1
|
Wiltshire E, de Moura MC, Piñeyro D, Joshi RS. Cellular and clinical impact of protein phosphatase enzyme epigenetic silencing in multiple cancer tissues. Hum Genomics 2024; 18:24. [PMID: 38475971 PMCID: PMC10935810 DOI: 10.1186/s40246-024-00592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Protein Phosphatase Enzymes (PPE) and protein kinases simultaneously control phosphorylation mechanisms that tightly regulate intracellular signalling pathways and stimulate cellular responses. In human malignancies, PPE and protein kinases are frequently mutated resulting in uncontrolled kinase activity and PPE suppression, leading to cell proliferation, migration and resistance to anti-cancer therapies. Cancer associated DNA hypermethylation at PPE promoters gives rise to transcriptional silencing (epimutations) and is a hallmark of cancer. Despite recent advances in sequencing technologies, data availability and computational capabilities, only a fraction of PPE have been reported as transcriptionally inactive as a consequence of epimutations. METHODS In this study, we examined promoter-associated DNA methylation profiles in Protein Phosphatase Enzymes and their Interacting Proteins (PPEIP) in a cohort of 705 cancer patients in five tissues (Large intestine, Oesophagus, Lung, Pancreas and Stomach) in three cell models (primary tumours, cancer cell lines and 3D embedded cancer cell cultures). As a subset of PPEIP are known tumour suppressor genes, we analysed the impact of PPEIP promoter hypermethylation marks on gene expression, cellular networks and in a clinical setting. RESULTS Here, we report epimutations in PPEIP are a frequent occurrence in the cancer genome and manifest independent of transcriptional activity. We observed that different tumours have varying susceptibility to epimutations and identify specific cellular signalling networks that are primarily affected by epimutations. Additionally, RNA-seq analysis showed the negative impact of epimutations on most (not all) Protein Tyrosine Phosphatase transcription. Finally, we detected novel clinical biomarkers that inform on patient mortality and anti-cancer treatment sensitivity. CONCLUSIONS We propose that DNA hypermethylation marks at PPEIP frequently contribute to the pathogenesis of malignancies and within the precision medicine space, hold promise as biomarkers to inform on clinical features such as patient survival and therapeutic response.
Collapse
Affiliation(s)
- Edward Wiltshire
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK
| | | | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Ricky S Joshi
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, UK.
| |
Collapse
|
2
|
Suryawan A, Rudar M, Naberhuis JK, Fiorotto ML, Davis TA. Preterm birth alters the feeding-induced activation of Akt signaling in the muscle of neonatal piglets. Pediatr Res 2022:10.1038/s41390-022-02382-4. [PMID: 36402914 DOI: 10.1038/s41390-022-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Postnatal lean mass accretion is commonly reduced in preterm infants. This study investigated mechanisms involved in the blunted feeding-induced activation of Akt in the skeletal muscle of preterm pigs that contributes to lower protein synthesis rates. METHODS On day 3 following cesarean section, preterm and term piglets were fasted or fed an enteral meal. Activation of Akt signaling pathways in skeletal muscle was determined. RESULTS Akt1 and Akt2, but not Akt3, phosphorylation were lower in the skeletal muscle of preterm than in term pigs (P < 0.05). Activation of Akt-positive regulators, PDK1 and mTORC2, but not FAK, were lower in preterm than in term (P < 0.05). The formation of Akt complexes with GAPDH and Hsp90 and the abundance of Ubl4A were lower in preterm than in term (P < 0.05). The abundance of Akt inhibitors, PHLPP and SHIP2, but not PTEN and IP6K1, were higher in preterm than in term pigs (P < 0.05). PP2A activation was inhibited by feeding in term but not in preterm pigs (P < 0.05). CONCLUSIONS Our results suggest that preterm birth impairs regulatory components involved in Akt activation, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced lean accretion following preterm birth. IMPACT The Akt-mTORC1 pathway plays an important role in the regulation of skeletal muscle protein synthesis in neonates. This is the first evidence to demonstrate that, following preterm birth, the postprandial activation of positive regulators of Akt in the skeletal muscle is reduced, whereas the activation of negative regulators of Akt is enhanced. This anabolic resistance of Akt signaling in response to feeding likely contributes to the reduced accretion of lean mass in premature infants. These results may provide potential novel molecular targets for intervention to enhance lean growth in preterm neonates.
Collapse
Affiliation(s)
- Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia 2021; 23:1147-1165. [PMID: 34706306 PMCID: PMC8551525 DOI: 10.1016/j.neo.2021.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) contributes to tumor invasion, metastasis and drug resistance. AKT activation is key in a number of cellular processes. While many positive regulators for either EMT or AKT activation have been reported, few negative regulators are established. Through kinase cDNA screen, we identified brain-type creatine kinase (CKB or BCK) as a potent suppressor for both. As a ubiquitously expressed kinase in normal tissues, CKB is significantly downregulated in several solid cancer types. Lower CKB expression is significantly associated with worse prognosis. Phenotypically, CKB overexpression suppresses, while its silencing promotes, EMT and cell migration, xenograft tumor growth and metastasis of prostate cancer cells. AKT activation is one of the most prominent signaling events upon CKB silencing in prostate cancer cells, which is in line with prostate cancer TCGA data. EMT enhanced by CKB silencing is abolished by AKT inhibition. Mechanistically, CKB interacts with AKT and sequestrates it from activation by mTOR. We further elucidated that an 84aa fragment at C-terminus of CKB protein interacts with AKT's PH domain. Ectopic expression of the 84aa CKB fragment inhibits AKT activation, EMT and cell proliferation. Interestingly, molecular dynamics simulation on crystal structures of AKT and CKB independently demonstrates that AKT's PH domain and CKB's 84aa fragment establish their major interaction interface. In summary, we have discovered CKB as a negative regulator of EMT and AKT activation, revealing a new mode of their regulation . We have also demonstrated that CKB downregulation is a poor prognosticator, which is sufficient to promote prostate cancer progression.
Collapse
|
5
|
Mahoney KE, Shabanowitz J, Hunt DF. MHC Phosphopeptides: Promising Targets for Immunotherapy of Cancer and Other Chronic Diseases. Mol Cell Proteomics 2021; 20:100112. [PMID: 34129940 PMCID: PMC8724925 DOI: 10.1016/j.mcpro.2021.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 06/02/2021] [Indexed: 12/27/2022] Open
Abstract
Major histocompatibility complex-associated peptides have been considered as potential immunotherapeutic targets for many years. MHC class I phosphopeptides result from dysregulated cell signaling pathways that are common across cancers and both viral and bacterial infections. These antigens are recognized by central memory T cells from healthy donors, indicating that they are considered antigenic by the immune system and that they are presented across different individuals and diseases. Based on these responses and the similar dysregulation, phosphorylated antigens are promising candidates for prevention or treatment of different cancers as well as a number of other chronic diseases.
Collapse
Affiliation(s)
- Keira E Mahoney
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA; Department of Pathology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
6
|
Wang L, Ge S, Zhou F. MicroRNA-487a-3p inhibits the growth and invasiveness of oral squamous cell carcinoma by targeting PPM1A. Bioengineered 2021; 12:937-947. [PMID: 33724144 PMCID: PMC8291853 DOI: 10.1080/21655979.2021.1884396] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) forms the majority of the entire cancerous tumors which occur in the mouth. Current treatment advances, such as surgical resection, chemotherapy, and radiotherapy, have significantly helped reduce OSCC. However, the overall patient survival rate remains relatively low. MiRNAs, a non-coding RNA group, are essential for multiple biological functions, which are essential for the progression of cancer, including survival of the cell, migration, multiplication, differentiation, and apoptosis. The study aimed to explore the existing association between miR-487a-3p and PPM1A and elucidating their role in modulation of proliferation in OSCC cell lines. In this study, we used CAL-27 and TCA-8113 OSCC cell lines and human samples to validate our results. The manifestation of miR-487a-3p and PPM1A was checked using quantitative real-time PCR. The miR-487a-3p and PPM1A binding was investigated through western blot assay and dual-luciferase reporter gene. Functional experiments, including colony formation, CCK-8, and transwell experimentations, were undertaken to validate cells' growth and invasion activities. According to the results, the expression of miR-487a-3p is regulated in the OSCC cell lines compared to normal cells. Moreover, the mimicking of miR-487a-3p significantly reduces the OSCC cell growth and invasion, and PPM1A overexpression exerts oncogenic effects and hinders the anti-oncogenic effects of miR-487a-3p. In conclusion, the study demonstrated that miR-487a-3p might act as a tumor suppressor by inhibiting the growth and invasion of OSCC via regulating PPM1A expression.
