1
|
Gonçalez JL, Shen J, Li W. Molecular Mechanisms of Rett Syndrome: Emphasizing the Roles of Monoamine, Immunity, and Mitochondrial Dysfunction. Cells 2024; 13:2077. [PMID: 39768168 PMCID: PMC11674639 DOI: 10.3390/cells13242077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the Methyl-CpG-binding Protein-2 (MECP2) gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT. Research has shown that monoamines-such as dopamine, norepinephrine, epinephrine, serotonin, and histamine-exhibit alterations in RTT, contributing to a range of neurological symptoms. Furthermore, the immune system in RTT individuals demonstrates dysfunction through the abnormal activity of microglia, macrophages, lymphocytes, and non-immune cells, leading to the atypical release of inflammatory mediators and disruptions in the NF-κB signaling pathway. Moreover, mitochondria, essential for energy production and calcium storage, also show dysfunction in this condition. The delicate balance of producing and scavenging reactive oxygen species-termed redox balance-is disrupted in RTT. Targeting these molecular pathways presents a promising avenue for developing effective therapies.
Collapse
Affiliation(s)
- Julia Lopes Gonçalez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
- Graduate Program in Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jenny Shen
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| | - Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (J.L.G.); (J.S.)
| |
Collapse
|
2
|
Orzuna-Orzuna JF, Lara-Bueno A, Gloria-Trujillo A, Mendoza-Martínez GD, Miranda-Romero LA, Hernández-García PA. Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive. Vet Sci 2024; 11:520. [PMID: 39591294 PMCID: PMC11599106 DOI: 10.3390/vetsci11110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to evaluate the effects of supplementation with a polyherbal phytogenic additive (PPA) on the productive performance, dietary energetics, blood metabolites, carcass traits, meat quality, and gene expression of finishing lambs. Thirty-six male Pelibuey lambs (23.61 ± 0.57 kg body weight (BW)) were housed in individual pens and assigned to four treatments (n = 9) with different doses of PPA: 0 (CON), 2.5 (PPAL), 5 (PPAM), and 7.5 (PPAH) g of PPA/kg of DM for 56 days. Average daily gain, dry matter intake, and observed dietary net energy for maintenance and weight gain increased linearly (p < 0.05) in lambs supplemented with PPAH. A linear reduction (p = 0.02) in FCR was detected in lambs fed PPAM and PPAH. The PPAH supplementation linearly increased (p < 0.001) Longissimus dorsi muscle area, but other carcass traits were not affected (p > 0.05) by PPA doses. The physicochemical characteristics of the meat and the hematological parameters of the lambs were not affected (p > 0.05) by the PPA doses. The glucose, uric acid, creatinine, and bilirubin serum concentrations decreased linearly (p < 0.05) in lambs supplemented with PPAM and PPAH. Gene ontology analyses showed that nine biological processes were modified (p < 0.05), including DNA replication, drug metabolism-cytochrome P450, oxidative phosphorylation, and chemical carcinogenesis-reactive oxygen species. In conclusion, high doses (7.5 g/kg DM) of PPA can improve growth performance and dietary energy utilization efficiency in finishing lambs. Likewise, gene expression analysis indicates that supplementation with high doses of PPA could improve energy production and antioxidant status in finishing lambs.
Collapse
Affiliation(s)
- José Felipe Orzuna-Orzuna
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (L.A.M.-R.)
| | - Alejandro Lara-Bueno
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (L.A.M.-R.)
| | - Adrián Gloria-Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City CP 04960, Mexico; (A.G.-T.); (G.D.M.-M.)
| | - Germán David Mendoza-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City CP 04960, Mexico; (A.G.-T.); (G.D.M.-M.)
| | - Luis Alberto Miranda-Romero
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (L.A.M.-R.)
