1
|
Alesawy A, Alotaibi N, Alalshaikh M, Aljofi FE, Aldossary N, Al-Zahrani N, Omar O, Madi M. Impact of phenytoin and valproic acid on cytotoxicity and inflammatory mediators in human mononuclear cells: with and without lipopolysaccharide stimulation. PeerJ 2025; 13:e19102. [PMID: 40115275 PMCID: PMC11925041 DOI: 10.7717/peerj.19102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
Background Valproic acid (VPA) is known for its broad-spectrum antiepileptic effects and is recommended for generalized epilepsy, in contrast to phenytoin, which has a more limited spectrum. This study investigated the cytotoxic and inflammatory responses to phenytoin and VPA in peripheral blood mononuclear cells (PBMCs), with and without bacterial lipopolysaccharide (LPS) stimulation. Methods PBMCs from healthy donors were divided into 12 groups: control (Ctrl), phenytoin (Phy), and four concentrations of VPA (Val-50, Val-75, Val-100, Val-200), with and without LPS. Assessments were conducted on days 1 and 3, including total, live, and dead cell counts, cell viability, and lactic acid dehydrogenase (LDH) cytotoxicity assays. Inflammatory mediators (IL-6, IL-1β) and immune markers (IL-18, IgA) were measured using enzyme-linked immunosorbent assay (ELISA) on day 3. Statistical analysis involved two-way ANOVA, Tukey's HSD tests, and paired t-tests. Results All treatment groups showed significant declines in cell counts and viability from day 1 to day 3, which were exacerbated by LPS. Val-50 + LPS maintained higher cell counts compared to Ctrl + LPS and Phy + LPS. Elevated LDH levels were primarily observed in the Val-100 and Val-200 groups, with and without LPS. In the absence of LPS, the Val-75 and Val-100 groups showed notable reductions in IL-18 and IgA levels, while all VPA treatments reduced IL-6 levels compared to controls. This effect was enhanced under LPS exposure, although IL-1β reductions in the Val-75, Val-100, and Val-200 groups were reversed in the presence of LPS. Val-75 demonstrated lower cytotoxic and inflammatory responses compared to Phy and higher VPA doses, showing moderate LDH increases and reduced IL-18, IgA, IL-1β, and IL-6 levels, particularly under LPS challenge. Conclusion Phenytoin and VPA induced significant cytotoxic and inflammatory responses, influenced by dosage and LPS exposure. Val-75 exhibited a dose-specific immunomodulatory effect, reducing both pro-inflammatory and immune markers.
Collapse
Affiliation(s)
- Aminah Alesawy
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Norah Alotaibi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Marwa Alalshaikh
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal E. Aljofi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nada Aldossary
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nada Al-Zahrani
- Blood Bank, Laboratory Medicine, King Fahad University Hospital, Al Khobar, Saudi Arabia
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Marwa Madi
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Phongsavanh M, Bizot F, Saoudi A, Gastaldi C, Le Coz O, Tensorer T, Brisebard E, Garcia L, Goyenvalle A. Valproic Acid Improves Antisense-Mediated Exon-Skipping Efficacy in mdx Mice. Int J Mol Sci 2025; 26:2583. [PMID: 40141224 PMCID: PMC11942597 DOI: 10.3390/ijms26062583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disorder characterized by the progressive degeneration of skeletal and cardiac muscles due to the absence of dystrophin. Exon-skipping therapy is among the most promising approaches for treating DMD, with several antisense oligonucleotides (ASO) already approved by the FDA; however, their limited efficacy highlights substantial potential for further improvement. In this study, we evaluate the potential of combining ASO with valproic acid (VPA) to enhance dystrophin expression and improve functional outcomes in a murine model of DMD. Our results indicate that the ASO+VPA treatment significantly increases dystrophin restoration across various muscle tissues, with particularly pronounced effects observed in cardiac muscle, where levels are nearly doubled compared to ASO monotherapy. Additionally, we demonstrate significant improvements in functional outcomes in treated mdx mice. Our findings suggest that the combined ASO+VPA therapy holds promise as an effective therapeutic approach to ameliorate muscle function in DMD, warranting further exploration of its mechanistic pathways and long-term benefits.
Collapse
MESH Headings
- Animals
- Valproic Acid/pharmacology
- Valproic Acid/therapeutic use
- Mice, Inbred mdx
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/therapy
- Exons/genetics
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Mice
- Dystrophin/genetics
- Dystrophin/metabolism
- Disease Models, Animal
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Male
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Micky Phongsavanh
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Flavien Bizot
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Amel Saoudi
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Cecile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
- LIA BAHN, CSM-UVSQ, 98000 Monaco, Monaco
| | - Olivier Le Coz
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
| | - Thomas Tensorer
- SQY Therapeutics, UVSQ, 78180 Montigny le Bretonneux, France
| | | | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
- Medical Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France; (M.P.); (O.L.C.); (L.G.)
- Medical Biology Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco;
| |
Collapse
|
3
|
Camussi D, Marchese M, Nicoletti F, Santorelli FM, Ogi A. Valproate-Induced Model of Autism in Adult Zebrafish: A Systematic Review. Cells 2025; 14:109. [PMID: 39851536 PMCID: PMC11764007 DOI: 10.3390/cells14020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social skills and the presence of repetitive and restricted behaviors and interests. The social behavior of the zebrafish (Danio rerio) makes this organism a valuable tool for modeling ASD in order to explore the social impairment typical of this disorder. In addition to transgenic models, exposure of zebrafish embryos to valproic acid (VPA) has been found to produce ASD-like symptoms. This review first sets out to examine the existing literature on adult social behavior in the zebrafish VPA-induced model of autism, and the authors also aim to identify the ideal VPA dosage able to induce a persistent and long-lasting ASD-like phenotype while minimizing the suffering and distress of research animals in compliance with the principles of replacement, refinement, and reduction (3Rs).
Collapse
Affiliation(s)
- Diletta Camussi
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Isernia, Italy
| | | | - Asahi Ogi
- IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| |
Collapse
|
4
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, Jaeger MDC, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. Cells 2025; 14:72. [PMID: 39851500 PMCID: PMC11763699 DOI: 10.3390/cells14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX 77030, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
5
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, da Cunha Jaeger M, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.23.614476. [PMID: 39386542 PMCID: PMC11463451 DOI: 10.1101/2024.09.23.614476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Feng H, Luo J, Li Z, Zhao Y, Liu Y, Zhu H. Valproic acid attenuates the severity of astrogliosis in the hippocampus of animal models of temporal lobe epilepsy. IBRO Neurosci Rep 2024; 17:471-479. [PMID: 39669223 PMCID: PMC11635005 DOI: 10.1016/j.ibneur.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Reactive astrogliosis is one of the most frequency neuropathological alterations in the hippocampus of animal models and patients with temporal lobe epilepsy (TLE). Valproic acid (VPA), a widely used antiepileptic drug (AED), acts by blocking ion channels and enhancing GABAergic activity. This study investigated the effects of VPA on hippocampal astrogliosis in a rat model of TLE. The results demonstrated that chronic administration of VPA at a dose of 200 mg/kg significantly reduced the severity of astrogliosis and ameliorated neuronal loss in the hippocampus at the early and middle stages post-status epilepticus (SE), while also improving cognitive impairments at the middle and late stages in KA-SE rats. Long-term administration of VPA at 400 mg/kg attenuated astrogliosis in the hippocampus at the middle stage post-SE, but lacked neuroprotective effects and exacerbated cognitive impairments at the late stage. These findings suggest that VPA at an appropriate dose could mitigate hippocampal astrogliosis, potentially offering a new antiepileptic mechanism for its long-term use.
Collapse
Affiliation(s)
- Hu Feng
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Jiamin Luo
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Zhiwei Li
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Yuxiao Zhao
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Yamei Liu
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| | - Hongyan Zhu
- School of Life Sciences, Shanghai University, Nanchen Road 333, Shanghai 200436, China
| |
Collapse
|
7
|
Vatankhah A, Moghaddam SH, Afshari S, Afshari AR, Kesharwani P, Sahebkar A. Recent update on anti-tumor mechanisms of valproic acid in glioblastoma multiforme. Pathol Res Pract 2024; 263:155636. [PMID: 39395298 DOI: 10.1016/j.prp.2024.155636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Glioblastoma multiforme (GBM) is a malignant tumor of the brain that is considered to be incurable. Currently, surgical removal of tumors, chemotherapy with temozolomide, and radiation treatment remain established options for treatment. Nevertheless, the prognosis of those with GBM continues to be poor owing to the inherent characteristics of tumor growth and spread, as well as the resistance to treatment. To effectively deal with the present circumstances, it is vital to do extensive study to understand GBM thoroughly. The following piece provides a concise overview of the most recent advancements in using valproic acid, an antiseizure medication licensed by the FDA, for treating GBM. In this review, we outline the most recent developments of valproic acid in treating GBM, as well as its fundamental mechanisms and practical consequences. Our goal is to provide a greater understanding of the clinical use of valproic acid as a potential therapeutic agent for GBM.
Collapse
Affiliation(s)
- Abulfazl Vatankhah
- School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Sadaf Afshari
- Student Research Committee, Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Budillon A, Leone A, Passaro E, Silvestro L, Foschini F, Iannelli F, Roca MS, Macchini M, Bruzzese F, Garcia Bermejo ML, Rodriguez Garrote M, Tortora G, Milella M, Reni M, Fuchs C, Hewitt E, Kubiak C, Di Gennaro E, Giannarelli D, Avallone A. Randomized phase 2 study of valproic acid combined with simvastatin and gemcitabine/nab-paclitaxel-based regimens in untreated metastatic pancreatic adenocarcinoma patients: the VESPA trial study protocol. BMC Cancer 2024; 24:1167. [PMID: 39300376 PMCID: PMC11414294 DOI: 10.1186/s12885-024-12936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Metastatic pancreatic ductal adenocarcinoma (mPDAC) patients have very poor prognosis highlighting the urgent need of novel treatments. In this regard, repurposing non-oncology already-approved drugs might be an attractive strategy to offer more-effective treatment easily tested in clinical trials. Accumulating evidence suggests that epigenetic deregulation is a hallmark of cancer contributing to treatment resistance in several solid tumors, including PDAC. Histone deacetylase inhibitors (HDACi) are epigenetic drugs we have investigated preclinically and clinically as anticancer agents. Valproic acid (VPA) is a generic low-cost anticonvulsant and mood stabilizer with HDAC inhibitory activity, and anticancer properties also demonstrated in PDAC models. Statins use was reported to be associated with lower mortality risk in patients with pancreatic cancer and statins have been shown to have a direct antitumor effect when used alone or in combination therapy. We recently showed capability of VPA/Simvastatin (SIM) combination to potentiate the antitumor activity of gemcitabine/nab-paclitaxel in vitro and in vivo PDAC preclinical models. METHODS/DESIGN VESPA is a patient-centric open label randomized multicenter phase-II investigator-initiated trial, evaluating the feasibility, safety, and efficacy of VPA/SIM plus first line gemcitabine/nab-paclitaxel-based regimens (AG or PAXG) (experimental arm) versus chemotherapy alone (standard arm) in mPDAC patients. The study involves Italian and Spanish oncology centers and includes an initial 6-patients safety run-in-phase. A sample size of 240 patients (120 for each arm) was calculated under the hypothesis that the addition of VPA/SIM to gemcitabine and nab-paclitaxel-based regimens may extend progression free survival from 6 to 9 months in the experimental arm. Secondary endpoints are overall survival, response rate, disease control rate, duration of response, CA 19.9 reduction, toxicity, and quality of life. The study includes a patient engagement plan and complementary biomarkers studies on tumor and blood samples. CONCLUSIONS VESPA is the first trial evaluating efficacy and safety of two repurposed drugs in oncology such as VPA and SIM, in combination with standard chemotherapy, with the aim of improving mPDAC survival. The study is ongoing. Enrollment started in June 2023 and a total of 63 patients have been enrolled as of June 2024. TRIAL REGISTRATION EudraCT number: 2022-004154-63; ClinicalTrials.gov identifier NCT05821556, posted 2023/04/20.