Collapse
Affiliation(s)
- Lishan Wang
- Department of Maxillofacial Surgery, Weifang City People's Hospital, Weifang City, Shandong Province, China
| | - Shuqing Ge
- Department of Maxillofacial Surgery, Weifang City People's Hospital, Weifang City, Shandong Province, China
| | - Futing Zhou
- Department of Maxillofacial Surgery, Weifang City People's Hospital, Weifang City, Shandong Province, China
| |
Collapse
|
7
|
Acharige NPN, Pflum MKH. l-Lactate Dehydrogenase Identified as a Protein Tyrosine Phosphatase 1B Substrate by Using K-BIPS. Chembiochem 2021; 22:186-192. [PMID: 33002308 PMCID: PMC8104301 DOI: 10.1002/cbic.202000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
Kinases and phosphatases are major players in a variety of cellular events, including cell signaling. Aberrant activity or mutations in kinases and phosphatases can lead to diseases such as cancer, diabetes, and Alzheimer's. Compared to kinases, phosphatases are understudied; this is partly a result of the limited methods for identifying substrates. As a solution, we developed a proteomics-based method called kinase-catalyzed biotinylation to identify phosphatase substrates (K-BIPS) that previously identified substrates of Ser/Thr phosphatases using small molecule inhibitors. Here, for the first time, K-BIPS was applied to identify substrates of a tyrosine phosphatase, protein tyrosine phosphatase 1B (PTP1B), under siRNA knockdown conditions. Eight possible substrates of PTP1B were discovered in HEK293 cells, including the known substrate pyruvate kinase. In addition, l-lactate dehydrogenase (LDHA) was validated as a novel PTP1B substrate. With the ability to use knockdown conditions with Ser/Thr or Tyr phosphatases, K-BIPS represents a general discovery tool to explore phosphatases biology by identifying unanticipated substrates.
Collapse
Affiliation(s)
- Nuwan P N Acharige
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
8
|
Alzahrani R, Alrehaili AA, Gharib AF, Anjum F, Ismail KA, Elsawy WH. Cancerous Inhibitor of Protein Phosphatase 2A as a Molecular Marker for Aggressiveness and Survival in Oral Squamous Cell Carcinoma. J Cancer Prev 2020; 25:21-26. [PMID: 32266176 PMCID: PMC7113414 DOI: 10.15430/jcp.2020.25.1.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) has been identified as one of the most commonly altered proteins in human cancers. It blocks the tumor-suppressive action of protein phosphatase 2A (PP2A) complex and enhances malignancy. Thirty-five patients with squamous cell carcinoma of the oral cavity underwent surgical resection of the tumor. CIP2A was assessed by quantitative real-time PCR in the resected tumor tissues and in their adjacent normal tissues. CIP2A was found to be overexpressed in all oral squamous cell carcinoma (OSCC) specimens in comparison to their surrounding normal tissue. CIP2A overexpression was statistically correlated with poor prognostic feature of the tumor. Thus, a high expression level of CIP2A was associated with shorter survival. In conclusion, CIP2A is upregulated in OSCC, and its overexpression is correlated with aggressiveness of the tumor and poor outcome and survival. It may serve as a prognostic marker of OSCC.
Collapse
Affiliation(s)
- Rajab Alzahrani
- Department of Surgery, Medical College, Albaha University, Al Baha, Saudi Arabia
| | - Amani A Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Department of Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Khadiga A Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wael H Elsawy
- Department of Clinical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Biswas D, Cary W, Nolta JA. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int J Mol Sci 2020; 21:ijms21041286. [PMID: 32074998 PMCID: PMC7072873 DOI: 10.3390/ijms21041286] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Protein Phosphatase 2 Regulatory Subunit B′ Delta (PPP2R5D)-related intellectual disability (ID) and neurodevelopmental delay results from germline de novo mutations in the PPP2R5D gene. This gene encodes the protein PPP2R5D (also known as the B56 delta subunit), which is an isoform of the subunit family B56 of the enzyme serine/threonine-protein phosphatase 2A (PP2A). Clinical signs include intellectual disability (ID); autism spectrum disorder (ASD); epilepsy; speech problems; behavioral challenges; and ophthalmologic, skeletal, endocrine, cardiac, and genital malformations. The association of defective PP2A activity in the brain with a wide range of severity of ID, along with its role in ASD, Alzheimer’s disease, and Parkinson’s-like symptoms, have recently generated the impetus for further research into mutations within this gene. PP2A, together with protein phosphatase 1 (PP1), accounts for more than 90% of all phospho-serine/threonine dephosphorylations in different tissues. The specificity for a wide variety of substrates is determined through nearly 100 different PP2A holoenzymes that are formed by at least 23 types of regulatory B subunits, and two isoforms each of the catalytic subunit C and the structural subunit A. In the mammalian brain, PP2A-mediated protein dephosphorylation plays an important role in learning and memory. The PPP2R5D subunit is highly expressed in the brain and the PPP2A–PPP2R5D holoenzyme plays an important role in maintaining neurons and regulating neuronal signaling. From 2015 to 2017, 25 individuals with PPP2R5D-related developmental disorder were diagnosed. Since then, Whole-Exome Sequencing (WES) has helped to identify more unrelated individuals clinically diagnosed with a neurodevelopmental disorder with pathological variants of PPP2R5D. In this review, we discuss the current understanding of the clinical and genetic aspects of the disorder in the context of the known functions of the PP2A–PPP2R5D holoenzyme in the brain, as well as the pathogenic mutations in PPP2R5D that lead to deficient PP2A–PPP2R5D dephosphorylation and their implications during development and in the etiology of autism, Parkinson’s disease, Alzheimer’s disease, and so forth. In the future, tools such as transgenic animals carrying pathogenic PPP2R5D mutations, and patient-derived induced pluripotent stem cell lines need to be developed in order to fully understand the effects of these mutations on different neural cell types.
Collapse
Affiliation(s)
- Dayita Biswas
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
| | - Whitney Cary
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| | - Jan A. Nolta
- SPARK Program Scholar, Institute for Regenerative Cures, University of California, Sacramento, CA 95817, USA;
- Stem Cell Program, UC Davis School of Medicine. The University of California, Sacramento, CA 95817, USA
- UC Davis Gene Therapy Program, University of California, Sacramento, CA 95817, USA
- Correspondence: (W.C.); (J.A.N.)
| |
Collapse
|
10
|
Jr da Costa Fernandes C, Pinto TS, Kang HR, de Magalhães Padilha P, Koh IHJ, Constantino VRL, Zambuzzi WF. Layered Double Hydroxides Are Promising Nanomaterials for Tissue Bioengineering Application. ACTA ACUST UNITED AC 2019; 3:e1800238. [PMID: 32648675 DOI: 10.1002/adbi.201800238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/01/2019] [Indexed: 01/07/2023]
Abstract
Layered double hydroxides (LDHs) have emerged as promising nanomaterials for human health and although it has achieved some progress on this matter, their application within bioengineering is not fully addressed. This prompted to subject fibroblasts to two compositions of LDHs (Mg2 Al-Cl and Zn2 Al-Cl), considering an acute response. First, LDH particles are addressed by scanning electron microscopy, and no significant effect of the cell culture medium on the shape of LDHs particles is reported although it seems to adsorb some soluble proteins as proposed by energy-dispersive X-ray analysis. These LDHs release magnesium, zinc, and aluminum, but there is no cytotoxic or biocompatibility effects. The data show interference to fibroblast adhesion by driving the reorganization of actin-based cytoskeleton, preliminarily to cell cycle progression. Additionally, these molecular findings are validated by performing a functional wound-healing assay, which is accompanied by a dynamic extracellular matrix remodeling in response to the LDHs. Altogether, the results show that LDHs nanomaterials modulate cell adhesion, proliferation, and migration, delineating new advances on the biomaterial field applied in the context of soft tissue bioengineering, which must be explored in health disorders, such as wound healing in burn injuries.
Collapse
Affiliation(s)
- Célio Jr da Costa Fernandes
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Thaís Silva Pinto
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ha Ram Kang
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Pedro de Magalhães Padilha
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ivan Hong Jun Koh
- Departamento de Cirurgia, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| | - Willian F Zambuzzi
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| |
Collapse
|
11
|
Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018; 10:nu10121936. [PMID: 30563268 PMCID: PMC6315581 DOI: 10.3390/nu10121936] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.
