of how its connectivity and somatotopic maps are established during development. The trigeminal brainstem nuclei are the first CNS regions where whisker-specific neural patterns are set up by the trigeminal afferents that innervate the whiskers. In particular, barrelette patterns in the principal sensory nucleus of the trigeminal nerve provide the template for similar patterns in the face representation areas of the thalamus and subsequently in the primary somatosensory cortex. Here, we describe and review studies of neurotrophins, multiple axon guidance molecules, transcription factors, and glutamate receptors during early development of trigeminal connections between the whiskers and the brainstem that lead to emergence of patterned face maps. Studies from our laboratories and others' showed that developing trigeminal ganglion cells and their axons depend on a variety of molecular signals that cooperatively direct them to proper peripheral and central targets and sculpt their synaptic terminal fields into patterns that replicate the organization of the whiskers on the muzzle. Similar mechanisms may also be used by trigeminothalamic and thalamocortical projections in establishing patterned neural modules upstream from the trigeminal brainstem.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | |
Collapse
|
33
|
Huang TY, Hanani M. Morphological and electrophysiological changes in mouse dorsal root ganglia after partial colonic obstruction. Am J Physiol Gastrointest Liver Physiol 2005; 289:G670-8. [PMID: 15920014 DOI: 10.1152/ajpgi.00028.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is evidence that sensitization of neurons in dorsal root ganglia (DRG) may contribute to pain induced by intestinal injury. We hypothesized that obstruction-induced pain is related to changes in DRG neurons and satellite glial cells (SGCs). In this study, partial colonic obstruction was induced by ligation. The neurons projecting to the colon were traced by an injection of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate into the colon wall. The electrophysiological properties of DRG neurons were determined using intracellular electrodes. Dye coupling was examined with an intracellular injection of Lucifer yellow (LY). Morphological changes in the colon and DRG were examined. Pain was assessed with von Frey hairs. Partial colonic obstruction caused the following changes. First, coupling between SGCs enveloping different neurons increased 18-fold when LY was injected into SGCs near neurons projecting to the colon. Second, neurons were not coupled to other neurons or SGCs. Third, the firing threshold of neurons projecting to the colon decreased by more than 40% (P < 0.01), and the resting potential was more positive by 4-6 mV (P < 0.05). Finally, the number of neurons displaying spontaneous spikes increased eightfold, and the number of neurons with subthreshold voltage oscillations increased over threefold. These changes are consistent with augmented neuronal excitability. The pain threshold to abdominal stimulation decreased by 70.2%. Inflammatory responses were found in the colon wall. We conclude that obstruction increased neuronal excitability, which is likely to be a major factor in the pain behavior observed. The augmented dye coupling between glial cells may contribute to the neuronal hyperexcitability.
Collapse
Affiliation(s)
- Tian-Ying Huang
- Laboratory of Experiment Surgery, Hebrew University-Hadassah Medical School, Mount Scopus, Jerusalem 91240, Israel
| | | |
Collapse
|
34
|
Yoshida S, Matsumoto S. Effects of alpha-dendrotoxin on K+ currents and action potentials in tetrodotoxin-resistant adult rat trigeminal ganglion neurons. J Pharmacol Exp Ther 2005; 314:437-45. [PMID: 15831438 DOI: 10.1124/jpet.105.084988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine whether the alpha-dendrotoxin (alpha-DTX)-sensitive current [D current, slow inactivating transient current (I(D))] contributes to the modification of neuronal function in small-diameter adult rat trigeminal ganglion (TG) neurons insensitive to 1 microM tetrodotoxin (TTX), we performed two different types of experiments. In the voltage-clamp mode, two distinct K+ current components, a fast inactivating transient current (I(A)) and a dominant sustained current (I(K)), were identified. Alpha-DTX (0.1 microM), ranging from 0.001 to 1 microM, maximally decreased I(A) by approximately 20% and I(K) by approximately 16.1% at a +50-mV step pulse, and 0.1 microM alpha-DTX application increased the number of action potentials without changing the resting membrane potential. Irrespective of the absence and presence of 0.1 microM alpha-DTX, applications of 4-aminopyridine (4-AP; 0.5 mM) and tetraethylammonium (TEA; 2 mM) inhibited approximately 50% inhibition of I(A) and I(K), respectively. 4-AP (0.5 mM) depolarized the resting membrane potential and increased the number of action potentials in the absence or presence of 0.1 microM alpha-DTX. TEA prolonged the duration of action potentials in the absence or presence of 0.1 microM alpha-DTX. These results suggest that I(D) contributes to the modification of neuronal function in adult rat TTX-resistant TG neurons, but after the loss of I(D) due to 0.1 microM alpha-DTX application, 4-AP (0.5 mM) and TEA (2 mM) still regulate the intrinsic firing properties of action potential number and shape.
