1
|
Kumari S, Peela S, Nagaraju GP, Srilatha M. Polysaccharides as therapeutic vehicles in pancreatic cancer. Drug Discov Today 2025; 30:104320. [PMID: 40024518 DOI: 10.1016/j.drudis.2025.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Pancreatic cancer (PC) is highly aggressive, with rising incidence and mortality rates. It has significant therapy obstacles due to the limited clinical options, late-stage identification, dense tumor microenvironment (TME), and resistance to therapy. Recent advances might improve treatment consequences in therapy strategies that target important TME components. Moreover, new polymeric drug delivery techniques based on polysaccharides such as polymeric micelles, liposomes, and nanoparticles enhance the solubility of drugs, drug stability, and tumor-specific targeting, which increase the chances of circumventing resistance and improving the efficacy of treatment. Preclinical research has suggested that by modulating the TME and enhancing the efficacy of chemotherapy, polysaccharide-based therapy, such as RP02-1 and DPLL-functionalized amylose, may help treat PC.
Collapse
Affiliation(s)
- Seema Kumari
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410 AP, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410 AP, India
| | - Ganji Purnachandra Nagaraju
- School of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India.
| |
Collapse
|
2
|
Kashyap VK, Sharma BP, Pandey D, Singh AK, Peasah-Darkwah G, Singh B, Roy KK, Yallapu MM, Chauhan SC. Small Molecule with Big Impact: Metarrestin Targets the Perinucleolar Compartment in Cancer Metastasis. Cells 2024; 13:2053. [PMID: 39768145 PMCID: PMC11674295 DOI: 10.3390/cells13242053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Metarrestin (ML246) is a first-in-class pyrrole-pyrimidine-derived small molecule that selectively targets the perinucleolar compartment (PNC). PNC is a distinct subnuclear structure predominantly found in solid tumor cells. The occurrence of PNC demonstrates a positive correlation with malignancy, serving as an indicator of tumor aggressiveness, progression, and metastasis. Various promising preclinical results have led to the clinical translation of metarrestin into a first-in-human trial. This review aims to summarize (i) the current understanding of the structure and function of PNC and its role in cancer progression and metastasis, (ii) key findings from studies examining the effect of metarrestin on various cancers across the translational spectrum, including in vitro, in vivo, and human clinical trial studies, and (iii) the pharmaceutical relevance of metarrestin as a promising anticancer candidate. Furthermore, our molecular docking and MD simulation studies show that metarrestin binds to eEF1A1 and eEF1A2 with a strong and stable affinity and inhibits eEF1A2 more efficiently compared to eEF1A1. The promising results from preclinical studies suggest that metarrestin has the potential to revolutionize the treatment of cancer, heralding a paradigm shift in its therapeutic management.
Collapse
Affiliation(s)
- Vivek K. Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Bhuvnesh P. Sharma
- Department of Biotechnology, Bhagwant University, Ajmer 305004, Rajasthan, India
| | - Divya Pandey
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Ajay K. Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Godwin Peasah-Darkwah
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Bhupesh Singh
- School of Applied Sciences, OM Sterling Global University, Hisar 125001, Haryana, India
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Murali M. Yallapu
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX 78504, USA
| |
Collapse
|
3
|
Sibal PA, Matsumura S, Ichinose T, Bustos‐Villalobos I, Morimoto D, Eissa IR, Abdelmoneim M, Aboalela MAM, Mukoyama N, Tanaka M, Naoe Y, Kasuya H. STING activator 2'3'-cGAMP enhanced HSV-1-based oncolytic viral therapy. Mol Oncol 2024; 18:1259-1277. [PMID: 38400597 PMCID: PMC11076993 DOI: 10.1002/1878-0261.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Oncolytic viruses (OVs) can selectively replicate in tumor cells and remodel the microenvironment of immunologically cold tumors, making them a promising strategy to evoke antitumor immunity. Similarly, agonists of the stimulator of interferon genes (STING)-interferon (IFN) pathway, the main cellular antiviral system, provide antitumor benefits by inducing the activation of dendritic cells (DC). Considering how the activation of the STING-IFN pathway could potentially inhibit OV replication, the use of STING agonists alongside OV therapy remains largely unexplored. Here, we explored the antitumor efficacy of combining an HSV-1-based OV, C-REV, with a membrane-impermeable STING agonist, 2'3'-GAMP. Our results demonstrated that tumor cells harbor a largely defective STING-IFN pathway, thereby preventing significant antiviral IFN induction regardless of the permeability of the STING agonist. In vivo, the combination therapy induced more proliferative KLRG1-high PD1-low CD8+ T-cells and activated CD103+ DC in the tumor site and increased tumor-specific CD44+ CD8+ T-cells in the lymph node. Overall, the combination therapy of C-REV with 2'3'-cGAMP elicited antitumor immune memory responses and significantly enhanced systemic antitumor immunity in both treated and non-treated distal tumors.
Collapse
Affiliation(s)
- Patricia Angela Sibal
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | | | - Daishi Morimoto
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
| | - Ibrahim R. Eissa
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Faculty of ScienceTanta UniversityEgypt
| | - Mohamed Abdelmoneim
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Department of Microbiology, Faculty of Veterinary MedicineZagazig UniversityEgypt
| | - Mona Alhussein Mostafa Aboalela
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
- Department of Surgery II, Graduate School of MedicineNagoya UniversityJapan
- Medical Microbiology and Immunology Department, Faculty of MedicineZagazig UniversityEgypt
| | - Nobuaki Mukoyama
- Department of Otolaryngology Graduate School of MedicineNagoya UniversityJapan
| | | | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of MedicineNagoya UniversityJapan
| |
Collapse
|
4
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
5
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
6
|
Olajubutu O, Ogundipe OD, Adebayo A, Adesina SK. Drug Delivery Strategies for the Treatment of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15051318. [PMID: 37242560 DOI: 10.3390/pharmaceutics15051318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Pancreatic cancer is fast becoming a global menace and it is projected to be the second leading cause of cancer-related death by 2030. Pancreatic adenocarcinomas, which develop in the pancreas' exocrine region, are the predominant type of pancreatic cancer, representing about 95% of total pancreatic tumors. The malignancy progresses asymptomatically, making early diagnosis difficult. It is characterized by excessive production of fibrotic stroma known as desmoplasia, which aids tumor growth and metastatic spread by remodeling the extracellular matrix and releasing tumor growth factors. For decades, immense efforts have been harnessed toward developing more effective drug delivery systems for pancreatic cancer treatment leveraging nanotechnology, immunotherapy, drug conjugates, and combinations of these approaches. However, despite the reported preclinical success of these approaches, no substantial progress has been made clinically and the prognosis for pancreatic cancer is worsening. This review provides insights into challenges associated with the delivery of therapeutics for pancreatic cancer treatment and discusses drug delivery strategies to minimize adverse effects associated with current chemotherapy options and to improve the efficiency of drug treatment.
Collapse
Affiliation(s)
| | - Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Amusa Adebayo
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC 20059, USA
| |
Collapse
|
7
|
Abdelmoneim M, Eissa IR, Aboalela MA, Naoe Y, Matsumura S, Sibal PA, Bustos-Villalobos I, Tanaka M, Kodera Y, Kasuya H. Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Sci Rep 2022; 12:21570. [PMID: 36513720 PMCID: PMC9747797 DOI: 10.1038/s41598-022-25065-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Oncolytic virus (OV) therapy is a promising cancer immunotherapy, especially for cold tumors by inducing the direct lysis of cancer cells and initiation of potent antitumor response. Canerpaturev (C-REV) is an attenuated oncolytic herpes simplex virus-1, which demonstrated a potent antitumor effect in various preclinical models when used either alone or combined. Metformin is a commonly prescribed antidiabetic drug that demonstrated a potent immune modulator effect and antitumor response. We combined C-REV with metformin in a low immunogenic bilateral murine tumor model to enhance C-REV's antitumor efficacy. In vitro, metformin does not enhance the C-REV cell cytotoxic effect. However, in in vivo model, intratumoral administration of C-REV with the systemic administration of metformin led to synergistic antitumor effect on both sides of tumor and prolonged survival. Moreover, combination therapy increased the effector CD44+ CD8+ PD1- subset and decreased the proportion of terminally-differentiated CD103+ KLRG-1+ T-regulatory cells on both sides of tumor. Interestingly, combination therapy efficiently modulates conventional dendritic cells type-1 (cDC1) on tumors, and tumor-drained lymph nodes. Our findings suggest that combination of C-REV and metformin enhances systemic antitumor immunity. This study may provide insights into the mechanism of action of OV therapy plus metformin combination against various tumor models.
Collapse
Affiliation(s)
- Mohamed Abdelmoneim
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.31451.320000 0001 2158 2757Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim Ragab Eissa
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.412258.80000 0000 9477 7793Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona Alhussein Aboalela
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan ,grid.31451.320000 0001 2158 2757Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yoshinori Naoe
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Shigeru Matsumura
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Patricia Angela Sibal
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Itzel Bustos-Villalobos
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| | - Maki Tanaka
- grid.410820.fTakara Bio Inc., Kusatsu, Shiga Japan
| | - Yasuhiro Kodera
- grid.27476.300000 0001 0943 978XDepartment of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideki Kasuya
- grid.27476.300000 0001 0943 978XGraduate School of Medicine, Cancer Immune Therapy Research Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Rimal R, Desai P, Daware R, Hosseinnejad A, Prakash J, Lammers T, Singh S. Cancer-associated fibroblasts: Origin, function, imaging, and therapeutic targeting. Adv Drug Deliv Rev 2022; 189:114504. [PMID: 35998825 DOI: 10.1016/j.addr.2022.114504] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is emerging as one of the primary barriers in cancer therapy. Cancer-associated fibroblasts (CAF) are a common inhabitant of the TME in several tumor types and play a critical role in tumor progression and drug resistance via different mechanisms such as desmoplasia, angiogenesis, immune modulation, and cancer metabolism. Due to their abundance and significance in pro-tumorigenic mechanisms, CAF are gaining attention as a diagnostic target as well as to improve the efficacy of cancer therapy by their modulation. In this review, we highlight existing imaging techniques that are used for the visualization of CAF and CAF-induced fibrosis and provide an overview of compounds that are known to modulate CAF activity. Subsequently, we also discuss CAF-targeted and CAF-modulating nanocarriers. Finally, our review addresses ongoing challenges and provides a glimpse into the prospects that can spearhead the transition of CAF-targeted therapies from opportunity to reality.