| | | |
Collapse
|
3
|
Balicza P, Gezsi A, Fedor M, Sagi JC, Gal A, Varga NA, Molnar MJ. Multilevel evidence of MECP2-associated mitochondrial dysfunction and its therapeutic implications. Front Psychiatry 2024; 14:1301272. [PMID: 38250256 PMCID: PMC10796460 DOI: 10.3389/fpsyt.2023.1301272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024] Open
Abstract
We present a male patient carrying a pathogenic MECP2 p. Arg179Trp variant with predominant negative psychiatric features and multilevel evidence of mitochondrial dysfunction who responded to the cariprazine treatment. He had delayed speech development and later experienced severe social anxiety, learning disabilities, cognitive slowing, and predominant negative psychiatric symptoms associated with rigidity. Clinical examinations showed multisystemic involvement. Together with elevated ergometric lactate levels, the clinical picture suggested mitochondrial disease, which was also supported by muscle histopathology. Exploratory transcriptome analysis also revealed the involvement of metabolic and oxidative phosphorylation pathways. Whole-exome sequencing identified a pathogenic MECP2 variant, which can explain both the dopamine imbalance and mitochondrial dysfunction in this patient. Mitochondrial dysfunction was previously suggested in classical Rett syndrome, and we detected related phenotype evidence on multiple consistent levels for the first time in a MECP2 variant carrier male. This study further supports the importance of the MECP2 gene in the mitochondrial pathways, which can open the gate for more personalized therapeutic interventions. Good cariprazine response highlights the role of dopamine dysfunction in the complex psychiatric symptoms of Rett syndrome. This can help identify the optimal treatment strategy from a transdiagnostic perspective instead of a classical diagnostic category.
Collapse
Affiliation(s)
- Peter Balicza
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- Eotvos Lorand Research Network, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| | - Andras Gezsi
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Mariann Fedor
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Judit C. Sagi
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Aniko Gal
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Noemi Agnes Varga
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
| | - Maria Judit Molnar
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Budapest, Hungary
- Eotvos Lorand Research Network, Multiomic Neurodegeneration Research Group, Budapest, Hungary
| |
Collapse
|
4
|
Kalani L, Kim BH, Vincent JB, Ausió J. MeCP2 ubiquitination and sumoylation, in search of a function†. Hum Mol Genet 2023; 33:1-11. [PMID: 37694858 DOI: 10.1093/hmg/ddad150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023] Open
Abstract
MeCP2 (Methyl CpG binding protein 2) is an intrinsically disordered protein that binds to methylated genome regions. The protein is a critical transcriptional regulator of the brain, and its mutations account for 95% of Rett syndrome (RTT) cases. Early studies of this neurodevelopmental disorder revealed a close connection with dysregulations of the ubiquitin system (UbS), notably as related to UBE3A, a ubiquitin ligase involved in the proteasome-mediated degradation of proteins. MeCP2 undergoes numerous post-translational modifications (PTMs), including ubiquitination and sumoylation, which, in addition to the potential functional outcomes of their monomeric forms in gene regulation and synaptic plasticity, in their polymeric organization, these modifications play a critical role in proteasomal degradation. UbS-mediated proteasomal degradation is crucial in maintaining MeCP2 homeostasis for proper function and is involved in decreasing MeCP2 in some RTT-causing mutations. However, regardless of all these connections to UbS, the molecular details involved in the signaling of MeCP2 for its targeting by the ubiquitin-proteasome system (UPS) and the functional roles of monomeric MeCP2 ubiquitination and sumoylation remain largely unexplored and are the focus of this review.
Collapse
Affiliation(s)
- Ladan Kalani
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - Bo-Hyun Kim
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, 27 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
5
|
Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WLY, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants. Hum Mol Genet 2023; 33:12-32. [PMID: 37712894 PMCID: PMC10729867 DOI: 10.1093/hmg/ddad154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Veda Surapaneni
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Chelsea E Lee
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Kaela Singleton
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Duc Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Bicentennial Way, Middlebury, VT 05753, United States
| | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Joseph Martin Dalloul
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - William Li-Yun Liu
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Anupam Patgiri
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Daniel Tarquinio
- Center for Rare Neurological Diseases, 5600 Oakbrook Pkwy, Norcross, GA 30093, United States
| | - Randall Carpenter
- Rett Syndrome Research Trust, 67 Under Cliff Rd, Trumbull, CT 06611, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| |
Collapse
|
6
|
Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WLY, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Systemic Proteome Phenotypes Reveal Defective Metabolic Flexibility in Mecp2 Mutants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535431. [PMID: 37066332 PMCID: PMC10103972 DOI: 10.1101/2023.04.03.535431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.