Collapse
Affiliation(s)
- Alfredo Budillon
- Scientific Directorate, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy.
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Eugenia Passaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Lucrezia Silvestro
- Experimental Clinical Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Francesca Foschini
- Experimental Clinical Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Marina Macchini
- Department of Medical Oncology, University "Vita-Salute San Raffaele", IRCCS- Ospedale San Raffaele, Milan, Italy
| | - Francesca Bruzzese
- Animal Facility Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Maria Laura Garcia Bermejo
- Biomarkers and Therapeutic Targets Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mercedes Rodriguez Garrote
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Michele Milella
- Section of Innovation Biomedicines-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Michele Reni
- Department of Medical Oncology, University "Vita-Salute San Raffaele", IRCCS- Ospedale San Raffaele, Milan, Italy
| | | | - Eve Hewitt
- Beacon: for rare diseases, Cambridge, UK
| | - Christine Kubiak
- ECRIN - European Clinical Research Infrastructure Network-European Research Infrastructure Consortium, Paris, France
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Diana Giannarelli
- Facility of Epidemiology and Biostatistics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy.
| |
Collapse
|
9
|
Rocha MA, Cardoso AL, Martins C, Mello MLS. Sodium valproate affects the expression of p16 INK4a and p21 WAFI/Cip1 cyclin‑dependent kinase inhibitors in HeLa cells. Oncol Lett 2024; 28:432. [PMID: 39049983 PMCID: PMC11268092 DOI: 10.3892/ol.2024.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
p16INK4a and p21WAF1/Cip1 are cyclin-dependent kinase inhibitors involved in cell cycle control, which can function as oncogenes or tumor suppressors, depending on the context of various extracellular and intracellular signals, and cell type. In human papillomavirus-induced cervical cancer, p16 INK4a shows oncogenic activity and functions as a diagnostic marker of cervical neoplasia, whereas p21 WAF1/Cip1 acts as a tumor suppressor and its downregulation is associated with the progression of malignant transformation. Several histone deacetylase (HDAC) inhibitors promote the positive and negative regulation of a number of genes, including p16 INK4a and p21 WAF1/Cip1; however, the effects of sodium valproate (VPA) on these genes and on the proteins they encode remain uncertain in HeLa cervical cancer cells. In the present study, these effects were investigated in HeLa cells treated with 0.5 or 2 mM VPA for 24 h, using reverse transcription-quantitative PCR, confocal microscopy and western blotting. The results revealed a decrease in the mRNA expression levels of p16 INK4a and a tendency for p16INK4a protein abundance to decrease in the presence of 2 mM VPA. By contrast, an increase in the protein expression levels of p21WAF1/Cip1 was detected in the presence of 0.5 and 2 mM VPA. Furthermore, VPA was confirmed to inhibit HDAC activity and induce global hyperacetylation of histone H3. Notably, VPA was shown to suppress p16 INK4a, a biomarker gene of cervical carcinoma, and to increase the abundance of the tumor suppressor protein p21WAF1/Cip1, thus contributing to the basic knowledge regarding the antitumorigenic potential of VPA. Exploration of epigenetic changes associated with the promoters of p16 INK4a and p21 WAF1/Cip1, such as histone H3 methylation, may provide further information and improve the understanding of these findings.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
10
|
Oruc OA, Boyaci MG, Ozdinc Ş, Celik S, Aslan E. Protective effect of valproic acid on ischemia-reperfusion induced spinal cord injury in a rat model. J Spinal Cord Med 2024; 47:775-782. [PMID: 37975793 PMCID: PMC11378658 DOI: 10.1080/10790268.2023.2257854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
PURPOSE This study aims to determine the anti-inflammatory, antioxidant, and anti-apoptotic effects of valproic acid (VPA) on rat spinal cord tissue in ischemia-reperfusion (IR) injury model created by abdominal aorta occlusion. MATERIALS AND METHODS Sprague Dawley rat (male sex) weighing 190-260 g divided into four experimental groups: control only underwent laparotomy, sham group, pre-IR injury (200 mg/kg dose), and post-IR injury (300 mg/kg) VPA. We measured serum levels of TNF-α, IL-6, IL-1β, IL-18, Total Oxidant Status (TOS) and Total Antioxidant Status (TAS), and serum Oxidative Stress Index (OSI) ratio, and tissue expression of Bax and Bcl2, Caspase3, and Bax/Bcl2 ratio. RESULTS Serum IL-18 was higher in the sham than the control group(P = 0.001), and there were declines in the pre-IR treatment (P = 0.002) and the post-IR treatment when compared to sham (P = 0.001). Despite these reductions, IL-18 expression levels in both the pre- and post-IR treatment groups were higher than in the control group (P = 0.001 & P = 0.003). The favorable effects of pre-IR VPA administration on immunohistochemical biomarkers were superior to post-IR VPA administration. CONCLUSIONS Comparative analyses between prophylactic VPA administration and post-IR interventions revealed congruence in their anti-inflammatory and anti-apoptotic ramifications. VPA can reduce spinal cord IR injury in an aortic occlusion model of rats.
Collapse
Affiliation(s)
- Oya Akpinar Oruc
- Department of Emergency Medicine, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Mehmet Gazi Boyaci
- Department of Neurosurgery, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Şerife Ozdinc
- Department of Emergency Medicine, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Sefa Celik
- Department of Biochemistry, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology-Embryology, School of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
11
|
Shah N, Kasture AS, Fischer FP, Sitte HH, Hummel T, Sucic S. A transporter's doom or destiny: SLC6A1 in health and disease, novel molecular targets and emerging therapeutic prospects. Front Mol Neurosci 2024; 17:1466694. [PMID: 39268250 PMCID: PMC11390516 DOI: 10.3389/fnmol.2024.1466694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
As the first member of the solute carrier 6 (SLC6) protein family, the γ-aminobutyric acid (GABA) transporter 1 (GAT1, SLC6A1), plays a pivotal role in the uptake of GABA from the synaptic cleft into neurons and astrocytes. This process facilitates the subsequent storage of GABA in presynaptic vesicles. The human SLC6A1 gene is highly susceptible to missense mutations, leading to severe clinical outcomes, such as epilepsy, in the afflicted patients. The molecular mechanisms of SLC6A1-associated disorders are discerned to some degree; many SLC6A1 mutations are now known to impair protein folding, and consequently fail to reach the plasma membrane. Inherently, once inside the endoplasmic reticulum (ER), GAT1 abides by a complex cascade of events that enable efficient intracellular trafficking. This involves association with specialized molecular chaperones responsible for steering the protein folding process, oligomerization, sorting through the Golgi apparatus, and ultimately delivery to the cell surface. The entire process is subject to stringent quality control mechanisms at multiple checkpoints. While the majority of the existing loss-of-function SLC6A1 variants interfere with folding and membrane targeting, certain mutants retain abundant surface expression. In either scenario, suppressed GAT1 activity disrupts GABAergic neurotransmission, preceding the disease manifestation in individuals harboring these mutations. The nervous system is enthralling and calls for systematic, groundbreaking research efforts to dissect the precise molecular factors associated with the onset of complex neurological disorders, and uncover additional non-canonical therapeutic targets. Recent research has given hope for some of the misfolded SLC6A1 variants, which can be salvaged by small molecules, i.e., chemical and pharmacological chaperones, acting on multiple upstream targets in the secretory pathway. We here highlight the significance of pharmacochaperoning as a therapeutic strategy for the treatment of SLC6A1-related disorders.
Collapse
Affiliation(s)
- Nikita Shah
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya S. Kasture
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Florian P. Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Harald H. Sitte
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
- Center for Addiction Research and Science-AddRess, Medical University of Vienna, Vienna, Austria
| | - Thomas Hummel
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Sommerfeld-Klatta K, Jiers W, Rzepczyk S, Nowicki F, Łukasik-Głębocka M, Świderski P, Zielińska-Psuja B, Żaba Z, Żaba C. The Effect of Neuropsychiatric Drugs on the Oxidation-Reduction Balance in Therapy. Int J Mol Sci 2024; 25:7304. [PMID: 39000411 PMCID: PMC11242277 DOI: 10.3390/ijms25137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The effectiveness of available neuropsychiatric drugs in the era of an increasing number of patients is not sufficient, and the complexity of neuropsychiatric disease entities that are difficult to diagnose and therapeutically is increasing. Also, discoveries about the pathophysiology of neuropsychiatric diseases are promising, including those initiating a new round of innovations in the role of oxidative stress in the etiology of neuropsychiatric diseases. Oxidative stress is highly related to mental disorders, in the treatment of which the most frequently used are first- and second-generation antipsychotics, mood stabilizers, and antidepressants. Literature reports on the effect of neuropsychiatric drugs on oxidative stress are divergent. They are starting with those proving their protective effect and ending with those confirming disturbances in the oxidation-reduction balance. The presented publication reviews the state of knowledge on the role of oxidative stress in the most frequently used therapies for neuropsychiatric diseases using first- and second-generation antipsychotic drugs, i.e., haloperidol, clozapine, risperidone, olanzapine, quetiapine, or aripiprazole, mood stabilizers: lithium, carbamazepine, valproic acid, oxcarbazepine, and antidepressants: citalopram, sertraline, and venlafaxine, along with a brief pharmacological characteristic, preclinical and clinical studies effects.