Collapse
Affiliation(s)
- Rahul Rimal
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Rasika Daware
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Aisa Hosseinnejad
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forkenbeckstrasse 50, 52074 Aachen, Germany
| | - Jai Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Section: Engineered Therapeutics, Technical Medical Centre, University of Twente, 7500AE Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Smriti Singh
- Max Planck Institute for Medical Research (MPImF), Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Lu H, Zheng LY, Wu LY, Chen J, Xu N, Mi SC. The immune escape signature predicts the prognosis and immunotherapy sensitivity for pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:978921. [PMID: 36147906 PMCID: PMC9486201 DOI: 10.3389/fonc.2022.978921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 01/30/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide. Immune escape is considered to be a reason for immunotherapy failure in PDAC. In this study, we explored the correlation between immune escape-related genes and the prognosis of PDAC patients. Methods 1163 PDAC patients from four public databases, including The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Array-express, and Gene Expression Omnibus (GEO), were included in our study. Cox regression analysis was used to identify the 182 immune genes which were significantly associated with overall survival (OS). And then we established an immune escape-related gene prognosis index (IEGPI) score using several datasets as the training cohort and validated it using the validation cohort. Kaplan-Meier (KM) and Cox regression analysis were used to detect the relationship of IEGPI score with OS. We further explored the relationship between the IEGPI and immune indexes. And the prediction value of response for immunotherapy in Tumor Immune Dysfunction and Exclusion (TIDE) dataset. Results We establish an IEGPI score based on 27 immune escape genes which were significantly related to the prognosis of OS in PDAC patients. Patients in the high-IEGPI group had a significantly worse overall survival rate compared with that in the low-IEGPI groups by KM curves and cox-regression. 5 of the 32 cancer types in TCGA could be significantly distinguished in survival rates through the low- and high-IEGPI groups. Moreover, the correlation between the IEGPI score was negatively correlated with an immune score in several datasets. And higher IEGPI better recurrence-free survival (RFS) and OS in the patients after patients were treated with both PD-1 and CTLA4 in the public datasets (P<0.05). Intriguingly, by using RT-PCR, we verified that the gene of PTPN2, CEP55, and JAK2 were all higher in the BxPC-3 and PANC-1 than HPDE5 cells. Lastly, we found that the IEGPI score was higher in K-rasLSL.G12D/+, p53LSL.R172H/+, Pdx1Cre (KPC) mice model with anti-PD-L1 than that without anti-PD-L1. Conclusion Using the immune escape-related genes, our study established and validated an IEGPI score in PDAC patients from the public dataset. IEGPI score has the potential to serve as a prognostic marker and as a tool for selecting tumor patients suitable for immunotherapy in clinical practice.
Collapse
|
10
|
Panebianco C, Villani A, Pisati F, Orsenigo F, Ulaszewska M, Latiano TP, Potenza A, Andolfo A, Terracciano F, Tripodo C, Perri F, Pazienza V. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomed Pharmacother 2022; 151:113163. [PMID: 35617803 DOI: 10.1016/j.biopha.2022.113163] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer. The characteristic excessive stromatogenesis accompanying the growth of this tumor is believed to contribute to chemoresistance which, together with drug toxicity, results in poor clinical outcome. An increasing number of studies are showing that gut microbiota and their metabolites are implicated in cancer pathogenesis, progression and response to therapies. In this study we tested butyrate, a product of dietary fibers' bacterial fermentation, whose anticancer and anti-inflammatory functions are known. We provided in vitro evidence that, beside slowing proliferation, butyrate enhanced gemcitabine effectiveness against two human pancreatic cancer cell lines, mainly inducing apoptosis. In addition, we observed that, when administered to a PDAC mouse model, alone or combined with gemcitabine treatment, butyrate markedly reduced the cancer-associated stromatogenesis, preserved intestinal mucosa integrity and affected fecal microbiota composition by increasing short chain fatty acids producing bacteria and decreasing some pro-inflammatory microorganisms. Furthermore, a biochemical serum analysis showed butyrate to ameliorate some markers of kidney and liver damage, whereas a metabolomics approach revealed a deep modification of lipid metabolism, which may affect tumor progression or response to therapy. Such results support that butyrate supplementation, in addition to conventional therapies, can interfere with pancreatic cancer biology and response to treatment and can alleviate some damages associated to cancer itself or to chemotherapy.
Collapse
Affiliation(s)
- Concetta Panebianco
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annacandida Villani
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Federica Pisati
- Histopathology Unit, Cogentech S.C.a.R.L, Via Adamello, 16, 20139 Milan, MI, Italy
| | | | - Marynka Ulaszewska
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Tiziana Pia Latiano
- Oncology Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza Hospital, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Annapaola Andolfo
- Proteomics and Metabolomics Facility (ProMeFa), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milan, Italy
| | - Fulvia Terracciano
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Claudio Tripodo
- Histopathology Unit, Cogentech S.C.a.R.L, Via Adamello, 16, 20139 Milan, MI, Italy; Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Perri
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini, 1, 71013 San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
11
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
12
|
Xiao W, Pahlavanneshan M, Eun CY, Zhang X, DeKalb C, Mahgoub B, Knaneh-Monem H, Shah S, Sohrabi A, Seidlits SK, Hill R. Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biol Plus 2022; 14:100111. [PMID: 35619988 PMCID: PMC9126837 DOI: 10.1016/j.mbplus.2022.100111] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer organoid-stromal fibroblasts co-culture displayed significant chemoresistance in 3D culture system. Cancer associated fibroblasts in the physiologically relevant matrix system tended to be more phenotypically activated. Increased extracellular matrix stiffness induces hypersecretion of chemoresistance-promoting exosomes in a cancer associated fibroblasts-tumor organoid biomimetic model system.
In pancreatic ductal adenocarcinoma (PDAC), the abundant stromal cells which comprise the tumor microenvironment constitute more than 90% of the primary tumor bulk. Moreover, this desmoplastic environment has been found to be three times stiffer than normal pancreas tissue. Despite the importance of studying the desmoplastic environment of PDAC, there is still a lack of models designed to adequately recapitulate this complex stiff microenvironment, a critical hallmark of the disease that has been shown to induce chemoresistance. Here, we present a bio-mimetic, 3-dimensional co-culture system that integrates tumor organoids and host-matching stromal cancer associated-fibroblasts (CAFs) that recapitulates the complex, fibrotic matrix of PDAC using advanced biomaterials. With this model, we show that matrix-activated CAFs are able to “re-engineer” the fibrotic environment into a significantly stiffer environment through lysyl-oxidase dependent crosslinking. Moreover, we show that culture of CAFs in this model leads to an increase of exosomes; extracellular vesicles known to promote chemoresistance. Finally, using previously identified exosome inhibitors, climbazole and imipramine, we demonstrate how abrogation of exosome hypersecretion can reduce matrix stiffness-induced chemoresistance. These data highlight the importance of the development of new models that recapitulate not only the cellular composition found in PDAC tumors, but also the biophysical stresses, like stiffness, that the cells are exposed to in order to identify therapies that can overcome this critical feature which can contribute to the chemoresistance observed in patients. We believe that the 3D bio-mimetic model we have developed will be a valuable tool for the development, testing, and optimization of “mechano-medicines” designed to target the biophysical forces that lead to tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Weikun Xiao
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Mahsa Pahlavanneshan
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, United States
| | - Chae-Young Eun
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Xinyu Zhang
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Charlene DeKalb
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Bayan Mahgoub
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Hanaa Knaneh-Monem
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Sana Shah
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Health Promotion and Disease Prevention Studies, University of Southern California, Los Angeles, CA 90033, United States
| | - Alireza Sohrabi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Reginald Hill
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Corresponding author at: Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States.
