1
|
Suda H, Sakurai K, Eto S, Fujie S, Okuda A, Takeichi T, Urata M, Murao T, Hasuda K, Hirano M, Kato Y, Haruma K. Effects of Medication Period and Gastrin Levels on Endoscopic Gastric Mucosal Changes in Long-Term Proton Pump Inhibitor Users. Diagnostics (Basel) 2024; 14:2540. [PMID: 39594206 PMCID: PMC11592694 DOI: 10.3390/diagnostics14222540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Proton pump inhibitor (PPI) use has increased worldwide, including in continuous and longer-term users. Recent reports highlight PPI-related endoscopic gastric mucosal changes, including fundic gland polyps, hyperplastic polyps, multiple white and flat elevated lesions, cracked and cobblestone-like mucosa (CCLM), and black spots. PPI use elevates gastrin levels because of acid inhibition, and hypergastrinemia might be relevant to these findings. In this cross-sectional study, we retrospectively examined gastric mucosal changes in long-term PPI users, focusing on medication period and gastrin levels. Methods: We enrolled 57 patients who received a PPI (>1 year) at two clinics between January 2021 and March 2022. Participants were classified according to medication period: 1 < 5, 5-10, and ≥10 years. Gastrin levels were categorized as low, middle, and high (<250, 250-500, and ≥500 pg/mL, respectively). Odds ratios (OR) were estimated to assess the risk of endoscopic findings. Results: Of the 57 patients, 6 (10.5%), 25 (43.9%), and 26 (45.6%) were PPI users of 1 < 5, 5-10, and ≥10 years, respectively. There were no significant differences in the incidence of endoscopic findings among the medication periods. Low, middle, and high gastrin groups included 21 (36.8%), 21 (36.8%), and 15 (26.3%) patients, respectively. CCLM incidence was significantly elevated in higher gastrin level groups: middle (OR, 6.60; 95% confidence interval [CI], 1.46-29.75; p = 0.014) and high (OR, 9.00; 95% CI, 1.79-45.23; p = 0.0008) (p-trend = 0.0171). No significant differences were observed for other findings. Conclusions: No elevated risk of PPI-related gastric epithelial changes in long-term PPI users was observed time-dependently. Notably, higher gastrin levels were positively associated with CCLM development, irrespective of the medication period.
Collapse
Affiliation(s)
- Hiroko Suda
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Koichi Sakurai
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Sachi Eto
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Satomi Fujie
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Ayako Okuda
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Takayuki Takeichi
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Masayuki Urata
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Tetsuya Murao
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Kiwamu Hasuda
- Hattori Clinic, 2-12-35 Shin-Machi, Chuo-ku, Kumamoto City 860-0004, Kumamoto, Japan; (S.E.); (S.F.); (A.O.); (T.T.); (M.U.); (T.M.); (K.H.)
| | - Masahiro Hirano
- Hirano Gastroenterology Clinic, 2-3029-2 Onuki-cho, Nobeoka 882-0803, Miyazaki, Japan;
| | - Yo Kato
- Hibiya Digital Diagnostic Pathology Clinic, 2-2-3 Uchisaiwai-cho, Chiyoda-ku, Tokyo 100-0011, Japan;
| | - Ken Haruma
- Department of Internal Medicine 2, Kawasaki Medical School General Medical Center, 577 Matsushima, Kurashiki-City 701-0192, Okayama, Japan
| |
Collapse
|
2
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
3
|
Sirajudeen S, Shah I, Ayoub MA, Karam SM, Al Menhali A. Long-Term Vitamin D Deficiency Results in the Inhibition of Cell Proliferation and Alteration of Multiple Gastric Epithelial Cell Lineages in Mice. Int J Mol Sci 2022; 23:6684. [PMID: 35743124 PMCID: PMC9224370 DOI: 10.3390/ijms23126684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Over one billion people globally are vitamin D (VD) deficient. Studies on the biological roles of VD are numerous but very little on the stomach. This project aims to understand how gastric homeostasis is affected by VD deficiency caused by prolonged exposure to darkness alone or combined with VD deficient diet. Three groups of C57/BL6 mice were subjected to different light exposure conditions and diets for 12 months (n = 8−12/group): control—12 h/12 h light/dark SDL (Standard Diet/Light), 24 h dark SDD (Standard Diet/Dark), and 24 h dark VDD (VD deficient diet/Dark). Stomach samples were collected for different multi-label lectin-/immuno-histochemical and qRT-PCR analyses, and the serum for LC-MS-MS. We found that the membrane VD receptor is expressed widely in the stomach when compared to nuclear VD receptors. Compared to SDL, VDD mice developed mucous cell expansion with increased mucins-mRNA (3.27 ± 2.73 (p < 0.05)) increased apoptotic cells, 15 ± 7 (p ≤ 0.001)); decreased cell proliferation, 4 ± 4 (p < 0.05)) and decreased acid secretion 33 ± 2 μEq/kg (p ≤ 0.0001)). Interestingly, mice exposed to full darkness developed mild VD deficiency with higher VD epimer levels: 11.9 ± 2.08 ng/mL (p ≤ 0.0001)), expansion in zymogenic cell number (16 ± 3 (p ≤ 0.01)), and a reduction in acid secretion (18 ± 2 μEq/kg (p ≤ 0.0001)). In conclusion, changes in light exposure or VD levels have serious physiological effects on the gastric mucosa, which should be considered during the management of gastric disorders.
Collapse
Affiliation(s)
- Shaima Sirajudeen
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
| | - Iltaf Shah
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Chemistry, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
| | - Sherif M. Karam
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates
| | - Asma Al Menhali
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (S.S.); (M.A.A.)
- Zayed Centre for Scientific Research, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates; (I.S.); (S.M.K.)
| |
Collapse
|
4
|
Zhao Y, Deng Z, Ma Z, Zhang M, Wang H, Tuo B, Li T, Liu X. Expression alteration and dysfunction of ion channels/transporters in the parietal cells induces gastric diffused mucosal injury. Biomed Pharmacother 2022; 148:112660. [PMID: 35276516 DOI: 10.1016/j.biopha.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Gastric mucosal injuries include focal and diffused injuries, which do and do not change the cell differentiation pattern. Parietal cells loss is related to the occurrence of gastric mucosal diffused injury, with two phenotypes of spasmolytic polypeptide-expressing metaplasia and neuroendocrine cell hyperplasia, which is the basis of gastric cancer and gastric neuroendocrine tumor respectively. Multiple ion channels and transporters are located and expressed in the parietal cells, which is not only regulate the gastric acid-base homeostasis, but also regulate the growth and development of parietal cells. Therefore, alteration and dysregulation of ion channels and transporters in the parietal cells impairs the morphology and physiological functions of stomach, resulted in gastric diffused mucosal damage. In this review, multiple ion channels and transporters in parietal cells, including K+ channels, aquaporins, Cl- channels, Na+/H+ transporters, and Cl-/HCO3- transporters are described, and their roles in gastric diffused mucosal injury are discussed. We hope to drive researcher's attention to focus on the role of ion channels/transporters loss in the parietal cells induced gastric diffused mucosal injury.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
5
|
Deng Z, Zhao Y, Ma Z, Zhang M, Wang H, Yi Z, Tuo B, Li T, Liu X. Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid-base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl-/HCO3- exchangers, Cl- channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
Affiliation(s)
- Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
6
|
Molecular mechanisms of Wischnewski spot development on gastric mucosa in fatal hypothermia: an experimental study in rats. Sci Rep 2020; 10:1877. [PMID: 32024924 PMCID: PMC7002760 DOI: 10.1038/s41598-020-58894-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/17/2020] [Indexed: 02/02/2023] Open
Abstract
Numerous dark-brown-coloured small spots called “Wischnewski spots” are often observed in the gastric mucosa in the patients dying of hypothermia, but the molecular mechanisms through which they develop remain unclear. We hypothesised that hypothermia may activate the secretion of gastric acid and pepsin, leading to the development of the spots. To investigate this, we performed experiments using organotypic rat gastric tissue slices cultured at 37 °C (control) or 32 °C (cold). Cold loading for 6 h lowered the extracellular pH in the culture medium. The mRNA expression of gastrin, which regulates gastric acid secretion, increased after cold loading for 3 h. Cold loading increased the expression of gastric H+,K+-ATPase pump protein in the apical canalicular membrane and resulted in dynamic morphological changes in parietal cells. Cold loading resulted in an increased abundance of pepsin C protein and an elevated mRNA expression of its precursor progastricsin. Collectively, our findings clarified that cold stress induces acidification by activating gastric H+,K+-ATPase pumps and promoting pepsin C release through inducing progastricsin expression on the gastric mucosa, leading to tiny haemorrhages or erosions of the gastric mucosa that manifest as Wischnewski spots in fatal hypothermia.
