1
|
Shigapova RR, Mukhamedshina YO. Electrophysiology Methods for Assessing of Neurodegenerative and Post-Traumatic Processes as Applied to Translational Research. Life (Basel) 2024; 14:737. [PMID: 38929721 PMCID: PMC11205106 DOI: 10.3390/life14060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Electrophysiological studies have long established themselves as reliable methods for assessing the functional state of the brain and spinal cord, the degree of neurodegeneration, and evaluating the effectiveness of therapy. In addition, they can be used to diagnose, predict functional outcomes, and test the effectiveness of therapeutic and rehabilitation programs not only in clinical settings, but also at the preclinical level. Considering the urgent need to develop potential stimulators of neuroregeneration, it seems relevant to obtain objective data when modeling neurological diseases in animals. Thus, in the context of the application of electrophysiological methods, not only the comparison of the basic characteristics of bioelectrical activity of the brain and spinal cord in humans and animals, but also their changes against the background of neurodegenerative and post-traumatic processes are of particular importance. In light of the above, this review will contribute to a better understanding of the results of electrophysiological assessment in neurodegenerative and post-traumatic processes as well as the possibility of translating these methods from model animals to humans.
Collapse
Affiliation(s)
- Rezeda Ramilovna Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia;
| | - Yana Olegovna Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan 420008, Russia;
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
2
|
Bevandić J, Chareyron LJ, Bachevalier J, Cacucci F, Genzel L, Newcombe NS, Vargha-Khadem F, Ólafsdóttir HF. Episodic memory development: Bridging animal and human research. Neuron 2024; 112:1060-1080. [PMID: 38359826 PMCID: PMC11129319 DOI: 10.1016/j.neuron.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Loïc J Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Bachevalier
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Olsen LC, Galler M, Witter MP, Saetrom P, O'Reilly KC. Transcriptional development of the hippocampus and the dorsal-intermediate-ventral axis in rats. Hippocampus 2023; 33:1028-1047. [PMID: 37280038 DOI: 10.1002/hipo.23549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Risk and resilience for neuropsychiatric illnesses are established during brain development, and transcriptional markers of risk may be identifiable in early development. The dorsal-ventral axis of the hippocampus has behavioral, electrophysiological, anatomical, and transcriptional gradients and abnormal hippocampus development is associated with autism, schizophrenia, epilepsy, and mood disorders. We previously showed that differential gene expression along the dorsoventral hippocampus in rats was present at birth (postnatal day 0, P0), and that a subset of differentially expressed genes (DEGs) was present at all postnatal ages examined (P0, P9, P18, and P60). Here, we extend the analysis of that gene expression data to understand the development of the hippocampus as a whole by examining DEGs that change with age. We additionally examine development of the dorsoventral axis by looking at DEGs along the axis at each age. Using both unsupervised and supervised analyses, we find that the majority of DEGs are present from P0 to P18, with many expression profiles presenting peaks or dips at P9/18. During development of the hippocampus, enriched pathways associated with learning, memory, and cognition increase with age, as do pathways associated with neurotransmission and synaptic function. Development of the dorsoventral axis is greatest at P9 and P18 and is marked by DEGs associated with metabolic functions. Our data indicate that neurodevelopmental disorders like epilepsy, schizophrenia and affective disorders are enriched with developmental DEGs in the hippocampus, regardless of dorsoventral location, with the greatest enrichment of these clinical disorders seen in genes whose expression changes from P0-9. When comparing DEGs from the ventral and dorsal poles, the greatest number of neurodevelopmental disorders is enriched with DEGs found at P18. Taken together, the developing hippocampus undergoes substantial transcriptional maturation during early postnatal development, with expression of genes involved in neurodevelopmental disorders also showing maximal expression changes within this developmental period.
Collapse
Affiliation(s)
- Lene C Olsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Microbiology, St. Olavs Hospital, Trondheim, Norway
| | - Meital Galler
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, New York, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Pål Saetrom
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Bioinformatics Core Facility - BioCore, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
- Department of Computer and Information Science, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Kally C O'Reilly
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
4
|
Velasquez F, Dickson C, Kloc ML, Schneur CA, Barry JM, Holmes GL. Optogenetic modulation of hippocampal oscillations ameliorates spatial cognition and hippocampal dysrhythmia following early-life seizures. Neurobiol Dis 2023; 178:106021. [PMID: 36720444 DOI: 10.1016/j.nbd.2023.106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
There is increasing human and animal evidence that brain oscillations play a critical role in the development of spatial cognition. In rat pups, disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Early-life seizures are associated with long-term deficits in spatial cognition and aberrant hippocampal oscillatory activity. Here we asked whether modulation of hippocampal rhythms following early-life seizures can reverse or improve hippocampal connectivity and spatial cognition. We used optogenetic stimulation of the medial septum to induce physiological 7 Hz theta oscillations in the hippocampus during the critical period of spatial cognition following early-life seizures. Optogenetic stimulation of the medial septum in control and rats subjected to early-life seizures resulted in precisely regulated frequency-matched hippocampal oscillations. Rat pups receiving active blue light stimulation performed better than the rats receiving inert yellow light in a test of spatial cognition. The improvement in spatial cognition in these rats was associated with a faster theta frequency and higher theta power, coherence and phase locking value in the hippocampus than rats with early-life seizures receiving inert yellow light. These findings indicate that following early life seizures, modification of hippocampal rhythms may be a potential novel therapeutic modality.
Collapse
Affiliation(s)
- Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Conor Dickson
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Carmel A Schneur
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
5
|
Ohana O, Alberini CM, Donato F. Introduction to the special issue on the ontogeny of hippocampal functions. Hippocampus 2022; 32:69-72. [PMID: 35005808 PMCID: PMC9303776 DOI: 10.1002/hipo.23406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ora Ohana
- Institute for Molecular and Cellular Cognition, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Flavio Donato
- Biozentrum of the University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|
7
|
Chakraborty R, Vijay Kumar MJ, Clement JP. Critical aspects of neurodevelopment. Neurobiol Learn Mem 2021; 180:107415. [PMID: 33647449 DOI: 10.1016/j.nlm.2021.107415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
Organisms have the unique ability to adapt to their environment by making use of external inputs. In the process, the brain is shaped by experiences that go hand-in-hand with optimisation of neural circuits. As such, there exists a time window for the development of different brain regions, each unique for a particular sensory modality, wherein the propensity of forming strong, irreversible connections are high, referred to as a critical period of development. Over the years, this domain of neurodevelopmental research has garnered considerable attention from many scientists, primarily because of the intensive activity-dependent nature of development. This review discusses the cellular, molecular, and neurophysiological bases of critical periods of different sensory modalities, and the disorders associated in cases the regulators of development are dysfunctional. Eventually, the neurobiological bases of the behavioural abnormalities related to developmental pathologies are discussed. A more in-depth insight into the development of the brain during the critical period of plasticity will eventually aid in developing potential therapeutics for several neurodevelopmental disorders that are categorised under critical period disorders.
Collapse
Affiliation(s)
- Ranabir Chakraborty
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru. Karnataka. India.