| |
Collapse
|
13
|
Pekarek L, Fraile-Martinez O, Garcia-Montero C, Alvarez-Mon MA, Acero J, Ruiz-Llorente L, García-Honduvilla N, Albillos A, Buján J, Alvarez-Mon M, Guijarro LG, Ortega MA. Towards an updated view on the clinical management of pancreatic adenocarcinoma: Current and future perspectives. Oncol Lett 2021; 22:809. [PMID: 34630716 PMCID: PMC8490971 DOI: 10.3892/ol.2021.13070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer has a dire prognosis and will represent the second leading cause of cancer death in the next 10 years. The multifactorial approach represents one of the main issues in controlling the extension of this neoplasm. In recent years, the characteristics of the tumor microenvironment, metastasis mechanisms and the relationship between immune system and neoplastic cells have been described, which has made it possible to understand the pathophysiology of pancreatic adenocarcinoma. Currently, there is a failure to provide an effective preventive method or early detection, so patients present with an advanced stage at the time of diagnosis. Despite numerous efforts, little progress has been made in clinical outcome and in improving survival in long term. Therefore, in the recent years, diverse diagnostic tests, treatments and possible approaches have been developed in the fields of radiotherapy, chemotherapy and surgery to find a combination of them that improves life expectancy in patients diagnosed with pancreatic cancer. At the moment, numerous clinical trials are being conducted to evaluate preventive diagnostic procedures such as serological markers or perfecting available imaging tests. On the other hand, implementation of immunotherapy is being studied in a neoplasm that has lagged in the application of this procedure since present possible treatments do not substantially improve quality of life. Therefore, the purpose of our study is to summarize the main progresses that have been made in the diagnosis, treatment and screening of this disease, explaining the limitations that have been observed and analyzing future prospects in the management of this illness.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Miguel A. Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Julio Acero
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
| | - Lidia Ruiz-Llorente
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Department of Gastroenterology and Hepatology, Ramón y Cajal University Hospital, University of Alcalá, Ramón y Cajal Institute for Health Research, 28034 Madrid, Spain
- Biomedical Research Networking Center of Hepatic and Digestive Diseases, Institute of Health Carlos III, 28034 Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Biomedical Research Networking Center of Hepatic and Digestive Diseases, Institute of Health Carlos III, 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, 28871 Madrid, Spain
- Ramón y Cajal Institute of Sanitary Research, 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Prince of Asturias University Hospital, Alcala de Henares, 28806 Madrid, Spain
| |
Collapse
|
14
|
Chekmarev J, Azad MG, Richardson DR. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells 2021; 10:cells10092382. [PMID: 34572031 PMCID: PMC8465210 DOI: 10.3390/cells10092382] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
NDRG1 is an oncogenic signaling disruptor that plays a key role in multiple cancers, including aggressive pancreatic tumors. Recent studies have indicated a role for NDRG1 in the inhibition of multiple tyrosine kinases, including EGFR, c-Met, HER2 and HER3, etc. The mechanism of activity of NDRG1 remains unclear, but to impart some of its functions, NDRG1 binds directly to key effector molecules that play roles in tumor suppression, e.g., MIG6. More recent studies indicate that NDRG1s-inducing drugs, such as novel di-2-pyridylketone thiosemicarbazones, not only inhibit tumor growth and metastasis but also fibrous desmoplasia, which leads to chemotherapeutic resistance. The Casitas B-lineage lymphoma (c-Cbl) protein may be regulated by NDRG1, and is a crucial E3 ligase that regulates various protein tyrosine and receptor tyrosine kinases, primarily via ubiquitination. The c-Cbl protein can act as a tumor suppressor by promoting the degradation of receptor tyrosine kinases. In contrast, c-Cbl can also promote tumor development by acting as a docking protein to mediate the oncogenic c-Met/Crk/JNK and PI3K/AKT pathways. This review hypothesizes that NDRG1 could inhibit the oncogenic function of c-Cbl, which may be another mechanism of its tumor-suppressive effects.
Collapse
Affiliation(s)
- Jason Chekmarev
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
| | - Des R. Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (J.C.); (M.G.A.)
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +61-7-3735-7549
| |
Collapse
|
15
|
Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13174487. [PMID: 34503294 PMCID: PMC8430573 DOI: 10.3390/cancers13174487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Among all types of cancer, Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest survival rates, partly due to the failure of current chemotherapeutics. This treatment failure can be attributed to the complicated nature of the tumor microenvironment, where the rich fibro-inflammatory responses can hinder drug delivery and efficacy at the tumor site. Moreover, the high molecular variations in PDAC create a large heterogeneity in the tumor microenvironment among patients. Current in vivo and in vitro options for drug testing are mostly ineffective in recapitulating the complex cellular interactions and individual variations in the PDAC tumor microenvironment, and as a result, they fail to provide appropriate models for individualized drug screening. Organ-on-a-chip technology combined with patient-derived organoids may provide the opportunity for developing personalized treatment options in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) is an expeditiously fatal malignancy with a five-year survival rate of 6–8%. Conventional chemotherapeutics fail in many cases due to inadequate primary response and rapidly developing resistance. This treatment failure is particularly challenging in pancreatic cancer because of the high molecular heterogeneity across tumors. Additionally, a rich fibro-inflammatory component within the tumor microenvironment (TME) limits the delivery and effectiveness of anticancer drugs, further contributing to the lack of response or developing resistance to conventional approaches in this cancer. As a result, there is an urgent need to model pancreatic cancer ex vivo to discover effective drug regimens, including those targeting the components of the TME on an individualized basis. Patient-derived three-dimensional (3D) organoid technology has provided a unique opportunity to study patient-specific cancerous epithelium. Patient-derived organoids cultured with the TME components can more accurately reflect the in vivo tumor environment. Here we present the advances in organoid technology and multicellular platforms that could allow for the development of “organ-on-a-chip” approaches to recapitulate the complex cellular interactions in PDAC tumors. We highlight the current advances of the organ-on-a-chip-based cancer models and discuss their potential for the preclinical selection of individualized treatment in PDAC.
Collapse
|
16
|
Kasperska A, Borowczak J, Szczerbowski K, Stec E, Ahmadi N, Szylber Ł. Current challenges in targeting tumor desmoplasia to improve the efficacy of immunotherapy. Curr Cancer Drug Targets 2021; 21:919-931. [PMID: 34525931 DOI: 10.2174/1568009621666210825101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Desmoplasia is crucial for the development, progression and treatment of immune-resistant malignancies. and treatment of immune-resistant malignancies. Targeting desmoplasia-related metabolic pathways appears to be an interesting approach to expand our stock of disposable anti-tumor agents.CXCL12/CXCR4 axis inhibition reduces fibrosis, alleviates immunosuppression and significantly enhances the efficacy of PD-1 immunotherapy. CD40L substitute therapy may increase the activity of T-cells, downregulate CD40+, prolong patients' survival and prevent cancer progression. Although FAPα antagonists used in preclinical models did not lead to permanent cure, an alleviation of immune-resistance, modification of desmoplasia and a decrease in angiogenesis were observed. Targeting DDR2 may enhance the effect of anti-PD-1 treatment in multiple neoplasm cell lines and has the ability to overcome the adaptation to BRAF-targeted therapy in melanoma. Reprogramming desmoplasia could potentially cooperate not only with present treatment, but also other potential therapeutic targets. We present the most promising metabolic pathways related to desmoplasia and discuss the emerging strategies to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Anna Kasperska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Ewa Stec
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| | - Navid Ahmadi
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge. United Kingdom
| | - Łukasz Szylber
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun. Poland
| |
Collapse
|
17
|
De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Repurposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel) 2021; 13:3946. [PMID: 34439102 PMCID: PMC8394389 DOI: 10.3390/cancers13163946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies worldwide, since patients rarely display symptoms until an advanced and unresectable stage of the disease. Current chemotherapy options are unsatisfactory and there is an urgent need for more effective and less toxic drugs to improve the dismal PC therapy. Repurposing of non-oncology drugs in PC treatment represents a very promising therapeutic option and different compounds are currently being considered as candidates for repurposing in the treatment of this tumor. In this review, we provide an update on some of the most promising FDA-approved, non-oncology, repurposed drug candidates that show prominent clinical and preclinical data in pancreatic cancer. We also focus on proposed mechanisms of action and known molecular targets that they modulate in PC. Furthermore, we provide an explorative bioinformatic analysis, which suggests that some of the PC repurposed drug candidates have additional, unexplored, oncology-relevant targets. Finally, we discuss recent developments regarding the immunomodulatory role displayed by some of these drugs, which may expand their potential application in synergy with approved anticancer immunomodulatory agents that are mostly ineffective as single agents in PC.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Zhirajr Mokini
- European Society of Anaesthesiology and Intensive Care (ESAIC) Mentorship Programme, ESAIC, 24 Rue des Comédiens, BE-1000 Brussels, Belgium;
| | - Simone Carradori
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Davide Brocco
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (N.T.); (A.G.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (S.C.); (D.B.); (R.F.)
- Center for Advanced Studies and Technology—CAST, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
18
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
19
|
Morimoto D, Matsumura S, Bustos-Villalobos I, Sibal PA, Ichinose T, Naoe Y, Eissa IR, Abdelmoneim M, Mukoyama N, Miyajima N, Tanaka M, Kodera Y, Kasuya H. C-REV Retains High Infectivity Regardless of the Expression Levels of cGAS and STING in Cultured Pancreatic Cancer Cells. Cells 2021; 10:cells10061502. [PMID: 34203706 PMCID: PMC8232185 DOI: 10.3390/cells10061502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Oncolytic virus (OV) therapy is widely considered as a major breakthrough in anti-cancer treatments. In our previous study, the efficacy and safety of using C-REV for anti-cancer therapy in patients during stage I clinical trial was reported. The stimulator of interferon genes (STING)-TBK1-IRF3-IFN pathway is known to act as the central cellular host defense against viral infection. Recent reports have linked low expression levels of cGAS and STING in cancer cells to poor prognosis among patients. Moreover, downregulation of cGAS and STING has been linked to higher susceptibility to OV infection among several cancer cell lines. In this paper, we show that there is little correlation between levels of cGAS/STING expression and susceptibility to C-REV among human pancreatic cancer cell lines. Despite having a responsive STING pathway, BxPC-3 cells are highly susceptible to C-REV infection. Upon pre-activation of the STING pathway, BxPc-3 cells exhibited resistance to C-REV infection. However, without pre-activation, C-REV completely suppressed the STING pathway in BxPC-3 cells. Additionally, despite harboring defects in the STING pathway, other high-grade cancer cell lines, such as Capan-2, PANC-1 and MiaPaCa-2, still exhibited low susceptibility to C-REV infection. Furthermore, overexpression of STING in MiaPaCa-2 cells altered susceptibility to a limited extent. Taken together, our data suggest that the cGAS-STING pathway plays a minor role in the susceptibility of pancreatic cancer cell lines to C-REV infection.
Collapse
Affiliation(s)
- Daishi Morimoto
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (D.M.); (I.R.E.); (M.A.); (Y.K.)
| | - Shigeru Matsumura
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
| | - Patricia Angela Sibal
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
- Department of Biological Science, School of Science, Nagoya University, Nagoya 466-8550, Japan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
| | - Ibrahim Ragab Eissa
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (D.M.); (I.R.E.); (M.A.); (Y.K.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
- Faculty of Science, Tanta University, Tanta 31111, Egypt
| | - Mohamed Abdelmoneim
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (D.M.); (I.R.E.); (M.A.); (Y.K.)