Collapse
|
12
|
Nam RK, Benatar T, Amemiya Y, Wallis CJ, Romero JM, Tsagaris M, Sherman C, Sugar L, Seth A. MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells. Oncotarget 2018; 9:19159-19176. [PMID: 29721191 PMCID: PMC5922385 DOI: 10.18632/oncotarget.24937] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that post-transcriptionally regulate gene expression. Dysregulation of miRNAs is frequently associated with disease and, in particular, is involved in prostate cancer progression. Next generation miRNA sequencing identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. High expression of one of these five miRNAs, miR-652, correlated significantly with an increased rate of prostate cancer biochemical recurrence. Overexpression of miR-652 in prostate cancer cells, PC3 and LNCaP, resulted in increased growth, migration and invasion. Prostate cancer cell xenografts overexpressing miR-652 showed increased tumorigenicity and metastases. We found that miR-652 directly targets the B" regulatory subunit, PPP2R3A, of the tumor suppressor PP2A, inducing epithelial-mesenchymal transition (EMT) in PC3 cells and neuroendocrine-like differentiation (NED) in LNCaP cells. The mesenchymal marker N-cadherin increased and epithelial marker E-cadherin decreased in PC3 cells overexpressing miR-652. In LNCaP cells and xenografted tumors, overexpression of miR-652 increased markers of NED, including chromogranin A, neuron specific enolase, and synaptophysin. MiR-652 may contribute to prostate tumor progression by promoting NED through decreased PP2A function. MiR-652 expression could serve as a biomarker for aggressive prostate cancer, as well as provide an opportunity for novel therapy in prostate cancer.
Collapse
Affiliation(s)
- Robert K. Nam
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tania Benatar
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Yutaka Amemiya
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher J.D. Wallis
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Joan Miguel Romero
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melina Tsagaris
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Sherman
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Linda Sugar
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Arun Seth
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Yu S, Li L, Wu Q, Dou N, Li Y, Gao Y. PPP2R2D, a regulatory subunit of protein phosphatase 2A, promotes gastric cancer growth and metastasis via mechanistic target of rapamycin activation. Int J Oncol 2018; 52:2011-2020. [PMID: 29568966 DOI: 10.3892/ijo.2018.4329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/15/2018] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase that regulates the basic activities of eukaryotes by dephosphorylating its substrates. The function and substrate specificity of PP2A are generally determined by its regulatory subunits. In the present study, the clinical significance and roles of PPP2R2D, one of the regulatory subunits of PP2A, were demonstrated in gastric cancer (GC) carcinogenesis. Through a tissue microarray and quantitative polymerase chain reaction analysis, it was demonstrated that PPP2R2D was commonly upregulated in GC samples. This upregulation was positively correlated with the patients' tumor stage (P<0.01), T classification (P<0.01) and N classification (P=0.01). Furthermore, a high expression of PPP2R2D was closely associated with poor prognosis of patients. Knockdown of PPP2R2D significantly inhibited the proliferation and migration of GC cells in vitro, as well as the tumorigenicity and metastasis in vivo in an animal GC model. By contrast, overexpression of PPP2R2D promoted GC cell proliferation and migration in vitro. The analysis of underlying mechanisms indicated that PPP2R2D silencing decreased the phosphorylation level of mechanistic target of rapamycin (mTOR), thereby implicating that PPP2R2D is involved in the regulation of mTOR activity during tumorigenesis. Thus, the findings of the present study suggested that PPP2R2D may serve as a potential oncogene in GC and as a novel target for therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Qiong Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| |
Collapse
|
14
|
Wang X, Wang R, Luo M, Li C, Wang HX, Huan CC, Qu YR, Liao Y, Mao X. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget 2018; 8:33197-33213. [PMID: 28402257 PMCID: PMC5464861 DOI: 10.18632/oncotarget.16593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/17/2017] [Indexed: 01/29/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box RNA helicase 3 (DDX3), an ATP-dependent RNA helicase, is associated with RNA splicing, mRNA export, transcription, translation, and RNA decay. Recent studies revealed that DDX3 participates in innate immune response during virus infection by interacting with TBK1 and regulating the production of IFN-β. In our studies, we demonstrated that DDX3 regulated NF-κB signal pathway. We found that DDX3 knockdown reduced the phosphorylation of p65 and IKK-β and ultimately attenuated the production of inflammatory cytokines induced by poly(I:C) or TNF-α stimulation. The regulatory effect of DDX3 on NF-κB signal pathway was not affected by the loss of its ATPase or helicase activity. We further identified PP2A C subunit (PP2A-C) as an interaction partner of DDX3 by co-immunoprecipitation and mass spectrum analysis. We confirmed that DDX3 formed the complex with PP2A-C/IKK-β and regulated the interaction between IKK-β and PP2A-C. Furthermore, we demonstrated that DDX3 modulated the activity of PP2A by controlling the phosphorylation of PP2A-C, which might enable PP2A-C to regulate NF-κB signal pathway by dephosphorylating IKK-β. All these findings suggested DDX3 plays multiple roles in modulating innate immune system.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Miao Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yu-Rong Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| |
Collapse
|
15
|
Dedigama-Arachchige PM, Acharige NPN, Pflum MKH. Identification of PP1-Gadd34 substrates involved in the unfolded protein response using K-BIPS, a method for phosphatase substrate identification. Mol Omics 2018; 14:121-133. [PMID: 29623310 DOI: 10.1039/c7mo00064b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphorylation is a key post-translational modification in cell signaling, which is regulated by the equilibrium activities of kinases and phosphatases. The biological significance of many phosphorylation events remains poorly characterized due to the scarcity of tools to discover phosphatases substrates. In prior work, we established kinase-catalyzed biotinylation where kinases accept the γ-modified ATP analog, ATP-biotin, to label phosphoproteins. Here, we developed a novel method to study substrates of phosphatases using kinase-catalyzed biotinylation termed K-BIPS (Kinase-catalyzed Biotinylation to Identify Phosphatase Substrates). In a proof-of-concept experiment, K-BIPS was initially used to explore the substrates of phosphatases inhibited by okadaic acid. Many known phosphatase substrates were observed, confirming K-BIPS as a valid phosphatase substrate identification tool. Then, as a further application, K-BIPS was used to discover the substrates of the PP1-Gadd34 phosphatase complex in the context of unfolded protein response (UPR). In addition to the known substrate eIF2α, K-BIPS revealed several novel substrates, suggesting a more prominent role for the PP1-Gadd34 complex in UPR than previously appreciated. Overall, the two studies establish K-BIPS as a powerful tool to discover the cellular substrates of phosphatases.
Collapse
|
16
|
Shlomai G, Zelenko Z, Antoniou IM, Stasinopoulos M, Tobin-Hess A, Vitek MP, LeRoith D, Gallagher EJ. OP449 inhibits breast cancer growth without adverse metabolic effects. Endocr Relat Cancer 2017; 24:519-529. [PMID: 28830934 PMCID: PMC5678946 DOI: 10.1530/erc-17-0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
Abstract
Hyperinsulinemia is associated with a decrease in breast cancer recurrence-free survival and overall survival. Inhibition of insulin receptor signaling is associated with glycemic dysregulation. SET is a direct modulator of PP2A, which negatively regulates the PI3K/AKT/mTOR pathway. OP449, a SET inhibitor, decreases AKT/mTOR activation. The effects of OP449 treatment on breast cancer growth in the setting of pre-diabetes, and its metabolic implications are currently unknown. We found that the volumes and weights of human MDA-MB-231 breast cancer xenografts were greater in hyperinsulinemic mice compared with controls (P < 0.05), and IR phosphorylation was 4.5-fold higher in these mice (P < 0.05). Human and murine breast cancer tumors treated with OP449 were 47% and 39% smaller than controls (P < 0.05, for both, respectively). AKT and S6RP phosphorylation were 82% and 34% lower in OP449-treated tumors compared with controls (P < 0.05, P = 0.06, respectively). AKT and S6RP phosphorylation in response to insulin was 30% and 12% lower in cells, pre-treated with OP449, compared with control cells (P < 0.01, P < 0.05, respectively). However, even with decreased AKT/mTOR activation, body weights and composition, blood glucose and plasma insulin, glucose tolerance, serum triglyceride and cholesterol levels were similar between OP449-treated mice and controls. Xenografts and liver tissue from OP449-treated mice showed a 64% and 70% reduction in STAT5 activation, compared with controls (P < 0.01 and P = 0.06, respectively). Our data support an anti-neoplastic effect of OP449 on human breast cancer cells in vitro and in xenografts in the setting of hyperinsulinemia. OP449 led to the inhibition of AKT/mTOR signaling, albeit, not leading to metabolic derangements.