Collapse
Affiliation(s)
- Karina Sommerfeld-Klatta
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Wiktoria Jiers
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Szymon Rzepczyk
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Filip Nowicki
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Magdalena Łukasik-Głębocka
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Paweł Świderski
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| | - Barbara Zielińska-Psuja
- Department of Toxicology, Poznań University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| | - Zbigniew Żaba
- Department of Emergency Medicine, Poznań University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznań, Poland
| | - Czesław Żaba
- Department of Forensic Medicine, Poznań University of Medical Sciences, 10 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
13
|
Su X, Li Y, Ren Y, Cao M, Yang G, Luo J, Hu Z, Deng H, Deng M, Liu B, Yao Z. A new strategy for overcoming drug resistance in liver cancer: Epigenetic regulation. Biomed Pharmacother 2024; 176:116902. [PMID: 38870626 DOI: 10.1016/j.biopha.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug resistance in hepatocellular carcinoma has posed significant obstacles to effective treatment. Recent evidence indicates that, in addition to traditional gene mutations, epigenetic recoding plays a crucial role in HCC drug resistance. Unlike irreversible gene mutations, epigenetic changes are reversible, offering a promising avenue for preventing and overcoming drug resistance in liver cancer. This review focuses on various epigenetic modifications relevant to drug resistance in HCC and their underlying mechanisms. Additionally, we introduce current clinical epigenetic drugs and clinical trials of these drugs as regulators of drug resistance in other solid tumors. Although there is no clinical study to prevent the occurrence of drug resistance in liver cancer, the development of liquid biopsy and other technologies has provided a bridge to achieve this goal.
Collapse
Affiliation(s)
- Xiaorui Su
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Luo
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ziyi Hu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bo Liu
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary-Pancreatic-Splenic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
14
|
Abu-Risha SE, Sokar SS, Elzorkany KE, Elsisi AE. Donepezil and quercetin alleviate valproate-induced testicular oxidative stress, inflammation and apoptosis: Imperative roles of AMPK/SIRT1/ PGC-1α and p38-MAPK/NF-κB/ IL-1β signaling cascades. Int Immunopharmacol 2024; 134:112240. [PMID: 38744177 DOI: 10.1016/j.intimp.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The mounting evidence of valproate-induced testicular damage in clinical settings is alarming, especially for men taking valproate (VPA) for long-term or at high doses. Both donepezil (DON) and quercetin (QUE) have promising antioxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, this study aimed to determine whether DON, QUE, and their combination could mitigate VPA-induced testicular toxicity and unravel the mechanisms underlying their protective effect. In this study, male albino rats were randomly categorized into six equal groups: control, VPA (500 mg/kg, I.P., for 14 days), DON (3 and 5 mg/kg), QUE (50 mg/kg), and DON 3 + QUE combination groups. The DON and QUE treatments were administered orally for 7 consecutive days before VPA administration and then concomitantly with VPA for 14 days. VPA administration disrupted testicular function by altering testicular architecture, ultrastructure, reducing sperm count, viability, and serum testosterone levels. Additionally, VPA triggered oxidative damage, inflammatory, and apoptotic processes and suppressed the AMPK/SIRT1/PGC-1α signaling cascade. Pretreatment with DON, QUE, and their combination significantly alleviated histological and ultrastructure damage caused by VPA and increased the serum testosterone level, sperm count, and viability. They also suppressed the oxidative stress by reducing testicular MDA content and elevating SOD activity. In addition, they reduced the inflammatory response by suppressing IL-1β level, NF-κB, and the p38-MAPK expression as well as inhibiting apoptosis by diminishing caspase-3 and increasing Bcl-2 expression. These novel protective effects were mediated by upregulating AMPK/SIRT1/PGC-1α signaling cascade. In conclusion, these findings suggest that DON, QUE, and their combination possess potent protective effects against VPA-induced testicular toxicity.
Collapse
Affiliation(s)
- Sally E Abu-Risha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Samia S Sokar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Kawthar E Elzorkany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Alaa E Elsisi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
15
|
Simões RB, Simões MDELPB, Ioshii SO, Robes RR, Dall'antonia MO, Goehr MP, Neves PJF. Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats. Rev Col Bras Cir 2024; 51:e20243676. [PMID: 38896636 DOI: 10.1590/0100-6991e-20243676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied. METHOD sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied. RESULTS there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts. CONCLUSION VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.
Collapse
Affiliation(s)
- Rachel Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
| | - Maria DE Lourdes Pessole Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Pedro Juan Furtado Neves
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
16
|
Simões RB, Simões MDELPB, Ioshii SO, Robes RR, Dall'antonia MO, Goehr MP, Neves PJF. Effects of valproic acid on wound healing of the abdominal wall musculoaponeurotic layer: an experimental study in rats. Rev Col Bras Cir 2024; 51:e20243676. [PMID: 38896636 PMCID: PMC11185066 DOI: 10.1590/0100-6991e-20243676-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/10/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION valproic acid (VPA), an epigenetic drug, has potential for the treatment of neoplasms. Its effects on the healing of the peritoneal-musculo-aponeurotic plane (PMA) of the abdominal wall are studied. METHOD sixty Wistar rats were allocated into two groups: experimental (VPA) and control (0.9% sodium chloride), treated daily, starting three days before the intervention and until euthanasia. Under anesthesia, a median laparotomy was performed and repaired with two synthetic layers. Assessments took place 3, 7 and 14 days after surgery. The integrity of the wounds, the quality of the inflammatory reaction, the intensity of the leukocyte infiltrate, collagen synthesis, the intensity of angiogenesis and the presence of myofibroblasts were studied. RESULTS there was dehiscence of the PMA plane in 11 of the 30 animals (p=0.001) in the experimental group. There was no difference in the quality and intensity of the inflammatory reaction. Immunohistochemistry revealed, in the experimental group, less collagen I (p3=0.003, p7=0.013 and p14=0.001) and more collagen III (p3=0.003, p7=0.013 and p14= 0.001). Collagen evaluated by Sirus Supra Red F3BA showed, in the experimental group, less collagen at all three times (p<0.001) with less collagen I and collagen III (p<0.001). A lower number of vessels was found on the 3rd day (p<0.001) and on the 7th day (p=0.001) and did not affect the number of myofibroblasts. CONCLUSION VPA showed dehiscence of the PMA plane, with less deposition of total collagen and collagen I, less angiogenic activity, without interfering with the number of myofibroblasts.
Collapse
Affiliation(s)
- Rachel Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
| | - Maria DE Lourdes Pessole Biondo Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Dep. de Cirurgia - Curitiba - PR - Brasil
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Pedro Juan Furtado Neves
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
17
|
Bastaki SM, Abdulrazzaq YM, Zidan MA, Shafiullah M, Alaryani SG, Alnuaimi FA, Adeghate E, Mohsin S, Akour A, Siwek A, Łażewska D, Kieć-Kononowicz K, Sadek B. Reproductive and fetal toxicity studies of histamine H3 receptor antagonist DL76 used in mice to prevent maximal electroshock-induced seizure. Front Pharmacol 2024; 15:1364353. [PMID: 38903994 PMCID: PMC11188305 DOI: 10.3389/fphar.2024.1364353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Brain histamine is considered an endogenous anticonvulsant and histamine H1 receptor. H1R antagonists have, in earlier studies, been found to induce convulsions. Moreover, research during the last two decades has provided more information concerning the anticonvulsant activities of histamine H3R (H3R) antagonists investigated in a variety of animal epilepsy models. Methods: Therefore, the in vivo anticonvulsant effect of the H3R antagonist DL76, with proven high in vitro affinity, in vitro selectivity profile, and high in vivo antagonist potency in mice against maximal electroshock (MES)-induced seizures in mice, was assessed. Valproic acid (VPA) was used as a reference antiepileptic drug (AED). In addition, DL76 was tested for its reproductive and fetal toxicity in the same animal species. Results and discussion: Our observations showed that acute systemic administration (intraperitoneal; i.p.) of DL76 (7.5 mg/kg, 15 mg/kg, 30 mg/kg, and 60 mg/kg, i.p.) provided significant and dose-dependent protection against MES-induced seizures in female and male mice. Moreover, the DL76-provided protective effects were comparable to those offered by the VPA and were reversed when animals were co-administered the CNS-penetrant selective H3R agonist R-(α)-methylhistamine (RAM, 10 mg/kg, i.p.). Furthermore, the administration of single (7.5 mg/kg, 15 mg/kg, 30 mg/kg, or 60 mg/kg, i.p.) or multiple doses (3 × 15 mg/kg, i.p.) of H3R antagonist DL76 on gestation days (GD) 8 or 13 failed to affect the maternal body weight of mice when compared with the control mice group. No significant alterations were detected in the average number of implantations and resorptions between the control and DL76-treated groups at the early stages of gestation and the organogenesis period. In addition, no significant differences in the occurrence of skeletal abnormalities, urogenital abnormalities, exencephaly, exomphalos, facial clefts, and caudal malformations were observed. The only significant abnormalities witnessed in the treated groups of mice were in the length of long bones and body length. In conclusion, the novel H3R antagonist DL76 protected test animals against MES-induced seizures and had a low incidence of reproductive and fetal malformation with decreased long bone lengths in vivo, signifying the potential therapeutic value of H3R antagonist DL76 for future preclinical as well as clinical development for use in the management of epilepsy.
Collapse
Affiliation(s)
- Salim M. Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yousef M. Abdulrazzaq
- Department of Paediatrics and Neonatology, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Mohamed Shafiullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saif Ghdayer Alaryani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatima Awad Alnuaimi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Beers JL, Zhou Z, Jackson KD. Advances and Challenges in Modeling Cannabidiol Pharmacokinetics and Hepatotoxicity. Drug Metab Dispos 2024; 52:508-515. [PMID: 38286636 PMCID: PMC11114601 DOI: 10.1124/dmd.123.001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a pharmacologically active metabolite of cannabis that is US Food and Drug Administration approved to treat seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex in children aged 1 year and older. During clinical trials, CBD caused dose-dependent hepatocellular toxicity at therapeutic doses. The risk for toxicity was increased in patients taking valproate, another hepatotoxic antiepileptic drug, through an unknown mechanism. With the growing popularity of CBD in the consumer market, an improved understanding of the safety risks associated with CBD is needed to ensure public health. This review details current efforts to describe CBD pharmacokinetics and mechanisms of hepatotoxicity using both pharmacokinetic models and in vitro models of the liver. In addition, current evidence and knowledge gaps related to intracellular mechanisms of CBD-induced hepatotoxicity are described. The authors propose future directions that combine systems-based models with markers of CBD-induced hepatotoxicity to understand how CBD pharmacokinetics may influence the adverse effect profile and risk of liver injury for those taking CBD. SIGNIFICANCE STATEMENT: This review describes current pharmacokinetic modeling approaches to capture the metabolic clearance and safety profile of cannabidiol (CBD). CBD is an increasingly popular natural product and US Food and Drug Administration-approved antiepileptic drug known to cause clinically significant enzyme-mediated drug interactions and hepatotoxicity at therapeutic doses. CBD metabolism, pharmacokinetics, and putative mechanisms of CBD-induced liver injury are summarized from available preclinical data to inform future modeling efforts for understanding CBD toxicity.