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Nobuaki Mukoyama
- Department of Otolaryngology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Noriyuki Miyajima
- Department of Transplantation and Endocrine Surgery, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Maki Tanaka
- Takara Bio Inc., Kusatsu, Shiga 525-0058, Japan;
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (D.M.); (I.R.E.); (M.A.); (Y.K.)
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan; (S.M.); (I.B.-V.); (P.A.S.); (T.I.); (Y.N.)
- Correspondence:
| |
Collapse
|
20
|
Saif MW. From Screening to Treatment of Pancreatic Cancer: A Comprehensive Review. JOP : JOURNAL OF THE PANCREAS 2021; 22:70-79. [PMID: 34483790 PMCID: PMC8411391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Pancreatic adenocarcinoma is a devastating malignancy, associated with a grim prognosis, due to its silent presentation and lack of diagnostic tests. In addition, treatment options are limited to few agents, such as 5-FU, irinotecan, oxaliplatin, gemcitabine and nab-paclitaxel. METHODS We performed a literature search for relevant published clinical trials, abstracts of trials in progress and ongoing or planned trials for the treatment of APC using Pubmed.com, ClinicalTrials.gov and American Society of Clinical Oncology (ASCO) abstract search as sources. We present an in-depth analysis of the phase I-III clinical trials determining the role and efficacy of different modalities. We also describe rationale for future investigation. DISCUSSION Despite advances in first-line and second-line therapies for APC, median OS remains short of a year. We need collaborative efforts between the cooperative groups, institutions, community practices and industry to work together in enrolling these patients in clinical trials. In addition to use new technologies, such as organoids, we must pay attention to the palliative aspect of care for these patients from the beginning including nutritionist, social worker and supportive care health providers to assist with goals of care, symptom management and end of life discussions.
Collapse
Affiliation(s)
- Muhammad Wasif Saif
- Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine, Feinstein Institute for Medical Research, Lake Success, NY, USA
| |
Collapse
|
21
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Zheng-Lin B, O'Reilly EM. Pancreatic ductal adenocarcinoma in the era of precision medicine. Semin Oncol 2021; 48:19-33. [PMID: 33637355 PMCID: PMC8355264 DOI: 10.1053/j.seminoncol.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
The paradigm for treatment of PDAC is shifting from a "one size fits all" of cytotoxic therapy to a precision medicine approach based on specific predictive biomarkers for a subset of patients. As the genomic landscape of pancreatic carcinogenesis has become increasingly defined, several oncogenic alterations have emerged as actionable targets and their use has been validated in novel approaches such as targeting mutated germline DNA damage response genes (BRCA) and mismatch deficiency (dMMR/MSI-H) or blockade of rare somatic oncogenic fusions. Chemotherapy selection based on transcriptomic subtypes and developing stroma- and immune-modulating strategies have yielded encouraging results and may open therapeutic refinement to a broader PDAC population. Notwithstanding, a series of negative late-stage trials over the last year continue to underscore the inherent challenges in the treatment of PDAC. Multifactorial therapy resistance warrants further exploration in PDAC "omics" and tumor-stroma-immune cells crosstalk. Herein, we discuss precision medicine approaches applied to the treatment of PDAC, its current state and future perspective.
Collapse
Affiliation(s)
- Binbin Zheng-Lin
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside and Mount Sinai West, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, NY, USA; David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Marcon F, Zuo J, Pearce H, Nicol S, Margielewska-Davies S, Farhat M, Mahon B, Middleton G, Brown R, Roberts KJ, Moss P. NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology 2020; 9:1845424. [PMID: 33299656 PMCID: PMC7714501 DOI: 10.1080/2162402x.2020.1845424] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most common tumor subtypes and remains associated with very poor survival. T cell infiltration into tumor tissue is associated with improved clinical outcome but little is known regarding the potential role of NK cells in disease control. Here we analyze the phenotype and function of NK cells in the blood and tumor tissue from patients with PDAC. Peripheral NK cells are present in normal numbers but display a CD16hiCD57hi phenotype with marked downregulation of NKG2D. Importantly, these cells demonstrate reduced cytotoxic activity and low levels of IFN-γ expression but instead produce high levels of intracellular IL-10, an immunoregulatory cytokine found at increased levels in the blood of PDAC patients. In contrast, NK cells are largely excluded from tumor tissue where they display strong downregulation of both CD16 and CD57, a phenotype that was recapitulated in primary NK cells following co-culture with PDAC organoids. Moreover, expression of activatory proteins, including DNAM-1 and NKP30, was markedly suppressed and the DNAM-1 ligand PVR was strongly expressed on tumor cells. As such, in situ and peripheral NK cells display differential features in patients with PDAC and indicate local and systemic mechanisms by which the tumor can evade immune control. These findings offer a number of potential options for NK-based immunotherapy in the management of patients with PDAC.
Collapse
Affiliation(s)
- Francesca Marcon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samantha Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sandra Margielewska-Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Mustafa Farhat
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Brinder Mahon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Keith J. Roberts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham;UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Jiang H, Torphy RJ, Steiger K, Hongo H, Ritchie AJ, Kriegsmann M, Horst D, Umetsu SE, Joseph NM, McGregor K, Pishvaian MJ, Blais EM, Lu B, Li M, Hollingsworth M, Stashko C, Volmar K, Yeh JJ, Weaver VM, Wang ZJ, Tempero MA, Weichert W, Collisson EA. Pancreatic ductal adenocarcinoma progression is restrained by stromal matrix. J Clin Invest 2020; 130:4704-4709. [PMID: 32749238 PMCID: PMC7456216 DOI: 10.1172/jci136760] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Desmoplasia describes the deposition of extensive extracellular matrix and defines primary pancreatic ductal adenocarcinoma (PDA). The acellular component of this stroma has been implicated in PDA pathogenesis and is being targeted therapeutically in clinical trials. By analyzing the stromal content of PDA samples from numerous annotated PDA data sets and correlating stromal content with both anatomic site and clinical outcome, we found PDA metastases in the liver, the primary cause of mortality to have less stroma, have higher tumor cellularity than primary tumors. Experimentally manipulating stromal matrix with an anti-lysyl oxidase like-2 (anti-LOXL2) antibody in syngeneic orthotopic PDA mouse models significantly decreased matrix content, led to lower tissue stiffness, lower contrast retention on computed tomography, and accelerated tumor growth, resulting in diminished overall survival. These studies suggest an important protective role of stroma in PDA and urge caution in clinically deploying stromal depletion strategies.
Collapse
Affiliation(s)
- Honglin Jiang
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Robert J. Torphy
- Department of Surgery, University of Colorado, Aurora, Colorado, USA
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Henry Hongo
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Alexa J. Ritchie
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Mark Kriegsmann
- Department of Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah E. Umetsu
- Department of Pathology, UCSF, San Francisco, California, USA
| | - Nancy M. Joseph
- Department of Pathology, UCSF, San Francisco, California, USA
| | | | - Michael J. Pishvaian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Washington, DC, USA
- Perthera, Inc, McLean, Virginia, USA
| | | | - Brian Lu
- Bristol-Myers Squibb, Summit, New Jersey, USA
| | - Mingyu Li
- Bristol-Myers Squibb, Summit, New Jersey, USA
| | - Michael Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Connor Stashko
- Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | | | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center
- Department of Surgery, and
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA. University of North Carolina, Chapel Hill, North Carolina, USA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, UCSF, San Francisco, California, USA
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Margaret A. Tempero
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University Munich and German Cancer Consortium (DKTK; partner site Munich), Munich, Germany
| | - Eric A. Collisson
- Division of Hematology and Oncology, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
25
|
CCN-Based Therapeutic Peptides Modify Pancreatic Ductal Adenocarcinoma Microenvironment and Decrease Tumor Growth in Combination with Chemotherapy. Cells 2020; 9:cells9040952. [PMID: 32294968 PMCID: PMC7226963 DOI: 10.3390/cells9040952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
The prominent desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a determinant factor in tumor progression and a major barrier to the access of chemotherapy. The PDAC microenvironment therefore appears to be a promising therapeutic target. CCN2/CTGF is a profibrotic matricellular protein, highly present in the PDAC microenvironment and associated with disease progression. Here we have investigated the therapeutic value of the CCN2-targeting BLR100 and BLR200, two modified synthetic peptides derived from active regions of CCN3, an endogenous inhibitor of CCN2. In a murine orthotopic PDAC model, the two peptides, administered as monotherapy at low doses (approximating physiological levels of CCN3), had tumor inhibitory activity that increased with the dose. The peptides affected the tumor microenvironment, inhibiting fibrosis and vessel formation and reducing necrosis. Both peptides were active in preventing ascites formation. An increased activity was obtained in combination regimens, administering BLR100 or BLR200 with the chemotherapeutic drug gemcitabine. Pharmacokinetic analysis indicated that the improved activity of the combination was not mainly determined by the substantial increase in gemcitabine delivery to tumors, suggesting other effects on the tumor microenvironment. The beneficial remodeling of the tumor stroma supports the potential value of these CCN3-derived peptides for targeting pathways regulated by CCN2 in PDAC.