Collapse
Affiliation(s)
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Veda Surapaneni
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Chelsea E. Lee
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Kaela Singleton
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| | - Duc Duong
- Department of Biochemistry, Emory University, Atlanta, GA, USA, 30322
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, Vermont 05753
| | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Joseph Martin Dalloul
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA, USA, 30322
| | - William Li-Yun Liu
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA, USA, 30322
| | - Anupam Patgiri
- Department of Pharmacology & Chemical Biology, Emory University, Atlanta, GA, USA, 30322
| | | | | | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA, 30322
| |
Collapse
|
7
|
Golubiani G, van Agen L, Tsverava L, Solomonia R, Müller M. Mitochondrial Proteome Changes in Rett Syndrome. BIOLOGY 2023; 12:956. [PMID: 37508386 PMCID: PMC10376342 DOI: 10.3390/biology12070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Rett syndrome (RTT) is a genetic neurodevelopmental disorder with mutations in the X-chromosomal MECP2 (methyl-CpG-binding protein 2) gene. Most patients are young girls. For 7-18 months after birth, they hardly present any symptoms; later they develop mental problems, a lack of communication, irregular sleep and breathing, motor dysfunction, hand stereotypies, and seizures. The complex pathology involves mitochondrial structure and function. Mecp2-/y hippocampal astrocytes show increased mitochondrial contents. Neurons and glia suffer from oxidative stress, a lack of ATP, and increased hypoxia vulnerability. This spectrum of changes demands comprehensive molecular studies of mitochondria to further define their pathogenic role in RTT. Therefore, we applied a comparative proteomic approach for the first time to study the entity of mitochondrial proteins in a mouse model of RTT. In the neocortex and hippocampus of symptomatic male mice, two-dimensional gel electrophoresis and subsequent mass-spectrometry identified various differentially expressed mitochondrial proteins, including components of respiratory chain complexes I and III and the ATP-synthase FoF1 complex. The NADH-ubiquinone oxidoreductase 75 kDa subunit, NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, NADH dehydrogenase [ubiquinone] flavoprotein 2, cytochrome b-c1 complex subunit 1, and ATP synthase subunit d are upregulated either in the hippocampus alone or both the hippocampus and neocortex of Mecp2-/y mice. Furthermore, the regulatory mitochondrial proteins mitofusin-1, HSP60, and 14-3-3 protein theta are decreased in the Mecp2-/y neocortex. The expressional changes identified provide further details of the altered mitochondrial function and morphology in RTT. They emphasize brain-region-specific alterations of the mitochondrial proteome and support the notion of a metabolic component of this devastating disorder.