| |
Collapse
|
8
|
Kloc ML, Velasquez F, Niedecker RW, Barry JM, Holmes GL. Disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Brain Stimul 2020; 13:1535-1547. [PMID: 32871261 DOI: 10.1016/j.brs.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hippocampal oscillations play a critical role in the ontogeny of allocentric memory in rodents. During the critical period for memory development, hippocampal theta is the driving force behind the temporal coordination of neuronal ensembles underpinning spatial memory. While known that hippocampal oscillations are necessary for normal spatial cognition, whether disrupted hippocampal oscillatory activity during the critical period impairs long-term spatial memory is unknown. Here we investigated whether disruption of normal hippocampal rhythms during the critical period have enduring effects on allocentric memory in rodents. OBJECTIVE/HYPOTHESIS We hypothesized that disruption of hippocampal oscillations via artificial regulation of the medial septum during the critical period for memory development results in long-standing deficits in spatial cognition. METHODS After demonstrating that pan-neuronal medial septum (MS) optogenetic stimulation (465 nm activated) regulated hippocampal oscillations in weanling rats we used a random pattern of stimulation frequencies to disrupt hippocampal theta rhythms for either 1Hr or 5hr a day between postnatal (P) days 21-25. Non-stimulated and yellow light-stimulated (590 nm) rats served as controls. At P50-60 all rats were tested for spatial cognition in the active avoidance task. Rats were then sacrificed, and the MS and hippocampus assessed for cell loss. Power spectrum density of the MS and hippocampus, coherences and voltage correlations between MS and hippocampus were evaluated at baseline for a range of stimulation frequencies from 0.5 to 110 Hz and during disruptive hippocampal stimulation. Unpaired t-tests and ANOVA were used to compare oscillatory parameters, behavior and cell density in all animals. RESULTS Non-selective optogenetic stimulation of the MS in P21 rats resulted in precise regulation of hippocampal oscillations with 1:1 entrainment between stimulation frequency (0.5-110 Hz) and hippocampal local field potentials. Across bandwidths MS stimulation increased power, coherence and voltage correlation at all frequencies whereas the disruptive stimulation increased power and reduced coherence and voltage correlations with most statistical measures highly significant (p < 0.001, following correction for false detection). Rats receiving disruptive hippocampal stimulation during the critical period for memory development for either 1Hr or 5hr had marked impairment in spatial learning as measured in active avoidance test compared to non-stimulated or yellow light-control rats (p < 0.001). No cell loss was measured between the blue-stimulated and non-stimulated or yellow light-stimulated controls in either the MS or hippocampus. CONCLUSION The results demonstrated that robust regulation of hippocampal oscillations can be achieved with non-selective optogenetic stimulation of the MS in rat pups. A disruptive hippocampal stimulation protocol, which markedly increases power and reduces coherence and voltage correlations between the MS and hippocampus during the critical period of memory development, results in long-standing spatial cognitive deficits. This spatial cognitive impairment is not a result of optogenetic stimulation-induced cell loss.
Collapse
Affiliation(s)
- Michelle L Kloc
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Francisco Velasquez
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Rhys W Niedecker
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jeremy M Barry
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Gregory L Holmes
- Epilepsy Development and Cognition Group, Department of Neurological Sciences, University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
9
|
Zhang Y, Zhang X. Portrait of visual cortical circuits for generating neural oscillation dynamics. Cogn Neurodyn 2020; 15:3-16. [PMID: 34109010 DOI: 10.1007/s11571-020-09623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
The mouse primary visual cortex (V1) has emerged as a classical system to study neural circuit mechanisms underlying visual function and plasticity. A variety of efferent-afferent neuronal connections exists within the V1 and between the V1 and higher visual cortical areas or thalamic nuclei, indicating that the V1 system is more than a mere receiver in information processing. Sensory representations in the V1 are dynamically correlated with neural activity oscillations that are distributed across different cortical layers in an input-dependent manner. Circuits consisting of excitatory pyramidal cells (PCs) and inhibitory interneurons (INs) are the basis for generating neural oscillations. In general, INs are clustered with their adjacent PCs to form specific microcircuits that gate or filter the neural information. The interaction between these two cell populations has to be coordinated within a local circuit in order to preserve neural coding schemes and maintain excitation-inhibition (E-I) balance. Phasic alternations of the E-I balance can dynamically regulate temporal rhythms of neural oscillation. Accumulating experimental evidence suggests that the two major sub-types of INs, parvalbumin-expressing (PV+) cells and somatostatin-expressing (SOM+) INs, are active in controlling slow and fast oscillations, respectively, in the mouse V1. The review summarizes recent experimental findings on elucidating cellular or circuitry mechanisms for the generation of neural oscillations with distinct rhythms in either developing or matured mouse V1, mainly focusing on visual relaying circuits and distinct local inhibitory circuits.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
10
|
McHail DG, Dumas TC. Hippocampal gamma rhythms during Y‐maze navigation in the juvenile rat. Hippocampus 2020; 30:505-525. [DOI: 10.1002/hipo.23168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/01/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel G. McHail
- Interdisciplinary Program in NeuroscienceGeorge Mason University Fairfax Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in NeuroscienceGeorge Mason University Fairfax Virginia
- Psychology DepartmentGeorge Mason University Fairfax Virginia
| |
Collapse
|
11
|
Del Rio-Bermudez C, Kim J, Sokoloff G, Blumberg MS. Active Sleep Promotes Coherent Oscillatory Activity in the Cortico-Hippocampal System of Infant Rats. Cereb Cortex 2020; 30:2070-2082. [PMID: 31922194 PMCID: PMC7175014 DOI: 10.1093/cercor/bhz223] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Active sleep (AS) provides a unique developmental context for synchronizing neural activity within and between cortical and subcortical structures. In week-old rats, sensory feedback from myoclonic twitches, the phasic motor activity that characterizes AS, promotes coherent theta oscillations (4-8 Hz) in the hippocampus and red nucleus, a midbrain motor structure. Sensory feedback from twitches also triggers rhythmic activity in sensorimotor cortex in the form of spindle bursts, which are brief oscillatory events composed of rhythmic components in the theta, alpha/beta (8-20 Hz), and beta2 (20-30 Hz) bands. Here we ask whether one or more of these spindle-burst components are communicated from sensorimotor cortex to hippocampus. By recording simultaneously from whisker barrel cortex and dorsal hippocampus in 8-day-old rats, we show that AS, but not other behavioral states, promotes cortico-hippocampal coherence specifically in the beta2 band. By cutting the infraorbital nerve to prevent the conveyance of sensory feedback from whisker twitches, cortical-hippocampal beta2 coherence during AS was substantially reduced. These results demonstrate the necessity of sensory input, particularly during AS, for coordinating rhythmic activity between these two developing forebrain structures.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jangjin Kim
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
12
|
Tham EKH, Richmond J, Gooley JJ, Jafar NK, Chong YS, Yap F, Teoh OH, Goh DYT, Broekman BFP, Rifkin-Graboi A. Variations in habitual sleep and relational memory in 6-month-olds. Sleep Health 2019; 5:257-265. [PMID: 31208709 DOI: 10.1016/j.sleh.2018.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Adequate sleep duration and good sleep quality are considered essential for development, especially during periods of major neurodevelopmental change. Still, relations between parent-reported habitual sleep and emerging cognitive abilities within the first year of life are not well studied. Here, we examined relations between habitual sleep measures and an aspect of cognitive functioning, relational memory, which emerges as early as 6 months of age, as compared to other abilities (ie, recognition memory and attentional orienting), both of which are considered to emerge earlier in development. PARTICIPANTS Participants were a subset of 267 healthy typically developing 6-month-olds taking part in the Growing Up in Singapore towards Healthy Outcomes cohort study. MEASUREMENTS Sleep duration, sleep latency, and number and duration of night awakenings were derived from the Brief Infant Sleep Questionnaire (BISQ). Short sleep was defined as <10 hours per day, categorized as "not recommended" based on the National Sleep Foundation recommendations. Associations between sleep variables and infants' performance on 2 relational memory tests (deferred imitation and relational binding) were examined independently using hierarchical (blockwise entry) linear regression. Associations between sleep and recognition memory and attentional orienting were also explored. RESULTS Habitual short sleepers had poorer relational memory recall in the deferred imitation task compared with 'typical' sleepers (10-18 hours per day). Shorter sleep latency was related to a greater proportion of correct responses for certain aspects of relational binding. There were no associations between sleep and recognition memory or attention. CONCLUSIONS Our findings suggest that habitual sleep duration and short sleep latency associate with 6-month-olds' relational memory, suggesting a preferential association with memory tasks that are sensitive to development during the second half of the first year.
Collapse
Affiliation(s)
- Elaine K H Tham
- Singapore Institute for Clinical Sciences, Agency for Science and Technology Research (A*STAR), Singapore
| | - Jenny Richmond
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Joshua J Gooley
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Nur K Jafar
- Singapore Institute for Clinical Sciences, Agency for Science and Technology Research (A*STAR), Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science and Technology Research (A*STAR), Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Yap
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Daniel Y T Goh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Agency for Science and Technology Research (A*STAR), Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, Agency for Science and Technology Research (A*STAR), Singapore.
| |
Collapse
|
13
|
Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc Natl Acad Sci U S A 2018; 115:12531-12536. [PMID: 30442670 DOI: 10.1073/pnas.1810125115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early postnatal development, sensory regions of the brain undergo periods of heightened plasticity which sculpt neural networks and lay the foundation for adult sensory perception. Such critical periods were also postulated for learning and memory but remain elusive and poorly understood. Here, we present evidence that the activity-regulated and memory-linked gene Arc/Arg3.1 is transiently up-regulated in the hippocampus during the first postnatal month. Conditional removal of Arc/Arg3.1 during this period permanently alters hippocampal oscillations and diminishes spatial learning capacity throughout adulthood. In contrast, post developmental removal of Arc/Arg3.1 leaves learning and network activity patterns intact. Long-term memory storage continues to rely on Arc/Arg3.1 expression throughout life. These results demonstrate that Arc/Arg3.1 mediates a critical period for spatial learning, during which Arc/Arg3.1 fosters maturation of hippocampal network activity necessary for future learning and memory storage.