Collapse
|
26
|
Hakim N, Patel R, Devoe C, Saif MW. Why HALO 301 Failed and Implications for Treatment of Pancreatic Cancer. ACTA ACUST UNITED AC 2019; 3:e1-e4. [PMID: 32030361 PMCID: PMC7003617 DOI: 10.17140/poj-3-e010] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Survival rates for pancreatic cancer (PC) remain dismal. Current standard of care treatment regimens provide transient clinical benefit but eventually chemoresistance develops leading to poor outcomes. PC is a relatively chemoresistant tumor and one of the explanations for this is attributed to desmoplasia that impedes drug delivery. Based on this, stromal modifying agent such as Pegvorhyaluronidase alfa (PEGPH20) was developed and investigated in phase I-III studies. Although phase I-II studies showed promising results in patients with high hyaluronic acid (HA) expressing tumors, the phase III HALO 301 study failed to miss it’s primary endpoint and further development of PEHPH20 is halted. This failure implies that targeting desmoplasia alone is not sufficient and other intrinsic factors such as lack of significant neoantigens, low tumor mutational burden, and epithelial to mesenchymal transition may be at play. It is also important to consider that although the tumor stroma may be a physical barrier hampering drug delivery, it may also have protective effects in restraining tumor growth and progression. Further studies in molecular biology to better characterize the complex interaction between the microenvironment and cancer cells are warranted.
Collapse
Affiliation(s)
- Nausheen Hakim
- Northwell Health Cancer Institute and Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, NY, USA
| | - Rajvi Patel
- Northwell Health Cancer Institute and Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, NY, USA
| | - Craig Devoe
- Northwell Health Cancer Institute and Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, NY, USA
| | - Muhammad W Saif
- Northwell Health Cancer Institute and Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, NY, USA
| |
Collapse
|
27
|
Saini F, Argent RH, Grabowska AM. Sonic Hedgehog Ligand: A Role in Formation of a Mesenchymal Niche in Human Pancreatic Ductal Adenocarcinoma. Cells 2019; 8:E424. [PMID: 31072042 PMCID: PMC6563044 DOI: 10.3390/cells8050424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by desmoplasia, thought to support progression and chemotherapeutic resistance. The Hedgehog pathway is known to play an important role in this cancer. While the upregulation of Sonic hedgehog (Shh) in the epithelium of PDAC is known, we investigated its expression in the tumour microenvironment in order to find new targets for new chemotherapeutical approaches. Immunohistochemistry was used for the investigation of Shh and Vimentin in primary human pancreatic tissues. Gene (qRT-PCR) and protein (immunofluorescence) expression of Shh, αSMA (a marker of the mesenchymal phenotype) and periostin (a marker of mesenchymal cells within a mixed population) were investigated in in vitro cell models. Shh expression was significantly upregulated in the stromal and epithelial compartments of poorly-differentiated PDAC samples, with a strong correlation with the amount of stroma present. Characterisation of stromal cells showed that there was expression of Shh ligand in a mixed population comprising αSMA+ myofibroblasts and αSMA- mesenchymal stem cells. Moreover, we demonstrated the interaction between these cell lines by showing a higher rate of mesenchymal cell proliferation and the upregulation of periostin. Therefore, targeting stromal Shh could affect the equilibrium of the tumour microenvironment and its contribution to tumour growth.
Collapse
Affiliation(s)
- Francesca Saini
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Richard H Argent
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Anna M Grabowska
- Ex Vivo Cancer Pharmacology Centre of Excellence, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
28
|
Lim SA, Kim J, Jeon S, Shin MH, Kwon J, Kim TJ, Im K, Han Y, Kwon W, Kim SW, Yee C, Kim SJ, Jang JY, Lee KM. Defective Localization With Impaired Tumor Cytotoxicity Contributes to the Immune Escape of NK Cells in Pancreatic Cancer Patients. Front Immunol 2019; 10:496. [PMID: 31024520 PMCID: PMC6465515 DOI: 10.3389/fimmu.2019.00496] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), found in patients with advanced pancreatic ductal adenocarcinoma (PDAC), are shown to correlate with overall survival (OS) rate. Although majority of TILs consist of CD8+/CD4+ T cells, the presence of NK cells and their role in the pathogenesis of PDAC remains elusive. We performed comprehensive analyses of TIL, PBMC, and autologous tumor cells from 80 enrolled resectable PDAC patients to comprehend the NK cell defects within PDAC. Extremely low frequencies of NK cells (<0.5%) were found within PDAC tumors, which was attributable not to the low expression of tumor chemokines, but to the lack of chemokine receptor, CXCR2. Forced expression of CXCR2 in patients' NK cells rendered them capable of trafficking into PDAC. Furthermore, NK cells exhibited impaired cell-mediated killing of autologous PDAC cells, primarily due to insufficient ligation of NKG2D and DNAM-1, and failed to proliferate within the hypoxic tumor microenvironment. Importantly, these defects could be overcome by ex-vivo stimulation of NK cells from such patients. Importantly, when the proliferative capacity of NK cells in vitro was used to stratify patients on the basis of cell expansion, patients whose NK cells proliferated <250-fold experienced significantly lower DFS and OS than those with ≥250-fold. Ex-vivo activation of NK cells restored tumor trafficking and reactivity, hence provided a therapeutic modality while their fold expansion could be a potentially significant prognostic indicator of OS and DFS in such patients.
Collapse
Affiliation(s)
- Seon Ah Lim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Jungwon Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Seunghyun Jeon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Min Hwa Shin
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Joonha Kwon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Tae-Jin Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Kyungtaek Im
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sun-Whe Kim
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Cassian Yee
- Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX, United States
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea.,Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX, United States.,Center for Bio- Integrated Electronics, Simpson Querrey Institute, Evanston, IL, United States
| |
Collapse
|
29
|
Maity G, Ghosh A, Gupta V, Haque I, Sarkar S, Das A, Dhar K, Bhavanasi S, Gunewardena SS, Von Hoff DD, Mallik S, Kambhampati S, Banerjee SK, Banerjee S. CYR61/CCN1 Regulates dCK and CTGF and Causes Gemcitabine-resistant Phenotype in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2019; 18:788-800. [PMID: 30787177 DOI: 10.1158/1535-7163.mct-18-0899] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/30/2018] [Accepted: 01/30/2019] [Indexed: 02/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops extrinsic- and intrinsic-resistant phenotypes to prevent chemotherapies from entering into the cells by promoting desmoplastic reactions (DR) and metabolic malfunctions of the drugs. It is well established that these responses are also associated with pancreatic cancer cells' gemcitabine resistance. However, the mechanism by which these resistant pathways function in the pancreatic cancer cells remains poorly understood. In these studies, we show that CYR61/CCN1 signaling plays a vital role in making pancreatic cancer cells resistant to gemcitabine in vitro and also in a tumor xenograft model. We proved that the catastrophic effect of gemcitabine could significantly be increased in gemcitabine-resistant PDAC cells when CYR61/CCN1 is depleted, while this effect can be suppressed in gemcitabine-sensitive neoplastic cells by treating them with CYR61/CCN1 recombinant protein. Ironically, nontransformed pancreatic cells, which are sensitive to gemcitabine, cannot be resistant to gemcitabine by CYR61/CCN1 protein treatment, showing a unique feature of CYR61/CCN signaling that only influences PDAC cells to become resistant. Furthermore, we demonstrated that CYR61/CCN1 suppresses the expression of the gemcitabine-activating enzyme deoxycytidine kinase (dCK) while it induces the expression of a DR-promoting factor CTGF (connective tissue growth factor) in pancreatic cancer cells in vitro and in vivo Thus, the previously described mechanisms (dCK and CTGF pathways) for gemcitabine resistance may be two novel targets for CYR61/CCN1 to protect pancreatic cancer cells from gemcitabine. Collectively, these studies reveal a novel paradigm in which CYR61/CCN1regulates both extrinsic and intrinsic gemcitabine resistance in PDAC cells by employing unique signaling pathways.