Collapse
Affiliation(s)
- Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Zhu Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| |
Collapse
|
19
|
Jamal M, Azam M, Simjee SU. Combination of metformin and sub-therapeutic dose of valproic acid prevent valproic acid-induced toxicity in animal model of epilepsy. Drug Chem Toxicol 2024; 47:287-295. [PMID: 36650908 DOI: 10.1080/01480545.2023.2168689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 01/19/2023]
Abstract
Valproic acid (VPA) is one of the most prescribed drugs for epilepsy. Extended use of VPA not only induces hepatotoxicity but also impairs the cognitive functions. Metformin has been reported to prevent epileptogenesis and enhance memory. To counter the VPA-induced adverse events, it is hypothesized that combination of sub-therapeutic dose of VPA with metformin may attenuate the toxicity stemming from the therapeutic dose of VPA. Pentylenetetrazole (PTZ)-induced kindling model of epilepsy in mice was used to assess the combined effects of sub-therapeutic dose of VPA (100 mg/kg) and metformin (200 mg/kg). The memory performance was analyzed by passive avoidance test, while alkaline comet assay was used to determine genotoxicity. Histopathological examination and serum biochemical analysis was performed to determine hepatotoxicity. Results showed that combination dose of VPA with metformin reduced seizure scores. VPA (300 mg/kg) administered as a single agent did not enhance memory impairment caused by PTZ, however, combination of sub-therapeutic dose of VPA with metformin enhanced memory function. Furthermore, in alkaline comet assay, combination therapy demonstrated reduced genotoxicity compared to the VPA 300 mg/kg. Histopathological examination of liver and analysis of serum hepatic enzymes revealed that combination therapy (VPA + metformin) reversed the toxicity as seen in case of PTZ or VPA (300 mg/kg) treated animals with no other treatment given. Based on the study data, it is concluded that the combination of sub-therapeutic dose of VPA with metformin might be used for epileptic seizures. This will prevent the hepatotoxicity and enhanced memory functions as compared to the VPA given as a single agent therapy.
Collapse
Affiliation(s)
- Muhammad Jamal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Azam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
20
|
Savuca A, Chelaru IA, Balmus IM, Curpan AS, Nicoara MN, Ciobica AS. Toxicological Response of Zebrafish Exposed to Cocktails of Polymeric Materials and Valproic Acid. SUSTAINABILITY 2024; 16:2057. [DOI: 10.3390/su16052057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Microplastic pollution represents an emerging problem of great interest in the public domain in the last decade; in addition, it overlaps with another delicate problem—pollution with pharmaceutical products that can have negative effects on the environment and people, even in small amounts. The main purpose of this study was to assess the biochemical and behavioral effects of exposure of adult zebrafish (Danio rerio) to polyethylene (PE), polypropylene (PP) and valproic acid (VPA), respectively to their mixtures—possible situations in natural aquatic environments. In terms of behavioral responses, sociability appears to be more impaired in the PP group after 5 days of exposure. The mechanisms affected are more those of swimming performance than of sociability. Even more, VPA increases presence in the arm with conspecifics but decreases mobility and locomotion, indicating a possible anxiety mechanism. The mixtures decrease the aggressiveness, especially in the case of the PE+VPA group, where it reaches a super low level compared to the control, which could endanger the species in nature. Regarding the anxiogenic effect, PP and PE act differently: if PE has an anxiogenic effect, on the opposite side is the PP group, which shows a bolder and more agitated behavior. All four variants showed behavioral changes indicative of toxicity from the first dose.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Ionut-Alexandru Chelaru
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Ioana-Miruna Balmus
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Alexandru Lapusneanu Street, 26, 700057 Iasi, Romania
| | - Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Avenue, 20A, 700505 Iași, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Preclinical Department, Apollonia University, 700511 Iasi, Romania
| |
Collapse
|
21
|
Sui J, Zhan L, Ji S, Wu W, Chen Y, Yun F, Liang W, Wang J, Cao M, Shen D, Zhang Q. Differential inflammation responses determine the variable phenotypes of epilepsy induced by GABRG2 mutations. CNS Neurosci Ther 2024; 30:e14583. [PMID: 38357846 PMCID: PMC10867793 DOI: 10.1111/cns.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVE To explore the mechanism involved in variable phenotypes of epilepsy models induced by γ-aminobutyric acid type A γ2 subunit (GABRG2) mutations. METHODS The zebrafish carrying wild-type (WT) GABRG2, mutant GABRG2(P282S), GABRG2(F343L) and GABRG2(I107T) were established by Tol2kit transgenesis system and Gateway method. Behavioral analysis of different transgenic zebrafish was performed with the DanioVision Video-Track framework and the brain activity was analyzed by field potential recording with MD3000 Bio-signal Acquisition and Processing System. The transcriptome analysis was applied to detect the underlying mechanisms of variable phenotypes caused by different GABRG2 mutations. RESULTS The established Tg(hGABRG2P282S ) zebrafish showed hyperactivity and spontaneous seizures, which were more sensitive to chemical and physical epileptic stimulations. Traditional antiepileptic drugs, such as Clonazepam (CBZ) and valproic acid (VPA), could ameliorate the hyperactivity in Tg(hGABRG2P282S ) zebrafish. The metabolic pathway was significantly changed in the brain transcriptome of Tg(hGABRG2P282S ) zebrafish. In addition, the behavioral activity, production of pro-inflammatory factors, and activation of the IL-2 receptor signal pathway varied among the three mutant zebrafish lines. CONCLUSION We successfully established transgenic zebrafish epileptic models expressing human mutant GABRG2(P282S), in which CBZ and VPA showed antiepileptic effects. Differential inflammatory responses, especially the SOCS/JAK/STAT signaling pathway, might be related to the phenotypes of genetic epilepsy induced by GABRG2 mutations. Further study will expand the pathological mechanisms of genetic epilepsies and provide a theoretical basis for searching for effective drug treatment.
Collapse
Affiliation(s)
- Jiahui Sui
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Longwu Zhan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Shengtao Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Wenwen Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Yuhan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Feng Yun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Jie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Maohong Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Dingding Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Department of NeurologyAffiliated Hospital of Nantong University, Medical School, Co‐innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong UniversityNantongChina
| |
Collapse
|
22
|
Santos DS, Rocha MA, Mello MLS. Epigenetic studies in insects and the valproic acid perspective. BRAZ J BIOL 2024; 84:e256045. [DOI: 10.1590/1519-6984.256045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Valproic acid in association with sodium valproate (VPA) is an important anticonvulsant drug used for decades to treat neurological disorders. VPA also acts as an epigenetic modulator by inhibiting histone deacetylases, permitting histone acetylation, affecting the DNA and histone methylation status and gene expression, and inducing chromatin remodeling. Insects represent an important animal model for studies in several areas of science. Their high phenotypic plasticity makes them alternative models for epigenetic studies. This brief review emphasizes recent reports on insect epigenetics and the contribution of studies on the VPA action in insects, including effects on epigenetic markers, extending the pharmacological understanding of the potential of this drug, and demonstrating the usefulness of insects as an alternative animal model to drug studies.
Collapse
|
23
|
Shen W, Hu K, Shi HZ, Jiang L, Zhang YJ, He SM, Zhang C, Chen X, Wang DD. Effects of Sex Differences and Combined Use of Clozapine on Initial Dosage Optimization of Valproic Acid in Patients with Bipolar Disorder. Curr Pharm Des 2024; 30:2290-2302. [PMID: 38984572 DOI: 10.2174/0113816128323367240704095109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Due to the narrow therapeutic window and large pharmacokinetic variation of valproic acid (VPA), it is difficult to make an optimal dosage regimen. The present study aims to optimize the initial dosage of VPA in patients with bipolar disorder. METHODS A total of 126 patients with bipolar disorder treated by VPA were included to construct the VPA population pharmacokinetic model retrospectively. Sex differences and combined use of clozapine were found to significantly affect VPA clearance in patients with bipolar disorder. The initial dosage of VPA was further optimized in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively. RESULTS The CL/F and V/F of VPA in patients with bipolar disorder were 11.3 L/h and 36.4 L, respectively. It was found that sex differences and combined use of clozapine significantly affected VPA clearance in patients with bipolar disorder. At the same weight, the VPA clearance rates were 1.134, 1, 1.276884, and 1.126 in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively. This study further optimized the initial dosage of VPA in male patients without the combined use of clozapine, female patients without the combined use of clozapine, male patients with the combined use of clozapine, and female patients with the combined use of clozapine, respectively. CONCLUSION This study is the first to investigate the initial dosage optimization of VPA in patients with bipolar disorder based on sex differences and the combined use of clozapine. Male patients had higher clearance, and the recommended initial dose decreased with increasing weight, providing a reference for the precision drug use of VPA in clinical patients with bipolar disorder.