Collapse
Affiliation(s)
- Gocha Golubiani
- Institut für Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Universitätsmedizin Göttingen, D-37073 Göttingen, Germany
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
| | - Laura van Agen
- Institut für Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Universitätsmedizin Göttingen, D-37073 Göttingen, Germany
| | - Lia Tsverava
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
- Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Revaz Solomonia
- Institute of Chemical Biology, Ilia State University, Tbilisi 0162, Georgia
- Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi 0160, Georgia
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Georg-August Universität Göttingen, Universitätsmedizin Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
8
|
Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L, Prestia F, Pietraforte D, Perluigi M, Di Domenico F, Vacca RA, De Filippis B. Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 2023; 224:109350. [PMID: 36442649 DOI: 10.1016/j.neuropharm.2022.109350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | | | - Livia Di Crescenzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Francesca Prestia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
9
|
Sun Z, Wang Y, Wei T, Liu L. Identification of key genes and miRNAs related to polycystic ovary syndrome by comprehensive analysis of microarray. BMC Med Genomics 2022; 15:267. [PMID: 36544152 PMCID: PMC9769000 DOI: 10.1186/s12920-022-01384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We aimed to explore mechanisms of development and progression of polycystic ovary syndrome (PCOS). METHODS The microRNA expression microarray GSE37914 and gene expression profiles GSE43264 and GSE98421 were downloaded from the Gene Expression Omnibus database. The differentially expressed miRNAs (DEmiRNAs) and genes (DEGs) were screened using Limma package. Then, the DEGs and DEmiRNAs were combined to use for the subsequent analysis, including the functional enrichment analysis, protein-protein interaction (PPI) network and module analysis, drug-gene interaction network analysis, and DEmiRNAs-DEGs interactive network construction. RESULTS A total of 26 DEmiRNAs and 80 DEGs were screened. The PPI network contained 68 nodes and 259 interactions. A significant clustering module with 8 nodes and 25 interactions was obtained. Three PCOS-related overlapping pathways were obtained based on PPI-degree top10 and module genes, including prion diseases, Staphylococcus aureus infection, and Chagas disease (American trypanosomiasis). A total of 44 drug-gene interaction pairs were obtained, which included 2 up-regulated genes (LDLR and VCAM1), 4 down-regulated genes (C1QA, C1QB, IL6 and ACAN) and 26 small molecules drugs. A total of 52 nodes and 57 interactions were obtained in the DEmiRNA-DEGs regulatory network, LDLR was regulated by miR-152-3p, miR-1207-5p, miR-378a-5p and miR-150-5p. CONCLUSIONS Our research has identified several key genes and pathways related to PCOS. These results can improve our understanding of PCOS and provide new basis for drug target research.
Collapse
Affiliation(s)
- Ziqian Sun
- grid.415954.80000 0004 1771 3349Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province China
| | - Yang Wang
- Department of Dermatology, Bayi Hospital of Changchun, Changchun, 130021 Jilin Province China
| | - Tianshu Wei
- Department of Gynecology and Obstetrics, Jilin City Center Hospital, Jilin City, 132011 Jilin Province China
| | - Li Liu
- grid.415954.80000 0004 1771 3349Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, 130033 Jilin Province China ,grid.415954.80000 0004 1771 3349Reproductive Medical Center, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Road, Changchun, 130031 China
| |
Collapse
|
10
|
Baroncelli L, Auel S, Rinne L, Schuster AK, Brand V, Kempkes B, Dietrich K, Müller M. Oral Feeding of an Antioxidant Cocktail as a Therapeutic Strategy in a Mouse Model of Rett Syndrome: Merits and Limitations of Long-Term Treatment. Antioxidants (Basel) 2022; 11:antiox11071406. [PMID: 35883897 PMCID: PMC9311910 DOI: 10.3390/antiox11071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that typically arises from spontaneous germline mutations in the X-chromosomal methyl-CpG binding protein 2 (MECP2) gene. For the first 6–18 months of life, the development of the mostly female patients appears normal. Subsequently, cognitive impairment, motor disturbances, hand stereotypies, epilepsy, and irregular breathing manifest, with previously learned skills being lost. Early mitochondrial impairment and a systemic oxidative burden are part of the complex pathogenesis, and contribute to disease progression. Accordingly, partial therapeutic merits of redox-stabilizing and antioxidant (AO) treatments were reported in RTT patients and Mecp2-mutant mice. Pursuing these findings, we conducted a full preclinical trial on male and female mice to define the therapeutic value of an orally administered AO cocktail composed of vitamin E, N-acetylcysteine, and α-lipoic acid. AO treatment ameliorated some of the microcephaly-related aspects. Moreover, the reduced growth, lowered blood glucose levels, and the hippocampal synaptic plasticity of Mecp2−/y mice improved. However, the first-time detected intensified oxidative DNA damage in Mecp2-mutant cortex persisted. The behavioral performance, breathing regularity, and life expectancy of Mecp2-mutant mice did not improve upon AO treatment. Long-term-treated Mecp2+/− mice eventually became obese. In conclusion, the AO cocktail ameliorated a subset of symptoms of the complex RTT-related phenotype, thereby further confirming the potential merits of AO-based pharmacotherapies. Yet, it also became evident that long-term AO treatment may lose efficacy and even aggravate the metabolic disturbances in RTT. This emphasizes the importance of a constantly well-balanced redox balance for systemic well-being.