Collapse
|
7
|
Fu X, Shi Z, Jiang Y, Jiang L, Qi M, Xu T, Li T. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC PLANT BIOLOGY 2019; 19:233. [PMID: 31159738 PMCID: PMC6547480 DOI: 10.1186/s12870-019-1840-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/20/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Auxin conjugates are hydrolyzed to release free auxin to ensure defined cellular auxin levels or gradients within tissues for proper development or response to environmental signals. The auxin concentration in the abscission zone (AZ) is thought to play an important role in mediating the abscission lag phase. RESULTS In this study, the full cDNA sequences of seven tomato ILR1-like SlILL genes were identified and characterized, All SlILLs were found to have auxin conjugate hydrolysis activity. The effects of different auxin conjugates on abscission identified IAA-Ile as a candidate to determine the auxin conjugate and auxin conjugate hydrolysis functions in abscission. Treatment of pedicel explants with IAA-Ile for different times showed that application before 6 h could effectively delay abscission. IAA-Ile pre-incubation for 2 h was sufficient to inhibit abscission. These results showed that there is not sufficient auxin conjugates in the AZ to inhibit abscission, and the optimal time to inhibit abscission by the application of exogenous auxin conjugates is before 6 h. Treatment with cycloheximide (CHX, a protein biosynthesis inhibitor) indicated that de novo synthesis of auxin conjugate hydrolases is also required to delay abscission. During abscission, SlILL1, 5, and 6 showed abscission-related gene expression patterns, and SlILL1, 3, 5, 6, and 7 showed increasing expression trends, which collectively might contribute to delay abscission. Silencing the expression of SlILL1, 3, 5, 6, and 7 using virus-induced gene silencing showed that SlILL1, 5, and 6 are major mediators of abscission in tomato. CONCLUSIONS In the process of abscission, auxin inhibition is concentration dependent, and the concentration of auxin in the AZ was regulated by hydrolyzed auxin conjugates. SlILR1, 5, and 6 play a key role in flower pedicel abscission.
Collapse
Affiliation(s)
- Xin Fu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Zihang Shi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Yun Jiang
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Lingling Jiang
- Shenyang Entry-exit Inspection and Quarantine Bureau, No.433 Danan street, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Mingfang Qi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Tao Xu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
| | - Tianlai Li
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
8
|
De Witte C, Taminiau B, Flahou B, Hautekiet V, Daube G, Ducatelle R, Haesebrouck F. In-feed bambermycin medication induces anti-inflammatory effects and prevents parietal cell loss without influencing Helicobacter suis colonization in the stomach of mice. Vet Res 2018; 49:35. [PMID: 29636083 PMCID: PMC5894178 DOI: 10.1186/s13567-018-0530-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
The minimum inhibitory concentration of bambermycin on three porcine Helicobacter suis strains was shown to be 8 μg/mL. The effect of in-feed medication with this antibiotic on the course of a gastric infection with one of these strains, the host response and the gastric microbiota was determined in mice, as all of these parameters may be involved in gastric pathology. In H. suis infected mice which were not treated with bambermycin, an increased number of infiltrating B-cells, T-cells and macrophages in combination with a Th2 response was demonstrated, as well as a decreased parietal cell mass. Compared to this non-treated, infected group, in H. suis infected mice medicated with bambermycin, gastric H. suis colonization was not altered, but a decreased number of infiltrating T-cells, B-cells and macrophages as well as downregulated expressions of IL-1β, IL-8M, IL-10 and IFN-γ were demonstrated and the parietal cell mass was not affected. In bambermycin treated mice that were not infected with H. suis, the number of infiltrating T-cells and expression of IL-1β were lower than in non-infected mice that did not receive bambermycin. Gastric microbiota analysis indicated that the relative abundance of bacteria that might exert unfavorable effects on the host was decreased during bambermycin supplementation. In conclusion, bambermycin did not affect H. suis colonization, but decreased gastric inflammation and inhibited the effects of a H. suis infection on parietal cell loss. Not only direct interaction of H. suis with parietal cells, but also inflammation may play a role in death of these gastric acid producing cells.
Collapse
Affiliation(s)
- Chloë De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Bernard Taminiau
- Department of Food Sciences, FARAH, Université de Liège, Avenue de Cureghem 10, 4000, Liège, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Georges Daube
- Department of Food Sciences, FARAH, Université de Liège, Avenue de Cureghem 10, 4000, Liège, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
9
|
SlPIN1 regulates auxin efflux to affect flower abscission process. Sci Rep 2017; 7:14919. [PMID: 29097804 PMCID: PMC5668252 DOI: 10.1038/s41598-017-15072-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/19/2017] [Indexed: 11/11/2022] Open
Abstract
Solanum lycopersicum PIN-FORMED1 (SlPIN1), a major auxin efflux facilitator, contributes to the establishment of auxin maxima during organ initiation and development in tomato. However, the functions of SlPIN1 during organ abscission remain unclear. In our study, SlPIN1 expression decreased immediately after flower removal and increased following IAA treatment, indicating a high sensitivity to auxin depletion. 1-MCP (an ethylene inhibitor) delayed abscission and down-regulated SlPIN1, indicating that ethylene may positively regulate SlPIN1 and that low expression levels of SlPIN1 may delay abscission. The SlPIN1 protein levels were not consistent with the expression pattern, implying that in addition to transcription, protein degradation also affects SlPIN1 levels during abscission. The phosphorylation of SlPIN1 at Ser418, which significantly declined during abscission, was found to play roles in SlPIN1 localization and auxin transport. We also identified the interaction proteins of SlPIN1, which were involved in phosphorylation and ubiquitylation. Therefore, complex mechanisms mediate SlPIN1 auxin transport capability during abscission. The silencing of SlPIN1 expression accelerated abscission by increasing auxin accumulation in the ovary and decreasing the auxin content in the abscission zone (AZ), indicating that SlPIN1 plays a major role in mediating auxin source-sink transport and the establishment and maintenance of auxin maxima in the AZ.
Collapse
|
10
|
Al Menhali A, Keeley TM, Demitrack ES, Samuelson LC. Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 2017; 312:G649-G657. [PMID: 28408643 PMCID: PMC5495916 DOI: 10.1152/ajpgi.00366.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 01/31/2023]
Abstract
Parietal cells play a fundamental role in stomach maintenance, not only by creating a pathogen-free environment through the production of gastric acid, but also by secreting growth factors important for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation. Our previous gene expression profiling studies of mouse stomach identified parathyroid hormone-like hormone (PTHLH) as a potential gastrin-regulated gastric growth factor. Although PTHLH is commonly overexpressed in gastric tumors, its normal expression, function, and regulation in the stomach are poorly understood. In this study we used pharmacologic and genetic mouse models as well as human gastric cancer cell lines to determine the cellular localization and regulation of this growth factor by the hormone gastrin. Analysis of PthlhLacZ/+ knock-in reporter mice localized Pthlh expression to parietal cells in the gastric corpus. Regulation by gastrin was demonstrated by increased Pthlh mRNA abundance after acute gastrin treatment in wild-type mice and reduced expression in gastrin-deficient mice. PTHLH transcripts were also observed in normal human stomach as well as in human gastric cancer cell lines. Gastrin treatment of AGS-E gastric cancer cells induced a rapid and robust increase in numerous PTHLH mRNA isoforms. This induction was largely due to increased transcriptional initiation, although analysis of mRNA half-life showed that gastrin treatment also extended the half-life of PTHLH mRNA, suggesting that gastrin regulates expression by both transcriptional and posttranscriptional mechanisms.NEW & NOTEWORTHY We show that the growth factor parathyroid hormone-like hormone (PTHLH) is expressed in acid-secreting parietal cells of the mouse stomach. We define the specific PTHLH mRNA isoforms expressed in human stomach and in human gastric cancer cell lines and show that gastrin induces PTHLH expression via transcription activation and mRNA stabilization. Our findings suggest that PTHLH is a gastrin-regulated growth factor that might contribute to gastric epithelial cell homeostasis.
Collapse
Affiliation(s)
- Asma Al Menhali
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Theresa M. Keeley
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Elise S. Demitrack
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Chen J, Chen L, Sanseau P, Freudenberg JM, Rajpal DK. Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice. Physiol Rep 2016; 4:4/10/e12793. [PMID: 27207783 PMCID: PMC4886165 DOI: 10.14814/phy2.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal (GI) tract can have significant impact on the regulation of the whole‐body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analysis in different parts of the GI tract of two obese mouse models: ob/ob and high‐fat diet (HFD) fed mice. Compared to their lean controls, significant changes in the gene expression were observed in both obese mouse groups in the stomach (ob/ob: 959; HFD: 542). In addition, these changes were quantitatively much higher than in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes, and insulin resistance. In addition, the gene expression profiles strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity in murine models extensively used in research.
Collapse
Affiliation(s)
- Jing Chen
- Computational Biology, Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Lihong Chen
- Enteroendocrinology DPU, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Philippe Sanseau
- Computational Biology, Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| | | | - Deepak K Rajpal
- Computational Biology, Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| |
Collapse
|
13
|
Xu T, Liu X, Wang R, Dong X, Guan X, Wang Y, Jiang Y, Shi Z, Qi M, Li T. SlARF2a plays a negative role in mediating axillary shoot formation. Sci Rep 2016; 6:33728. [PMID: 27645097 PMCID: PMC5028752 DOI: 10.1038/srep33728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
SlARF2a is expressed in most plant organs, including roots, leaves, flowers and fruits. A detailed expression study revealed that SlARF2a is mainly expressed in the leaf nodes and cross-sections of the nodes indicated that SlARF2a expression is restricted to vascular organs. Decapitation or the application of 6-benzylaminopurine (BAP) can initially promote axillary shoots, during which SlARF2a expression is significantly reduced. Down-regulation of SlARF2a expression results in an increased frequency of dicotyledons and significantly increased lateral organ development. Stem anatomy studies have revealed significantly altered cambia and phloem in tomato plants expressing down-regulated levels of ARF2a, which is associated with obvious alterations in auxin distribution. Further analysis has revealed that altered auxin transport may occur via altered pin expression. To identify the interactions of AUX/IAA and TPL with ARF2a, four axillary shoot development repressors that are down-regulated during axillary shoot development, IAA3, IAA9, SlTPL1 and SlTPL6, were tested for their direct interactions with ARF2a. Although none of these repressors are directly involved in ARF2a activity, similar expression patterns of IAA3, IAA9 and ARF2a implied they might work tightly in axillary shoot formation and other developmental processes.