Collapse
Affiliation(s)
- Shinki Yoshida
- Department of Physiology, Nippon Dental University, School of Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan.
| | | |
Collapse
|
35
|
Nguyen QT, Kleinfeld D. Positive Feedback in a Brainstem Tactile Sensorimotor Loop. Neuron 2005; 45:447-57. [PMID: 15694330 DOI: 10.1016/j.neuron.2004.12.042] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 10/01/2004] [Accepted: 12/03/2004] [Indexed: 11/30/2022]
Abstract
The trigeminal loop in the brainstem comprises the innermost level of sensorimotor feedback in the rat vibrissa system. Anatomy suggests that this loop relays tactile information from the vibrissae to the motoneurons that control vibrissa movement. We demonstrate, using in vitro and in vivo recordings, that the trigeminal loop consists of excitatory pathways from vibrissa sensory inputs to vibrissa motoneurons in the facial nucleus. We further show that the trigeminal loop implements a rapidly depressing reflex that provides positive sensory feedback to the vibrissa musculature during simulated whisking and contact. On the basis of these findings, we propose that the trigeminal loop provides an enhancement of vibrissa muscle tone upon contact during active touch.
Collapse
Affiliation(s)
- Quoc-Thang Nguyen
- Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
36
|
Cherkas PS, Huang TY, Pannicke T, Tal M, Reichenbach A, Hanani M. The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 2004; 110:290-8. [PMID: 15275779 DOI: 10.1016/j.pain.2004.04.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 03/12/2004] [Accepted: 04/05/2004] [Indexed: 11/23/2022]
Abstract
Damage to peripheral nerves induces ectopic firing in sensory neurons, which can contribute to neuropathic pain. As most of the information on this topic is on dorsal root ganglia we decided to examine the influence of infra-orbital nerve section on cells of murine trigeminal ganglia. We characterized the electrophysiological properties of neurons with intracellular electrodes. Changes in the coupling of satellite glial cells (SGCs) were monitored by intracelluar injection of the fluorescent dye Lucifer yellow. Electrophysiology of SGCs was studied with the patch-clamp technique. Six to eight days after axotomy, the percentage of neurons that fire spontaneously increased from 1.6 to 12.8%, the membrane depolarized from -51.1 to -45.5 mV, the percentage of cells with spontaneous potential oscillations increased from 19 to 37%, the membrane input resistance decreased from 44.4 to 39.5 MOmega, and the threshold for firing an action potential decreased from 0.61 to 0.42 nA. These changes are consistent with increased neuronal excitability. SGCs were mutually coupled around a given neuron in 21% of the cases, and to SGCs around neighboring neurons in only 4.8% of the cases. After axotomy these values increased to 37.1 and 25.8%, respectively. After axotomy the membrane resistance of SGCs decreased from 101 MOmega in controls to 40 MOmega, possibly due to increased coupling among these cells. We conclude that axotomy affects both neurons and SGCs in the trigeminal ganglion. The increased neuronal excitability and ectopic firing may play a major role in neuropathic pain.