Collapse
Affiliation(s)
- Wei Shen
- Department of Pharmacy, The Suqian Clinical College of Xuzhou Medical University, Suqian, Jiangsu 223800, China
| | - Ke Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hao-Zhe Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lei Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Pharmacy, Taixing People's Hospital, Taixing, Jiangsu 225400, China
| | - Yi-Jia Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Su-Mei He
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu 215153, China
| | - Cun Zhang
- Department of Pharmacy, Xuzhou Oriental Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiao Chen
- School of Nursing, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dong-Dong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
24
|
Malik JR, Podany AT, Khan P, Shaffer CL, Siddiqui JA, Baranowska‐Kortylewicz J, Le J, Fletcher CV, Ether SA, Avedissian SN. Chemotherapy in pediatric brain tumor and the challenge of the blood-brain barrier. Cancer Med 2023; 12:21075-21096. [PMID: 37997517 PMCID: PMC10726873 DOI: 10.1002/cam4.6647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pediatric brain tumors (PBT) stand as the leading cause of cancer-related deaths in children. Chemoradiation protocols have improved survival rates, even for non-resectable tumors. Nonetheless, radiation therapy carries the risk of numerous adverse effects that can have long-lasting, detrimental effects on the quality of life for survivors. The pursuit of chemotherapeutics that could obviate the need for radiotherapy remains ongoing. Several anti-tumor agents, including sunitinib, valproic acid, carboplatin, and panobinostat, have shown effectiveness in various malignancies but have not proven effective in treating PBT. The presence of the blood-brain barrier (BBB) plays a pivotal role in maintaining suboptimal concentrations of anti-cancer drugs in the central nervous system (CNS). Ongoing research aims to modulate the integrity of the BBB to attain clinically effective drug concentrations in the CNS. However, current findings on the interaction of exogenous chemical agents with the BBB remain limited and do not provide a comprehensive explanation for the ineffectiveness of established anti-cancer drugs in PBT. METHODS We conducted our search for chemotherapeutic agents associated with the blood-brain barrier (BBB) using the following keywords: Chemotherapy in Cancer, Chemotherapy in Brain Cancer, Chemotherapy in PBT, BBB Inhibition of Drugs into CNS, Suboptimal Concentration of CNS Drugs, PBT Drugs and BBB, and Potential PBT Drugs. We reviewed each relevant article before compiling the information in our manuscript. For the generation of figures, we utilized BioRender software. FOCUS We focused our article search on chemical agents for PBT and subsequently investigated the role of the BBB in this context. Our search criteria included clinical trials, both randomized and non-randomized studies, preclinical research, review articles, and research papers. FINDING Our research suggests that, despite the availability of potent chemotherapeutic agents for several types of cancer, the effectiveness of these chemical agents in treating PBT has not been comprehensively explored. Additionally, there is a scarcity of studies examining the role of the BBB in the suboptimal outcomes of PBT treatment, despite the effectiveness of these drugs for other types of tumors.
Collapse
Affiliation(s)
- Johid Reza Malik
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Anthony T. Podany
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Parvez Khan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher L. Shaffer
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jawed A. Siddiqui
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jennifer Le
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical SciencesSan DiegoCaliforniaUSA
| | - Courtney V. Fletcher
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sadia Afruz Ether
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Sean N. Avedissian
- Antiviral Pharmacology LaboratoryCollege of Pharmacy, University of Nebraska Medical CenterOmahaNebraskaUSA
- Pediatric Clinical Pharmacology ProgramChild Health Research Institute, University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
25
|
Perona M, Ibañez IL, Thomasz L, Villaverde MS, Oglio R, Rosemblit C, Grissi C, Campos-Haedo M, Dagrosa MA, Cremaschi G, Durán HA, Juvenal GJ. Valproic acid radiosensitizes anaplastic thyroid cells through a decrease of the DNA damage repair capacity. J Endocrinol Invest 2023; 46:2353-2365. [PMID: 37052871 DOI: 10.1007/s40618-023-02092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) represents a rare lethal human malignancy with poor prognosis. Multimodality treatment, including radiotherapy, is recommended to improve local control and survival. Valproic acid (VA) is a clinically available histone deacetylase inhibitor with a well-documented side effect profile. In this study, we aim to investigate the combined effect of VA with photon irradiation in vitro. METHODS Anaplastic thyroid cancer cells (8505c) were used to investigate the radiosensitizing effect of VA. RESULTS VA sensitized cells to photon irradiation. VA increased radiation-induced apoptosis and radiation-induced DNA damage measured by γH2AX foci induction. Furthermore, VA prolonged γH2AX foci disappearance over time in irradiated cells and decreased the radiation-induced levels of mRNA of key DNA damage repair proteins of the homologous recombination (HR) and the nonhomologous end joining (NHEJ) pathways. CONCLUSIONS VA at a clinically safe dose enhance the radiosensitivity of 8505c cells through an increase in radiation-induced apoptosis and a disruption in the molecular mechanism of HR and NHEJ DNA damage repair pathways.
Collapse
Affiliation(s)
- M Perona
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina.
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina.
| | - I L Ibañez
- Institute of Nanosciences and Nanotechnology (INN), CNEA-CONICET, Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
| | - L Thomasz
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
| | - M S Villaverde
- Gene Transfer Unit (UTG), Research Area, 'Ángel H. Roffo' Institute of Oncology of the University of Buenos Aires, Av. San Martín 5481, C1417DTB, CABA, Buenos Aires, Argentina
| | - R Oglio
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
| | - C Rosemblit
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - C Grissi
- Institute of Nanosciences and Nanotechnology (INN), CNEA-CONICET, Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
| | - M Campos-Haedo
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - M A Dagrosa
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
| | - G Cremaschi
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - H A Durán
- Institute of Nanosciences and Nanotechnology (INN), CNEA-CONICET, Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- School of Science and Technology, University of San Martín (UNSAM), 25 de Mayo y Francia, B1650KNA, Buenos Aires, Argentina
| | - G J Juvenal
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290, C1425FQD, CABA, Buenos Aires, Argentina
| |
Collapse
|
26
|
Freire NH, Jaeger MDC, de Farias CB, Nör C, Souza BK, Gregianin L, Brunetto AT, Roesler R. Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Mol Cell Biochem 2023; 478:2241-2255. [PMID: 36637615 DOI: 10.1007/s11010-022-04655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil.
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Saha L, Kumari P, Rawat K, Gautam V, Sandhu A, Singh N, Bhatia A, Bhattacharya S, Sinha VR, Chakrabarti A. Neuroprotective effect of Berberine Nanoparticles Against Seizures in Pentylenetetrazole Induced Kindling Model of Epileptogenesis: Role of Anti-Oxidative, Anti-Inflammatory, and Anti-Apoptotic Mechanisms. Neurochem Res 2023; 48:3055-3072. [PMID: 37329447 DOI: 10.1007/s11064-023-03967-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
There is an unmet need to develop alternative therapeutic strategies to not only restrain seizures but also to alleviate the underlying pathologies and sequelae. Berberine (BBR), an isoquinoline alkaloid, has shown promising effect in the kindling model of epileptogenesis, but due to the poor oral bioavailability its clinical application is limited. So, the present study was designed to study the neuroprotective effect of BBR nanoparticles (enhanced bioavailability as compared to BBR) against seizures in pentylenetetrazole (PTZ) induced kindling model of epileptogenesis. Kindling model was established in male Wistar rats by intraperitoneal (i.p.) administration of PTZ (30 mg/kg) on every alternate day till the animal became fully kindled or till 6 weeks. Three doses of BBR (50, 100, and 200 mg/kg) and nano-BBR (25, 50, 100 mg/kg) were studied for seizure score, percentage of animal kindled, histopathological score, oxidative stress, inflammation, and apoptosis in PTZ treated rats by conducting cytokines, gene expression and protein expression analysis. BBR nanoparticles showed significant effect on the seizure score and percentage of animal kindled, histopathological score, neurobehavioral parameters (Forced swim test, Rotarod), oxidative (MDA, SOD, GSH, GPx) and inflammatory (IL-1beta, TNF-alpha) parameters, apoptotic parameters (Bax and iNOS), and gene (Nrf2, NQO1, HO1) and protein expression (Nrf2) as compared to both PTZ and BBR. BBR nanoparticles showed neuroprotective effect in PTZ induced kindling model of epileptogenesis and proves to be a promising antiepileptogenic therapy for the patients who are at high risk of developing seizures.
Collapse
Affiliation(s)
- Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, 160012, India.
| | - Puja Kumari
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, 160012, India
| | - Neha Singh
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research (PGIMER), 2Nd Floor, Research Block B, Chandigarh, 160012, India
| | - Shalmoli Bhattacharya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research (PGIMER), 5Th Floor, Research Block B, Chandigarh, 160012, India
| | - V R Sinha
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, 160014, Chandigarh, India
| | - Amitava Chakrabarti
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, 160012, India
| |
Collapse
|
28
|
Uzel G, Oylumlu E, Durmus L, Ciraci C. Duality of Valproic Acid Effects on Inflammation, Oxidative Stress and Autophagy in Human Eosinophilic Cells. Int J Mol Sci 2023; 24:13446. [PMID: 37686250 PMCID: PMC10487571 DOI: 10.3390/ijms241713446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Eosinophils function in rapid innate immune responses and allergic reactions. Recent research has raised the possibility that the histone deacetylase inhibitor valproic acid (VPA) may be a promising therapeutic agent for treatment of allergic responses and certain cancers. However, its effects on eosinophils remain unclear. Utilizing the EoL-1 human eosinophil cell line as a model, we investigated the effects of VPA on oxidative stress- and autophagy-mediated immune responses. We found that VPA induced reactive oxidative species (ROS) generation and eosinophil activation without affecting cell viability. Moreover, VPA treatment suppressed the negative regulator of antioxidant transcription factor Nrf2, which is known to activate antioxidant defense. Interestingly, VPA was able to increase autophagic markers, as well as NLRP3 and NLRC4 mRNA activation, in Eol-1 cells in a dose-dependent manner. Collectively, our results indicate that VPA could increase the severity of allergic responses, and if so, it clearly would not be a suitable drug for the treatment of allergic reactions. However, VPA does have the potential to induce autophagy and to regulate the inflammatory responses via inflammasome-driven caspase-1 deactivation in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey; (G.U.); (E.O.); (L.D.)
| |
Collapse
|
29
|
Correa Basurto AM, Tamay Cach F, Jarillo Luna RA, Cabrera Pérez LC, Correa Basurto J, García Dolores F, Mendieta Wejebe JE. Hepatotoxic Evaluation of N-(2-Hydroxyphenyl)-2-Propylpentanamide: A Novel Derivative of Valproic Acid for the Treatment of Cancer. Molecules 2023; 28:6282. [PMID: 37687111 PMCID: PMC10488843 DOI: 10.3390/molecules28176282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Valproic acid (VPA) is a drug that has various therapeutic applications; however, it has been associated with liver damage. Furthermore, it is interesting to propose new compounds derived from VPA as N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA). The HO-AAVPA has better antiproliferative activity than the VPA in different cancer cell lines. The purpose of this study was to evaluate the liver injury of HO-AAVPA by acute treatment (once administration) and repeated doses for 7 days under intraperitoneal administration. The median lethal dose value (LD50) was determined in rats and mice (females and males) using OECD Guideline 425. In the study, male rats were randomly divided into 4 groups (n = 7), G1: control (without treatment), G2: vehicle, G3: VPA (500 mg/kg), and G4: HO-AAVPA (708 mg/kg, in equimolar ratio to VPA). Some biomarkers related to hepatotoxicity were evaluated. In addition, macroscopic and histological studies were performed. The LD50 value of HO-AAVPA was greater than 2000 mg/kg. Regarding macroscopy and biochemistry, the HO-AAVPA does not induce liver injury according to the measures of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, glutathione peroxidase, glutathione reductase, and catalase activities. Comparing the treatment with HO-AAVPA and VPA did not show a significant difference with the control group, while malondialdehyde and glutathione-reduced levels in the group treated with HO-AAVPA were close to those of the control (p ≤ 0.05). The histological study shows that liver lesions caused by HO-AAVPA were less severe compared with VPA. Therefore, it is suggested that HO-AAVPA does not induce hepatotoxicity at therapeutic doses, considering that in the future it could be proposed as an antineoplastic drug.