Collapse
Affiliation(s)
- Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Rong Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Xiaoxi Guan
- Zunyi Normal University, No. 830 Shanghai Road, Zunyi City, Guizhou Province, People's Republic of China
| | - Yanling Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Yun Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Zihang Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, People's Republic of China
| |
Collapse
|
14
|
Todisco A, Mao M, Keeley TM, Ye W, Samuelson LC, Eaton KA. Regulation of gastric epithelial cell homeostasis by gastrin and bone morphogenetic protein signaling. Physiol Rep 2015; 3:3/8/e12501. [PMID: 26290525 PMCID: PMC4562585 DOI: 10.14814/phy2.12501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We reported that transgenic expression of the bone morphogenetic protein (BMP) signaling inhibitor noggin in the mouse stomach, leads to parietal-cell (PC) loss, expansion of transitional cells expressing markers of both mucus neck and zymogenic lineages, and to activation of proliferative mechanisms. Because these cellular changes were associated with increased levels of the hormone gastrin, we investigated if gastrin mediates the expression of the phenotypic changes of the noggin transgenic mice (NogTG mice). Three-month-old NogTG mice were crossed to gastrin-deficient (GasKO mice) to generate NogTG;GasKO mice. Morphology of the corpus of wild type, NogTG, GasKO, and NogTG;GasKO mice was analyzed by H&E staining. Distribution of PCs and zymogenic cells (ZCs) was analyzed by immunostaining for the H+/K+-ATPase and intrinsic factor (IF). Expression of the H+/K+-ATPase and IF genes and proteins were measured by QRT-PCR and western blots. Cell proliferation was assessed by immunostaining for proliferating cell nuclear antigen. The corpus of the NogTG;GasKO mice displayed a marked reduction in the number of PCs and ZCs in comparison to NogTG mice. Further, cellular proliferation was significantly lower in NogTG;GasKO mice, than in the NogTG mice. Thus, gastrin mediates the increase in gastric epithelial cell proliferation induced by inhibition of BMP signaling in vivo. Moreover, gastrin and BMP signaling exert cooperative effects on the maturation and differentiation of both the zymogenic and PC lineages. These findings contribute to a better understanding of the factors involved in the control of gastric epithelial cell homeostasis.
Collapse
Affiliation(s)
- Andrea Todisco
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Maria Mao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Theresa M Keeley
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Wei Ye
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Kathryn A Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
15
|
Orth MF, Cazes A, Butt E, Grunewald TGP. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein. Oncotarget 2015; 6:26-42. [PMID: 25622104 PMCID: PMC4381576 DOI: 10.18632/oncotarget.3083] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2014] [Indexed: 01/15/2023] Open
Abstract
The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.
Collapse
Affiliation(s)
- Martin F Orth
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Alex Cazes
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany
| | - Thomas G P Grunewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany
| |
Collapse
|
16
|
Xu T, Wang Y, Liu X, Gao S, Qi M, Li T. Solanum lycopersicum IAA15 functions in the 2,4-dichlorophenoxyacetic acid herbicide mechanism of action by mediating abscisic acid signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3977-3990. [PMID: 25948703 DOI: 10.1093/jxb/erv199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D), an important plant growth regulator, is the herbicide most commonly used worldwide to control weeds. However, broad-leaf fruits and vegetables are extremely sensitive to herbicides, which can cause damage and result in lost crops when applied in a manner inconsistent with the directions. Despite detailed knowledge of the mechanism of 2,4-D, the regulation of auxin signalling is still unclear. For example, although the major mediators of auxin signalling, including auxin/indole acetic acid (AUX/IAA) proteins and auxin response factors (ARFs), are known to mediate auxinic herbicides, the underlying mechanisms are still unclear. In this study, the effects of 2,4-D on AUX/IAA gene expression in tomato were investigated, and the two most notably up-regulated genes, SlIAA15 and SlIAA29, were selected for further study. Western blotting revealed the substantial accumulation of both SlIAA15 and SlIAA29, and the expression levels of the corresponding genes were increased following abscisic acid (ABA) and ethylene treatment. Overexpressing SlIAA15, but not SlIAA29, induced a 2,4-D herbicide damage phenotype. The 35S::SlIAA15 line exhibited a strong reduction in leaf stomatal density and altered expression of some R2R3 MYB genes that are putatively involved in the regulation of stomatal differentiation. Further study revealed that root elongation in 35S::SlIAA15 was sensitive to ABA treatment, and was most probably due to the altered expression of an ABA signal transduction gene. In addition, the altered auxin sensitivities of SlIAA15 transformants were also explored. These results suggested that SlIAA15 plays an important role in determining the effects of the herbicide 2,4-D.
Collapse
Affiliation(s)
- Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Yanling Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Song Gao
- Liaoning Cash Crop Institute, Liaoyang 111304, People's Republic of China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, People's Republic of China
| |
Collapse
|
17
|
Zhang G, Ducatelle R, De Bruyne E, Joosten M, Bosschem I, Smet A, Haesebrouck F, Flahou B. Role of γ-glutamyltranspeptidase in the pathogenesis of Helicobacter suis and Helicobacter pylori infections. Vet Res 2015; 46:31. [PMID: 25889172 PMCID: PMC4357089 DOI: 10.1186/s13567-015-0163-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/12/2015] [Indexed: 12/30/2022] Open
Abstract
Helicobacter (H.) suis can colonize the stomach of pigs as well as humans, causing chronic gastritis and other gastric pathological changes including gastric ulceration and mucosa-associated lymphoid tissue (MALT) lymphoma. Recently, a virulence factor of H. suis, γ-glutamyl transpeptidase (GGT), has been demonstrated to play an important role in the induction of human gastric epithelial cell death and modulation of lymphocyte proliferation depending on glutamine and glutathione catabolism. In the present study, the relevance of GGT in the pathogenesis of H. suis infection was studied in mouse and Mongolian gerbil models. In addition, the relative importance of H. suis GGT was compared with that of the H. pylori GGT. A significant and different contribution of the GGT of H. suis and H. pylori was seen in terms of bacterial colonization, inflammation and the evoked immune response. In contrast to H. pyloriΔggt strains, H. suisΔggt strains were capable of colonizing the stomach at levels comparable to WT strains, although they induced significantly less overall gastric inflammation in mice. This was characterized by lower numbers of T and B cells, and a lower level of epithelial cell proliferation. In general, compared to WT strain infection, ggt mutant strains of H. suis triggered lower levels of Th1 and Th17 signature cytokine expression. A pronounced upregulation of B-lymphocyte chemoattractant CXCL13 was observed, both in animals infected with WT and ggt mutant strains of H. suis. Interestingly, H. suis GGT was shown to affect the glutamine metabolism of gastric epithelium through downregulation of the glutamine transporter ASCT2.
Collapse
Affiliation(s)
- Guangzhi Zhang
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Ellen De Bruyne
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Myrthe Joosten
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
18
|
Fukuhara S, Matsuzaki J, Tsugawa H, Masaoka T, Miyoshi S, Mori H, Fukushima Y, Yasui M, Kanai T, Suzuki H. Mucosal expression of aquaporin-4 in the stomach of histamine type 2 receptor knockout mice and Helicobacter pylori-infected mice. J Gastroenterol Hepatol 2014; 29 Suppl 4:53-59. [PMID: 25521734 DOI: 10.1111/jgh.12771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Basolateral water channel, aquaporin-4 (AQP4), is known to be expressed in gastric parietal cells, especially in the basal side of gastric mucosa. However, the role of AQP4 in the stomach is still unknown. Histamine type 2 receptor (H2R) knockout mice, which are characterized by suppressed gastric acid secretion, are known as formation of mucosal hyperplasia with cystic dilatation and spasmolytic polypeptide-expressing metaplasia (SPEM) in the stomach. The aim of the present study is to investigate whether the expression of AQP4 is changed by the condition of acid suppression and Helicobacter pylori infection. METHODS Male H2 R knockout mice and their controls (C57BL/6) were used. H. pylori was orally infected at the age of 5 weeks. The distributions of AQP4 and H+/K+-ATPase in the gastric mucosa were investigated by fluorescent immunohistochemistry. The mRNA expressions of AQP4, H+/K+-ATPase, sonic hedgehog (Shh), and trefoil factor-2 (TFF2) were investigated by quantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS In the H2 R knockout mice, the distribution of AQP4-positive parietal cells was extended toward the surface of the fundic glands. Although the mRNA expression levels of AQP4 and H+/K+ATPase were elevated in H2 R knockout mice at the age of 20 weeks, the elevations were not maintained by aging or H. pylori infection. In H2 R knockout mice with H. pylori infection, the expression level of TFF2 mRNA was elevated while the ratio between AQP4 and H+/K+ ATPase mRNA expression was decreased compared with the H2 R knockout mice without H. pylori infection. CONCLUSIONS In the H2 R knockout mice, massive SPEM was induced by H. pylori colonization and the ratio between AQP4 and H+/K+ATPase mRNA expression was decreased.