Collapse
|
14
|
Del Rio-Bermudez C, Blumberg MS. Active Sleep Promotes Functional Connectivity in Developing Sensorimotor Networks. Bioessays 2018; 40:e1700234. [PMID: 29508913 PMCID: PMC6247910 DOI: 10.1002/bies.201700234] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Indexed: 12/15/2022]
Abstract
A ubiquitous feature of active (REM) sleep in mammals and birds is its relative abundance in early development. In rat pups across the first two postnatal weeks, active sleep promotes the expression of synchronized oscillatory activity within and between cortical and subcortical sensorimotor structures. Sensory feedback from self-generated myoclonic twitches - which are produced exclusively during active sleep - also triggers neural oscillations in those structures. We have proposed that one of the functions of active sleep in early infancy is to provide a context for synchronizing developing structures. Specifically, neural oscillations contribute to a variety of neurodevelopmental processes, including synapse formation, neuronal differentiation and migration, apoptosis, and the refinement of topographic maps. In addition, synchronized oscillations promote functional connectivity between distant brain areas. Consequently, any condition or manipulation that restricts active sleep can, in turn, deprive the infant animal of substantial sensory experience, resulting in atypical developmental trajectories.
Collapse
Affiliation(s)
- Carlos Del Rio-Bermudez
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, 52242, Iowa, USA
- Delta Center, University of Iowa, Iowa City, 52242, Iowa, USA
| | - Mark S Blumberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, 52242, Iowa, USA
- Delta Center, University of Iowa, Iowa City, 52242, Iowa, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, 52245, Iowa, USA
- Department of Biology, University of Iowa, Iowa City, 52242, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, 52242, Iowa, USA
| |
Collapse
|
15
|
Griguoli M, Cherubini E. Early Correlated Network Activity in the Hippocampus: Its Putative Role in Shaping Neuronal Circuits. Front Cell Neurosci 2017; 11:255. [PMID: 28878628 PMCID: PMC5572250 DOI: 10.3389/fncel.2017.00255] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/08/2017] [Indexed: 12/02/2022] Open
Abstract
Synchronized neuronal activity occurring at different developmental stages in various brain structures represents a hallmark of developmental circuits. This activity, which differs in its specific patterns among animal species may play a crucial role in de novo formation and in shaping neuronal networks. In the rodent hippocampus in vitro, the so-called giant depolarizing potentials (GDPs) constitute a primordial form of neuronal synchrony preceding more organized forms of activity such as oscillations in the theta and gamma frequency range. GDPs are generated at the network level by the interaction of the neurotransmitters glutamate and GABA which, immediately after birth, exert both a depolarizing and excitatory action on their targets. GDPs are triggered by GABAergic interneurons, which in virtue of their extensive axonal branching operate as functional hubs to synchronize large ensembles of cells. Intrinsic bursting activity, driven by a persistent sodium conductance and facilitated by the low expression of Kv7.2 and Kv7.3 channel subunits, responsible for IM, exerts a permissive role in GDP generation. Here, we discuss how GDPs are generated in a probabilistic way when neuronal excitability within a local circuit reaches a certain threshold and how GDP-associated calcium transients act as coincident detectors for enhancing synaptic strength at emerging GABAergic and glutamatergic synapses. We discuss the possible in vivo correlate of this activity. Finally, we debate recent data showing how, in several animal models of neuropsychiatric disorders including autism, a GDPs dysfunction is associated to morphological alterations of neuronal circuits and behavioral deficits reminiscent of those observed in patients.
Collapse
Affiliation(s)
- Marilena Griguoli
- European Brain Research Institute (EBRI) "Fondazione Rita Levi-Montalcini"Rome, Italy
| | - Enrico Cherubini
- European Brain Research Institute (EBRI) "Fondazione Rita Levi-Montalcini"Rome, Italy.,Department of Neuroscience, International School for Advanced StudiesTrieste, Italy
| |
Collapse
|
16
|
Effects of neonatal stress on gamma oscillations in hippocampus. Sci Rep 2016; 6:29007. [PMID: 27363787 PMCID: PMC4929501 DOI: 10.1038/srep29007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic early life stress increases adult risk for depression, bipolar disorder and schizophrenia, illnesses characterized by aberrant functions of cognition and memory. We asked whether chronic early life stress disrupts maturation of gamma oscillations, on which these functions depend. Lifelong impairment of the stress response results from separation of rat pups from the dam for three hours per day during a critical period of hippocampal development (PNDs 2–14). Parvalbumin-expressing interneurons, including the basket cell network which is fundamental to gamma oscillations, are reduced in number in post mortem studies of bipolar disorder and schizophrenia, and in chronically-stressed adult rats. To determine effects of chronic early life stress on gamma oscillations, we separated pups from dams once each day on PNDs 2–14 and recorded in vitro at PNDs 15–21. In control pups, separated for 15 minutes per day, gamma power had highly significant correlations with both age (p = 0.0022) and weight (p = 0.0024); gamma in pups separated for 180 minutes per day was not correlated with either factor. ANCOVA indicated significant differences between the groups in both measures. These findings indicate that chronic early life stress can disrupt maturation of the gamma oscillation network.
Collapse
|
17
|
Huupponen J, Atanasova T, Taira T, Lauri SE. GluA4 subunit of AMPA receptors mediates the early synaptic response to altered network activity in the developing hippocampus. J Neurophysiol 2016; 115:2989-96. [PMID: 26961102 DOI: 10.1152/jn.00435.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 03/03/2016] [Indexed: 11/22/2022] Open
Abstract
Development of the neuronal circuitry involves both Hebbian and homeostatic plasticity mechanisms that orchestrate activity-dependent refinement of the synaptic connectivity. AMPA receptor subunit GluA4 is expressed in hippocampal pyramidal neurons during early postnatal period and is critical for neonatal long-term potentiation; however, its role in homeostatic plasticity is unknown. Here we show that GluA4-dependent plasticity mechanisms allow immature synapses to promptly respond to alterations in network activity. In the neonatal CA3, the threshold for homeostatic plasticity is low, and a 15-h activity blockage with tetrodotoxin triggers homeostatic upregulation of glutamatergic transmission. On the other hand, attenuation of the correlated high-frequency bursting in the CA3-CA1 circuitry leads to weakening of AMPA transmission in CA1, thus reflecting a critical role for Hebbian synapse induction in the developing CA3-CA1. Both of these developmentally restricted forms of plasticity were absent in GluA4(-/-) mice. These data suggest that GluA4 enables efficient homeostatic upscaling and responsiveness to temporal activity patterns during the critical period of activity-dependent refinement of the circuitry.
Collapse
Affiliation(s)
- J Huupponen
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Biosciences, University of Helsinki, Helsinki, Finland; and
| | - T Atanasova
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Biosciences, University of Helsinki, Helsinki, Finland; and
| | - T Taira
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - S E Lauri
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Department of Biosciences, University of Helsinki, Helsinki, Finland; and
| |
Collapse
|
18
|
Voinova O, Valiullina F, Zakharova Y, Mukhtarov M, Draguhn A, Rozov A. Layer Specific Development of Neocortical Pyramidal to Fast Spiking Cell Synapses. Front Cell Neurosci 2016; 9:518. [PMID: 26834564 PMCID: PMC4719127 DOI: 10.3389/fncel.2015.00518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/23/2015] [Indexed: 12/04/2022] Open
Abstract
All cortical neurons are engaged in inhibitory feedback loops which ensure excitation-inhibition balance and are key elements for the development of coherent network activity. The resulting network patterns are strongly dependent on the strength and dynamic properties of these excitatory-inhibitory loops which show pronounced regional and developmental diversity. Therefore we compared the properties and postnatal maturation of two different synapses between rat neocortical pyramidal cells (layer 2/3 and layer 5, respectively) and fast spiking (FS) interneurons in the corresponding layer. At P14, both synapses showed synaptic depression upon repetitive activation. Synaptic release properties between layer 2/3 pyramidal cells and FS cells were stable from P14 to P28. In contrast, layer 5 pyramidal to FS cell connections showed a significant increase in paired pulse ratio by P28. Presynaptic calcium dynamics also changed at these synapses, including sensitivity to exogenously loaded calcium buffers and expression of presynaptic calcium channel subtypes. These results underline the large variety of properties at different, yet similar, synapses in the neocortex. They also suggest that postnatal maturation of the brain goes along with increasing differences between synaptically driven network activity in layer 5 and layer 2/3.