Collapse
Affiliation(s)
- Gargi Maity
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Vijayalaxmi Gupta
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Ob/Gyn, University of Kansas Medical Center, Kansas City, Kansas
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Amlan Das
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Kakali Dhar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sneha Bhavanasi
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
| | - Sumedha S Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Daniel D Von Hoff
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri
- The Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
30
|
Kashyap VK, Wang Q, Setua S, Nagesh PKB, Chauhan N, Kumari S, Chowdhury P, Miller DD, Yallapu MM, Li W, Jaggi M, Hafeez BB, Chauhan SC. Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:29. [PMID: 30674344 PMCID: PMC6343279 DOI: 10.1186/s13046-018-1009-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Background The management of pancreatic cancer (PanCa) is exceptionally difficult due to poor response to available therapeutic modalities. Tubulins play a major role in cell dynamics, thus are important molecular targets for cancer therapy. Among various tubulins, βIII and βIV-tubulin isoforms have been primarily implicated in PanCa progression, metastasis and chemo-resistance. However, specific inhibitors of these isoforms that have potent anti-cancer activity with low toxicity are not readily available. Methods We determined anti-cancer molecular mechanisms and therapeutic efficacy of a novel small molecule inhibitor (VERU-111) using in vitro (MTS, wound healing, Boyden chamber and real-time xCELLigence assays) and in vivo (xenograft studies) models of PanCa. The effects of VERU-111 treatment on the expression of β-tubulin isoforms, apoptosis, cancer markers and microRNAs were determined by Western blot, immunohistochemistry (IHC), confocal microscopy, qRT-PCR and in situ hybridization (ISH) analyses. Results We have identified a novel small molecule inhibitor (VERU-111), which preferentially represses clinically important, βIII and βIV tubulin isoforms via restoring the expression of miR-200c. As a result, VERU-111 efficiently inhibited tumorigenic and metastatic characteristics of PanCa cells. VERU-111 arrested the cell cycle in the G2/M phase and induced apoptosis in PanCa cell lines via modulation of cell cycle regulatory (Cdc2, Cdc25c, and Cyclin B1) and apoptosis - associated (Bax, Bad, Bcl-2, and Bcl-xl) proteins. VERU-111 treatment also inhibited tumor growth (P < 0.01) in a PanCa xenograft mouse model. Conclusions This study has identified an inhibitor of βIII/βIV tubulins, which appears to have excellent potential as monotherapy or in combination with conventional therapeutic regimens for PanCa treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-1009-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek K Kashyap
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Qinghui Wang
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Saini Setua
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Sonam Kumari
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Duane D Miller
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| | - Bilal Bin Hafeez
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, Institute of Biomarker and Molecular Therapeutics (IBMT), College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
31
|
Wang X, Song Z, Chen F, Yang X, Wu B, Xie S, Zheng X, Cai Y, Chen W, Zhong Z. AMPK-related kinase 5 (ARK5) enhances gemcitabine resistance in pancreatic carcinoma by inducing epithelial-mesenchymal transition. Am J Transl Res 2018; 10:4095-4106. [PMID: 30662653 PMCID: PMC6325511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
AMPK-related kinase 5 (ARK5) is a member of the human AMP-activated protein kinase (AMPK) family, which is associated with increased tumor survival and drug resistance in many cancers. However, the function of ARK5 in pancreatic carcinoma (PC) is unclear. Our study investigated the role of ARK5 in the chemo-resistance of PC and its underlying mechanism. PC cell lines that displayed high expression levels of ARK5 had low sensitivity to gemcitabine (GEM). Suppression of ARK5 increased sensitivity to GEM in PC cell lines. Western blotting and immunofluorescence showed that suppression of ARK5 upregulated expression of E-cadherin and downregulated vimentin expression. Suppression of ARK5 also inhibited the epithelial-mesenchymal transition (EMT) efficiency associated with GEM in PC cell lines and upregulation of ARK5 expression enhanced GEM resistance in PC cell lines by inducing Twist-mediated EMT. In addition, we found that suppression of ARK5 increased GEM sensitivity in PC cell lines under hypoxic conditions. ARK5 increases GEM resistance in PC cell lines via EMT, and suppression of ARK5 increases sensitivity to GEM under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing UniversityJiaxing 314000, Zhejiang, People’s Repubic of China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing UniversityJiaxing 314000, Zhejiang, People’s Repubic of China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing UniversityJiaxing 314000, Zhejiang, People’s Repubic of China
| | - Xiaodan Yang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing UniversityJiaxing 314000, Zhejiang, People’s Repubic of China
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing UniversityJiaxing 314000, Zhejiang, People’s Repubic of China
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese MedicineHangzhou 310012, Zhejiang, People’s Repubic of China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese MedicineHangzhou 310012, Zhejiang, People’s Repubic of China
| | - Ying Cai
- Meizhong Disease Gene Research Institute Company LimitedMeizhong, Shandong, People’s Repubic of China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese MedicineHangzhou 310012, Zhejiang, People’s Repubic of China
| | - Zhengxiang Zhong
- Department of Surgery, The Second Affiliated Hospital of Jiaxing UniversityJiaxing 314000, Zhejiang, People’s Repubic of China
| |
Collapse
|
32
|
Polireddy K, Dong R, Reed G, Yu J, Chen P, Williamson S, Violet PC, Pessetto Z, Godwin AK, Fan F, Levine M, Drisko JA, Chen Q. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci Rep 2017; 7:17188. [PMID: 29215048 PMCID: PMC5719364 DOI: 10.1038/s41598-017-17568-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer is among the most lethal cancers with poorly tolerated treatments. There is increasing interest in using high-dose intravenous ascorbate (IVC) in treating this disease partially because of its low toxicity. IVC bypasses bioavailability barriers of oral ingestion, provides pharmacological concentrations in tissues, and exhibits selective cytotoxic effects in cancer cells through peroxide formation. Here, we further revealed its anti-pancreatic cancer mechanisms and conducted a phase I/IIa study to investigate pharmacokinetic interaction between IVC and gemcitabine. Pharmacological ascorbate induced cell death in pancreatic cancer cells with diverse mutational backgrounds. Pharmacological ascorbate depleted cellular NAD+ preferentially in cancer cells versus normal cells, leading to depletion of ATP and robustly increased α-tubulin acetylation in cancer cells. While ATP depletion led to cell death, over-acetylated tubulin led to inhibition of motility and mitosis. Collagen was increased, and cancer cell epithelial-mesenchymal transition (EMT) was inhibited, accompanied with inhibition in metastasis. IVC was safe in patients and showed the possibility to prolong patient survival. There was no interference to gemcitabine pharmacokinetics by IVC administration. Taken together, these data revealed a multi-targeting mechanism of pharmacological ascorbate's anti-cancer action, with minimal toxicity, and provided guidance to design larger definitive trials testing efficacy of IVC in treating advanced pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ruochen Dong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gregory Reed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jun Yu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ping Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Stephen Williamson
- Department of Internal Medicine, Hematology and Oncology Division, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Pierre-Christian Violet
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ziyan Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Fang Fan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mark Levine
- National Institute of Diabetes, Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeanne A Drisko
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Integrative Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
33
|
Liang C, Shi S, Meng Q, Liang D, Ji S, Zhang B, Qin Y, Xu J, Ni Q, Yu X. Complex roles of the stroma in the intrinsic resistance to gemcitabine in pancreatic cancer: where we are and where we are going. Exp Mol Med 2017; 49:e406. [PMID: 29611542 PMCID: PMC5750480 DOI: 10.1038/emm.2017.255] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/23/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the most devastating human malignancies. The poor clinical outcome in PDAC is partly attributed to a growth-permissive tumor microenvironment. In the PDAC microenvironment, the stroma is characterized by the development of extensive fibrosis, with stromal components outnumbering pancreatic cancer cells. Each of the components within the stroma has a distinct role in conferring chemoresistance to PDAC, and intrinsic chemoresistance has further worsened this pessimistic prognosis. The nucleoside analog gemcitabine (GEM) is usually the recommended first-line chemotherapeutic agent for PDAC patients and is given alone or in combination with other agents. The mechanisms of intrinsic resistance to GEM are an active area of ongoing research. This review highlights the important role the complex structure of stroma in PDAC plays in the intrinsic resistance to GEM and discusses whether antistroma therapy improves the efficacy of GEM. The addition of antistroma therapy combined with GEM is expected to be a novel therapeutic strategy with significant survival benefits for PDAC patients.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Zhao J, Li J, Schlößer HA, Popp F, Popp MC, Alakus H, Jauch KW, Bruns CJ, Zhao Y. Targeting Cancer Stem Cells and Their Niche: Current Therapeutic Implications and Challenges in Pancreatic Cancer. Stem Cells Int 2017; 2017:6012810. [PMID: 28845161 PMCID: PMC5563426 DOI: 10.1155/2017/6012810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/17/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a subpopulation of stem-like cancer cells with the ability of self-renewal and differentiation in hematological malignancies and solid tumors. Pancreatic cancer is one of the most lethal cancers worldwide. CSCs are thought to be responsible for cancer initiation, progression, metastasis, chemoresistance, and recurrence in pancreatic cancer. In this review, we summarize the characteristics of pancreatic CSCs and discuss the mechanisms involved in resistance to chemotherapy, the interactions with the niche, and the potential role in cancer immunoediting. We propose that immunotherapy targeting pancreatic CSCs, in combination with targeting the niche components, may provide a novel treatment strategy to eradicate pancreatic CSCs and hence improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Jiangang Zhao
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jiahui Li
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hans A Schlößer
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
- Cologne Interventional Immunology, University of Cologne, Cologne, Germany
| | - Felix Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Marie Christine Popp
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
35
|
Abstract
Recent studies have demonstrated a critical role for nerves in enabling tumor progression. The association of nerves with cancer cells is well established for a variety of malignant tumors, including pancreatic, prostate and the head and neck cancers. This association is often correlated with poor prognosis. A strong partnership between cancer cells and nerve cells leads to both cancer progression and expansion of the nerve network. This relationship is supported by molecular pathways related to nerve growth and repair. Peripheral nerves form complex tumor microenvironments, which are made of several cell types including Schwann cells. Recent studies have revealed that Schwann cells enable cancer progression by adopting a de-differentiated phenotype, similar to the Schwann cell response to nerve trauma. A detailed understanding of the molecular and cellular mechanisms involved in the regulation of cancer progression by the nerves is essential to design strategies to inhibit tumor progression.
Collapse
|
36
|
Brancato V, Comunanza V, Imparato G, Corà D, Urciuolo F, Noghero A, Bussolino F, Netti PA. Bioengineered tumoral microtissues recapitulate desmoplastic reaction of pancreatic cancer. Acta Biomater 2017; 49:152-166. [PMID: 27916739 DOI: 10.1016/j.actbio.2016.11.072] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Many of the existing three-dimensional (3D) cancer models in vitro fail to represent the entire complex tumor microenvironment composed of cells and extra cellular matrix (ECM) and do not allow a reliable study of the tumoral features and progression. In this paper we reported a strategy to produce 3D in vitro microtissues of pancreatic ductal adenocarcinoma (PDAC) for studying the desmoplastic reaction activated by the stroma-cancer crosstalk. Human PDAC microtissues were obtained by co-culturing pancreatic cancer cells (PT45) and normal or cancer-associated fibroblasts within biodegradable microcarriers in a spinner flask bioreactor. Morphological and histological analyses highlighted that the presence of fibroblasts resulted in the deposition of a stromal matrix rich in collagen leading to the formation of tumor microtissues composed of a heterotypic cell population embedded in their own ECM. We analyzed the modulation of expression of ECM genes and proteins and found that when fibroblasts were co-cultured with PT45, they acquired a myofibroblast phenotype and expressed the desmoplastic reaction markers. This PDAC microtissue, closely recapitulating key PDAC microenvironment characteristics, provides a valuable tool to elucidate the complex stroma-cancer interrelationship and could be used in a future perspective as a testing platform for anticancer drugs in tissue-on-chip technology. STATEMENT OF SIGNIFICANCE Tumor microenvironment is extremely complex and its organization is due to the interaction between different kind of cells and the extracellular matrix. Tissue engineering could give the answer to the increasing need of 3D culture model that better recapitulate the tumor features at cellular and extracellular level. We aimed in this work at developing a microtissue tumor model by mean of seeding together cancer cells and fibroblasts on gelatin microsphere in order to monitor the crosstalk between the two cell populations and the endogenous extracellular matrix deposition. Results are of particular interest because of the need of heterotypic cancer model that can replicate the complexity of the tumor microenvironment and could be used as drug screening platform.