Collapse
Affiliation(s)
- Seiichiro Fukuhara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Weis VG, Petersen CP, Mills JC, Tuma PL, Whitehead RH, Goldenring JR. Establishment of novel in vitro mouse chief cell and SPEM cultures identifies MAL2 as a marker of metaplasia in the stomach. Am J Physiol Gastrointest Liver Physiol 2014; 307:G777-92. [PMID: 25190476 PMCID: PMC4200317 DOI: 10.1152/ajpgi.00169.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oxyntic atrophy in the stomach leads to chief cell transdifferentiation into spasmolytic polypeptide expressing metaplasia (SPEM). Investigations of preneoplastic metaplasias in the stomach are limited by the sole reliance on in vivo mouse models, owing to the lack of in vitro models for distinct normal mucosal lineages and metaplasias. Utilizing the Immortomouse, in vitro cell models of chief cells and SPEM were developed to study the characteristics of normal chief cells and metaplasia. Chief cells and SPEM cells isolated from Immortomice were cultured and characterized at both the permissive (33°C) and the nonpermissive temperature (39°C). Clones were selected on the basis of their transcriptional expression of specific stomach lineage markers (named ImChief and ImSPEM) and protein expression and growth were analyzed. The transcriptional expression profiles of ImChief and ImSPEM cells were compared further by using gene microarrays. ImChief cells transcriptionally express most chief cell markers and contain pepsinogen C and RAB3D-immunostaining vesicles. ImSPEM cells express the SPEM markers TFF2 and HE4 and constitutively secrete HE4. Whereas ImChief cells cease proliferation at the nonpermissive temperature, ImSPEM cells continue to proliferate at 39°C. Gene expression profiling of ImChief and ImSPEM revealed myelin and lymphocyte protein 2 (MAL2) as a novel marker of SPEM lineages. Our results indicate that the expression and proliferation profiles of the novel ImChief and ImSPEM cell lines resemble in vivo chief and SPEM cell lineages. These cell culture lines provide the first in vitro systems for studying the molecular mechanisms of the metaplastic transition in the stomach.
Collapse
Affiliation(s)
- Victoria G. Weis
- 1Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Christine P. Petersen
- 1Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Jason C. Mills
- 3Division of Gastroenterology, Departments of Medicine, Pathology & Immunology, and Developmental Biology, Washington University, St. Louis, Missouri;
| | - Pamela L. Tuma
- 4Department of Biology, The Catholic University of America, Washington, DC; and
| | - Robert H. Whitehead
- 2Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; ,5Digestive Disease Research Center and Department of Gastroenterology, Vanderbilt University
| | - James R. Goldenring
- 1Nashville VA Medical Center and the Departments of Surgery and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee;
| |
Collapse
|
20
|
Zhao CM, Kodama Y, Flatberg A, Beisvag V, Kulseng B, Sandvik AK, Rehfeld JF, Chen D. Gene expression profiling of gastric mucosa in mice lacking CCK and gastrin receptors. ACTA ACUST UNITED AC 2014; 192-193:35-44. [PMID: 25160855 DOI: 10.1016/j.regpep.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 01/04/2023]
Abstract
The stomach produces acid, which may play an important role in the regulation of bone homeostasis. The aim of this study was to reveal signaling pathways in the gastric mucosa that involve the acid secretion and possibly the bone metabolism in CCK1 and/or CCK2 receptor knockout (KO) mice. Gastric acid secretion was impaired and the ECL cell signaling pathway was inhibited in CCK2 receptor KO mice but not in CCK1 receptor KO mice. However, in CCK1+2 receptor double KO mice the acid secretion in response to pylorus ligation-induced vagal stimulation and the ECL cell pathway were partially normalized, which was associated with an up-regulated pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1). The basal part of the gastric mucosa expressed parathyroid hormone-like hormone (PTHLH) in a subpopulation of likely ECL cells (and possibly other cells) and vitamin D3 1α hydroxylase probably in trefoil peptide2-immunoreactive cells. In conclusion, mice lacking CCK receptors exhibited a functional shift from the gastrin-CCK pathways to the neuronal pathway in control of the ECL cells and eventually the acid secretion. Taking the present data together with previous findings, we suggest a possible link between gastric PTHLH and vitamin D and bone metabolism.
Collapse
Affiliation(s)
- Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway.
| | - Yosuke Kodama
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
| | - Arnar Flatberg
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
| | - Vidar Beisvag
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
| | - Bård Kulseng
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
| | - Arne K Sandvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway; Department of Gastrointestinal and Liver Diseases, St. Olav's University Hospital, 7006 Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 2100 København Ø, Denmark
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
| |
Collapse
|
21
|
Kir1.1 (ROMK) and Kv7.1 (KCNQ1/KvLQT1) are essential for normal gastric acid secretion: importance of functional Kir1.1. Pflugers Arch 2014; 467:1457-1468. [DOI: 10.1007/s00424-014-1593-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 01/01/2023]
|
22
|
Gastric de novo Muc13 expression and spasmolytic polypeptide-expressing metaplasia during Helicobacter heilmannii infection. Infect Immun 2014; 82:3227-39. [PMID: 24866791 DOI: 10.1128/iai.01867-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Helicobacter heilmannii is a zoonotic bacterium that has been associated with gastric disease in humans. In this study, the mRNA expression of mucins in the stomach of BALB/c mice was analyzed at several time points during a 1-year infection with this bacterium, during which gastric disease progressed in severity. Markers for acid production by parietal cells and mucous metaplasia were also examined. In the first 9 weeks postinfection, the mRNA expression of Muc6 was clearly upregulated in both the antrum and fundus of the stomach of H. heilmannii-infected mice. Interestingly, Muc13 was upregulated already at 1 day postinfection in the fundus of the stomach. Its expression level remained high in the stomach over the course of the infection. This mucin is, however, not expressed in a healthy stomach, and high expression of this mucin has so far only been described in gastric cancer. In the later stages of infection, mRNA expression of H(+)/K(+)-ATPase α/β and KCNQ1 decreased, whereas the expression of Muc4, Tff2, Dmbt1, and polymeric immunoglobulin receptor (pIgR) increased starting at 16 weeks postinfection onwards, suggesting the existence of spasmolytic polypeptide-expressing metaplasia in the fundus of the stomach. Mucous metaplasia present in the mucosa surrounding low-grade mucosa-associated lymphoid tissue (MALT) lymphoma-like lesions was also histologically confirmed. Our findings indicate that H. heilmannii infection causes severe gastric pathologies and alterations in the expression pattern of gastric mucins, such as Muc6 and Muc13, as well as disrupting gastric homeostasis by inducing the loss of parietal cells, resulting in the development of mucous metaplasia.
Collapse
|
23
|
Li HJ, Johnston B, Aiello D, Caffrey DR, Giel-Moloney M, Rindi G, Leiter AB. Distinct cellular origins for serotonin-expressing and enterochromaffin-like cells in the gastric corpus. Gastroenterology 2014; 146:754-764.e3. [PMID: 24316261 PMCID: PMC3943955 DOI: 10.1053/j.gastro.2013.11.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/12/2013] [Accepted: 11/24/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS The alimentary tract contains a diffuse endocrine system comprising enteroendocrine cells that secrete peptides or biogenic amines to regulate digestion, insulin secretion, food intake, and energy homeostasis. Lineage analysis in the stomach revealed that a significant fraction of endocrine cells in the gastric corpus did not arise from Neurogenin3 (Neurog3)-expressing cells, unlike enteroendocrine cells elsewhere in the digestive tract. We aimed to isolate enriched serotonin-secreting and enterochromaffin-like (ECL) cells from the stomach and to clarify their cellular origin. METHODS We used Neurogenic differentiation 1 (NeuroD1) and Neurog3 lineage analysis and examined the differentiation of serotonin-producing and ECL cells in stomach tissues of NeuroD1-cre;ROSA(tdTom), tryptophan hydroxylase 1 (Tph1)-cyan fluorescent protein (CFP), c-Kit(wsh/wsh), and Neurog3Cre;ROSA(tdTom) mice by immunohistochemistry. We used fluorescence-activated cell sorting to isolate each cell type for gene expression analysis. We also performed RNA sequencing analysis of ECL cells. RESULTS Neither serotonin-secreting nor ECL cells of the corpus arose from cells expressing NeuroD1. Serotonin-secreting cells expressed a number of mast cell genes but not genes associated with endocrine differentiation; they did not develop in c-Kit(wsh/wsh) mice and were labeled with transplanted bone marrow cells. RNA sequencing analysis of ECL cells revealed high expression levels of many genes common to endocrine cells, including transcription factors, hormones, ion channels, and solute transporters but not markers of bone marrow cells. CONCLUSIONS Serotonin-expressing cells of the gastric corpus of mice appear to be bone marrow-derived mucosal mast cells. Gene expression analysis of ECL cells indicated that they are endocrine cells of epithelial origin that do not express the same transcription factors as their intestinal enteroendocrine cell counterparts.