Collapse
Affiliation(s)
- Gadi Shlomai
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- The Dr Pinchas Borenstein Talpiot Medical Leadership Program 2013Tel-Hashomer, Israel
| | - Zara Zelenko
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Irini Markella Antoniou
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marilyn Stasinopoulos
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aviva Tobin-Hess
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael P Vitek
- CognosciInc., Durham, North Carolina, USA
- Department of NeurologyDuke University Medical Center, Research Drive, Durham, North Carolina, USA
| | - Derek LeRoith
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emily Jane Gallagher
- Division of EndocrinologyDiabetes and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
17
|
Xie BH, He X, Hua RX, Zhang B, Tan GS, Xiong SQ, Liu LS, Chen W, Yang JY, Wang XN, Li HP. Mir-765 promotes cell proliferation by downregulating INPP4B expression in human hepatocellular carcinoma. Cancer Biomark 2016; 16:405-13. [PMID: 27062697 DOI: 10.3233/cbm-160579] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) dysregulation is widely involved in cancer progression and contributed to sustained cell proliferation by directly targeting multiple targets. Therefore, better understanding the underlying mechanism of miRNA in carcinogenesis may improve diagnostic and therapeutic strategies for malignancy. In our study, we found that mir-765 is upregulated in both hepatocellular carcinoma (HCC) cell lines and tissues, compared to human normal liver cell line and adjacent non-cancerous tissues, respectively. Overexpression of mir-765 increased HCC cells proliferation and tumorigenicity, whereas inhibition of mir-765 reverses this effect. Furthermore, we demonstrated that INPP4B as a direct target of mir-765 and ectopic expression of mir-765 repressed INPP4B expression, resulting in upregulation of p-AKT, Cyclin D1, and downregulation of p-FOXO3a, p21 expression in HCC. Strikingly, we found that silencing the expression of INPP4B is the essential biological function of miR-765 during HCC cell proliferation. Collectively, our findings reveal that miR-765 is a potential onco-miR that participates in carcinogenesis of human HCC by suppressing INPP4B expression, and might represent a potential therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Bin-Hui Xie
- Department of General Surgery, the First Affiliated Hospital of Gannan Medical University, Guangzhou, Guangdong, China
| | - Xiao He
- Department of General Surgery, the First Affiliated Hospital of Gannan Medical University, Guangzhou, Guangdong, China
| | - Rui-Xi Hua
- Department of Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guo-Sheng Tan
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Qiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Liang-Shuai Liu
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-Yong Yang
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Nong Wang
- Department of General Surgery, the First Affiliated Hospital of Gannan Medical University, Guangzhou, Guangdong, China
| | - He-Ping Li
- Department of Oncology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Dai B, Wu P, Xue F, Yang R, Yu Z, Dai K, Ruan C, Liu G, Newman PJ, Gao C. Integrin-αIIbβ3-mediated outside-in signalling activates a negative feedback pathway to suppress platelet activation. Thromb Haemost 2016; 116:918-930. [PMID: 27465472 DOI: 10.1160/th16-02-0096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/04/2016] [Indexed: 12/22/2022]
Abstract
Integrin-αIIbβ3-mediated outside-in signalling is widely accepted as an amplifier of platelet activation; accumulating evidence suggests that outside-in signalling can, under certain conditions, also function as an inhibitor of platelet activation. The role of integrin-αIIbβ3-mediated outside-in signalling in platelet activation is disputable. We employed flow cytometry, aggregometry, immunoprecipitation, and immunoblotting to investigate the role of integrin-αIIbβ3-mediated outside-in signalling in platelet activation. Integrin αIIbβ3 inhibition enhances agonist-induced platelet ATP secretion. Human platelets lacking expression of αIIbβ3 exhibited more platelet ATP secretion than their wild-type counterparts. Moreover, integrin-αIIbβ3-mediated outside-in signals activate SHIP-1, which in turn mediates p-Akt dephosphorylation, leading to inactivation of PI3K/Akt signalling. Furthermore, 3AC (SHIP-1 inhibitor) inhibits platelet disaggregation, and promotes platelet ATP secretion. Upon ADP stimulation, Talin is recruited to αIIbβ3, and it is dissociated from αIIbβ3 when platelets disaggregate. In addition, treatment with RUC2, an inhibitor of αIIbβ3, which blocks αIIbβ3-mediated outside-in signalling, can markedly prevent the dissociation of talin from integrin. SHIP1 Inhibitor 3AC inhibits the dissociation of talin from integrin-β3. These results suggest that integrin-αIIbβ3-mediated outside-in signalling can serve as a brake to restrict unnecessary platelet activation by activated SHIP-1, which mediated the disassociation of talin from β3, leading to integrin inactivation and blocking of PI3K/Akt signalling to restrict platelet ATP secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Peter J Newman
- Peter J. Newman, PhD, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, 53711 WI, USA, E-mail:
| | - Cunji Gao
- Cunji Gao, PhD, Chronic Disease Research Institute, Department of Nutrition and Food Hygiene, Zhejiang University School of Public Health, 310058 Hangzhou, China, Tel: +86 571 882 066 00, Fax: +86 571 882 066 00, E-mail:
| |
Collapse
|
19
|
Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2A, PP2A in cancer: complexity and therapeutic options. Tumour Biol 2016; 37:11691-11700. [PMID: 27444275 DOI: 10.1007/s13277-016-5145-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
The complexity of the phosphatase, PP2A, is being unravelled and current research is increasingly providing information on the association of deregulated PP2A function with cancer initiation and progression. It has been reported that decreased activity of PP2A is a recurrent observation in many types of cancer, including colorectal and breast cancer (Baldacchino et al. EPMA J. 5:3, 2014; Cristobal et al. Mol Cancer Ther. 13:938-947, 2014). Since deregulation of PP2A and its regulatory subunits is a common event in cancer, PP2A is a potential target for therapy (Baldacchino et al. EPMA J. 5:3, 2014). In this review, the structural components of the PP2A complex are described, giving an in depth overview of the diversity of regulatory subunits. Regulation of the active PP2A trimeric complex, through phosphorylation and methylation, can be targeted using known compounds, to reactivate the complex. The endogenous inhibitors of the PP2A complex are highly deregulated in cancer, representing cases that are eligible to PP2A-activating drugs. Pharmacological opportunities to target low PP2A activity are available and preclinical data support the efficacy of these drugs, but clinical trials are lacking. We highlight the importance of PP2A deregulation in cancer and the current trends in targeting the phosphatase.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta.
| | - Shawn Baldacchino
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Christian Saliba
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Maria Pia Grixti
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Robert Gauci
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Vanessa Petroni
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Anthony G Fenech
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta.,Molecular Genetics Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
20
|
The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells. Cell Signal 2016; 28:1389-1400. [PMID: 27317964 DOI: 10.1016/j.cellsig.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND The control of breast cell survival is of critical importance for preventing breast cancer initiation and progression. The activity of many proteins which regulate cell survival is controlled by reversible phosphorylation, so that the relevant kinases and phosphatases play crucial roles in determining cell fate. Several protein kinases act as oncoproteins in breast cancer and changes in their activities contribute to the process of transformation. Through counteracting the activity of oncogenic kinases, the protein phosphatases are also likely to be important players in breast cancer development, but this class of molecules is relatively poorly understood. Here we have investigated the role of the serine/threonine protein phosphatase 4 in the control of cell survival of breast cancer cells. METHODS The breast cancer cell lines, MCF7 and MDA-MB-231, were transfected with expression vectors encoding the catalytic subunit of protein phosphatase 4 (PP4c) or with PP4c siRNAs. Culture viability, apoptosis, cell migration and cell cycle were assessed. The involvement of phosphoprotein enriched in astrocytes 15kDa (PEA15) in PP4c action was investigated by immunoblotting approaches and by siRNA-mediated silencing of PEA15. RESULTS In this study we showed that PP4c over-expression inhibited cell proliferation, enhanced spontaneous apoptosis and decreased the migratory and colony forming abilities of breast cancer cells. Moreover, PP4c down-regulation produced complementary effects. PP4c is demonstrated to regulate the phosphorylation of PEA15, and PEA15 itself regulates the apoptosis of breast cancer cells. The inhibitory effects of PP4c on breast cancer cell survival and growth were lost in PEA15 knockdown cells, confirming that PP4c action is mediated, at least in part, through the de-phosphorylation of apoptosis regulator PEA15. CONCLUSION Our work shows that PP4 regulates breast cancer cell survival and identifies a novel PP4c-PEA15 signalling axis in the control of breast cancer cell survival. The dysfunction of this axis may be important in the development and progression of breast cancer.