Collapse
Affiliation(s)
- Virginia Brancato
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| | - Davide Corà
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Francesco Urciuolo
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alessio Noghero
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, SP 142 km 3.95, 10060 Candiolo, Italy; Candiolo Cancer Institute - IRCCS, SP 142 km 3.95, 10060 Candiolo, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples, Italy; Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy; Department of Chemical, Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples, Italy
| |
Collapse
|
37
|
Durand N, Storz P. Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Rev Anticancer Ther 2016; 17:19-31. [PMID: 27841037 DOI: 10.1080/14737140.2017.1261017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDA) is characterized by expression of oncogenic KRas which drives all aspects of tumorigenesis. Oncogenic KRas induces the formation of reactive oxygen species (ROS) which have been implicated in initiation and progression of PDA. To facilitate tumor promoting levels and to avoid oncogene-induced senescence or cytotoxicity, ROS homeostasis in PDA cells is balanced by additional up-regulation of antioxidant systems. Areas covered: We examine the sources of ROS in PDA, the mechanisms by which ROS homeostasis is maintained, and the biological consequences of ROS in PDA. Additionally, we discuss the potential mechanisms for targeting ROS homoeostasis as a point of therapeutic intervention. An extensive review of the relevant literature as it relates to the topic was conducted using PubMed. Expert commentary: Even though oncogenic mutations in the KRAS gene have been detected in over 95% of human pancreatic adenocarcinoma, targeting its gene product, KRas, has been difficult. The dependency of PDA cells on balancing ROS homeostasis could be an angle for new prevention or treatment strategies. These include use of antioxidants to prevent formation or progression of precancerous lesions, or methods to increase ROS in tumor cells to toxic levels.
Collapse
Affiliation(s)
- Nisha Durand
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Peter Storz
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
38
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|
39
|
Khan S, Ebeling MC, Chauhan N, Thompson PA, Gara RK, Ganju A, Yallapu MM, Behrman SW, Zhao H, Zafar N, Singh MM, Jaggi M, Chauhan SC. Ormeloxifene suppresses desmoplasia and enhances sensitivity of gemcitabine in pancreatic cancer. Cancer Res 2015; 75:2292-304. [PMID: 25840985 PMCID: PMC4452412 DOI: 10.1158/0008-5472.can-14-2397] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/21/2015] [Indexed: 12/29/2022]
Abstract
The management of pancreatic ductal adenocarcinoma (PDAC) is extremely poor due to lack of an efficient therapy and development of chemoresistance to the current standard therapy, gemcitabine. Recent studies implicate the intimate reciprocal interactions between epithelia and underlying stroma due to paracrine Sonic hedgehog (SHH) signaling in producing desmoplasia and chemoresistance in PDAC. Herein, we report for the first time that a nonsteroidal drug, ormeloxifene, has potent anticancer properties and depletes tumor-associated stromal tissue by inhibiting the SHH signaling pathway in PDAC. We found that ormeloxifene inhibited cell proliferation and induced death in PDAC cells, which provoked us to investigate the combinatorial effects of ormeloxifene with gemcitabine at the molecular level. Ormeloxifene caused potent inhibition of the SHH signaling pathway via downregulation of SHH and its related important downstream targets such as Gli-1, SMO, PTCH1/2, NF-κB, p-AKT, and cyclin D1. Ormeloxifene potentiated the antitumorigenic effect of gemcitabine by 75% in PDAC xenograft mice. Furthermore, ormeloxifene depleted tumor-associated stroma in xenograft tumor tissues by inhibiting the SHH cellular signaling pathway and mouse/human collagen I expression. Xenograft tumors treated with ormeloxifene in combination with gemcitabine restored the tumor-suppressor miR-132 and inhibited stromal cell infiltration into the tumor tissues. In addition, invasiveness of tumor cells cocultivated with TGFβ-stimulated human pancreatic stromal cells was effectively inhibited by ormeloxifene treatment alone or in combination with gemcitabine. We propose that ormeloxifene has high therapeutic index and in a combination therapy with gemcitabine, it possesses great promise as a treatment of choice for PDAC/pancreatic cancer.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Mara C Ebeling
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, South Dakota
| | - Rishi K Gara
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Haotian Zhao
- Cancer Biology and Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, Tennessee
| | | | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
40
|
Underwood TJ, Hayden AL, Derouet M, Garcia E, Noble F, White MJ, Thirdborough S, Mead A, Clemons N, Mellone M, Uzoho C, Primrose JN, Blaydes JP, Thomas GJ. Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol 2015; 235:466-77. [PMID: 25345775 PMCID: PMC4312957 DOI: 10.1002/path.4467] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/06/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
Interactions between cancer cells and cancer-associated fibroblasts (CAFs) play an important role in tumour development and progression. In this study we investigated the functional role of CAFs in oesophageal adenocarcinoma (EAC). We used immunochemistry to analyse a cohort of 183 EAC patients for CAF markers related to disease mortality. We characterized CAFs and normal oesophageal fibroblasts (NOFs) using western blotting, immunofluorescence and gel contraction. Transwell assays, 3D organotypic culture and xenograft models were used to examine the effects on EAC cell function and to dissect molecular mechanisms regulating invasion. Most EACs (93%) contained CAFs with a myofibroblastic (α-SMA-positive) phenotype, which correlated significantly with poor survival [p = 0.016; HR 7. 1 (1.7–29.4)]. Primary CAFs isolated from EACs have a contractile, myofibroblastic phenotype and promote EAC cell invasion in vitro (Transwell assays, p ≤ 0.05; organotypic culture, p < 0.001) and in vivo (p ≤ 0.05). In vitro, this pro-invasive effect is modulated through the matricellular protein periostin. Periostin is secreted by CAFs and acts as a ligand for EAC cell integrins αvβ3 and αvβ5, promoting activation of the PI3kinase–Akt pathway. In patient samples, periostin expression at the tumour cell–stromal interface correlates with poor overall and disease-free survival. Our study highlights the importance of the tumour stroma in EAC progression. Paracrine interaction between CAF-secreted periostin and EAC-expressed integrins results in PI3 kinase–Akt activation and increased tumour cell invasion. Most EACs contain a myofibroblastic CAF-rich stroma; this may explain the aggressive, highly infiltrative nature of the disease, and suggests that stromal targeting may produce therapeutic benefit in EAC patients.
Collapse
Affiliation(s)
- Timothy J Underwood
- Cancer Sciences Unit, Somers Cancer Research Building, University of Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chitkara D, Mittal A, Mahato RI. miRNAs in pancreatic cancer: therapeutic potential, delivery challenges and strategies. Adv Drug Deliv Rev 2015; 81:34-52. [PMID: 25252098 DOI: 10.1016/j.addr.2014.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a severe pancreatic malignancy and is predicted to victimize 1.5% of men and women during their lifetime (Cancer statistics: SEER stat fact sheet, National Cancer Institute, 2014). miRNAs have emerged as a promising prognostic, diagnostic and therapeutic tool to fight against pancreatic cancer. miRNAs could modulate gene expression by imperfect base-pairing with target mRNA and hence provide means to fine-tune multiple genes simultaneously and alter various signaling pathways associated with the disease. This exceptional miRNA feature has provided a paradigm shift from the conventional one drug one target concept to one drug multiple target theory. However, in vivo miRNA delivery is not fully realized due to challenges posed by this special class of therapeutic molecules, which involves thorough understanding of the biogenesis and physicochemical properties of miRNA and delivery carriers along with the pathophysiology of the PDAC. This review highlights the delivery strategies of miRNA modulators (mimic/inhibitor) in cancer with special emphasis on PDAC since successful delivery of miRNA in vivo constitutes the major challenge in clinical translation of this promising class of therapeutics.
Collapse
|
42
|
Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, Chauhan N, Ganju A, Balakrishna S, Gupta BK, Zafar N, Jaggi M, Chauhan SC. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 2014; 35:8635-48. [PMID: 25028336 DOI: 10.1016/j.biomaterials.2014.06.040] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 06/22/2014] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer disease in men in the Unites States and its management remains a challenge in everyday oncology practice. Thus, advanced therapeutic strategies are required to treat prostate cancer patients. Curcumin (CUR) is a promising anticancer agent for various cancer types. The objective of this study was to evaluate therapeutic potential of novel poly(lactic-co-glycolic acid)- CUR nanoparticles (PLGA-CUR NPs) for prostate cancer treatment. Our results indicate that PLGA-CUR NPs efficiently internalize in prostate cancer cells and release biologically active CUR in cytosolic compartment of cells for effective therapeutic activity. Cell proliferation (MTS), clonogenic, and Western blot analyses reveal that PLGA-CUR NPs can effectively inhibit proliferation and colony formation ability of prostate cancer cells than free CUR. PLGA-CUR NPs showed superior tumor regression compared to CUR in xenograft mice. Further investigations reveal that PLGA-CUR NPs inhibit nuclear β-catenin and AR expression in cells and in tumor xenograft tissues. It also suppresses STAT3 and AKT phosphorylation and leads to apoptosis via inhibition of key anti-apoptotic proteins, Mcl-1, Bcl-xL and caused induction of PARP cleavage. Additionally, significant downregulation of oncogenic miR21 and up-regulation of miR-205 was observed with PLGA-CUR NPs treatment as determined by RT-PCR and in situ hybridization analyses. A superior anti-cancer potential was attained with PSMA antibody conjugated PLGA-CUR NPs in prostate cancer cells and a significant tumor targeting of (131)I labeled PSMA antibody was achieved with PLGA-CUR NPs in prostate cancer xenograft mice model. In conclusion, PLGA-CUR NPs can significantly accumulate and exhibit superior anticancer activity in prostate cancer.