Collapse
Affiliation(s)
- Hui Joyce Li
- Division of Gastroenterology, Department of Medicine, University of
Massachusetts Medical School, Worcester, MA 01605
| | - Brian Johnston
- Division of Gastroenterology, Department of Medicine, University of
Massachusetts Medical School, Worcester, MA 01605
| | - Daniel Aiello
- Department of Medicine, University of Massachusetts Medical School,
Worcester, MA 01605
| | - Daniel R Caffrey
- Department of Medicine, University of Massachusetts Medical School,
Worcester, MA 01605
| | | | | | - Andrew B. Leiter
- Division of Gastroenterology, Department of Medicine, University of
Massachusetts Medical School, Worcester, MA 01605,Department of Medicine, University of Massachusetts Medical School,
Worcester, MA 01605
| |
Collapse
|
24
|
Doni Jayavelu N, Bar N. Dynamics of regulatory networks in gastrin-treated adenocarcinoma cells. PLoS One 2014; 9:e78349. [PMID: 24416123 PMCID: PMC3885390 DOI: 10.1371/journal.pone.0078349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/20/2013] [Indexed: 12/29/2022] Open
Abstract
Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs) and target genes (TGs). The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA). Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE), mid-early (ME), mid-late (ML) and very late (VL). Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.
Collapse
Affiliation(s)
- Naresh Doni Jayavelu
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
25
|
Liu Z, Demitrack ES, Keeley TM, Eaton KA, El-Zaatari M, Merchant JL, Samuelson LC. IFNγ contributes to the development of gastric epithelial cell metaplasia in Huntingtin interacting protein 1 related (Hip1r)-deficient mice. J Transl Med 2012; 92:1045-57. [PMID: 22525425 PMCID: PMC3387317 DOI: 10.1038/labinvest.2012.73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking that is crucial for parietal cell function and epithelial cell homeostasis in the stomach. Gastric parietal cells in Hip1r-deficient mice are lost by apoptotic cell death, which leads to a progressive epithelial cell derangement, including glandular hypertrophy, zymogenic cell loss and expansion of a metaplastic mucous cell lineage known as spasmolytic polypeptide-expressing metaplasia (SPEM). The epithelial cell changes are associated with infiltration of inflammatory cells. As inflammatory mediators, such as IFNγ, have been shown to contribute to the development of the gastric epithelial cell metaplasia after Helicobacter infection, we tested whether IFNγ played a role in the spontaneous progressive epithelial metaplasia observed in Hip1r-deficient mice. Hip1r-deficient mice were crossed with IFNγ-deficient mice and single- and double-mutant mice were analyzed at 3 and 12 months of age. Histopathology scoring showed that loss of IFNγ tempered the spontaneous development of metaplastic lesions in Hip1r-deficient mice. Loss of IFNγ was observed to abrogate the glandular hypertrophy evident in Hip1r mutant stomach, although increased epithelial cell proliferation and elevated gastrin levels were not affected by the presence or absence of this pro-inflammatory cytokine. An analysis of cell lineage markers in the double-mutant mice demonstrated that IFNγ specifically affected the development of metaplastic mucous cells in the neck region, whereas the parietal cell, surface mucous cell and zymogenic cell alterations remained similar to the histopathology in the Hip1r mutant. Morphometric analysis showed that IFNγ was required for the mucous cell hypertrophy and hyperplasia observed in Hip1r-deficient mice. Together, these findings demonstrate that IFNγ is critical for the development of the gastric epithelial cell metaplasia that results from parietal cell atrophy in the Hip1r-deficient mice.
Collapse
Affiliation(s)
- Zhiping Liu
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA
| | - Elise S. Demitrack
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA
| | - Theresa M. Keeley
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA
| | - Kathryn A. Eaton
- Laboratory Animal Medicine Unit, The University of Michigan, Ann Arbor, MI, USA
| | - Mohamad El-Zaatari
- Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, USA
| | - Juanita L. Merchant
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, USA
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud Å, Grosse AS, Gumucio DL, Ernst SA, Tsai YH, Dempsey PJ, Samuelson LC. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 2011; 139:488-97. [PMID: 22190634 DOI: 10.1242/dev.070763] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling is known to regulate the proliferation and differentiation of intestinal stem and progenitor cells; however, direct cellular targets and specific functions of Notch signals had not been identified. We show here in mice that Notch directly targets the crypt base columnar (CBC) cell to maintain stem cell activity. Notch inhibition induced rapid CBC cell loss, with reduced proliferation, apoptotic cell death and reduced efficiency of organoid initiation. Furthermore, expression of the CBC stem cell-specific marker Olfm4 was directly dependent on Notch signaling, with transcription activated through RBP-Jκ binding sites in the promoter. Notch inhibition also led to precocious differentiation of epithelial progenitors into secretory cell types, including large numbers of cells that expressed both Paneth and goblet cell markers. Analysis of Notch function in Atoh1-deficient intestine demonstrated that the cellular changes were dependent on Atoh1, whereas Notch regulation of Olfm4 gene expression was Atoh1 independent. Our findings suggest that Notch targets distinct progenitor cell populations to maintain adult intestinal stem cells and to regulate cell fate choice to control epithelial cell homeostasis.
Collapse
Affiliation(s)
- Kelli L VanDussen
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Goebel M, Stengel A, Lambrecht NWG, Sachs G. Selective gene expression by rat gastric corpus epithelium. Physiol Genomics 2010; 43:237-54. [PMID: 21177383 DOI: 10.1152/physiolgenomics.00193.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The gastrointestinal (GI) tract is divided into several segments that have distinct functional properties, largely absorptive. The gastric corpus is the only segment thought of as largely secretory. Microarray hybridization of the gastric corpus mucosal epithelial cells was used to compare gene expression with other segments of the columnar GI tract followed by statistical data subtraction to identify genes selectively expressed by the rat gastric corpus mucosa. This provides a means of identifying less obvious specific functions of the corpus in addition to its secretion-related genes. For example, important properties found by this GI tract comparative transcriptome reflect the energy demand of acid secretion, a role in lipid metabolism, the large variety of resident neuroendocrine cells, responses to damaging agents and transcription factors defining differentiation of its epithelium. In terms of overlap of gastric corpus genes with the rest of the GI tract, the distal small bowel appears to express many of the gastric corpus genes in contrast to proximal small and large bowel. This differential map of gene expression by the gastric corpus epithelium will allow a more detailed description of major properties of the gastric corpus and may lead to the discovery of gastric corpus cell differentiation genes and those mis-regulated in gastric carcinomas.
Collapse
Affiliation(s)
- M Goebel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | |
Collapse
|
28
|
Keeley TM, Samuelson LC. Cytodifferentiation of the postnatal mouse stomach in normal and Huntingtin-interacting protein 1-related-deficient mice. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1241-51. [PMID: 20813912 PMCID: PMC3006248 DOI: 10.1152/ajpgi.00239.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Huntingtin-interacting protein 1-related (Hip1r) is highly expressed in gastric parietal cells, where it participates in vesicular trafficking associated with acid secretion. Hip1r-deficient mice have a progressive remodeling of the mucosa, including apoptotic loss of parietal cells, glandular hypertrophy, mucous cell metaplasia, and reduced numbers of zymogenic cells. In this study, we characterized gastric gland development in wild-type and Hip1r-deficient mice to define normal development, as well as the timing and sequence of the cellular transformation events in the mutant stomach. Postnatal (newborn to 8-wk-old) stomachs were examined by histological and gene expression analysis. At birth, gastric glands in wild-type and mutant mice were rudimentary and mature gastric epithelial cells were not apparent, although marker expression was detected for most cell lineages. Interestingly, newborns exhibited unusual cell types, including a novel surface cell filled with lipid and cells that coexpressed markers of mature mucous neck and zymogenic cells. Glandular morphogenesis proceeded rapidly in both genotypes, with gastric glands formed by weaning at 3 wk of age. In the Hip1r-deficient stomach, epithelial cell remodeling developed in a progressive manner. Initially, in the perinatal stomach, cellular changes were limited to parietal cell apoptosis. Other epithelial cell changes, including apoptotic loss of zymogenic cells and expansion of metaplastic mucous cells, emerged several weeks later when the glands were morphologically mature. Thus, parietal cell loss appeared to be the initiating event in Hip1r-deficient mice, with secondary remodeling of the other gastric epithelial cells.