Collapse
Affiliation(s)
- Olga Voinova
- Department of Clinical Neurobiology, University of Heidelberg Heidelberg, Germany
| | | | - Yulia Zakharova
- OpenLab of Neurobiology, Kazan Federal University Kazan, Russia
| | - Marat Mukhtarov
- OpenLab of Neurobiology, Kazan Federal University Kazan, Russia
| | - Andreas Draguhn
- Department of Physiology and Pathophysiology, University of Heidelberg Heidelberg, Germany
| | - Andrei Rozov
- Department of Clinical Neurobiology, University of HeidelbergHeidelberg, Germany; OpenLab of Neurobiology, Kazan Federal UniversityKazan, Russia; Department of Physiology and Pathophysiology, University of HeidelbergHeidelberg, Germany
| |
Collapse
|
19
|
Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period. Sci Rep 2015; 5:17847. [PMID: 26648548 PMCID: PMC4673459 DOI: 10.1038/srep17847] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022] Open
Abstract
Neural oscillatory activities have been shown to play important roles in neural information processing and the shaping of circuit connections during development. However, it remains unknown whether and how specific neural oscillations emerge during a postnatal critical period (CP), in which neuronal connections are most substantially modified by neural activity and experience. By recording local field potentials (LFPs) and single unit activity in developing primary visual cortex (V1) of head-fixed awake mice, we here demonstrate an emergence of characteristic oscillatory activities during the CP. From the pre-CP to CP, the peak frequency of spontaneous fast oscillatory activities shifts from the beta band (15–35 Hz) to the gamma band (40–70 Hz), accompanied by a decrease of cross-frequency coupling (CFC) and broadband spike-field coherence (SFC). Moreover, visual stimulation induced a large increase of beta-band activity but a reduction of gamma-band activity specifically from the CP onwards. Dark rearing of animals from the birth delayed this emergence of oscillatory activities during the CP, suggesting its dependence on early visual experience. These findings suggest that the characteristic neuronal oscillatory activities emerged specifically during the CP may represent as neural activity trait markers for the experience-dependent maturation of developing visual cortical circuits.
Collapse
|
20
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 1048] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
21
|
Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep 2015; 5:14527. [PMID: 26417723 PMCID: PMC4586818 DOI: 10.1038/srep14527] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022] Open
Abstract
The formation and maintenance of connectivity are critically important for the processing and storage of information in neuronal networks. The brain extracellular matrix (ECM) appears during postnatal development and surrounds most neurons in the adult mammalian brain. Importantly, the removal of the ECM was shown to improve plasticity and post-traumatic recovery in the CNS, but little is known about the mechanisms. Here, we investigated the role of the ECM in the regulation of the network activity in dissociated hippocampal cultures grown on microelectrode arrays (MEAs). We found that enzymatic removal of the ECM in mature cultures led to transient enhancement of neuronal activity, but prevented disinhibition-induced hyperexcitability that was evident in age-matched control cultures with intact ECM. Furthermore, the ECM degradation followed by disinhibition strongly affected the network interaction so that it strongly resembled the juvenile pattern seen in naïve developing cultures. Taken together, our results demonstrate that the ECM plays an important role in retention of existing connectivity in mature neuronal networks that can be exerted through synaptic confinement of glutamate. On the other hand, removal of the ECM can play a permissive role in modification of connectivity and adaptive exploration of novel network architecture.
Collapse
|
22
|
Tsintsadze V, Minlebaev M, Suchkov D, Cunningham MO, Khazipov R. Ontogeny of kainate-induced gamma oscillations in the rat CA3 hippocampus in vitro. Front Cell Neurosci 2015; 9:195. [PMID: 26041996 PMCID: PMC4438719 DOI: 10.3389/fncel.2015.00195] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
GABAergic inhibition, which is instrumental in the generation of hippocampal gamma oscillations, undergoes significant changes during development. However, the development of hippocampal gamma oscillations remains largely unknown. Here, we explored the developmental features of kainate-induced oscillations (KA-Os) in CA3 region of rat hippocampal slices. Up to postnatal day P5, the bath application of kainate failed to evoke any detectable oscillations. KA-Os emerged by the end of the first postnatal week; these were initially weak, slow (20-25 Hz, beta range) and were poorly synchronized with CA3 units and synaptic currents. Local field potential (LFP) power, synchronization of units and frequency of KA-Os increased during the second postnatal week to attain gamma (30-40 Hz) frequency by P15-21. Both beta and gamma KA-Os are characterized by alternating sinks and sources in the pyramidal cell layer, likely generated by summation of the action potential-associated currents and GABAergic synaptic currents, respectively. Blockade of GABA(A) receptors with gabazine completely suppressed KA-Os at all ages indicating that GABAergic mechanisms are instrumental in their generation. Bumetanide, a NKCC1 chloride co-transporter antagonist which renders GABAergic responses inhibitory in the immature hippocampal neurons, failed to induce KA-Os at P2-4 indicating that the absence of KA-Os in neonates is not due to depolarizing actions of GABA. The linear developmental profile, electrographic features and pharmacological properties indicate that CA3 hippocampal beta and gamma KA-Os are fundamentally similar in their generative mechanisms and their delayed onset and developmental changes likely reflect the development of perisomatic GABAergic inhibition.
Collapse
Affiliation(s)
- Vera Tsintsadze
- INMED, INSERM U-901 Marseille, France ; Aix-Marseille University Marseille, France
| | - Marat Minlebaev
- INMED, INSERM U-901 Marseille, France ; Aix-Marseille University Marseille, France ; Laboratory of Neurobiology, Kazan Federal University Kazan, Russia
| | - Dimitry Suchkov
- Laboratory of Neurobiology, Kazan Federal University Kazan, Russia
| | - Mark O Cunningham
- Institute of Neuroscience, The Medical School, Newcastle University Newcastle upon Tyne, UK
| | - Roustem Khazipov
- INMED, INSERM U-901 Marseille, France ; Aix-Marseille University Marseille, France ; Laboratory of Neurobiology, Kazan Federal University Kazan, Russia
| |
Collapse
|
23
|
Pohle J, Bischofberger J. Supralinear dendritic Ca(2+) signalling in young developing CA1 pyramidal cells. J Physiol 2014; 592:4931-49. [PMID: 25239458 DOI: 10.1113/jphysiol.2014.281931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although Ca(2+) is critically important in activity-dependent neuronal development, not much is known about the regulation of dendritic Ca(2+) signals in developing neurons. Here, we used ratiometric Ca(2+) imaging to investigate dendritic Ca(2+) signalling in rat hippocampal pyramidal cells during the first 1-4 weeks of postnatal development. We show that active dendritic backpropagation of Nav channel-dependent action potentials (APs) evoked already large dendritic Ca(2+) transients in animals aged 1 week with amplitudes of ∼150 nm, similar to the amplitudes of ∼160 nM seen in animals aged 4 weeks. Although the AP-evoked dendritic Ca(2+) load increased about four times during the first 4 weeks, the peak amplitude of free Ca(2+) concentration was balanced by a four-fold increase in Ca(2+) buffer capacity κs (∼70 vs. ∼280). Furthermore, Ca(2+) extrusion rates increased with postnatal development, leading to a slower decay time course (∼0.2 s vs. ∼0.1 s) and more effective temporal summation of Ca(2+) signals in young cells. Most importantly, during prolonged theta-burst stimulation dendritic Ca(2+) signals were up to three times larger in cells at 1 week than at 4 weeks of age and much larger than predicted by linear summation, which is attributable to an activity-dependent slow-down of Ca(2+) extrusion. As Ca(2+) influx is four-fold smaller in young cells, the larger Ca(2+) signals are generated using four times less ATP consumption. Taken together, the data suggest that active backpropagations regulate dendritic Ca(2+) signals during early postnatal development. Remarkably, during prolonged AP firing, Ca(2+) signals are several times larger in young than in mature cells as a result of activity-dependent regulation of Ca(2+) extrusion rates.