Collapse
|
21
|
Hu QL, Wang HB, Yang M. Significance of expression of INPP4B in gastric cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:2478-2484. [DOI: 10.11569/wcjd.v24.i16.2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of inositol polyphosphate-4-phosphatase, type II (INPP4B) in gastric cancer, and to analyze its relationship with clinical and pathological characteristics.
METHODS: The expression of INPP4B mRNA and protein in 50 gastric cancer tissues and matched tumor-adjacent normal tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC), respectively. The relationship between INPP4B expression and clinical and pathological characteristics was then analyzed.
RESULTS: INPP4B mRNA expression was significantly lower in gastric cancer tissue than in adjacent normal tissues (P < 0.01). The expression of INPP4B protein in gastric cancer tissues was also significantly lower compared with adjacent normal tissues (28.0% vs 82.0%, P < 0.01). The expression of INPP4B mRNA and protein was significantly related to tumor differentiation, lymph node metastasis and TNM stage in GC (P < 0.05), but not to gender, age or tumor size (P > 0.05).
CONCLUSION: Both INPP4B protein and mRNA are down-regulated in gastric cancer, and its expression significantly correlates with tumor differentiation, lymph node metastasis and TNM stage. INPP4B may be a tumor suppressor gene for gastric cancer.
Collapse
|
22
|
Liu H, Gu Y, Wang H, Yin J, Zheng G, Zhang Z, Lu M, Wang C, He Z. Overexpression of PP2A inhibitor SET oncoprotein is associated with tumor progression and poor prognosis in human non-small cell lung cancer. Oncotarget 2016; 6:14913-25. [PMID: 25945834 PMCID: PMC4558125 DOI: 10.18632/oncotarget.3818] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/29/2015] [Indexed: 01/09/2023] Open
Abstract
SET oncoprotein is an endogenous inhibitor of protein phosphatase 2A (PP2A), and SET-mediated PP2A inhibition is an important regulatory mechanism for promoting cancer initiation and progression of several types of human leukemia disease. However, its potential relevance in solid tumors as non-small cell lung cancer (NSCLC) remains mostly unknown. In this study, we showed that SET was evidently overexpressed in human NSCLC cell lines and NSCLC tissues. Clinicopathologic analysis showed that SET expression was significantly correlated with clinical stage (p < 0.001), and lymph node metastasis (p < 0.05). Kaplan-Meier analysis revealed that patients with high SET expression had poorer overall survival rates than those with low SET expression. Moreover, knockdown of SET in NSCLC cells resulted in attenuated proliferative and invasive abilities. The biological effect of SET on proliferation and invasion was mediated by the inhibition of the PP2A, which in turn, activation of AKT and ERK, increased the expression of cyclin D1 and MMP9, and decreased the expression of p27. Furthermore, we observed that restoration of PP2A using SET antagonist FTY720 impaired proliferative and invasive potential in vitro, as well as inhibited tumor growth in vivo of NSCLC cells. Taken together, SET oncoprotein plays an important role in NSCLC progression, which could serve as a potential prognosis marker and a novel therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Hao Liu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| | - Yixue Gu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Jiang Yin
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| | - Guopei Zheng
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| | - Zhijie Zhang
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| | - Minyin Lu
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| | - Chenkun Wang
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| | - Zhimin He
- Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
23
|
Cancerous Inhibitor of PP2A Silencing Inhibits Proliferation and Promotes Apoptosis in Human Multiple Myeloma Cells. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6864135. [PMID: 27144172 PMCID: PMC4837246 DOI: 10.1155/2016/6864135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/13/2016] [Accepted: 03/20/2016] [Indexed: 12/11/2022]
Abstract
Multiple myeloma is the second most prevalent type of blood cancer, representing approximately 1% of all cancers and 2% of all cancer deaths. There is therefore a strong need to identify critical targets in multiple myeloma neoplasia and progression. Cancerous inhibitor of PP2A (CIP2A) is a human oncoprotein that regulates cancer cell viability and anchorage-independent growth and induces apoptosis. The present study investigated CIP2A function in the human multiple myeloma cell lines RPMI-8226 and NCI-H929 to determine whether it can serve as a potential therapeutic target. CIP2A was silenced in the cells by transfection of short interfering RNA and cell proliferation and apoptosis were evaluated by a tetrazolium salt-based assay and flow cytometry, respectively. CIP2A knockdown inhibited proliferation and induced apoptosis in RPMI-8226 and NCI-H929 cells and decreased the phosphorylation of phosphoinositide 3-kinase (PI3K) p85, AKT1, and mammalian target of rapamycin (mTOR) without affecting total protein levels. Treatment of CIP2A-depletion cells with insulin-like growth factor 1 decreased the effects of CIP2A inhibition on cell viability and apoptosis. These results indicate that CIP2A modulates myeloma cell proliferation and apoptosis via PI3K/AKT/mTOR signaling and suggest that it can potentially serve as a drug target for the treatment of multiple myeloma.
Collapse
|
24
|
Pusey M, Bail S, Xu Y, Buiakova O, Nestor M, Yang JJ, Rice LM. Inhibition of protein methylesterase 1 decreased cancerous phenotypes in endometrial adenocarcinoma cell lines and xenograft tumor models. Tumour Biol 2016; 37:11835-11842. [PMID: 27048286 DOI: 10.1007/s13277-016-5036-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
Protein methylesterase 1 (PME-1) promotes cancerous phenotypes through the demethylation and inactivation of protein phosphatase 2A. We previously demonstrated that PME-1 overexpression promotes Akt, ERK, and may promote Wnt signaling and increases tumor burden in a xenograft model of endometrial cancer. Here, we show that covalent PME-1 inhibitors decrease cell proliferation and invasive growth in vitro but have no effect in vivo at the concentrations tested; however, depletion of PME-1 with shRNA in an endometrial cancer xenograft model significantly reduced tumor growth. Thus, discovery of more potent PME-1 inhibitors may be beneficial for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Michelle Pusey
- Oncoveda, Cancer Signaling and Cell Cycle Team, Medical Diagnostic Laboratories, LLC, 1000 Waterview Drive, Room 345, Hamilton, NJ, 08691, USA
| | - Sophie Bail
- Oncoveda, Cancer Signaling and Cell Cycle Team, Medical Diagnostic Laboratories, LLC, 1000 Waterview Drive, Room 345, Hamilton, NJ, 08691, USA
| | - Yan Xu
- Invivotek, LLC, 16 Black Forest Road, Hamilton, NJ, 08691, USA
| | - Olesia Buiakova
- Invivotek, LLC, 16 Black Forest Road, Hamilton, NJ, 08691, USA
| | - Mariya Nestor
- Pathology Department, Members of Genesis Biotechnology Group, LLC, Medical Diagnostic Laboratories LLC, 2439 Kuser Road, Hamilton, NJ, 08690, USA
| | - Jing-Jing Yang
- Pathology Department, Members of Genesis Biotechnology Group, LLC, Medical Diagnostic Laboratories LLC, 2439 Kuser Road, Hamilton, NJ, 08690, USA
| | - Lyndi M Rice
- Oncoveda, Cancer Signaling and Cell Cycle Team, Medical Diagnostic Laboratories, LLC, 1000 Waterview Drive, Room 345, Hamilton, NJ, 08691, USA.
| |
Collapse
|
25
|
Lin TB, Hsieh MC, Lai CY, Cheng JK, Wang HH, Chau YP, Chen GD, Peng HY. Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription. J Pineal Res 2016; 60:263-76. [PMID: 26732138 DOI: 10.1111/jpi.12307] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023]
Abstract
Melatonin (MLT; N-acetyl-5-methoxytryptamine) exhibits analgesic properties in chronic pain conditions. While researches linking MLT to epigenetic mechanisms have grown exponentially over recent years, very few studies have investigated the contribution of MLT-associated epigenetic modification to pain states. Here, we report that together with behavioral allodynia, spinal nerve ligation (SNL) induced a decrease in the expression of catalytic subunit of phosphatase 2A (PP2Ac) and enhanced histone deacetylase 4 (HDAC4) phosphorylation and cytoplasmic accumulation, which epigenetically alleviated HDAC4-suppressed hmgb1 gene transcription, resulting in increased high-mobility group protein B1 (HMGB1) expression selectively in the ipsilateral dorsal horn of rats. Focal knock-down of spinal PP2Ac expression also resulted in behavioral allodynia in association with similar protein expression as observed with SNL. Notably, intrathecal administration with MLT increased PP2Ac expression, HDAC4 dephosphorylation and nuclear accumulation, restored HDAC4-mediated hmgb1 suppression and relieved SNL-sensitized behavioral pain; these effects were all inhibited by spinal injection of 4P-PDOT (a MT2 receptor antagonist, 30 minutes before MLT) and okadaic acid (OA, a PP2A inhibitor, 3 hr after MLT). Our findings demonstrate a novel mechanism by which MLT ameliorates neuropathic allodynia via epigenetic modification. This MLT-exhibited anti-allodynia is mediated by MT2-enhanced PP2Ac expression that couples PP2Ac with HDAC4 to induce HDAC4 dephosphorylation and nuclear import, herein increases HDAC4 binding to the promoter of hmgb1 gene and upregulates HMGB1 expression in dorsal horn neurons.