Collapse
Affiliation(s)
- Theresa M. Keeley
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
29
|
Shinohara M, Mao M, Keeley TM, El–Zaatari M, Lee H, Eaton KA, Samuelson LC, Merchant JL, Goldenring JR, Todisco A. Bone morphogenetic protein signaling regulates gastric epithelial cell development and proliferation in mice. Gastroenterology 2010; 139:2050-2060.e2. [PMID: 20826155 PMCID: PMC3039550 DOI: 10.1053/j.gastro.2010.08.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 08/10/2010] [Accepted: 08/26/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS We investigated the role of bone morphogenetic protein (BMP) signaling in the regulation of gastric epithelial cell growth and differentiation by generating transgenic mice that express the BMP inhibitor noggin in the stomach. METHODS The promoter of the mouse H+/K+-ATPase β-subunit gene, which is specifically expressed in parietal cells, was used to regulate expression of noggin in the gastric epithelium of mice. The transgenic mice were analyzed for noggin expression, tissue morphology, cellular composition of the gastric mucosa, gastric acid content, and plasma levels of gastrin. Tissues were analyzed by immunohistochemical, quantitative real-time polymerase chain reaction, immunoblot, microtitration, and radioimmunoassay analyses. RESULTS In the stomachs of the transgenic mice, phosphorylation of Smad 1, 5, and 8 decreased, indicating inhibition of BMP signaling. Mucosa were of increased height, with dilated glands, cystic structures, reduced numbers of parietal cells, and increased numbers of cells that coexpressed intrinsic factor, trefoil factor 2, and Griffonia (Bandeiraea) simplicifolia lectin II, compared with wild-type mice. In the transgenic mice, levels of the H+/K+-ATPase α-subunit protein and messenger RNA were reduced, whereas those of intrinsic factor increased. The transgenic mice were hypochloridric and had an increased number of Ki67- and proliferating cell nuclear antigen-positive cells; increased levels of plasma gastrin; increased expression of transforming growth factor-α, amphiregulin, and gastrin; and activation of extracellular signal-regulated kinase 2. CONCLUSIONS Inhibiting BMP signaling in the stomachs of mice by expression of noggin causes loss of parietal cells, development of transitional cells that express markers of mucus neck and zymogenic lineages, and activation of proliferation. BMPs are therefore important regulators of gastric epithelial cell homeostasis.
Collapse
Affiliation(s)
- Masahiko Shinohara
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Maria Mao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Theresa M. Keeley
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Mohamad El–Zaatari
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Hyuk–Joon Lee
- Nashville Veterans Affairs Medical Center, Nashville,Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kathryn A. Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Linda C. Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Juanita L. Merchant
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - James R. Goldenring
- Nashville Veterans Affairs Medical Center, Nashville,Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Andrea Todisco
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
30
|
Matsuzaki J, Suzuki H, Minegishi Y, Sugai E, Tsugawa H, Yasui M, Hibi T. Acid suppression by proton pump inhibitors enhances aquaporin-4 and KCNQ1 expression in gastric fundic parietal cells in mouse. Dig Dis Sci 2010; 55:3339-48. [PMID: 20437101 DOI: 10.1007/s10620-010-1167-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 02/11/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND The widespread use of proton pump inhibitors (PPIs) is known to cause sporadic gastric fundic gland polyps (FGPs). Altered expression and localization of the water or ion transport proteins might contribute to the excess fluid secretion into the cystic lumen for the development of FGPs. AIMS We investigated the alteration of the murine gastric fundic mucosa after PPI treatment, and examined the expression of water channel aquaporin-4 (AQP4) and potassium channel KCNQ1, which are expressed only in the parietal cells in the gastric mucosa. METHODS Male 5-week-old C57BL/6J mice were administered lansoprazole (LPZ) by subcutaneous injection for 8 weeks. The expression of AQP4 and KCNQ1 were investigated by Western blotting, quantitative RT-PCR, and immunohistochemistry. The expression of mucin-6 (Muc6), pepsinogen, and sonic hedgehog (Shh) were also investigated as mucosal cell lineage markers. RESULTS Gastric mucosal hyperplasia with multiple cystic dilatations, exhibiting similar histological findings to the FGPs, was observed in the LPZ-treated mice. An increase in the number of AQP4-positive parietal cells and KCNQ1-positive parietal cells was observed. The extension of the distribution of AQP4-positive cells toward the surface of the fundic glands was also observed. The expression levels of AQP4 mRNA and protein were significantly enhanced. The expression of KCNQ1 mRNA was correlated with that of AQP4 mRNA in the LPZ-treated mice. Mucous neck-to-zymogenic cell lineage differentiation was delayed in association with decreased expression of Shh in the LPZ-treated mice. CONCLUSIONS PPI administration increased the number of parietal cells with enhanced expression of AQP4 and KCNQ1.
Collapse
Affiliation(s)
- Juntaro Matsuzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
VanDussen KL, Samuelson LC. Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol 2010; 346:215-23. [PMID: 20691176 DOI: 10.1016/j.ydbio.2010.07.026] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/22/2010] [Accepted: 07/22/2010] [Indexed: 12/21/2022]
Abstract
The Notch-regulated transcription factor mouse atonal homolog 1 (Math1) is required for the development of intestinal secretory cells, as demonstrated by the loss of goblet, endocrine and Paneth cell types in null mice. However, it was unknown whether Math1 is sufficient to induce the program of secretory cell differentiation. To examine the function of Math1 in the differentiation of intestinal epithelial cells, intestinal morphology and epithelial and mesenchymal cell fate were examined by histological staining and marker gene expression in transgenic mice expressing a villin-regulated Math1 transgene. Late prenatal transgenic founders exhibited a gross cellular transformation into a secretory epithelium. The expansion of secretory cells coupled with the almost complete loss of absorptive enterocytes suggested reprogramming of a bipotential progenitor cell. Moreover, Math1 expression inhibited epithelial cell proliferation, as demonstrated by a marked reduction in Ki67 positive cells and blunted villi. Unexpectedly, the transgenic mesenchyme was greatly expanded with increased proliferation. Several mesenchymal cell types were amplified, including smooth muscle and neurons, with maintenance of basic radial patterning. Since transgenic Math1 expression was restricted to the epithelium, these findings suggest that epithelial-mesenchymal signaling is altered by the cellular changes induced by Math1. Thus, Math1 is a key effector directing multipotential precursors to adopt secretory and not absorptive cell fate.
Collapse
Affiliation(s)
- Kelli L VanDussen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
32
|
Weis VG, Goldenring JR. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer 2010; 12:189-97. [PMID: 20047123 PMCID: PMC4502916 DOI: 10.1007/s10120-009-0527-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 10/11/2009] [Indexed: 02/06/2023]
Abstract
Gastric cancer is the second leading cause of cancer-related death worldwide, but the details of gastric carcinogenesis remain unclear. In humans, two preneoplastic metaplasias are associated with the precancerous stomach: intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM). While mouse models of Helicobacter sp. infection have not shown intestinal metaplasia, a number of mouse models lead to the evolution of SPEM. In this review, we summarize increasing data that indicates that SPEM arises in the setting of parietal cell loss, either following acute druginduced oxyntic atrophy or in chronic oxyntic atrophy associated with H. felis infection. Importantly, recent investigations support the origin of SPEM through transdifferentiation from mature chief cells following parietal cell loss. Novel biomarkers of SPEM, such as HE4, hold promise as specific markers of the metaplastic process distinct from normal gastric lineages. Staining with HE4 in humans and other studies in gerbils suggest that SPEM arises initially in the human stomach following parietal cell loss and then further evolves into intestinal metaplasia, likely in association with chronic inflammation. Further studies are needed to broaden our knowledge of metaplasia and early cancer-specific biomarkers that could give insights into both lineage derivation and preneoplasia detection.
Collapse
Affiliation(s)
- Victoria G. Weis
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James R. Goldenring
- Nashville Department of Veterans Affairs Medical Center, Nashville, TN, USA
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
33
|
Goldenring JR, Nam KT. Oxyntic atrophy, metaplasia, and gastric cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:117-31. [PMID: 21075342 PMCID: PMC4502917 DOI: 10.1016/b978-0-12-381280-3.00005-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric carcinogenesis involves the loss of parietal cells (oxyntic atrophy) and subsequent replacement of the normal gastric lineages with metaplastic cells. In humans, two metaplastic lineages develop as sequelae of chronic Helicobacter pylori infection: intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM). Mouse models of both chronic Helicobacter infection and acute pharmacological oxyntic atrophy have led to the discovery that SPEM arises from transdifferentiation of mature chief cells. The presence of inflammation promotes the expansion of SPEM in mice. Furthermore, studies in Mongolian gerbils as well as increasing evidence from human studies indicate that SPEM likely represents a precursor for the development of intestinal metaplasia. These findings suggest that loss of parietal cells, augmented by chronic inflammation, leads to a cascade of metaplastic events. Identification of specific biomarkers for SPEM and intestinal metaplasia hold promise for providing both early detection of preneoplasia and information on prognostic outcome following curative resection.