Collapse
Affiliation(s)
- Jörg Pohle
- Department of Biomedicine, Physiological Institute, University of Basel, Basel, Switzerland Physiology of Neural Networks, Central Institute of Mental Health Mannheim, Mannheim, Germany
| | - Josef Bischofberger
- Department of Biomedicine, Physiological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Ito S, Yeh FC, Hiolski E, Rydygier P, Gunning DE, Hottowy P, Timme N, Litke AM, Beggs JM. Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures. PLoS One 2014; 9:e105324. [PMID: 25126851 PMCID: PMC4134292 DOI: 10.1371/journal.pone.0105324] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022] Open
Abstract
Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30–80 Hz) and beta (12–30 Hz) range) showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100–1000 Hz). The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Fang-Chin Yeh
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Emma Hiolski
- Microbiology and Environmental Toxicology Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Przemyslaw Rydygier
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Deborah E. Gunning
- Institute of Photonics, University of Strathclyde, Glasgow, United Kingdom
| | - Pawel Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Nicholas Timme
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| | - Alan M. Litke
- Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
25
|
Khazipov R, Minlebaev M, Valeeva G. Early gamma oscillations. Neuroscience 2013; 250:240-52. [PMID: 23872391 DOI: 10.1016/j.neuroscience.2013.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/27/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Gamma oscillations have long been considered to emerge late in development. However, recent studies have revealed that gamma oscillations are transiently expressed in the rat barrel cortex during the first postnatal week, a "critical" period of sensory-dependent barrel map formation. The mechanisms underlying the generation and physiological roles of early gamma oscillations (EGOs) in the development of thalamocortical circuits will be discussed in this review. In contrast to adult gamma oscillations, synchronized through gamma-rhythmic perisomatic inhibition, EGOs are primarily driven through feedforward gamma-rhythmic excitatory input from the thalamus. The recruitment of cortical interneurons to EGOs and the emergence of feedforward inhibition are observed by the end of the first postnatal week. EGOs facilitate the precise synchronization of topographically aligned thalamic and cortical neurons. The multiple replay of sensory input during EGOs supports long-term potentiation at thalamocortical synapses. We suggest that this early form of gamma oscillations, which is mechanistically different from adult gamma oscillations, guides barrel map formation during the critical developmental period.
Collapse
Affiliation(s)
- R Khazipov
- INMED - INSERM U901, University Aix-Marseille II, Marseille, France; Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | | | | |
Collapse
|
26
|
Le Magueresse C, Monyer H. GABAergic interneurons shape the functional maturation of the cortex. Neuron 2013; 77:388-405. [PMID: 23395369 DOI: 10.1016/j.neuron.2013.01.011] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
From early embryonic development to adulthood, GABA release participates in the construction of the mammalian cerebral cortex. The maturation of GABAergic neurotransmission is a protracted process which takes place in discrete steps and results from the dynamic interaction between developmentally directed gene expression and brain activity. During the course of development, GABAergic interneurons contribute to key aspects of the functional maturation of the cortex in different ways, from exerting a trophic role to pacing immature neural networks. In this review, we provide an overview of the maturation of GABAergic neurotransmission and discuss the role of GABAergic interneurons in cortical wiring, plasticity, and network activity during pre- and postnatal development. We also discuss psychiatric diseases that may be considered at least in part developmental disorders of the GABAergic system.
Collapse
Affiliation(s)
- Corentin Le Magueresse
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | |
Collapse
|
27
|
Narayanan R, Johnston D. Functional maps within a single neuron. J Neurophysiol 2012; 108:2343-51. [PMID: 22933729 PMCID: PMC3545169 DOI: 10.1152/jn.00530.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/28/2012] [Indexed: 01/07/2023] Open
Abstract
The presence and plasticity of dendritic ion channels are well established. However, the literature is divided on what specific roles these dendritic ion channels play in neuronal information processing, and there is no consensus on why neuronal dendrites should express diverse ion channels with different expression profiles. In this review, we present a case for viewing dendritic information processing through the lens of the sensory map literature, where functional gradients within neurons are considered as maps on the neuronal topograph. Under such a framework, drawing analogies from the sensory map literature, we postulate that the formation of intraneuronal functional maps is driven by the twin objectives of efficiently encoding inputs that impinge along different dendritic locations and of retaining homeostasis in the face of changes that are required in the coding process. In arriving at this postulate, we relate intraneuronal map physiology to the vast literature on sensory maps and argue that such a metaphorical association provides a fresh conceptual framework for analyzing and understanding single-neuron information encoding. We also describe instances where the metaphor presents specific directions for research on intraneuronal maps, derived from analogous pursuits in the sensory map literature. We suggest that this perspective offers a thesis for why neurons should express and alter ion channels in their dendrites and provides a framework under which active dendrites could be related to neural coding, learning theory, and homeostasis.
Collapse
|
28
|
Egorov AV, Draguhn A. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity. Mech Dev 2012; 130:412-23. [PMID: 23032193 DOI: 10.1016/j.mod.2012.09.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022]
Abstract
Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully understand the rules governing transition from immature to mature patterns of network activity.
Collapse
Affiliation(s)
- Alexei V Egorov
- Institute of Physiology and Pathophysiology, University of Heidelberg and Bernstein Center for Computational Neuroscience-BCCN Heidelberg/Mannheim, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
29
|
Huupponen J, Molchanova SM, Lauri SE, Taira T. Ongoing intrinsic synchronous activity is required for the functional maturation of CA3-CA1 glutamatergic synapses. ACTA ACUST UNITED AC 2012; 23:2754-64. [PMID: 22941723 DOI: 10.1093/cercor/bhs262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fine-tuning of synaptic connectivity during development is guided by intrinsic activity of the immature networks characteristically consisting of intermittent bursts of synchronous activity. However, the role of synchronous versus asynchronous activity in synapse maturation in the brain is unclear. Here, we have pharmacologically prevented generation of synchronous activity in the immature rat CA3-CA1 circuitry in a manner that preserves unitary activity. Long-term desynchronization of the network resulted in weakening of AMPA-receptor-mediated glutamatergic transmission in CA1 pyramidal cells. This weakening was dependent on protein phosphatases and mGluR activity, associated with an increase in the proportion of silent synapses and a decrease in the protein levels of GluA4 suggesting postsynaptic mechanisms of expression. The findings demonstrate that synchronous activity in the immature CA3-CA1 circuitry is critical for the induction and maintenance of glutamatergic synapses and underscores the importance of temporal activity patterns in shaping the synaptic circuitry during development.
Collapse
|
30
|
Yang JW, An S, Sun JJ, Reyes-Puerta V, Kindler J, Berger T, Kilb W, Luhmann HJ. Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. ACTA ACUST UNITED AC 2012; 23:1299-316. [PMID: 22593243 DOI: 10.1093/cercor/bhs103] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma bursts could be elicited by focal electrical stimulation of the VPM. Whisker stimulation-induced spindle and gamma bursts and the majority of spontaneously occurring events were profoundly reduced by the local inactivation of the VPM, indicating that the thalamus is important to generate these activity patterns. Furthermore, inactivation of the barrel cortex with lidocaine reduced the gamma activity in the thalamus, suggesting that a cortico-thalamic feedback loop modulates this early thalamic network activity.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Altered postnatal development of cortico-hippocampal neuronal electric activity in mice deficient for the mitochondrial aspartate-glutamate transporter. J Cereb Blood Flow Metab 2012; 32:306-17. [PMID: 21934695 PMCID: PMC3272597 DOI: 10.1038/jcbfm.2011.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The deficiency in the mitochondrial aspartate/glutamate transporter Aralar/AGC1 results in a loss of the malate-aspartate NADH shuttle in the brain neurons, hypomyelination, and additional defects in the brain metabolism. We studied the development of cortico/hippocampal local field potential (LFP) in Aralar/AGC1 knockout (KO) mice. Laminar profiles of LFP, evoked potentials, and unit activity were recorded under anesthesia in young (P15 to P22) Aralar-KO and control mice as well as control adults. While LFP power increased 3 to 7 times in both cortex and hippocampus of control animals during P15 to P22, the Aralar-KO specimens hardly progressed. The divergence was more pronounced in the CA3/hilus region. In parallel, spontaneous multiunit activity declined severely in KO mice. Postnatal growth of hippocampal-evoked potentials was delayed in KO mice, and indicated abnormal synaptic and spike electrogenesis and reduced output at P20 to P22. The lack of LFP development in KO mice was accompanied by the gradual appearance of epileptic activity in the CA3/hilus region that evolved to status epilepticus. Strikingly, CA3 bursts were poorly conducted to the CA1 field. We conclude that disturbed substrate supply to neuronal mitochondria impairs development of cortico-hippocampal LFPs. Aberrant neuronal electrogenesis and reduced neuron output may explain circuit dysfunction and phenotype deficiencies.