Collapse
Affiliation(s)
- Murali M Yallapu
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Diane M Maher
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Vasudha Sundram
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Aditya Ganju
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swathi Balakrishna
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Brij K Gupta
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Nadeem Zafar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and The Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
43
|
|
44
|
Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, Laklai H, Sugimoto H, Kahlert C, Novitskiy SV, De Jesus-Acosta A, Sharma P, Heidari P, Mahmood U, Chin L, Moses HL, Weaver VM, Maitra A, Allison JP, LeBleu VS, Kalluri R. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014; 25:719-734. [PMID: 24856586 PMCID: PMC4180632 DOI: 10.1016/j.ccr.2014.04.005] [Citation(s) in RCA: 1864] [Impact Index Per Article: 169.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/08/2014] [Accepted: 04/10/2014] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with marked fibrosis and stromal myofibroblasts, but their functional contribution remains unknown. Transgenic mice with the ability to delete αSMA(+) myofibroblasts in pancreatic cancer were generated. Depletion starting at either noninvasive precursor (pancreatic intraepithelial neoplasia) or the PDAC stage led to invasive, undifferentiated tumors with enhanced hypoxia, epithelial-to-mesenchymal transition, and cancer stem cells, with diminished animal survival. In PDAC patients, fewer myofibroblasts in their tumors also correlated with reduced survival. Suppressed immune surveillance with increased CD4(+)Foxp3(+) Tregs was observed in myofibroblast-depleted mouse tumors. Although myofibroblast-depleted tumors did not respond to gemcitabine, anti-CTLA4 immunotherapy reversed disease acceleration and prolonged animal survival. This study underscores the need for caution in targeting carcinoma-associated fibroblasts in PDAC.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | - Julienne L Carstens
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Xiaofeng Zheng
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tyler R Simpson
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hanane Laklai
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Kahlert
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Sergey V Novitskiy
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ana De Jesus-Acosta
- Department of Medical Oncology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Padmanee Sharma
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lynda Chin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Harold L Moses
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James P Allison
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Sainio A, Järveläinen H. Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:14. [PMID: 26056582 PMCID: PMC4452050 DOI: 10.1186/2052-8426-2-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/23/2014] [Indexed: 02/07/2023]
Abstract
Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore, development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or targets in cancer gene therapy in the future.
Collapse
Affiliation(s)
- Annele Sainio
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Hannu Järveläinen
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland ; Division of Endocrinology, Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, Fl-20520 Turku, Finland
| |
Collapse
|
46
|
Sainio A, Järveläinen H. Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:14. [PMID: 26056582 PMCID: PMC4452050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/23/2014] [Indexed: 11/21/2023]
Abstract
Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore, development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or targets in cancer gene therapy in the future.
Collapse
Affiliation(s)
- Annele Sainio
- />Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Hannu Järveläinen
- />Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
- />Division of Endocrinology, Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, Fl-20520 Turku, Finland
| |
Collapse
|
47
|
Chen L, Qu C, Chen H, Xu L, Qi Q, Luo J, Wang K, Meng Z, Chen Z, Wang P, Liu L. Chinese herbal medicine suppresses invasion-promoting capacity of cancer-associated fibroblasts in pancreatic cancer. PLoS One 2014; 9:e96177. [PMID: 24781445 PMCID: PMC4004556 DOI: 10.1371/journal.pone.0096177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/04/2014] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer remains one of the leading causes of cancer-related deaths, due to aggressive growth, high metastatic rates during the early stage and the lack of an effective therapeutic approach. We previously showed that Qingyihuaji (QYHJ), a seven-herb Chinese medicine formula, exhibited significant anti-cancer effects in pancreatic cancer, associated with modifications in the tumor microenvironment, particularly the inhibition of cancer-associated fibroblast (CAF) activation. In the present study, we generated CAF and paired normal fibroblast (NF) cultures from resected human pancreatic cancer tissues. We observed that CAFs exhibited an enhanced capacity for inducing pancreatic cancer cell migration and invasion compared with NFs, while QYHJ-treated CAFs exhibited decreased migration and invasion-promoting capacities in vitro. The results of further analyses indicated that compared with NFs, CAFs exhibit increased CXCL1, 2 and 8 expression, contributing to the enhanced invasion-promoting capacities of these cells, while QYHJ treatment significantly suppressed CAF proliferation activities and the production of CAF-derived CXCL1, 2 and 8. These in vitro observations were confirmed in mice models of human pancreatic cancer. Taken together, these results suggested that suppressing the tumor-promoting capacity of CAFs through Chinese herbal medicine attenuates pancreatic cancer cell invasion.
Collapse
Affiliation(s)
- Lianyu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Qi Qi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Jianmin Luo
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Kun Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai medical college, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Khan S, Kumar D, Jaggi M, Chauhan SC. Targeting microRNAs in pancreatic cancer: microplayers in the big game. Cancer Res 2013; 73:6541-7. [PMID: 24204026 DOI: 10.1158/0008-5472.can-13-1288] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prognosis of patients with pancreatic cancer is extremely poor, and current systemic therapies result in only marginal survival rates for patients. The era of targeted therapies has offered a new avenue to search for more effective therapeutic strategies. Recently, microRNAs (miRNA) that are small noncoding RNAs (18-24 nucleotides) have been associated with a number of diseases, including cancer. Disruption of miRNAs may have important implications in cancer etiology, diagnosis, and treatment. So far, focus has been on the mechanisms that are involved in translational silencing of their targets to fine tune gene expression. This review summarizes the approach for rational validation of selected candidates that might be involved in pancreatic tumorigenesis, cancer progression, and disease management. Herein, we also focus on the major issues hindering the identification of miRNAs, their linked pathways and recent advances in understanding their role as diagnostic/prognostic biomarkers, and therapeutic tools in dealing with this disease. miRNAs are expected to be robust clinical analytes, valuable for clinical research and biomarker discovery.
Collapse
Affiliation(s)
- Sheema Khan
- Authors' Affiliations: Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee; The Sanford Project, Children Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota; and Cancer Research Laboratory, Department of Biological and Environmental Sciences, University of the District of Columbia, Washington, District of Columbia
| | | | | | | |
Collapse
|
49
|
Drifka CR, Eliceiri KW, Weber SM, Kao WJ. A bioengineered heterotypic stroma-cancer microenvironment model to study pancreatic ductal adenocarcinoma. LAB ON A CHIP 2013; 13:3965-75. [PMID: 23959166 PMCID: PMC3834588 DOI: 10.1039/c3lc50487e] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Interactions between neoplastic epithelial cells and components of a reactive stroma in pancreatic ductal adenocarcinoma (PDAC) are of key significance behind the disease's dismal prognosis. Despite extensive published research in the importance of stroma-cancer interactions in other cancers and experimental evidence supporting the importance of the microenvironment in PDAC progression, a reproducible three-dimensional (3D) in vitro model for exploring stroma-cancer interplay and evaluating therapeutics in a physiologically relevant context has been lacking. We introduce a humanized microfluidic model of the PDAC microenvironment incorporating multicellularity, extracellular matrix (ECM) components, and a spatially defined 3D microarchitecture. Pancreatic stellate cells (PSCs) isolated from clinically-evaluated human tissue specimens were co-cultured with pancreatic ductal adenocarcinoma cells as an accessible 3D construct that maintained important tissue features and disease behavior. Multiphoton excitation (MPE) and Second Harmonic Generation (SHG) imaging techniques were utilized to image the intrinsic signal of stromal collagen in human pancreatic tissues and live cell-collagen interactions within the optically-accessible microfluidic tissue model. We further evaluated the dose-response of the model with the anticancer agent paclitaxel. This bioengineered model of the PDAC stroma-cancer microenvironment provides a complementary platform to elucidate the complex stroma-cancer interrelationship and to evaluate the efficacy of potential therapeutics in a humanized system that closely recapitulates key PDAC microenvironment characteristics.
Collapse
Affiliation(s)
- Cole R. Drifka
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Sharon M. Weber
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Surgery, University of Wisconsin, Madison, WI, USA
| | - W. John Kao
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, WI, USA
- Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA
- Department of Surgery, University of Wisconsin, Madison, WI, USA
- School of Pharmacy, University of Wisconsin, Madison, WI, USA
- UW Institute for Clinical and Translational Research, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
50
|
Buckway B, Wang Y, Ray A, Ghandehari H. Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors. Int J Pharm 2013; 456:202-11. [PMID: 23933441 DOI: 10.1016/j.ijpharm.2013.07.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 12/18/2022]
Abstract
Delivery of macromolecules to pancreatic cancer is inhibited by a dense extracellular matrix composed of hyaluronic acid, smooth muscle actin and collagen fibers. Hyaluronic acid causes a high intratumoral fluidic pressure which prevents diffusion and penetration into the pancreatic tumor. This study involves the breaking down of hyaluronic acid by treating CAPAN-1 xenograft tumors in athymic nu/nu mice with targeted N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers radiolabeled with (111)In for single photon emission computerized tomography (SPECT) imaging. Two targeting strategies were investigated including αvβ3 integrin and HER2 receptors. HPMA copolymers were targeted to these receptors by conjugating short peptide ligands cRGDfK and KCCYSL to the side chains of the copolymer. Results demonstrate that tumor targeting can be achieved in vivo after treatment with hyaluronidase. This approach shows promise for enhanced delivery of polymer-peptide conjugates to solid tumors.
Collapse
Affiliation(s)
- Brandon Buckway
- Department of Pharmaceutics and Pharmaceutical Chemistry, and of Bioengineering, Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S Wasatch Dr, 5205 SMBB, Salt Lake City, UT 84112, USA; Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|