Collapse
Affiliation(s)
- Ana María Correa Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
| | - Feliciano Tamay Cach
- Laboratorio de Investigación de Bioquímica Aplicada, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Rosa Adriana Jarillo Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Laura Cristina Cabrera Pérez
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
- Laboratorio de Farmacología, Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, La Laguna Ticoman, Ciudad de México 07340, Mexico
| | - José Correa Basurto
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico
| | - Fernando García Dolores
- Laboratorio de Patología, Instituto de Ciencias Forenses de la Ciudad de México, Av. Niños Héroes 130. Col. Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, Mexico; (A.M.C.B.); (L.C.C.P.); (J.C.B.)
| |
Collapse
|
30
|
Mello MLS. Nuclear Morphofunctional Organization and Epigenetic Characteristics in Somatic Cells of T. infestans (Klug, 1834). Pathogens 2023; 12:1030. [PMID: 37623990 PMCID: PMC10460038 DOI: 10.3390/pathogens12081030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Triatoma infestans (Klug) is an insect recognized as not only an important vector of South American trypanosomiasis (Chagas disease) but also a model of specific cellular morphofunctional organization and epigenetic characteristics. The purpose of the present review is to highlight certain cellular processes that are particularly unveiled in T. infestans, such as the following: (1) somatic polyploidy involving nuclear and cell fusions that generate giant nuclei; (2) diversification of nuclear phenotypes in the Malpighian tubules during insect development; (3) heterochromatin compartmentalization into large bodies with specific spatial distribution and presumed mobility in the cell nuclei; (4) chromatin remodeling and co-occurrence of necrosis and apoptosis in the Malpighian tubules under stress conditions; (5) epigenetic markers; and (6) response of heterochromatin to valproic acid, an epidrug that inhibits histone deacetylases and induces DNA demethylation in other cell systems. These cellular processes and epigenetic characteristics emphasize the role of T. infestans as an attractive model for cellular research. A limitation of these studies is the availability of insect supply by accredited insectaries. For studies that require the injection of drugs, the operator's dexterity to perform insect manipulation is necessary, especially if young nymphs are used. For studies involving in vitro cultivation of insect organs, the culture medium should be carefully selected to avoid inconsistent results.
Collapse
Affiliation(s)
- Maria Luiza S Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| |
Collapse
|
31
|
Kalafati E, Drakopoulou E, Anagnou NP, Pappa KI. Developing Oncolytic Viruses for the Treatment of Cervical Cancer. Cells 2023; 12:1838. [PMID: 37508503 PMCID: PMC10377776 DOI: 10.3390/cells12141838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cervical cancer represents one of the most important malignancies among women worldwide. Current therapeutic approaches for cervical cancer are reported not only to be inadequate for metastatic cervical cancer, but are also considered as cytotoxic for several patients leading to serious side effects, which can have negative implications on the quality of life of women. Therefore, there is an urgent need for the development of innovative and effective treatment options. Oncolytic viruses can eventually become effective biological agents, since they preferentially infect and kill cancer cells, while leaving the normal tissue unaffected. Moreover, they are also able to leverage the host immune system response to limit tumor growth. This review aims to systematically describe and discuss the different types of oncolytic viruses generated for targeting cervical cancer cells, as well as the outcome of the combination of virotherapy with conventional therapies. Although many preclinical studies have evaluated the therapeutic efficacy of oncolytic viruses in cervical cancer, the number of clinical trials so far is limited, while their oncolytic properties are currently being tested in clinical trials for the treatment of other malignancies.
Collapse
Affiliation(s)
- Eleni Kalafati
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Nicholas P Anagnou
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
| | - Kalliopi I Pappa
- Laboratory of Cell and Gene Therapy, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
32
|
Pisani F, Spagnoli C. What are the considerations when initiating treatment for epilepsy in children? Expert Rev Neurother 2023; 23:1081-1096. [PMID: 38032395 DOI: 10.1080/14737175.2023.2288107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION There is a very wide spectrum of epilepsies and developmental and epileptic encephalopathies that affect children, from self-limited forms, not necessarily requiring treatment, to severe drug-resistant ones. AREAS COVERED In this perspective, the authors discuss the main factors to consider before drug prescription in children, considering the most recent clinical research, including age, seizure type, epilepsy syndrome, etiology, efficacy and safety profile, comorbidities, gender, available formulations, costs and drug coverage, and regulatory issues. The literature search was conducted through a PubMed search on antiseizure medications for patients aged 0-18, with respect to each of the aforementioned factors, and by checking the reference lists of relevant papers. EXPERT OPINION The most expanding field of research and innovation for clinical practice is precision medicine, which addresses the holistic treatment of genetic epilepsies and developmental and epileptic encephalopathies. It achieves this by addressing their detrimental effects on synapses, neurotransmission, and cellular signaling pathways with the double aim to treat seizures and to rescue neurodevelopmental trajectories, but also the issue of adverse events and drug resistance through pharmacogenomics.
Collapse
Affiliation(s)
- Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, Rome, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
33
|
Bagheri S, Rashno M, Salehi I, Karimi SA, Raoufi S, Komaki A. Geraniol improves passive avoidance memory and hippocampal synaptic plasticity deficits in a rat model of Alzheimer's disease. Eur J Pharmacol 2023; 951:175714. [PMID: 37054939 DOI: 10.1016/j.ejphar.2023.175714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Alzheimer's disease (AD) is the most progressive and irreversible neurodegenerative disease that leads to synaptic loss and cognitive decline. The present study was designed to evaluate the effects of geraniol (GR), a valuable acyclic monoterpene alcohol, with protective and therapeutic effects, on passive avoidance memory, hippocampal synaptic plasticity, and amyloid-beta (Aβ) plaques formation in an AD rat model induced by intracerebroventricular (ICV) microinjection of Aβ1-40. Seventy male Wistar rats were randomly into sham, control, control-GR (100 mg/kg; P.O. (orally), AD, GR-AD (100 mg/kg; P.O.; pretreatment), AD-GR (100 mg/kg; P.O.; treatment), and GR-AD-GR (100 mg/kg; P.O.; pretreatment & treatment). Administration of GR was continued for four consecutive weeks. Training for the passive avoidance test was carried out on the 36th day and a memory retention test was performed 24 h later. On day 38, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, Aβ plaques were identified in the hippocampus by Congo red staining. The results showed that Aβ microinjection increased passive avoidance memory impairment, suppressed of hippocampal LTP induction, and enhanced of Aβ plaque formation in the hippocampus. Interestingly, oral administration of GR improved passive avoidance memory deficit, ameliorated hippocampal LTP impairment, and reduced Aβ plaque accumulation in the Aβ-infused rats. The results suggest that GR mitigates Aβ-induced passive avoidance memory impairment, possibly through alleviation of hippocampal synaptic dysfunction and inhibition of Aβ plaque formation.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran; Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. http://umsha.ac.ir
| |
Collapse
|
34
|
Schiavo A, Maldonado C, Vázquez M, Fagiolino P, Trocóniz IF, Ibarra M. Quantitative systems pharmacology Model to characterize valproic acid-induced hyperammonemia and the effect of L-carnitine supplementation. Eur J Pharm Sci 2023; 183:106399. [PMID: 36740101 DOI: 10.1016/j.ejps.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Valproic acid (VPA) is a short-chain fatty acid widely prescribed in the treatment of seizure disorders and epilepsy syndromes, although its therapeutic value may be undermined by its toxicity. VPA serious adverse effects are reported to have a significant and dose-dependent incidence, many associated with VPA-induced hyperammonemia. This effect has been linked with reduced levels of carnitine; an endogenous compound involved in fatty acid's mitochondrial β-oxidation by facilitation of its entrance via the carnitine shuttle. High exposure to VPA can lead to carnitine depletion causing a misbalance between the intra-mitochondrial β-oxidation and the microsomal ω-oxidation, a pathway that produces toxic metabolites such as 4-en-VPA which inhibits ammonia elimination. Moreover, a reduction in carnitine levels might be also related to VPA-induced obesity and lipids disorder. In turn, L-carnitine supplementation (CS) has been recommended and empirically used to reduce VPA's hepatotoxicity. The aim of this work was to develop a Quantitative Systems Pharmacology (QSP) model to characterize VPA-induced hyperammonemia and evaluate the benefits of CS in preventing hyperammonemia under both chronic treatment and after VPA overdosing. The QSP model included a VPA population pharmacokinetics model that allowed the prediction of total and unbound concentrations after single and multiple oral doses considering its saturable binding to plasma proteins. Predictions of time courses for 2-en-VPA, 4-en-DPA, VPA-glucuronide, carnitine, ammonia and urea levels, and for the relative change in fatty acids, Acetyl-CoA, and glutamate reflected the VPA induced changes and the efficacy of the treatment with L-carnitine. The QSP model was implemented to give a rational basis for the L-carnitine dose selection to optimize CS depending on VPA dosage regime and to assess the currently recommended L-carnitine rescue therapy after VPA overdosing. Results show that a L-carnitine dose equal to the double of the VPA dose using the same interdose interval would maintain the ammonia levels at baseline. The QSP model may be expanded in the future to describe other adverse events linked to VPA-induced changes in endogenous compounds.