Collapse
|
32
|
Coupled Oscillations Mediate Directed Interactions between Prefrontal Cortex and Hippocampus of the Neonatal Rat. Neuron 2011; 71:332-47. [DOI: 10.1016/j.neuron.2011.05.041] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
|
33
|
Dumas TC. Postnatal alterations in induction threshold and expression magnitude of long-term potentiation and long-term depression at hippocampal synapses. Hippocampus 2010; 22:188-99. [PMID: 21069779 DOI: 10.1002/hipo.20881] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2010] [Indexed: 11/05/2022]
Abstract
Activity-dependent synaptic plasticity refines neural networks during development and subserves information processing in adulthood. Previous research has revealed postnatal alterations in synaptic plasticity at nearly all forebrain synapses, suggesting different forms of synaptic plasticity may contribute to network development and information processing. To assess possible relationships between modifications in synaptic plasticity and maturation of cognitive ability, we examined excitatory synaptic function in area CA1 of the mouse hippocampus ∼3 weeks of age, when hippocampal-dependent learning and memory abilities first emerge. Long-term potentiation (LTP) and depression (LTD) of synaptic efficacy were observed in slices from juvenile animals younger than 3 weeks of age. Both pre- and postsynaptic mechanisms supported LTP and LTD in juveniles. After the third postnatal week, the magnitude of LTP was reduced and the threshold for postsynaptic induction was reduced, but the threshold for presynaptic induction was increased. The reduced threshold for postsynaptic LTP appeared to be due, partly, to an increase in baseline excitatory synaptic strength, which likely permitted greater postsynaptic depolarization during induction. Low frequency stimulation did not induce LTD at this more mature stage, but it blocked subsequent induction of LTP, suggesting metaplastic differences across age groups. Late postnatal modifications in activity-dependent synaptic plasticity might reflect attenuation of mechanisms more closely tied to network formation (presynaptic potentiation and pre- and postsynaptic depression) and unmasking of mechanisms underlying information processing and storage (associative postsynaptic potentiation), which likely impact the integrative capacity of the network and regulate the emergence of adult-like cognitive abilities.
Collapse
Affiliation(s)
- Theodore C Dumas
- Molecular Neuroscience Department, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.
| |
Collapse
|
34
|
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
35
|
Human EEG shows long-range temporal correlations of oscillation amplitude in Theta, Alpha and Beta bands across a wide age range. Clin Neurophysiol 2010; 121:1187-97. [PMID: 20346732 DOI: 10.1016/j.clinph.2010.02.163] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/24/2010] [Accepted: 02/26/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Long-range temporal correlations (LRTC) of EEG amplitude fluctuations in adults reveal power-law statistics and have been interpreted within the framework of self-organized criticality (SOC). In physical systems states of self-organized criticality showing power-law statistics take time to develop. In this paper we have sought evidence for the idea that brain development tends towards SOC through examining the hypothesis that during normal human development a power law behaviour of EEG oscillations is approached with increasing chronological age. METHODS We examined EEGs from central and parietal electrodes in 36 subjects aged between 0 and 660months during performance of a steady wrist extension task with their dominant hand and applied spectral and detrended fluctuation analysis in 36 subjects to assess long-range temporal correlations of oscillation amplitude in the Theta, Alpha and Beta frequency bands. RESULTS Our data indicate that at all subject ages power-law statistics dominate the records at Alpha, Beta and Theta frequencies. Small consistent effects of chronological age were detected for amplitude fluctuations at Theta and Beta frequencies. CONCLUSIONS The data suggest that the scale-free nature of EEG LRTCs is a feature from early childhood through to maturity but that there are changes in the magnitude of these effects with age. SIGNIFICANCE This study is the first to have explored long-range temporal correlations over a wide range of chronological age.
Collapse
|
36
|
Mohns EJ, Blumberg MS. Neocortical activation of the hippocampus during sleep in infant rats. J Neurosci 2010; 30:3438-49. [PMID: 20203203 PMCID: PMC2851014 DOI: 10.1523/jneurosci.4832-09.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 01/17/2010] [Accepted: 01/20/2010] [Indexed: 11/21/2022] Open
Abstract
We recently reported that the majority of hippocampal neurons in newborn rats increase their activity in association with myoclonic twitches, which are indicative of active sleep. Because spindle bursts in the developing somatosensory neocortex occur in response to sensory feedback from myoclonic twitching, we hypothesized that the state-dependent activity of the newborn hippocampus arises from sensory feedback that sequentially activates the neocortex and then hippocampus, constituting an early form of neocortical-hippocampal communication. Here, in unanesthetized 5- to 6-d-old rats, we test this hypothesis by recording simultaneously from forelimb and barrel regions of somatosensory neocortex and dorsal hippocampus during periods of spontaneous sleep and wakefulness and in response to peripheral stimulation. Myoclonic twitches were consistently followed by neocortical spindle bursts, which were in turn consistently followed by bursts of hippocampal unit activity; moreover, spindle burst power was positively correlated with hippocampal unit activity. In addition, exogenous stimulation consistently evoked this neocortical-to-hippocampal sequence of activation. Finally, parahippocampal lesions that disrupted functional connections between the neocortex and hippocampus effectively disrupted the transmission of both spontaneous and evoked neocortical activity to the hippocampus. These findings suggest that sleep-related motor activity contributes to the development of neocortical and hippocampal circuits and provides a foundation on which coordinated activity between these two forebrain structures develops.
Collapse
Affiliation(s)
- Ethan J. Mohns
- Department of Psychology and Delta Center, University of Iowa, Iowa City, Iowa 52242
| | - Mark S. Blumberg
- Department of Psychology and Delta Center, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
37
|
Abstract
It is well established that NG2 cells throughout the young and adult brain consistently detect the release of single vesicles filled with glutamate from nearby axons. The released neurotransmitter glutamate electrically excites NG2 cells via non-NMDA (N-methyl-D-aspartic acid) glutamate receptors but the individual contribution of AMPA and kainate receptors to neuron-NG2 cell signalling, is not well understood. Here we pharmacologically block AMPA-type glutamate receptors and investigate whether hippocampal NG2 cells also express the kainate subtype of glutamate receptors and what may be their contribution to synaptic connectivity. It has been shown previously that vesicular glutamate release does not lead to a detectable activation of kainate receptors on NG2 cells. Here we report that while bath application of 250 nM-1 muM kainate does not have a major effect on NG2 cells it consistently induces a small and persistent depolarising current. This current was not mimicked by ATPA, suggesting that this current is carried by non-GluR5 containing kainate receptors. In addition to this inward current, nanomolar concentrations of kainate also produced a dramatic increase in the frequency of spontaneous GABA-A receptor-mediated synaptic currents (IPSCs) in NG2 cells. This increase in spontaneous IPSC frequency was even more pronounced on application of the GluR5-specific agonist ATPA (approximately 15-fold increase in frequency). In contrast, mono-synaptic stimulated IPSCs recorded in NG2 cells were unaffected by kainate receptor activation. Those and further experiments show that the occurrence of the high frequency of IPSCs is due to action potential firing of hippocampal interneurons caused by activation of GluR5 receptors on the somatodendritic membrane of the interneurons. Our data suggest that hippocampal kainate receptors are not only important for communication between neurons but may also play a dual and subtype-specific role for neuron-glia signalling: Firstly, extra-synaptic non-GluR5 kainate receptors in the membrane of NG2 cells are ideally suited to instruct NG2 cells on the population activity of local excitatory neurons via ambient glutamate. Secondly, based on the known importance of GluR5 receptors on hippocampal interneurons for the generation of network rhythms and based on our finding that these interneurons heavily project onto NG2 cells, it appears that synaptic activation of interneuronal GluR5 receptors triggers signalling to NG2 cells which transmits the phase and frequency of ongoing network oscillations in the developing hippocampus.