Collapse
Affiliation(s)
- Pavel S Cherkas
- Laboratory of Experimental Surgery, Hadassah Medical School, Hebrew University, Mount Scopus, Jerusalem 91240, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Cabanes C, Viana F, Belmonte C. Differential Thermosensitivity of Sensory Neurons in the Guinea Pig Trigeminal Ganglion. J Neurophysiol 2003; 90:2219-31. [PMID: 14534264 DOI: 10.1152/jn.00299.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracellular recordings were employed to study the effects of temperature on membrane properties and excitability in sensory neurons of the intact guinea pig trigeminal ganglion (TG) maintained in vitro. Neurons were classified according to the shape and duration of the action potential into F (short-duration, fast spike) and S (long duration, slow spike with a “hump”) types. Most type F (33/34) neurons had axons with conduction velocities >1.5 m/s, while only 30% (6/23) of type S neurons reached these conduction speeds suggesting differences in myelination. Cooling reduced axonal conduction velocity and prolonged spike duration in both neuronal types. In F-type neurons with strong inward rectification. cooling also increased the excitability, augmenting the input resistance and reducing the current firing threshold. These effects were not observed in S-type neurons lacking inward rectification. In striking contrast to results obtained in cultured TG neurons, cooling or menthol did not induce firing in recordings from the acutely isolated ganglion. However, after application of submillimolar concentrations (100 μM) of the potassium channel blocker 4-aminopyridine (4-AP), 29% previously unresponsive neurons developed cold sensitivity. An additional 31% developed ongoing activity that was sensitive to temperature. Only neurons with strong inward rectification (mostly F-type) became thermosensitive. Cooling- and 4-AP–evoked firing were insensitive to intracellular application of 4-AP or somatic membrane hyperpolarization, suggesting that their action was most prominent at the level of the axon. The lack of excitatory actions of low temperature in the excised intact ganglion contrasts with the impulse discharges induced by cooling in trigeminal nerve terminals of the same species, suggesting a critical difference between cold-transduction mechanisms at the level of the nerve terminals and the soma.
Collapse
Affiliation(s)
- C Cabanes
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones, 03550, San Juan Alicante, Spain.
| | | | | |
Collapse
|
38
|
Shoykhet M, Shetty P, Minnery BS, Simons DJ. Protracted development of responses to whisker deflection in rat trigeminal ganglion neurons. J Neurophysiol 2003; 90:1432-7. [PMID: 12801899 DOI: 10.1152/jn.00419.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rodent whisker-to-barrel pathway constitutes a major model system for studying experience-dependent brain development. Yet little is known about responses of neurons to whisker stimulation in young animals. Response properties of trigeminal ganglion (NV) neurons in 2-, 3-, and 4-week-old and adult rats were examined using extracellular single-unit recordings and controlled whisker stimuli. We found that the receptive field size of NV neurons is mature in 2-week-old animals while response latencies, magnitudes, and angular tuning continue to develop between 2 weeks of age and adulthood. At the earliest time recorded, NV neurons respond to stimulation of only one whisker and can be characterized as slowly or rapidly adapting (SA, RA). The proportion of SA and RA neurons remains constant during development. Consistent with known on-going myelination of NV axons, response latencies decrease with age, becoming adult-like during the third and fourth postnatal weeks for RA and SA neurons, respectively. Unexpectedly, we found that evoked response magnitudes increase several-fold during development becoming adult-like only during the fourth postnatal week. In addition, RA neurons become less selective for whisker deflection angle with age. Maturation of response magnitude and angular tuning is consistent with developmental changes in the mechanical properties of the whisker, the whisker follicle, and the surrounding tissues. The findings indicate that whisker-derived tactile inputs mature during the first postnatal month when whisker-related cortical circuits are susceptible to long-term modification by sensory experience. Thus normal developmental changes in sensory input may influence functional development of cortical circuits.
Collapse
Affiliation(s)
- Michael Shoykhet
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, 15261, USA.
| | | | | | | |
Collapse
|