Collapse
Affiliation(s)
- Alejandra Schiavo
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay; Graduate Program in Chemistry, Faculty of Chemistry, Universidad de la República. Montevideo, Uruguay
| | - Cecilia Maldonado
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay
| | - Marta Vázquez
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay
| | - Pietro Fagiolino
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay
| | - Iñaki F Trocóniz
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra. Pamplona, Spain; IdiSNA; Navarra Institute for Health Research, Pamplona, Spain
| | - Manuel Ibarra
- Department of Pharmaceutical Sciences, Faculty of Chemistry. Universidad de la República. Montevideo, Uruguay.
| |
Collapse
|
35
|
Giordano F, Paolì A, Forastiero M, Marsico S, De Amicis F, Marrelli M, Naimo GD, Mauro L, Panno ML. Valproic acid inhibits cell growth in both MCF-7 and MDA-MB231 cells by triggering different responses in a cell type-specific manner. J Transl Med 2023; 21:165. [PMID: 36864445 PMCID: PMC9983172 DOI: 10.1186/s12967-023-04015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Alessandro Paolì
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Martina Forastiero
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
36
|
A novel method for predicting the unbound valproic acid concentration. Drug Metab Pharmacokinet 2023; 50:100503. [PMID: 37080137 DOI: 10.1016/j.dmpk.2023.100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/26/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
In this study, we constructed a prediction formula for unbound valproic acid (VPA) concentration that was more accurate and widely applicable than previously reported formulae. A total of 136 datasets from 75 patients were analyzed retrospectively. The median of free fraction of VPA was 0.16 (interquartile range: 0.07; range: 0.07-0.45). The parameter that combined total VPA concentration (CtVPA) and serum albumin (SA), (CtVPA [μM] - 2 × SA [μM]), was significantly related to the free fraction of VPA (r = 0.76, p < 0.001). We constructed a combined parameter-based prediction formula for unbound VPA concentration. Analysis using external datasets from patients without severe renal failure showed that the prediction errors of the unbound VPA concentration were lower than those of previously reported formulae. Although the previous formulae showed large prediction errors, especially in the specific range of CtVPA values, the constructed formula showed a weak trend with CtVPA or SA. The formula based on (CtVPA [μM] - 2 × SA [μM]) had high prediction accuracy and wide applicability in predicting the unbound VPA concentration in patients without severe renal failure.
Collapse
|
37
|
Safdar A, Ismail F. A comprehensive review on pharmacological applications and drug-induced toxicity of valproic acid. Saudi Pharm J 2023; 31:265-278. [PMID: 36942277 PMCID: PMC10023552 DOI: 10.1016/j.jsps.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Valproic acid, a branching short chain fatty acid, is a popular drug to treat epilepsy and acts as a mood-stabilizing drug. The obstruction of ion channels and Gamma Amino Butyrate transamino butyrate GABA has been linked to antiepileptic effects. Valproic acid has been characterized as a Histone deacetylase inhibitor, functioning directly transcription of gene levels by blocking the deacetylation of histones and increasing the accessibility of transcription sites. Study has been extensively focused on pharmaceutical activity of valproic acid through various pharmacodynamics activity from absorption, distribution and excretion particularly in patients who are resistant to or intolerant of lithium or carbamazepine, as well as those with mixed mania or rapid cycling.
Collapse
|
38
|
Ayala-Guerrero F, Castro-Domínguez D, Mateos-Salgado EL, Mexicano-Medina G, Gutiérrez-Chávez CA. Effect of valproate on sleep patterns disturbed by epilepsy. Physiol Behav 2023; 259:114054. [PMID: 36502893 DOI: 10.1016/j.physbeh.2022.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Nocturnal epilepsy is a neurological disease that has a significant effect on sleep. Various treatments have been implemented to help mitigate these effects and improve patients' quality of life. The use of experimental animal models for epilepsy has facilitated efficacy assessment and the development of different medications to treat the symptoms of this disease. The objective of this study was to evaluate the effect of valproate on sleep patterns altered by epilepsy. Chronically implanted Wistar rats were used to study sleep patterns over three consecutive days under different experimental conditions. The animals were separated into two groups. The first day was considered the control recording; on the second day, one group received pentylenetetrazol (PTZ) alone, and the other group received valproate prior to induction of convulsive seizures with PTZ administration. The results show that in addition to its antiepileptic effect, valproate has hypnotic properties. It is considered to facilitate the action of GABAergic mechanisms to mitigate the effect of convulsive seizures and increase the occurrence of sleep.
Collapse
|
39
|
Shnayder NA, Grechkina VV, Khasanova AK, Bochanova EN, Dontceva EA, Petrova MM, Asadullin AR, Shipulin GA, Altynbekov KS, Al-Zamil M, Nasyrova RF. Therapeutic and Toxic Effects of Valproic Acid Metabolites. Metabolites 2023; 13:metabo13010134. [PMID: 36677060 PMCID: PMC9862929 DOI: 10.3390/metabo13010134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Valproic acid (VPA) and its salts are psychotropic drugs that are widely used in neurological diseases (epilepsy, neuropathic pain, migraine, etc.) and psychiatric disorders (schizophrenia, bipolar affective disorder, addiction diseases, etc.). In addition, the indications for the appointment of valproate have been expanding in recent years in connection with the study of new mechanisms of action of therapeutic and toxic metabolites of VPA in the human body. Thus, VPA is considered a component of disease-modifying therapy for multiple tumors, neurodegenerative diseases (Huntington's disease, Parkinson's disease, Duchenne progressive dystrophy, etc.), and human immunodeficiency syndrome. The metabolism of VPA is complex and continues to be studied. Known pathways of VPA metabolism include: β-oxidation in the tricarboxylic acid cycle (acetylation); oxidation with the participation of cytochrome P-450 isoenzymes (P-oxidation); and glucuronidation. The complex metabolism of VPA explains the diversity of its active and inactive metabolites, which have therapeutic, neutral, or toxic effects. It is known that some active metabolites of VPA may have a stronger clinical effect than VPA itself. These reasons explain the relevance of this narrative review, which summarizes the results of studies of blood (serum, plasma) and urinary metabolites of VPA from the standpoint of the pharmacogenomics and pharmacometabolomics. In addition, a new personalized approach to assessing the cumulative risk of developing VPA-induced adverse reactions is presented and ways for their correction are proposed depending on the patient's pharmacogenetic profile and the level of therapeutic and toxic VPA metabolites in the human body fluids (blood, urine).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Aiperi K. Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Elena N. Bochanova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Evgenia A. Dontceva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 45000 Ufa, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks, 119121 Moscow, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 11798 Moscow, Russia
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Correspondence: (N.A.S.); (R.F.N.); Tel.: +7-(812)-620-0222 (N.A.S. & R.F.N.)
| |
Collapse
|
40
|
Tawarayama H, Hirata Y, Uchida K, Himori N, Uesato S, Nakazawa T. Isozyme-specific histone deacetylase 1/2 inhibitor K560 attenuates oxidative stress-induced retinal cell death. Neurosci Lett 2023; 793:136978. [PMID: 36435210 DOI: 10.1016/j.neulet.2022.136978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/23/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Oxidative stress-induced damage is an underlying mechanism in the pathogenesis of age-related retinal diseases. Here, we examined the effects of K560, a potential candidate drug for the treatment of these diseases, on oxidative stress-induced retinal cell death. K560 is a novel isozyme-specific inhibitor of histone deacetylase 1 and 2 (HDAC1/2). Histone acetylation in retinal lysates and dissociated retinal cells was detected with a western blot analysis and cell-based enzyme-linked immunosorbent assay (ELISA), respectively. The viability of mouse retinal cells was measured with an alamarBlue assay. We used immunohistochemistry for RNA binding protein with multiple splicing (RBPMS) to visualize the retinal ganglion cells (RGCs) of mice. An ELISA analysis indicated that histone acetylation was enhanced in dissociated mouse retinal cells treated with K560. The cell viability assay indicated that K560 attenuated both exogenous hydrogen peroxide-induced and endogenous oxidative stress-induced cell death in dissociated retinal cells. Western blot analysis indicated that intravitreal K560 administration enhanced the acetylation of histones H3 and H4 in mouse retinal lysates. To examine the effect of K560 on oxidative stress-induced RGC death, we performed whole-mount immunohistochemistry for RBPMS on retinas dissected from eyes treated with K560 or vehicle on day one, and K560 or vehicle and NMDA on day two. Quantification of RBPMS-immunopositive cells indicated that K560 attenuated NMDA-induced RGC death. Taken together, our findings suggest that administration of a HDAC1/2-specific inhibitor K560 may be effective in the treatment of oxidative stress-mediated retinal degeneration and have less cytotoxicity than other known HDAC inhibitors, which are known to target a wide range of HDAC family members.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| | - Yoshiyuki Hirata
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Keiko Uchida
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical Engineering, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Shinichi Uesato
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
41
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
42
|
Valproic acid-induced hyperammonemia in neuropsychiatric disorders: a 2-year clinical survey. Psychopharmacology (Berl) 2023; 240:149-156. [PMID: 36459199 DOI: 10.1007/s00213-022-06289-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Valproic acid (VPA)-induced hyperammonemia (HA) is a rare adverse effect reported even at therapeutic VPA levels. The present study aimed to investigate the characteristics of VPA-induced HA and its association with the total dose, duration, and level of VPA. This study also investigated whether the use of VPA in combination with other medications has any effect on elevating serum ammonia levels. METHODS A total of 316 patients with a history of VPA prescribed for underlying neuropsychiatric disorders were found eligible for the study. Data including demographic information, medical history and diagnosis, VPA dosage, VPA treatment duration, VPA level, and ammonia serum level were extracted and reviewed from our hospital records. The history of other neuropsychiatric medications was also included. RESULTS Among 316 patients receiving VPA, HA was observed in 54 (17%) patients, and 15 patients were symptomatic among them. There was no significant difference in demographics between symptomatic and asymptomatic HA groups except for the number of co-administrated medications (p = 0.044). Besides, VPA duration and dose did not show a significant difference between the two groups. Additionally, the VPA level was significantly higher in patients who used risperidone in addition to VPA (p = 0.019). Eventually, VPA level showed a significant association with ammonia level (p = 0.025) and symptomatic HA (p = 0.033) after adjusting for possible confounders. CONCLUSION VPA level showed a significant association with ammonia level and symptomatic HA. Moreover, co-administrated medications such as risperidone might have an impact on the serum level of VPA. Further studies are recommended to confirm these findings.