Collapse
Affiliation(s)
- Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Jen-Kun Cheng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
26
|
Lackey BR, Gray SL. Second messengers, steroids and signaling cascades: Crosstalk in sperm development and function. Gen Comp Endocrinol 2015; 224:294-302. [PMID: 26188217 DOI: 10.1016/j.ygcen.2015.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
Signaling cascades control numerous aspects of sperm physiology, ranging from creation to fertilization. Novel aspects of several kinases and their influence on sperm development will be discussed in the first section and cover proliferation, chromatin remodeling and morphology. In the second section, protein kinases (A, B and C) that affect sperm function and their regulation by second messengers, cyclic-AMP and phosphoinositides, as well as steroids will be featured. Key areas of integration will be presented on the topics of sperm motility, capacitation, acrosome reaction and fertilization.
Collapse
Affiliation(s)
- B R Lackey
- Endocrine Physiology Laboratory, AVS Department, Clemson University, Clemson, SC, USA
| | - S L Gray
- Endocrine Physiology Laboratory, AVS Department, Clemson University, Clemson, SC, USA.
| |
Collapse
|
27
|
Kastrinsky DB, Sangodkar J, Zaware N, Izadmehr S, Dhawan NS, Narla G, Ohlmeyer M. Reengineered tricyclic anti-cancer agents. Bioorg Med Chem 2015; 23:6528-34. [PMID: 26372073 PMCID: PMC8293910 DOI: 10.1016/j.bmc.2015.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/26/2015] [Accepted: 07/04/2015] [Indexed: 12/22/2022]
Abstract
The phenothiazine and dibenzazepine tricyclics are potent neurotropic drugs with a documented but underutilized anti-cancer side effect. Reengineering these agents (TFP, CPZ, CIP) by replacing the basic amine with a neutral polar functional group (e.g., RTC-1, RTC-2) abrogated their CNS effects as demonstrated by in vitro pharmacological assays and in vivo behavioral models. Further optimization generated several phenothiazines and dibenzazepines with improved anti-cancer potency, exemplified by RTC-5. This new lead demonstrated efficacy against a xenograft model of an EGFR driven cancer without the neurotropic effects exhibited by the parent molecules. Its effects were attributed to concomitant negative regulation of PI3K-AKT and RAS-ERK signaling.
Collapse
Affiliation(s)
- David B Kastrinsky
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mt. Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Nilesh Zaware
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mt. Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Sudeh Izadmehr
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Neil S Dhawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, 1425 Madison Avenue, New York, NY 10029, United States
| | - Goutham Narla
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, 1425 Madison Avenue, New York, NY 10029, United States; Department of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, United States
| | - Michael Ohlmeyer
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mt. Sinai, 1425 Madison Avenue, New York, NY 10029, United States.
| |
Collapse
|
28
|
Ohno S, Naito Y, Mukai S, Yabuta N, Nojima H. ELAS1-mediated inhibition of the cyclin G1-B'γ interaction promotes cancer cell apoptosis via stabilization and activation of p53. Oncogene 2015; 34:5983-96. [PMID: 25915850 DOI: 10.1038/onc.2015.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 01/27/2015] [Indexed: 12/16/2022]
Abstract
Radiation therapy (RT) is useful for selectively killing cancer cells. However, because high levels of ionizing radiation (IR) are toxic to normal cells, RT cannot be applied repeatedly to cancer patients. Therefore, novel chemicals that enhance the efficacy of chemoradiotherapy (CRT) would be valuable. Here, we report that ELAS1, a peptide corresponding to the protein phosphatase 2A (PP2A) association domain of cyclin G1 (CycG1), can enhance the efficacy of CRT. ELAS1 interacts with the PP2A B'γ-subunit and competitively inhibits association with CycG1, thereby preventing the PP2A holoenzyme from dephosphorylating target proteins, Mdm2 (pT218) and p53 (pS46), following DNA double-strand break (DSB) insults. Doxycycline (Dox)-induced overexpression of Myc-ELAS1 caused γ-irradiation to induce apoptosis in human osteosarcoma (U2OS) cells, at 1/10th the effective dosage of γ-irradiation required for apoptosis in Myc-vector-expressing cells; ELAS1 peptide incorporation into U2OS cells also showed similar apoptotic effects. Moreover, administration of DSB-inducing chemicals, camptothecin (CPT) or irinotecan, to Myc-ELAS1-expressing U2OS cells also induced efficient apoptosis with only 1/100th (CPT) or 1/5th (irinotecan) of the amounts of drugs required for this effect in Myc-vector-expressing cells. Taken together, ELAS1 may be important for the design of ELAS1-mimetic compounds to improve CRT efficacy.
Collapse
Affiliation(s)
- S Ohno
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Y Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - S Mukai
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - N Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - H Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
29
|
Seow WJ, Pan WC, Kile ML, Tong L, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Rakibuz-Zaman M, Kibriya M, Ahsan H, Lin X, Christiani DC. A distinct and replicable variant of the squamous cell carcinoma gene inositol polyphosphate-5-phosphatase modifies the susceptibility of arsenic-associated skin lesions in Bangladesh. Cancer 2015; 121:2222-9. [PMID: 25759212 DOI: 10.1002/cncr.29291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) in inflammation, one-carbon metabolism, and skin cancer genes might influence susceptibility to arsenic-induced skin lesions. METHODS A case-control study was conducted in Pabna, Bangladesh (2001-2003), and the drinking-water arsenic concentration was measured for each participant. A panel of 25 candidate SNPs was analyzed in 540 cases and 400 controls. Logistic regression was used to estimate the association between each SNP and the potential for gene-environment interactions in the skin lesion risk, with adjustments for relevant covariates. Replication testing was conducted in an independent Bangladesh population with 488 cases and 2,794 controls. RESULTS In the discovery population, genetic variants in the one-carbon metabolism genes phosphatidylethanolamine N-methyltransferase (rs2278952, P for interaction = .004; rs897453, P for interaction = .05) and dihydrofolate reductase (rs1650697, P for interaction = .02), the inflammation gene interleukin 10 (rs3024496, P for interaction =.04), and the skin cancer genes inositol polyphosphate-5-phosphatase (INPP5A; rs1133400, P for interaction = .03) and xeroderma pigmentosum complementation group C (rs2228000, P for interaction = .01) significantly modified the association between arsenic and skin lesions after adjustments for multiple comparisons. The significant gene-environment interaction between a SNP in the INPP5A gene (rs1133400) and water arsenic with respect to the skin lesion risk was successfully replicated in an independent population (P for interaction = .03). CONCLUSIONS Minor allele carriers of the skin cancer gene INPP5A modified the odds of arsenic-induced skin lesions in both main and replicative populations. Genetic variation in INPP5A appears to have a role in susceptibility to arsenic toxicity.