Collapse
Affiliation(s)
- James R Goldenring
- Nashville Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
34
|
Capoccia BJ, Huh WJ, Mills JC. How form follows functional genomics: gene expression profiling gastric epithelial cells with a particular discourse on the parietal cell. Physiol Genomics 2009; 37:67-78. [PMID: 19208773 DOI: 10.1152/physiolgenomics.90408.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The cellular composition and morphology of the stomach epithelium have been described in detail; however, the molecular mechanisms that regulate the differentiation of the various cell lineages as well as the function of mature gastric cells are far less clear. Recently, dissection of the molecular anatomy of the stomach has been boosted by the advent of functional genomics, which allows investigators to determine patterns of gene expression across virtually the entire cellular transcriptome. In this review, we discuss the impact of functional genomic studies on the understanding of gastric epithelial physiology. We show how functional genomic studies have uncovered genes that are useful as new cell lineage-specific markers of differentiation and provide new insights into cell physiology. For example, vascular endothelial growth factor B (Vegfb) has been identified as a parietal cell-specific marker that may allow parietal cells to regulate the mucosal vascular network. We also discuss how functional genomics has identified aberrantly expressed genes in disease states. Human epididymis 4 (HE4), for example, was recently identified as a metaplasia-induced gene product in mice based on microarray analysis. Finally, we will examine how analysis of higher-order patterns of gene expression can go beyond simply identifying individual genes to show how cells work as integrated systems. Specifically, we show how application of a Gene Ontology (GO) analysis of gene expression patterns from multiple tissues identifies the gastric parietal cell as an outlier, unlike other differentiated cell lineages in the stomach or elsewhere in the body.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
35
|
Chew CS, Chen X, Zhang H, Berg EA, Zhang H. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2delta6. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1159-72. [PMID: 18832449 PMCID: PMC2604800 DOI: 10.1152/ajpgi.90345.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor protein D52 is expressed at relatively high levels in cells within the gastrointestinal tract that undergo classical exocytosis and is overexpressed in several cancers. Current evidence supports a role for D52 in the regulation of vesicular trafficking. D52 function(s) are regulated by calcium-dependent phosphorylation; however, the intracellular mechanisms that mediate this process are not well characterized. The goal of this study was to identify the calcium-dependent phosphorylation site(s) in D52 and to characterize the protein kinase(s) that mediate this phosphorylation. Using mass spectrometry and site-directed mutagenesis, we identified a single amino acid residue, S(136), that undergoes increased phosphorylation upon elevation of intracellular Ca(2+) concentration. A phosphospecific antibody (pS(136)) was produced and used to characterize D52 kinase activity in gastric mucosal, colonic T84, and HEK293 cells. By using D52 as a substrate, a protein kinase with a molecular weight (M(r)) of approximately 50 kDa was identified with "in gel" assays. This kinase comigrated with rat brain calcium/calmodulin-dependent protein kinase (CAMK2)alpha cross-reacted with pan-specific CAMK2 antibodies as well as with anti-active CAMK2 (pT(286/287)) antibody when activated. Carbachol-stimulated phosphorylation of S(136) was inhibited by the CAMK2 inhibitor KN93 (IC(50) 38 microM) and by the calmodulin antagonist W7 (IC(50) 3.3 nM). A previously uncharacterized CAMK2 isoform, CAMK2delta6, which has the same domain structure and M(r) as CAM2alpha, was identified in gastric mucosa by RT-PCR. The cloned, expressed protein comigrated with D52 kinase and colocalized with D52 protein in T84 and HEK293 cells. These findings support a role for CAMK2delta6 in the mediation of D52 phosphorylation.
Collapse
Affiliation(s)
- Catherine S. Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xunsheng Chen
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanfang Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Eric A. Berg
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Han Zhang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia; 21st Century Biochemicals, Marlboro, Massachusetts; Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
36
|
Jain RN, Al-Menhali AA, Keeley TM, Ren J, El-Zaatari M, Chen X, Merchant JL, Ross TS, Chew CS, Samuelson LC. Hip1r is expressed in gastric parietal cells and is required for tubulovesicle formation and cell survival in mice. J Clin Invest 2008; 118:2459-70. [PMID: 18535670 DOI: 10.1172/jci33569] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 04/30/2008] [Indexed: 11/17/2022] Open
Abstract
Huntingtin interacting protein 1 related (Hip1r) is an F-actin- and clathrin-binding protein involved in vesicular trafficking. In this study, we demonstrate that Hip1r is abundantly expressed in the gastric parietal cell, predominantly localizing with F-actin to canalicular membranes. Hip1r may provide a critical function in vivo, as demonstrated by extensive changes to parietal cells and the gastric epithelium in Hip1r-deficient mice. Electron microscopy revealed abnormal apical canalicular membranes and loss of tubulovesicles in mutant parietal cells, suggesting that Hip1r is necessary for the normal trafficking of these secretory membranes. Accordingly, acid secretory dynamics were altered in mutant parietal cells, with enhanced activation and acid trapping, as measured in isolated gastric glands. At the whole-organ level, gastric acidity was reduced in Hip1r-deficient mice, and the gastric mucosa was grossly transformed, with fewer parietal cells due to enhanced apoptotic cell death and glandular hypertrophy associated with cellular transformation. Hip1r-deficient mice had increased expression of the gastric growth factor gastrin, and mice mutant for both gastrin and Hip1r exhibited normalization of both proliferation and gland height. Taken together, these studies demonstrate that Hip1r plays a significant role in gastric physiology, mucosal architecture, and secretory membrane dynamics in parietal cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pagliocca A, Hegyi P, Venglovecz V, Rackstraw SA, Khan Z, Burdyga G, Wang TC, Dimaline R, Varro A, Dockray GJ. Identification of ezrin as a target of gastrin in immature mouse gastric parietal cells. Exp Physiol 2008; 93:1174-89. [PMID: 18567601 DOI: 10.1113/expphysiol.2008.042648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The gastric acid-secreting parietal cell exhibits profound morphological changes on stimulation. Studies in gastrin null (Gas-KO) mice indicate that maturation of parietal cell function depends on the hormone gastrin acting at the G-protein-coupled cholecystokinin 2 receptor. The relevant cellular mechanisms are unknown. The application of differential mRNA display to samples of the gastric corpus of wild-type (C57BL/6) and Gas-KO mice identified the cytoskeletal linker protein, ezrin, as a previously unsuspected target of gastrin. Gastrin administered in vivo or added to gastric glands in vitro increased ezrin abundance in Gas-KO parietal cells. In parietal cells of cultured gastric glands from wild-type mice treated with gastrin, histamine or carbachol, ezrin was localized to vesicular structures resembling secretory canaliculi. In contrast, in cultured parietal cells from Gas-KO mice, ezrin was typically distributed in the cytosol, and this did not change after incubation with gastrin, histamine or carbachol. However, priming with gastrin for approximately 24 h, either in vivo prior to cell culture or by addition to cultured gastric glands, induced the capacity for secretagogue-stimulated localization of ezrin to large vesicular structures in Gas-KO mice. Similarly, in a functional assay based on measurement of intracellular pH, cultured parietal cells from Gas-KO mice were refractory to gastrin unless primed. The priming effect of gastrin was not attributable to the paracrine mediator histamine, but was prevented by inhibitors of protein kinase C and transactivation of the epidermal growth factor receptor. We conclude that in gastrin null mice there is reduced ezrin expression and a defect in ezrin subcellular distribution in gastric parietal cells, and that both can be reversed by priming with gastrin.
Collapse
Affiliation(s)
- Adelina Pagliocca
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Grunewald TGP, Butt E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol Cancer 2008; 7:31. [PMID: 18419822 PMCID: PMC2359764 DOI: 10.1186/1476-4598-7-31] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/17/2008] [Indexed: 12/24/2022] Open
Abstract
LIM and SH3 Protein 1 (LASP-1) was initially identified from a cDNA library of metastatic axillary lymph nodes (MLN) more than a decade ago. It was found to be overexpressed in human breast and ovarian cancer and became the first member of a newly defined LIM-protein subfamily of the nebulin group characterized by the combined presence of LIM and SH3 domains. LASP2, a novel LASP1-related gene was first identified and characterized in silico. Subsequently it proved to be a splice variant of the Nebulin gene and therefore was also termed LIM/nebulette. LASP-1 and -2 are highly conserved in their LIM, nebulin-like and SH3 domains but differ significantly at their linker regions. Both proteins are ubiquitously expressed and involved in cytoskeletal architecture, especially in the organization of focal adhesions. Here we present the first systematic review to summarize all relevant data concerning their domain organization, expression profiles, regulating factors and function. We compile evidence that both, LASP-1 and LASP-2, are important during early embryo- and fetogenesis and are highly expressed in the central nervous system of the adult. However, only LASP-1 seems to participate significantly in neuronal differentiation and plays an important functional role in migration and proliferation of certain cancer cells while the role of LASP-2 is more structural. The increased expression of LASP-1 in breast tumours correlates with high rates of nodal-metastasis and refers to a possible relevance as a prognostic marker.
Collapse
Affiliation(s)
- Thomas GP Grunewald
- Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Pediatric Oncology Center, Kölner Platz 1, D-80804 Munich, Germany
| | - Elke Butt
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombuehlstr. 12, D-97080 Wuerzburg, Germany
| |
Collapse
|
39
|
Heitzmann D, Warth R. No potassium, no acid: K+ channels and gastric acid secretion. Physiology (Bethesda) 2008; 22:335-41. [PMID: 17928547 DOI: 10.1152/physiol.00016.2007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gastric H+-K+-ATPase pumps H+ into the lumen and takes up K+ in parallel. In the acid-producing parietal cells, luminal KCNE2/KCNQ1 K+ channels play a pivotal role in replenishing K+ in the luminal fluid. Inactivation of KCNE2/KCNQ1 channels abrogates gastric acid secretion and dramatically modifies the architecture of gastric mucosa.
Collapse
|
40
|
Grabowska AM, Watson SA. Role of gastrin peptides in carcinogenesis. Cancer Lett 2007; 257:1-15. [PMID: 17698287 DOI: 10.1016/j.canlet.2007.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/25/2007] [Accepted: 06/28/2007] [Indexed: 01/22/2023]
Abstract
Gastrin gene expression is upregulated in a number of pre-malignant conditions and established cancer through a variety of mechanisms. Depending on the tissue where it is expressed and the level of expression, differential processing of the polypeptide product leads to the production of different biologically active peptides. In turn, acting through the classical CCK-2R receptor, CCK-2R isoforms and alternative receptors, these peptides trigger signalling pathways which influence the expression of downstream genes that affect cell survival, angiogenesis and invasion. Here we review this network of events, highlighting the importance of cellular context for interpreting the role of gastrin peptides and a possible role for gastrin in supporting the early stage of carcinogenesis.