Collapse
|
43
|
Rocha MA, de Campos Vidal B, Mello MLS. Sodium Valproate Modulates the Methylation Status of Lysine Residues 4, 9 and 27 in Histone H3 of HeLa Cells. Curr Mol Pharmacol 2023; 16:197-210. [PMID: 35297358 DOI: 10.2174/1874467215666220316110405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Valproic acid/sodium valproate (VPA), a well-known anti-epileptic agent, inhibits histone deacetylases, induces histone hyperacetylation, promotes DNA demethylation, and affects the histone methylation status in some cell models. Histone methylation profiles have been described as potential markers for cervical cancer prognosis. However, histone methylation markers that can be studied in a cervical cancer cell line, like HeLa cells, have not been investigated following treatment with VPA. METHODS In this study, the effect of 0.5 mM and 2.0 mM VPA for 24 h on H3K4me2/me3, H3K9me/me2 and H3K27me/me3 signals as well as on KMT2D, EZH2, and KDM3A gene expression was investigated using confocal microscopy, Western blotting, and RT-PCR. Histone methylation changes were also investigated by Fourier-transform infrared spectroscopy (FTIR). RESULTS We found that VPA induces increased levels of H3K4me2/me3 and H3K9me, which are indicative of chromatin activation. Particularly, H3K4me2 markers appeared intensified close to the nuclear periphery, which may suggest their implication in increased transcriptional memory. The abundance of H3K4me2/me3 in the presence of VPA was associated with increased methyltransferase KMT2D gene expression. VPA induced hypomethylation of H3K9me2, which is associated with gene silencing, and concomitant with the demethylase KDM3A, it increased gene expression. Although VPA induces increased H3K27me/me3 levels, it is suggested that the role of the methyltransferase EZH2 in this context could be affected by interactions with this drug. CONCLUSION Histone FTIR spectra were not affected by VPA under present experimental conditions. Whether our epigenetic results are consistent with VPA affecting the aggressive tumorous state of HeLa cells, further investigation is required.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
44
|
Kuretu A, Arineitwe C, Mothibe M, Ngubane P, Khathi A, Sibiya N. Drug-induced mitochondrial toxicity: Risks of developing glucose handling impairments. Front Endocrinol (Lausanne) 2023; 14:1123928. [PMID: 36860368 PMCID: PMC9969099 DOI: 10.3389/fendo.2023.1123928] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial impairment has been associated with the development of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the relationship between mitochondrial impairment and insulin resistance is not fully elucidated due to insufficient evidence to support the hypothesis. Insulin resistance and insulin deficiency are both characterised by excessive production of reactive oxygen species and mitochondrial coupling. Compelling evidence states that improving the function of the mitochondria may provide a positive therapeutic tool for improving insulin sensitivity. There has been a rapid increase in reports of the toxic effects of drugs and pollutants on the mitochondria in recent decades, interestingly correlating with an increase in insulin resistance prevalence. A variety of drug classes have been reported to potentially induce toxicity in the mitochondria leading to skeletal muscle, liver, central nervous system, and kidney injury. With the increase in diabetes prevalence and mitochondrial toxicity, it is therefore imperative to understand how mitochondrial toxicological agents can potentially compromise insulin sensitivity. This review article aims to explore and summarise the correlation between potential mitochondrial dysfunction caused by selected pharmacological agents and its effect on insulin signalling and glucose handling. Additionally, this review highlights the necessity for further studies aimed to understand drug-induced mitochondrial toxicity and the development of insulin resistance.
Collapse
Affiliation(s)
- Auxiliare Kuretu
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Charles Arineitwe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
- *Correspondence: Ntethelelo Sibiya,
| |
Collapse
|
45
|
Biondo-Simões MDELP, Dall'antonia MO, Goehr MP, Biondo-Simões R, Ioshii SO, Robes RR. Valproic acid and bladder healing: an experimental study in rats. Rev Col Bras Cir 2022; 49:e20223399. [PMID: 36449944 PMCID: PMC10578821 DOI: 10.1590/0100-6991e-20223399-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE to recognize the effects of valproic acid (VPA), an epigenetic drug, on the bladder healing process, in rats. METHOD twenty male Wistar rats were divided in two groups: experimental (A), treated with VPA (150mg/Kg/day), and control (B) with 0.9% sodium chloridrate. Healing was analyzed on the third and seventh days, evaluating the inflammatory reaction, collagen synthesis and angiogenesis. RESULTS inflammatory reaction on the third day was minimal and acute in both groups. On the seventh day, it was subacute in both groups, moderate intensity in group A and minimal in group B (p=0.0476). Collagen III intensity, marked by immunohistochemistry, was similar in both groups. Collagen I intensity on the third day was similar in both groups, but on the seventh day it was higher in experimental than control (p=0.0476). Collagen evaluation by picrosiriusred allowed to verify that the presence of collagen III was similar in both groups (p=0.3312) on the third day, and it was higher in control on the seventh day (p=0.0015). Collagen I showed similarity on the third day (p=0.3100), and it was higher in control on the seventh day (p=0.0015). Vessel marked with anti-SMA counting showed fewer vessels on the third (p=0.0034) and seventh day (p=0.0087) in experimental group. The lower intensity of angiogenesis was confirmed with anti-CD34, on the third day (p=0,0006) and on the seventh day (p=0,0072). CONCLUSION VPA determined alterations in the bladder healing process, in rats, with lower collagen density and less angiogenic activity, but without compromising the integrity of the organ.
Collapse
Affiliation(s)
| | | | - Matheus Prince Goehr
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| | - Rachel Biondo-Simões
- - Universidade Federal do Paraná, Programa de Pós-graduação em Clínica Cirúrgica - Departamento de Cirurgia - Curitiba - PR - Brasil
| | - Sérgio Ossamu Ioshii
- - Universidade Federal do Paraná, Departamento de Patologia da UFPR - Curitiba - PR - Brasil
| | - Rogério Ribeiro Robes
- - Universidade Federal do Paraná, Técnica Cirúrgica e Cirurgia Experimental - Curitiba - PR - Brasil
| |
Collapse
|
46
|
Gan Y, Wei Z, Liu C, Li G, Feng Y, Deng Y. Solute carrier transporter disease and developmental and epileptic encephalopathy. Front Neurol 2022; 13:1013903. [PMID: 36419532 PMCID: PMC9676364 DOI: 10.3389/fneur.2022.1013903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 09/14/2023] Open
Abstract
The International League Against Epilepsy officially revised its classification in 2017, which amended "epileptic encephalopathy" to "developmental and epileptic encephalopathy". With the development of genetic testing technology, an increasing number of genes that cause developmental and epileptic encephalopathies are being identified. Among these, solute transporter dysfunction is part of the etiology of developmental and epileptic encephalopathies. Solute carrier transporters play an essential physiological function in the human body, and their dysfunction is associated with various human diseases. Therefore, in-depth studies of developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction can help develop new therapeutic modalities to facilitate the treatment of refractory epilepsy and improve patient prognosis. In this article, the concept of transporter protein disorders is first proposed, and nine developmental and epileptic encephalopathies caused by solute carrier transporter dysfunction are described in detail in terms of pathogenesis, clinical manifestations, ancillary tests, and precise treatment to provide ideas for the precise treatment of epilepsy.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Liu
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, China
| |
Collapse
|
47
|
Chaudhary S, Parvez S. Neuroprotective Effects of Natural Antioxidants Against Branched-Chain Fatty Acid-Induced Oxidative Stress in Cerebral Cortex and Cerebellum Regions of the Rat Brain. ACS OMEGA 2022; 7:38269-38276. [PMID: 36340064 PMCID: PMC9631910 DOI: 10.1021/acsomega.2c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Valproic acid (VPA) is short branched-chain fatty acid (BCFA) derived from valeric acids which are naturally produced by Valeriana officinalis (flowering plant). Neurotoxicity caused by BCFA-like VPA may be mediated by oxidative stress, according to research involving the cerebral cortex and cerebellum. In the present study, we explored the possible protective effect of different antioxidants such as melatonin, quercetin, and piperine on VPA exposure by using a supernatant preparation of the cerebral cortex and cerebellum regions of the rat brain. The present study revealed that melatonin, quercetin, and piperine significantly prevented VPA-induced oxidative stress in the cerebral cortex and cerebellum regions. VPA was also observed to lower the level of reduced glutathione, and this effect was significantly mitigated by these antioxidants. Melatonin, quercetin, and piperine also ameliorated and altered the activities of AChE, Na+, K+ATPase, and MAO in the cerebral cortex and cerebellum. Results of this study also suggest that prior treatment of antioxidants like melatonin, quercetin, and piperine helps in combating the oxidative stress induced by VPA in the cerebral cortex and cerebellum region of the rat brain. Thus, sufficient dietary intake of these antioxidants by individuals at high risk of VPA exposure could prove beneficial in combating the adverse effect of VPA.
Collapse
Affiliation(s)
| | - Suhel Parvez
- . Phone: +91 11 26059688x5573. Fax: +91 11 26059663
| |
Collapse
|
48
|
Driver R, Mishra S. Organ-On-A-Chip Technology: An In-depth Review of Recent Advancements and Future of Whole Body-on-chip. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
49
|
Zheng P, Yu Z, Mo L, Zhang Y, Lyu C, Yu Y, Zhang J, Hao X, Wei H, Gao F, Li Y. An individualized medication model of sodium valproate for patients with bipolar disorder based on machine learning and deep learning techniques. Front Pharmacol 2022; 13:890221. [PMID: 36339624 PMCID: PMC9627622 DOI: 10.3389/fphar.2022.890221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
Valproic acid/sodium valproate (VPA) is a widely used anticonvulsant drug for maintenance treatment of bipolar disorders. In order to balance the efficacy and adverse events of VPA treatment, an individualized dose regimen is necessary. This study aimed to establish an individualized medication model of VPA for patients with bipolar disorder based on machine learning and deep learning techniques. The sequential forward selection (SFS) algorithm was applied for selecting a feature subset, and random forest was used for interpolating missing values. Then, we compared nine models using XGBoost, LightGBM, CatBoost, random forest, GBDT, SVM, logistic regression, ANN, and TabNet, and CatBoost was chosen to establish the individualized medication model with the best performance (accuracy = 0.85, AUC = 0.91, sensitivity = 0.85, and specificity = 0.83). Three important variables that correlated with VPA daily dose included VPA TDM value, antipsychotics, and indirect bilirubin. SHapley Additive exPlanations was applied to visually interpret their impacts on VPA daily dose. Last, the confusion matrix presented that predicting a daily dose of 0.5 g VPA had a precision of 55.56% and recall rate of 83.33%, and predicting a daily dose of 1 g VPA had a precision of 95.83% and a recall rate of 85.19%. In conclusion, the individualized medication model of VPA for patients with bipolar disorder based on CatBoost had a good prediction ability, which provides guidance for clinicians to propose the optimal medication regimen.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqing Zhang
- Zhongshan School of Medicine, SYSU, Guangzhou, China
| | - Chunming Lyu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongsheng Yu
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Xin Hao
- Dalian Medicinovo Technology Co., Ltd., Dalian, Liaoning, China
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Gao
- Beijing Medicinovo Technology Co., Ltd., Beijing, China
| | - Yilei Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Soria-Castro R, Meneses-Preza YG, Rodríguez-López GM, Ibarra-Sánchez A, González-Espinosa C, Pérez-Tapia SM, Flores-Borja F, Estrada-Parra S, Chávez-Blanco AD, Chacón-Salinas R. Valproic acid restricts mast cell activation by Listeria monocytogenes. Sci Rep 2022; 12:15685. [PMID: 36127495 PMCID: PMC9489790 DOI: 10.1038/s41598-022-20054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Fabián Flores-Borja
- Centre for Oral Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando No. 22. Col. Sección XVI, C.P. 14080, México City, México.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Carpio Y Plan de Ayala S/N Col. Santo Tomás, C.P. 11340, Mexico City, Mexico.
| |
Collapse
|