Collapse
Affiliation(s)
- Wei Jie Seow
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Wen-Chi Pan
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Molly L Kile
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Lin Tong
- Department of Health Studies, University of Chicago, Chicago, Illinois
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | - Muhammad Kibriya
- Department of Health Studies, University of Chicago, Chicago, Illinois
| | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, Illinois
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - David C Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
30
|
CIP2A and PP2A in human leptomeninges, arachnoid granulations and meningiomas. J Clin Neurosci 2014; 21:2228-32. [DOI: 10.1016/j.jocn.2014.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/25/2014] [Indexed: 02/01/2023]
|
31
|
Tsukamoto S, Huang Y, Umeda D, Yamada S, Yamashita S, Kumazoe M, Kim Y, Murata M, Yamada K, Tachibana H. 67-kDa laminin receptor-dependent protein phosphatase 2A (PP2A) activation elicits melanoma-specific antitumor activity overcoming drug resistance. J Biol Chem 2014; 289:32671-81. [PMID: 25294877 DOI: 10.1074/jbc.m114.604983] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity in patients with mutated BRAF. Unfortunately, most patients acquire resistance to the BRAF inhibitor, highlighting the urgent need for new melanoma treatment strategies. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) inhibits cell proliferation independently of BRAF inhibitor sensitivity, suggesting that increased understanding of the anti-melanoma activity of EGCG may provide a novel therapeutic target. Here, by performing functional genetic screening, we identified protein phosphatase 2A (PP2A) as a critical factor in the suppression of melanoma cell proliferation. We demonstrated that tumor-overexpressed 67-kDa laminin receptor (67LR) activates PP2A through adenylate cyclase/cAMP pathway eliciting inhibitions of oncoproteins and activation of tumor suppressor Merlin. Activating 67LR/PP2A pathway leading to melanoma-specific mTOR inhibition shows strong synergy with the BRAF inhibitor PLX4720 in the drug-resistant melanoma. Moreover, SET, a potent inhibitor of PP2A, is overexpressed on malignant melanoma. Silencing of SET enhances 67LR/PP2A signaling. Collectively, activation of 67LR/PP2A signaling may thus be a novel rational strategy for melanoma-specific treatment.
Collapse
Affiliation(s)
- Shuntaro Tsukamoto
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Yuhui Huang
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Daisuke Umeda
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Shuhei Yamada
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Shuya Yamashita
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Motofumi Kumazoe
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Yoonhee Kim
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Motoki Murata
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Koji Yamada
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and
| | - Hirofumi Tachibana
- From the Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture and Food Functional Design Research Center, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
32
|
Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells. Arch Toxicol 2014; 89:1313-27. [PMID: 25002221 DOI: 10.1007/s00204-014-1311-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/01/2014] [Indexed: 12/17/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells.
Collapse
|
33
|
Liu X, Liu Q, Fan Y, Wang S, Liu X, Zhu L, Liu M, Tang H. Downregulation of PPP2R5E expression by miR-23a suppresses apoptosis to facilitate the growth of gastric cancer cells. FEBS Lett 2014; 588:3160-9. [DOI: 10.1016/j.febslet.2014.05.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 01/29/2023]
|
34
|
Wandzioch E, Pusey M, Werda A, Bail S, Bhaskar A, Nestor M, Yang JJ, Rice LM. PME-1 Modulates Protein Phosphatase 2A Activity to Promote the Malignant Phenotype of Endometrial Cancer Cells. Cancer Res 2014; 74:4295-305. [DOI: 10.1158/0008-5472.can-13-3130] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Stebbing J, Lit LC, Zhang H, Darrington RS, Melaiu O, Rudraraju B, Giamas G. The regulatory roles of phosphatases in cancer. Oncogene 2014; 33:939-53. [PMID: 23503460 DOI: 10.1038/onc.2013.80] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 02/06/2023]
Abstract
The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3-kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies.
Collapse
Affiliation(s)
- J Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - L C Lit
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - H Zhang
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - R S Darrington
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - O Melaiu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - B Rudraraju
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Giamas
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
36
|
Li J, Sheng C, Li W, Zheng JH. Protein phosphatase-2A is down-regulated in patients within clear cell renal cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1147-53. [PMID: 24696731 PMCID: PMC3971320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases. It positively regulates apoptosis and negatively regulates the mitogenic pathway, suggesting that loss of it might be involved in cancer development. Recent studies found its association with breast, lung and colorectal cancer; however, its expression profile and its prognostic value in clear cell renal cell carcinoma (ccRCC) have not been investigated. METHODS Real-time quantitative PCR (qRT-PCR) and Western blot were used to explore PP2A expression in ccRCC and normal renal tissues. Moreover immunohistochemistry (ICH) was used to detect the expression of PP2A in ccRCC. Spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. RESULTS Down-regulated expression of PP2A mRNA and protein was observed in the majority of ccRCC by qRT-PCR and Western blot when compared with their paired normal renal tissues. Clinic pathological analysis was showed a significant correlation existed between the lower expression of PP2A protein with the histological grade, lymph node metastasis and tumor distant metastasis (P<0.05); Survival analysis by Kaplan-Meier survival curve and log-rank test demonstrated that reduced PP2A expression in cancer tissue predicted poorer overall survival (OS) compared with group in higher expression. Notably, multivariate analyses by Cox's proportional hazard model revealed that expression of PP2A was an independent prognostic factor in ccRCC. CONCLUSIONS These results suggest that the aberrant expression of PP2A in human ccRCC is possibly involved with tumorigenesis and development, and the PP2A protein could act as a potential biomarker for prognosis assessment of renal cancer. Further studies on the cellular functions of PP2A need to address these issues.
Collapse
Affiliation(s)
- Jun Li
- Department of Urology, Pudong New Area People’s HospitalShanghai, 201200, China
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai, 200072, China
| | - Chang Sheng
- Department of Urology, Pudong New Area People’s HospitalShanghai, 201200, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai, 200072, China
| | - Jun-Hua Zheng
- Department of Urology, Shanghai Tenth People’s Hospital, Tongji UniversityShanghai, 200072, China
| |
Collapse
|
37
|
Stjernström A, Karlsson C, Fernandez OJ, Söderkvist P, Karlsson MG, Thunell LK. Alterations of INPP4B, PIK3CA and pAkt of the PI3K pathway are associated with squamous cell carcinoma of the lung. Cancer Med 2014; 3:337-48. [PMID: 24500884 PMCID: PMC3987083 DOI: 10.1002/cam4.191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/02/2013] [Accepted: 12/26/2013] [Indexed: 01/07/2023] Open
Abstract
The aim of the study was to investigate how alterations in the PI3K pathway correlate with non-small cell lung cancer subtypes squamous cell carcinoma (SSC) and adenocarcinoma (ADCA). We analyzed copy number variation and protein expression of INPP4B, protein expression of pAkt, PDPK1, and PTEN and mutational status of PIK3CA and PTEN in 180 cases. Nineteen% displayed loss of INPP4B copy, whereas 47% lacked expression, both showing correlation with SCC. Elevated pAkt expression was seen in 63% of all cases, also correlating to SCC. PDPK1 was expressed in 70%, more in male than female patients. Regarding PTEN, 50% displayed loss of expression, of which seven were identified with mutations in the phosphatase domain. We detected nine cases (5%) of PIK3CA mutations, all identified as the E545K hot spot mutation in the helical domain, all except one in SCC. When analyzing all PI3K pathway components together, we show that patients with at least one alteration in the PI3K pathway are twice as likely to have SCC, than ADCA. Interestingly, we also found a strong correlation between high pAkt expression and PTEN expression. As comparison, we also analyzed mitogen-activated protein kinase (MAPK) pathway genes, where we identified fifteen KRAS mutations (8%) and one BRAF mutation (1%), significantly associated to ADCA. No association was found to the Gly972Arg polymorphism of IRS-1, involved in activation of both PI3K and MAPK pathways. In conclusion, we show here that several components of the PI3K pathway, alone and in combination, are correlated to development of SCC of the lung.
Collapse
Affiliation(s)
- Annika Stjernström
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Ohnishi T, Bandow K, Kakimoto K, Kusuyama J, Matsuguchi T. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages. PLoS One 2014; 9:e87229. [PMID: 24504121 PMCID: PMC3913600 DOI: 10.1371/journal.pone.0087229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/26/2013] [Indexed: 01/18/2023] Open
Abstract
N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.
Collapse
Affiliation(s)
- Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
39
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
40
|
Lorrio S, Romero A, González-Lafuente L, Lajarín-Cuesta R, Martínez-Sanz FJ, Estrada M, Samadi A, Marco-Contelles J, Rodríguez-Franco MI, Villarroya M, López MG, de los Ríos C. PP2A ligand ITH12246 protects against memory impairment and focal cerebral ischemia in mice. ACS Chem Neurosci 2013; 4:1267-77. [PMID: 23763493 DOI: 10.1021/cn400050p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ITH12246 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridine-3-carboxylate) is a 1,8-naphthyridine described to feature an interesting neuroprotective profile in in vitro models of Alzheimer's disease. These effects were proposed to be due in part to a regulatory action on protein phosphatase 2A inhibition, as it prevented binding of its inhibitor okadaic acid. We decided to investigate the pharmacological properties of ITH12246, evaluating its ability to counteract the memory impairment evoked by scopolamine, a muscarinic antagonist described to promote memory loss, as well as to reduce the infarct volume in mice suffering phototrombosis. Prior to conducting these experiments, we confirmed its in vitro neuroprotective activity against both oxidative stress and Ca(2+) overload-derived excitotoxicity, using SH-SY5Y neuroblastoma cells and rat hippocampal slices. Using a predictive model of blood-brain barrier crossing, it seems that the passage of ITH12246 is not hindered. Its potential hepatotoxicity was observed only at very high concentrations, from 0.1 mM. ITH12246, at the concentration of 10 mg/kg i.p., was able to improve the memory index of mice treated with scopolamine, from 0.22 to 0.35, in a similar fashion to the well-known Alzheimer's disease drug galantamine 2.5 mg/kg. On the other hand, ITH12246, at the concentration of 2.5 mg/kg, reduced the phototrombosis-triggered infarct volume by 67%. In the same experimental conditions, 15 mg/kg melatonin, used as control standard, reduced the infarct volume by 30%. All of these findings allow us to consider ITH12246 as a new potential drug for the treatment of neurodegenerative diseases, which would act as a multifactorial neuroprotectant.