Collapse
Affiliation(s)
- Anna M Grabowska
- Division of Pre-Clinical Oncology, D Floor, West Block, Queen's Medical Centre, University Hospital, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
41
|
López-Díaz L, Jain RN, Keeley TM, VanDussen KL, Brunkan CS, Gumucio DL, Samuelson LC. Intestinal Neurogenin 3 directs differentiation of a bipotential secretory progenitor to endocrine cell rather than goblet cell fate. Dev Biol 2007; 309:298-305. [PMID: 17706959 PMCID: PMC2679162 DOI: 10.1016/j.ydbio.2007.07.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 07/12/2007] [Accepted: 07/16/2007] [Indexed: 01/24/2023]
Abstract
Neurogenin 3 is essential for enteroendocrine cell development; however, it is unknown whether this transcription factor is sufficient to induce an endocrine program in the intestine or how it affects the development of other epithelial cells originating from common progenitors. In this study, the mouse villin promoter was used to drive Neurogenin 3 expression throughout the developing epithelium to measure the affect on cell fate. Although the general morphology of the intestine was unchanged, transgenic founder embryos displayed increased numbers of cells expressing the pan-endocrine marker chromogranin A. Accordingly, expression of several hormones and pro-endocrine transcription factors was increased in the transgenics suggesting that Neurogenin 3 stimulated a program of terminal enteroendocrine cell development. To test whether increased endocrine cell differentiation affected the development of other secretory cell lineages, we quantified goblet cells, the only other secretory cell formed in embryonic intestine. The Neurogenin 3-expressing transgenics had decreased numbers of goblet cells in correspondence to the increase in endocrine cells, with no change in the total secretory cell numbers. Thus, our data suggest that Neurogenin 3 can redirect the differentiation of bipotential secretory progenitors to endocrine rather than goblet cell fate.
Collapse
Affiliation(s)
- Lymari López-Díaz
- Cellular and Molecular Biology Graduate Program, The University of Michigan, Ann Arbor, MI 48109-0622
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622
| | - Renu N. Jain
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622
| | - Theresa M. Keeley
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622
| | - Kelli L. VanDussen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622
| | - Cynthia S. Brunkan
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622
| | - Deborah L. Gumucio
- Cellular and Molecular Biology Graduate Program, The University of Michigan, Ann Arbor, MI 48109-0622
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-0622
| | - Linda C. Samuelson
- Cellular and Molecular Biology Graduate Program, The University of Michigan, Ann Arbor, MI 48109-0622
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622
- Corresponding author: Linda Samuelson, Department of Molecular and Integrative Physiology, The University of Michigan, 2041 BSRB, 109 Zina Pitcher Pl, Ann Arbor, MI 48109-2200, Phone: (734) 764-9448, Fax: (734) 763-1166,
| |
Collapse
|
42
|
|
43
|
Zhang Z, Sun LP, Gong YH, Wang XG, Zhang M, Yuan Y. Factors affecting the serum gastrin 17 level: an evidence-based analysis of 3906 serum samples among Chinese. J Dig Dis 2007; 8:72-6. [PMID: 17532818 DOI: 10.1111/j.1443-9573.2007.00288.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the influence of gender, age, site of lesion, disease type and Helicobacter pylori (H. pylori) infection on the human serum gastrin-17 level and to study the diagnostic value of serum gastrin-17 in gastric precancerous lesions and gastric cancer. METHODS Serum gastrin-17 and serum H. pylori IgG antibody were detected by the ELISA method. The different gastric disease groups were confirmed by endoscopy and histopathology. RESULTS Among the 3906 serum samples according to the gender, age, site of lesion and the data of different gastric disease groups, the serum gastrin-17 level was markedly higher in people>or=60 years old than that in younger age groups. The serum gastrin-17 level increased progressively in the following order: healthy control group, nonatrophic gastritis group, gastric ulcer group, and the serum gastrin-17 level was higher in the atrophic gastritis with dysplasia group than that without it, the lowest level being in the gastric cancer group. Among the 2946 serum samples matched with the site of the lesion, the serum gastrin-17 level was higher in those with antral diseases than in those with gastric corpus diseases. Among the 3805 serum samples matched with the H. pylori infection data, the serum gastrin-17 level was higher in the H. pylori-positive group than in the H. pylori-negative group. CONCLUSIONS In people over 60 years of age, the serum gastrin-17 level tends to increase. In subjects with precancerous gastric lesions, it may increase significantly with the progression of gastric disease, and ultimately decrease in gastric cancer. Serum gastrin-17 is a good biomarker to differentiate benign from malignant gastric diseases. The site of the gastric lesions is an important factor affecting the serum gastrin-17 level, whereas H. pylori infection is usually associated with its increment.
Collapse
Affiliation(s)
- Zhong Zhang
- Cancer Institute of the First Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Gastrin, a potent stimulator of gastric acid secretion, primarily targets the acid-secreting parietal cells and histamine-secreting enterochromaffin-like (ECL) cells in the stomach. Accordingly, gastrin-deficient (GAS-KO) mice have a severe impairment in acid secretion. The aim of this study was to characterize changes in gene expression in GAS-KO mice to identify gastrin-regulated genes and to gain insight into how gastric cell types are regulated by gastrin and acid secretion. Affymetrix microarray analysis of GAS-KO and wild-type mice identified numerous differentially expressed transcripts. The results were compared with GAS-KO mice treated with gastrin to identify genes that were gastrin responsive. Finally, genes that were primarily changed due to gastrin and not hypochlorhydria were identified by comparison to mice that are deficient in both gastrin and cholecystokinin (GAS/CCK-KO), since these mice have restored basal acid secretion. The data were validated by quantitative reverse transcriptase polymerase chain reaction analysis. Interestingly, a number of inflammatory response genes were induced in GAS-KO mice and normalized in GAS/CCK-KO mice, suggesting that they were increased in response to low gastric acid. Moreover, a number of parietal cell transcripts that were downregulated in GAS-KO mice were similarly restored in GAS/CCK-KO mice, suggesting that parietal cell changes were also primarily associated with hypochlorhydria. In contrast, ECL cell genes that were markedly downregulated in GAS-KO mice continued to be reduced in GAS/CCK-KO mice, demonstrating that gastrin coordinately regulates a number of ECL cell genes, including several involved in histamine synthesis and secretion.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
45
|
Jain RN, Samuelson LC. Differentiation of the gastric mucosa. II. Role of gastrin in gastric epithelial cell proliferation and maturation. Am J Physiol Gastrointest Liver Physiol 2006; 291:G762-5. [PMID: 17030897 DOI: 10.1152/ajpgi.00172.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrin is the principal hormonal inducer of gastric acid secretion. The cellular targets for gastrin in the stomach are the acid-secreting parietal cell and histamine-producing enterochromaffin-like (ECL) cell. Gastrin is also a growth factor, with hypergastrinemia resulting in increased proliferation of gastric progenitor cells and a thickened mucosa. This review presents insights into gastrin function revealed by genetically engineered mouse models, demonstrating a new role for gastrin in the maturation of parietal and ECL cells. Thus, gastrin regulates many aspects of gastric physiology, with tight regulation of gastrin levels required to maintain balanced growth and function of gastric epithelial cells.
Collapse
Affiliation(s)
- Renu N Jain
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | |
Collapse
|
46
|
Roepke TK, Anantharam A, Kirchhoff P, Busque SM, Young JB, Geibel JP, Lerner DJ, Abbott GW. The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion. J Biol Chem 2006; 281:23740-7. [PMID: 16754665 DOI: 10.1074/jbc.m604155200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes in the KCNE family encode single transmembrane domain ancillary subunits that co-assemble with voltage-gated potassium (Kv) channel alpha subunits to alter their function. KCNE2 (also known as MiRP1) is expressed in the heart, is associated with human cardiac arrhythmia, and modulates cardiac Kv alpha subunits hERG and KCNQ1 in vitro. KCNE2 and KCNQ1 are also expressed in parietal cells, leading to speculation they form a native channel complex there. Here, we disrupted the murine kcne2 gene and found that kcne2 (-/-) mice have a severe gastric phenotype with profoundly reduced parietal cell proton secretion, abnormal parietal cell morphology, achlorhydria, hypergastrinemia, and striking gastric glandular hyperplasia arising from an increase in the number of non-acid secretory cells. KCNQ1 exhibited abnormal distribution in gastric glands from kcne2 (-/-) mice, with increased expression in non-acid secretory cells. Parietal cells from kcne2 (+/-) mice exhibited normal architecture but reduced proton secretion, and kcne2 (+/-) mice were hypochlorhydric, indicating a gene-dose effect and a primary defect in gastric acid secretion. These data demonstrate that KCNE2 is essential for gastric acid secretion, the first genetic evidence that a member of the KCNE gene family is required for normal gastrointestinal function.
Collapse
Affiliation(s)
- Torsten K Roepke
- Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|