Collapse
|
38
|
Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci 2009; 29:9011-25. [PMID: 19605639 DOI: 10.1523/jneurosci.5646-08.2009] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. We performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1-2 s in duration and approximately 10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150-300 ms duration and 30-40 Hz in frequency occurred every 10-30 s. (3) Long oscillations appeared only every approximately 20 min and revealed the largest amplitude (250-750 microV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200-400 microm in diameter, long oscillations propagated with 25-30 microm/s and synchronized 600-800 microm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDA receptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks.
Collapse
|
39
|
Abstract
Gamma frequency (30-100 Hz) oscillations in the mature cortex underlie higher cognitive functions. Fast signaling in GABAergic interneuron networks plays a key role in the generation of these oscillations. During development of the rodent brain, gamma activity appears at the end of the first postnatal week, but frequency and synchrony reach adult levels only by the fourth week. However, the mechanisms underlying the maturation of gamma activity are unclear. Here we demonstrate that hippocampal basket cells (BCs), the proposed cellular substrate of gamma oscillations, undergo marked changes in their morphological, intrinsic, and synaptic properties between postnatal day 6 (P6) and P25. During maturation, action potential duration, propagation time, duration of the release period, and decay time constant of IPSCs decreases by approximately 30-60%. Thus, postnatal development converts BCs from slow into fast signaling devices. Computational analysis reveals that BC networks with young intrinsic and synaptic properties as well as reduced connectivity generate oscillations with moderate coherence in the lower gamma frequency range. In contrast, BC networks with mature properties and increased connectivity generate highly coherent activity in the upper gamma frequency band. Thus, late postnatal maturation of BCs enhances coherence in neuronal networks and will thereby contribute to the development of cognitive brain functions.
Collapse
|
40
|
Mohns EJ, Blumberg MS. Synchronous bursts of neuronal activity in the developing hippocampus: modulation by active sleep and association with emerging gamma and theta rhythms. J Neurosci 2008; 28:10134-44. [PMID: 18829971 PMCID: PMC2678192 DOI: 10.1523/jneurosci.1967-08.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 08/06/2008] [Accepted: 09/02/2008] [Indexed: 11/21/2022] Open
Abstract
The neonatal hippocampus exhibits regularly recurring waves of synchronized neuronal activity in vitro. Because active sleep (AS), characterized by bursts of phasic motor activity in the form of myoclonic twitching, may provide conditions that are conducive to activity-dependent development of hippocampal circuits, we hypothesized that the waves of synchronous neuronal activity that have been observed in vitro would be associated with AS-related twitching. Using unanesthetized 1- to 12-d-old rats, we report here that the majority of neurons in CA1 and the dentate gyrus (DG) are significantly more active during AS than during either quiet sleep or wakefulness. Neuronal activity typically occurs in phasic bursts, during which most neurons are significantly cross-correlated both within and across the CA1 and DG fields. All AS-active neurons increase their firing rates during periods of myoclonic twitching of the limbs, and a subset of these neurons exhibit a burst of activity immediately after limb twitches, suggesting that the twitches themselves provide sensory feedback to the infant hippocampus, as occurs in the infant spinal cord and neocortex. Finally, the synchronous bursts of neuronal activity are coupled to the emergence of the AS-related hippocampal gamma rhythm during the first postnatal week, as well as the emergence of the AS-related theta rhythm during the second postnatal week. We hypothesize that the phasic motor events of active sleep provide the developing hippocampus with discrete sensory stimulation that contributes to the development and refinement of hippocampal circuits as well as the development of synchronized interactions between hippocampus and neocortex.
Collapse
Affiliation(s)
- Ethan J. Mohns
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, Iowa 52242
| | - Mark S. Blumberg
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
41
|
Mohns EJ, Karlsson KÆ, Blumberg MS. Developmental emergence of transient and persistent hippocampal events and oscillations and their association with infant seizure susceptibility. Eur J Neurosci 2007; 26:2719-30. [PMID: 17973923 PMCID: PMC2556895 DOI: 10.1111/j.1460-9568.2007.05928.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the second postnatal week in rats, the hippocampus exhibits a transient period of hyperexcitability. To systematically assess the relationship between the onset and end of this period and spontaneous hippocampal activity, we used silicon depth electrodes in unanaesthetized head-fixed rats from postnatal day (P)2 to P18. At all ages, hippocampal sharp waves (SPWs) were prominent in the EEG. Beginning at P6, however, marked changes in SPWs and associated oscillations were detected. SPW-related 'gamma tails' (60-100 Hz) and 'ripples' (140-200 Hz) were first observed at P6 and P7, respectively, and both oscillations persisted up to P18. Transiently, between P6 and P11, SPW duration decreased and the occurrence of SPW doublets increased. In addition, between P8 and P11, a subset of rats exhibited 'spontaneous potentiated SPWs' characterized by double polarity reversals, enhanced likelihood of gamma tails, and population spikes. Having identified a suite of transient hippocampal features consistent with a window of increased excitability, we next assessed whether electrographic seizure activity would be most easily induced during this period. To do this, kainic acid (KA; 200 ng/infusion) was infused into the hippocampus contralateral to the recording probe. KA did not induce seizure activity until P7 and reached peak effectiveness at P9. Thereafter, sensitivity to KA declined. All together, these findings provide in vivo neurophysiological support for the notion of a developmental window of heightened seizure susceptibility during the second postnatal week, and also suggest that spontaneous nonpathological hippocampal activity can be used to mark the onset and end of this period.
Collapse
Affiliation(s)
- Ethan J. Mohns
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, IA, 52242, USA
| | - Karl Æ. Karlsson
- Department of Biomedical Engineering, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Mark S. Blumberg
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
42
|
Ban J, Bonifazi P, Pinato G, Broccard FD, Studer L, Torre V, Ruaro ME. Embryonic stem cell-derived neurons form functional networks in vitro. Stem Cells 2006; 25:738-49. [PMID: 17110621 DOI: 10.1634/stemcells.2006-0246] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Embryonic stem (ES) cells provide a flexible and unlimited source for a variety of neuronal types. Because mature neurons establish neuronal networks very easily, we tested whether ES-derived neurons are capable of generating functional networks and whether these networks, generated in vitro, are capable of processing information. Single-cell electrophysiology with pharmacological antagonists demonstrated the presence of both excitatory and inhibitory synaptic connections. Extracellular recording with planar multielectrode arrays showed that spontaneous bursts of electrical activity are present in ES-derived networks with properties remarkably similar to those of hippocampal neurons. When stimulated with extracellular electrodes, ES-derived neurons fired action potentials, and the evoked electrical activity spread throughout the culture. A statistical analysis indicated that ES-derived networks discriminated between stimuli of different intensity at a single trial level, a key feature for an efficient information processing. Thus, ES-derived neurons provide a novel in vitro strategy to create functional networks with defined computational properties.
Collapse
Affiliation(s)
- Jelena Ban
- International School for Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nat Med 2006; 12:817-23. [PMID: 16819552 PMCID: PMC1698875 DOI: 10.1038/nm1422] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 05/02/2006] [Indexed: 12/16/2022]
Abstract
Febrile seizures are frequent during early childhood, and prolonged (complex) febrile seizures are associated with an increased susceptibility to temporal lobe epilepsy. The pathophysiological consequences of febrile seizures have been extensively studied in rat pups exposed to hyperthermia. The mechanisms that trigger these seizures are unknown, however. A rise in brain pH is known to enhance neuronal excitability. Here we show that hyperthermia causes respiratory alkalosis in the immature brain, with a threshold of 0.2-0.3 pH units for seizure induction. Suppressing alkalosis with 5% ambient CO2 abolished seizures within 20 s. CO2 also prevented two long-term effects of hyperthermic seizures in the hippocampus: the upregulation of the I(h) current and the upregulation of CB1 receptor expression. The effects of hyperthermia were closely mimicked by intraperitoneal injection of bicarbonate. Our work indicates a mechanism for triggering hyperthermic seizures and suggests new strategies in the research and therapy of fever-related epileptic syndromes.