Collapse
Affiliation(s)
- Laura Baroncelli
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
- Institute of Neuroscience, National Research Council (CNR), via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, I-56128 Pisa, Italy
| | - Stefanie Auel
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Lena Rinne
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Ann-Kathrin Schuster
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Victoria Brand
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Belinda Kempkes
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Katharina Dietrich
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
| | - Michael Müller
- Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany; (L.B.); (S.A.); (L.R.); (A.-K.S.); (V.B.); (B.K.); (K.D.)
- Correspondence: ; Tel.: +49-551-39-22933
| |
Collapse
|
11
|
Li Z, Li X, Jin M, Liu Y, He Y, Jia N, Cui X, Liu Y, Hu G, Yu Q. Identification of potential blood biomarkers for early diagnosis of schizophrenia through RNA sequencing analysis. J Psychiatr Res 2022; 147:39-49. [PMID: 35016150 DOI: 10.1016/j.jpsychires.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Schizophrenia (SCZ) is a highly heritable, polygenic complex mental disorder with imprecise diagnostic boundaries. Finding sensitive and specific novel biomarkers to improve the biological homogeneity of SCZ diagnosis is still one of the research hotspots. To identify the blood specific diagnostic biomarkers of SCZ, we performed RNA sequencing (RNA-seq) on 30 peripheral blood samples from 15 first-episode drug-naïve SCZ patients and 15 healthy controls (CTL). By performing multiple bioinformatics analysis algorithms based on RNA-seq data and microarray datasets, including differential expression genes (DEGs) analysis, WGCNA and CIBERSORT, we first identified 6 specific key genes (TOMM7, SNRPG, KRT1, AQP10, TMEM14B and CLEC12A) in SCZ. Moreover, we found that the proportions of lymphocyte, monocyte and neutrophils were significantly distinct in SCZ patients with CTL samples. Therefore, combining various features including age, sex and the novel blood biomarkers, we constructed the risk prediction model with three classifiers (RF: Random Forest; SVM: support vector machine; DT: decision tree) through repeated k-fold cross validation ensuring better generalizability. Finest result of Area under Receiver Operating Characteristic (AUROC) score of 0.91 was achieved by RF classifier and with a comparable good performance of AUROC 0.77 in external validation dataset. A lower AUROC of 0.63 was demonstrated when it was further applied to a Bipolar disorder (BPD) cohort. In conclusion, the study identified three peripheral core immunocytes and six key genes associated with the occurrence of SCZ, and further studies are required to test and validate these novel biomarkers for early diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yang He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xingyao Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Guoyan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Dave A, Pillai PP. Docosahexaenoic acid increased MeCP2 mediated mitochondrial respiratory complexes II and III enzyme activities in cortical astrocytes. J Biochem Mol Toxicol 2022; 36:e23002. [PMID: 35174922 DOI: 10.1002/jbt.23002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MeCP2) in the neurons and glial cells of the central nervous system. Currently, therapeutics for RTT is aimed at restoring the loss-of-function by MeCP2 gene therapy, but that approach has multiple challenges. We have already reported impaired mitochondrial bioenergetics in MeCP2 deficient astrocytes. Docosahexaenoic acid (DHA), a polyunsaturated fatty acid, has been shown with health benefits, but its impact on mitochondrial functions in MeCP2 deficient astrocytes has never been paid much attention. The present study aimed to investigate the effects of DHA on mitochondrial respiratory chain regulation in MeCP2 knockdown astrocytes. We determined NADH dehydrogenase (ubiquinone) flavoprotein 2 (Ndufv2-complex-I), Ubiquinol cytochrome c reductase core protein (Uqcrc1-complex-III) genes expression, Ndufv2 protein expression, respiratory electron transport chain complex I, II, III, and IV enzyme activities, intracellular Ca+2 , reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in DHA pre-incubated MeCP2 knock-down rat primary cortical astrocytes. Our study demonstrates that 100 µM DHA increases MeCP2 gene and protein expression. Increases brain-derived neurotrophic factor (BDNF) and Uqcrc1 gene expression, Ndufv2 protein expression, but has no effect on glial fibrillary acidic protein (GFAP) gene expression. DHA treatment also increases mitochondrial respiratory Complexes II and III activities and reduces intracellular calcium levels. Taken together, the effects of DHA seem independent of MeCP2 deficiency in astrocytes. Hence, further studies are warranted to understand the complicated mechanisms of DHA and for its therapeutic significance in MeCP2-mediated mitochondrial dysfunction and in RTT disease.