Collapse
Affiliation(s)
- Silvia Lorrio
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Alejandro Romero
- Departamento de Toxicología y Farmacología,
Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta del Hierro, s/n, 28040 Madrid, Spain
| | - Laura González-Lafuente
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Rocío Lajarín-Cuesta
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Francisco J. Martínez-Sanz
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Martín Estrada
- Instituto de Química Médica (IQM, CSIC),
C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Abdelouahid Samadi
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de la Cierva, 3,
28006 Madrid, Spain
| | - Jose Marco-Contelles
- Laboratorio de Química Médica (IQOG, CSIC), C/Juan de la Cierva, 3,
28006 Madrid, Spain
| | | | - Mercedes Villarroya
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Manuela G. López
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| | - Cristóbal de los Ríos
- Instituto de Investigación Sanitaria,
Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando and Departamento de Farmacología
y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4,
28029 Madrid, Spain
| |
Collapse
|
41
|
Wang Y, Lei Y, Fang L, Mu Y, Wu J, Zhang X. Roles of phosphotase 2A in nociceptive signal processing. Mol Pain 2013; 9:46. [PMID: 24010880 PMCID: PMC3844580 DOI: 10.1186/1744-8069-9-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 08/30/2013] [Indexed: 12/23/2022] Open
Abstract
Multiple protein kinases affect the responses of dorsal horn neurons through phosphorylation of synaptic receptors and proteins involved in intracellular signal transduction pathways, and the consequences of this modulation may be spinal central sensitization. In contrast, the phosphatases catalyze an opposing reaction of de-phosphorylation, which may also modulate the functions of crucial proteins in signaling nociception. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. Accumulated evidence has shown that phosphatase 2A (PP2A), a serine/threonine specific phosphatase, is implicated in synaptic plasticity of the central nervous system and central sensitization of nociception. Therefore, targeting protein phosphotase 2A may provide an effective and novel strategy for the treatment of clinical pain. This review will characterize the structure and functional regulation of neuronal PP2A and bring together recent advances on the modulation of PP2A in targeted downstream substrates and relevant multiple nociceptive signaling molecules.
Collapse
Affiliation(s)
- Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | | | | | | | | | | |
Collapse
|
42
|
Naito Y, Yabuta N, Sato J, Ohno S, Sakata M, Kasama T, Ikawa M, Nojima H. Recruitment of cyclin G2 to promyelocytic leukemia nuclear bodies promotes dephosphorylation of γH2AX following treatment with ionizing radiation. Cell Cycle 2013; 12:1773-84. [PMID: 23656780 DOI: 10.4161/cc.24878] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cyclin G2 (CycG2) and Cyclin G1 (CycG1), two members of the Cyclin G subfamily, share high amino acid homology in their Cyclin G boxes. Functionally, they play a common role as association partners of the B'γ subunit of protein phosphatase 2A (PP2A) and regulate PP2A function, and their expression is increased following DNA damage. However, whether or not CycG1 and CycG2 have distinct roles during the cellular DNA damage response has remained unclear. Here, we report that CycG2, but not CycG1, co-localized with promyelocytic leukemia (PML) and γH2AX, forming foci following ionizing radiation (IR), suggesting that CycG2 is recruited to sites of DNA repair and that CycG1 and CycG2 have distinct functions. PML failed to localize to nuclear foci when CycG2 was depleted, and vice versa. This suggests that PML and CycG2 mutually influence each other's functions following IR. Furthermore, we generated CycG2-knockout (Ccng2 (-/-) ) mice to investigate the functions of CycG2. These mice were born healthy and developed normally. However, CycG2-deficient mouse embryonic fibroblasts displayed an abnormal response to IR. Dephosphorylation of γH2AX and checkpoint kinase 2 following IR was delayed in Ccng2 (-/-) cells, suggesting that DNA damage repair may be perturbed in the absence of CycG2. Although knockdown of B'γ in wild-type cells also delayed dephosphorylation of γH2AX, knockdown of B'γ in Ccng2 (-/-) cells prolonged this delay, suggesting that CycG2 cooperates with B'γ to dephosphorylate γH2AX. Taken together, we conclude that CycG2 is localized at DNA repair foci following DNA damage, and that CycG2 regulates the dephosphorylation of several factors necessary for DNA repair.
Collapse
Affiliation(s)
- Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Impaired expression of protein phosphatase 2A subunits enhances metastatic potential of human prostate cancer cells through activation of AKT pathway. Br J Cancer 2013; 108:2590-600. [PMID: 23598299 PMCID: PMC3694226 DOI: 10.1038/bjc.2013.160] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Protein phosphatase 2A (PP2A) is a dephosphorylating enzyme, loss of which can contribute to prostate cancer (PCa) pathogenesis. The aim of this study was to analyse the transcriptional and translational expression patterns of individual subunits of the PP2A holoenzyme during PCa progression. Methods: Immunohistochemistry (IHC), western blot, and real-time PCR was performed on androgen-dependent (AD) and androgen-independent (AI) PCa cells, and benign and malignant prostate tissues for all the three PP2A (scaffold, regulatory, and catalytic) subunits. Mechanistic and functional studies were performed using various biochemical and cellular techniques. Results: Through immunohistochemical analysis we observed significantly reduced levels of PP2A-A and -B′γ subunits (P<0.001 and P=0.0002) in PCa specimens compared with benign prostate. Contemporarily, there was no significant difference in PP2A-C subunit expression between benign and malignant tissues. Similar to the expression pattern observed in tissues, the endogenous levels of PP2A-A and B′γ subunits were abrogated from the low metastatic to high metastatic and AD to AI cell line models, without any change in the catalytic subunit expression. Furthermore, using in vitro studies we demonstrated that PP2A-Aα scaffold subunit has a role in dampening AKT, β-catenin, and FAK (focal adhesion kinase) signalling. Conclusion: We conclude that loss of expression of scaffold and regulatory subunits of PP2A is responsible for its altered function during PCa pathogenesis.
Collapse
|
44
|
Lange KI, Heinrichs J, Cheung K, Srayko M. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans. Biol Open 2012; 2:88-94. [PMID: 23336080 PMCID: PMC3545272 DOI: 10.1242/bio.20122956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/16/2012] [Indexed: 12/17/2022] Open
Abstract
Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B′, B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.
Collapse
Affiliation(s)
- Karen I Lange
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9 , Canada
| | | | | | | |
Collapse
|
45
|
A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys Acta Rev Cancer 2012; 1826:423-33. [PMID: 22841746 DOI: 10.1016/j.bbcan.2012.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 02/08/2023]
Abstract
Cancer cells increase glucose uptake and reject lactic acid even in the presence of oxygen (Warburg effect). This metabolism reorients glucose towards the pentose phosphate pathway for ribose synthesis and consumes great amounts of glutamine to sustain nucleotide and fatty acid synthesis. Oxygenated and hypoxic cells cooperate and use their environment in a manner that promotes their development. Coenzymes (NAD(+), NADPH,H(+)) are required in abundance, whereas continuous consumption of ATP and citrate precludes the negative feedback of these molecules on glycolysis, a regulation supporting the Pasteur effect. Understanding the metabolism of cancer cells may help to develop new anti-cancer treatments.
Collapse
|
46
|
Kanno T, Tsuchiya A, Shimizu T, Tanaka A, Nishizaki T. Indomethacin Serves as a Potential Inhibitor of Protein Phosphatases. Cell Physiol Biochem 2012; 30:1014-22. [DOI: 10.1159/000341478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2012] [Indexed: 12/13/2022] Open
|