Collapse
Affiliation(s)
- Sebastian Schuchmann
- Department of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB 65), 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lauri SE, Vesikansa A, Segerstråle M, Collingridge GL, Isaac JTR, Taira T. Functional Maturation of CA1 Synapses Involves Activity-Dependent Loss of Tonic Kainate Receptor-Mediated Inhibition of Glutamate Release. Neuron 2006; 50:415-29. [PMID: 16675396 DOI: 10.1016/j.neuron.2006.03.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 11/30/2005] [Accepted: 03/13/2006] [Indexed: 12/01/2022]
Abstract
Early in development, excitatory synapses transmit with low efficacy, one mechanism for which is a low probability of transmitter release (Pr). However, little is known about the developmental mechanisms that control activity-dependent maturation of the presynaptic release. Here, we show that during early development, transmission at CA3-CA1 synapses is regulated by a high-affinity, G protein-dependent kainate receptor (KAR), which is endogenously activated by ambient glutamate. By tonically depressing glutamate release, this mechanism sets the dynamic properties of neonatal inputs to favor transmission during high frequency bursts of activity, typical for developing neuronal networks. In response to induction of LTP, the tonic activation of KAR is rapidly down regulated, causing an increase in Pr and profoundly changing the dynamic properties of transmission. Early development of the glutamatergic connectivity thus involves an activity-dependent loss of presynaptic KAR function producing maturation in the mode of excitatory transmission from CA3 to CA1.
Collapse
Affiliation(s)
- Sari E Lauri
- Neuroscience Center and Department of Bio- and Environmental Sciences, P.O. Box 65 (Viikinkaari 1), 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Sipilä ST, Schuchmann S, Voipio J, Yamada J, Kaila K. The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J Physiol 2006; 573:765-73. [PMID: 16644806 PMCID: PMC1779742 DOI: 10.1113/jphysiol.2006.107086] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Earlier studies indicate a crucial role for the interconnected network of intrinsically bursting CA3 pyramidal neurons in the generation of in vivo hippocampal sharp waves (SPWs) and their proposed neonatal in vitro counterparts, the giant depolarizing potentials (GDPs). While mechanisms involving ligand- and voltage-gated channels have received lots of attention in the generation of CA3 network events in the immature hippocampus, the contribution of ion-transport mechanisms has not been extensively studied. Here, we show that bumetanide, a selective inhibitor of neuronal Cl- uptake mediated by the Na+-K+-2Cl- cotransporter isoform 1 (NKCC1), completely and reversibly blocks SPWs in the neonate (postnatal days 7-9) rat hippocampus in vivo, an action also seen on GDPs in slices (postnatal days 1-8). These findings strengthen the view that GDPs and early SPWs are homologous events. Gramicidin-perforated patch recordings indicated that NKCC1 accounts for a large ( approximately 10 mV) depolarizing driving force for the GABAA current in the immature CA3 pyramids. Consistent with a reduction in the depolarization mediated by endogenous GABAA-receptor activation, bumetanide inhibited the spontaneous bursts of individual neonatal CA3 pyramids, but it slightly increased the interneuronal activity as seen in the frequency of spontaneous GABAergic currents. An inhibitory effect of bumetanide was seen on the in vitro population events in the absence of synaptic GABAA receptor-mediated transmission, provided that a tonic GABAA receptor-mediated current was present. Our work indicates that NKCC1 expressed in CA3 pyramidal neurons promotes network activity in the developing hippocampus.
Collapse
Affiliation(s)
- Sampsa T Sipilä
- Department of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
46
|
Lauri SE, Segerstråle M, Vesikansa A, Maingret F, Mulle C, Collingridge GL, Isaac JTR, Taira T. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci 2006; 25:4473-84. [PMID: 15872094 PMCID: PMC6725041 DOI: 10.1523/jneurosci.4050-04.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kainate receptors (KARs) are highly expressed throughout the neonatal brain, but their function during development is unclear. Here, we show that the maturation of the hippocampus is associated with a switch in the functional role of presynaptic KARs. In a developmental period restricted to the first postnatal week, endogenous L-glutamate tonically activates KARs at CA3 glutamatergic synapses to regulate release in an action potential-independent manner. At synapses onto pyramidal cells, KARs inhibit glutamate release via a G-protein and PKC-dependent mechanism. In contrast, at glutamatergic terminals onto CA3 interneurons, presynaptic KARs can facilitate release in a G-protein-independent mechanism. In both cell types, however, KAR activation strongly upregulates inhibitory transmission. We show that, through the interplay of these novel diverse mechanisms, KARs strongly regulate the characteristic synchronous network activity observed in the neonatal hippocampus. By virtue of this, KARs are likely to play a central role in the development of hippocampal synaptic circuits.
Collapse
Affiliation(s)
- Sari E Lauri
- Neuroscience Center and Department of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Karlsson KAE, Mohns EJ, di Prisco GV, Blumberg MS. On the co-occurrence of startles and hippocampal sharp waves in newborn rats. Hippocampus 2006; 16:959-65. [PMID: 17009334 PMCID: PMC2645543 DOI: 10.1002/hipo.20224] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hippocampal sharp waves (SPWs) are among the earliest neural population patterns observed in infant mammals. Similarly, startles are among the earliest behavioral events observed. Here we provide evidence indicating that these two events are linked mechanistically soon after birth in freely moving and head-fixed 1 to 4-day-old rats. EMG electrodes and intrahippocampal silicon depth electrodes were used to detect the presence of startles and SPWs, respectively. In intact pups, the majority of sharp waves were preceded by startles (average latency: 161 ms). When the hippocampal formation was surgically separated from the brainstem, however, sharp waves and startles still occurred, but now independently. In addition, unrelated to startles or SPWs, gamma oscillations were detected in several subjects, as were neocortical "spindles" that propagated passively into the hippocampus. The co-occurrence of sharp waves and startles provides the opportunity for Hebbian changes in synaptic efficacy and, thus, is poised to contribute to the assembly of neural circuits early in development.
Collapse
Affiliation(s)
- Karl A E Karlsson
- Department of Biomedical Engineering, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland.
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Marcos G Frank
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6074, USA.
| | | |
Collapse
|
49
|
Maingret F, Lauri SE, Taira T, Isaac JTR. Profound regulation of neonatal CA1 rat hippocampal GABAergic transmission by functionally distinct kainate receptor populations. J Physiol 2005; 567:131-42. [PMID: 15946969 PMCID: PMC1474178 DOI: 10.1113/jphysiol.2005.089474] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neonatal hippocampus exhibits distinct patterns of network activity that are dependent on the interaction between inhibitory and excitatory transmission. Kainate receptors are ideally positioned to regulate this activity by virtue of their ability to regulate presynaptic function in GABAergic interneurones. Indeed, kainate receptors are highly expressed in neonatal hippocampal interneurones, yet the role and mechanisms by which they might regulate neonatal circuitry are unexplored. To address this we investigated the kainate receptor-dependent regulation of GABAergic transmission onto neonatal CA1 pyramidal neurones. Kainate receptor activation produced two distinct opposing effects, a very large increase in the frequency of spontaneous IPSCs, and a robust depression of evoked GABAergic transmission. The up-regulation of spontaneous transmission was due to activation of somatodendritic and axonal receptors while the depression of evoked transmission could be fully accounted for by a direct regulation of GABA release by kainate receptors located at the terminals. None of the effects of kainate receptor agonists were sensitive to GABAB receptor antagonists, nor was there any postsynaptic kainate receptor-dependent effects observed in CA1 pyramidal cells that could account for our findings. Our data demonstrate that kainate receptors profoundly regulate neonatal CA1 GABAergic circuitry by two distinct opposing mechanisms, and indicate that these two effects are mediated by functionally distinct populations of receptors. Thus kainate receptors are strategically located to play a critical role in shaping early hippocampal network activity and by virtue of this have a key role in hippocampal development.
Collapse
Affiliation(s)
- François Maingret
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
50
|
Ponten H, Sönniksen K, Abrahamsson T, Waters N, Gustafsson B, Hanse E, Groc L. Behavioral and neurochemical repercussions of hippocampal network activity blockade during the neonatal period. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 155:81-6. [PMID: 15763278 DOI: 10.1016/j.devbrainres.2004.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/17/2022]
Abstract
Early destruction of the ventral hippocampus from postnatal day 7 (P7) has been shown to induce behavioral alterations in post-pubertal rats, similar to those observed in models for schizophrenia. Using a single injection of tetanus toxin into the ventral hippocampus at P1, we tested the consequences of an early neonatal activity deprivation (<P7) on behavioral and neurochemical parameters of pre- and post-pubertal rats. We found no significant differences in either behavioral or biochemical pattern, indicating that an early neonate neural activity blockade does not induce behavioral alterations in pre- and post-puberty rats.
Collapse
Affiliation(s)
- Henrik Ponten
- Department of Pharmacology, Göteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|