Collapse
Affiliation(s)
- Arpita Dave
- Department of Zoology, Division of Neurobiology, The Maharaja Sayajirao University of Baroda, Gujarat, India
| | - Prakash P Pillai
- Department of Zoology, Division of Neurobiology, The Maharaja Sayajirao University of Baroda, Gujarat, India
| |
Collapse
|
13
|
Liu S, Pei P, Li L, Wu H, Zheng X, Wang S, Xiao Y, Pan H, Bao X, Qi Y, Ma Y. Mitochondrial DNA Copy Number in Rett Syndrome Caused by Methyl-CpG-Binding Protein-2 Variants. J Pediatr 2022; 241:154-161. [PMID: 34619114 DOI: 10.1016/j.jpeds.2021.09.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine changes in mitochondrial DNA (mtDNA) copy number in peripheral blood in Rett syndrome caused by methyl-CpG-binding protein-2 (MECP2) variants and explore the mechanism of mitochondrial dysfunction in Rett syndrome. STUDY DESIGN Female patients who were diagnosed with Rett syndrome and had an MECP2 variant (n = 142) were recruited in this study, along with the same number of age- and sex-matched healthy controls. MtDNA copy number was quantified by real-time quantitative polymerase chain reaction with TaqMan probes. The differences in mtDNA copy number between the Rett syndrome group and the control group were analyzed using the independent-samples t test. Linear regression, biserial correlation analysis, and one-way ANOVA were applied for the correlations between mtDNA copy number and age, clinical severity, variant types, functional domains, and hot-spot variants. RESULTS MtDNA copy number was found to be significantly increased in the patients with Rett syndrome with MECP2 gene variants compared with the control subjects. Age, clinical severity, variant types, functional domains, and hot-spot variants were not related to mtDNA copy number in patients with Rett syndrome. CONCLUSIONS MtDNA copy number is increased significantly in patients with Rett syndrome, suggesting that changes in mitochondrial function in Rett syndrome trigger a compensatory increase in mtDNA copy number and providing new possibilities for treating Rett syndrome, such as mitochondria-targeted therapies.
Collapse
Affiliation(s)
- Siwen Liu
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Pei Pei
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Lin Li
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Hairong Wu
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Xuefei Zheng
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Songtao Wang
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yang Xiao
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Hong Pan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, Beijing, China.
| |
Collapse
|
14
|
Shovlin S, Delepine C, Swanson L, Bach S, Sahin M, Sur M, Kaufmann WE, Tropea D. Molecular Signatures of Response to Mecasermin in Children With Rett Syndrome. Front Neurosci 2022; 16:868008. [PMID: 35712450 PMCID: PMC9197456 DOI: 10.3389/fnins.2022.868008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder without effective treatments. Attempts at developing targetted therapies have been relatively unsuccessful, at least in part, because the genotypical and phenotypical variability of the disorder. Therefore, identification of biomarkers of response and patients' stratification are high priorities. Administration of Insulin-like Growth Factor 1 (IGF-1) and related compounds leads to significant reversal of RTT-like symptoms in preclinical mouse models. However, improvements in corresponding clinical trials have not been consistent. A 20-weeks phase I open label trial of mecasermin (recombinant human IGF-1) in children with RTT demonstrated significant improvements in breathing phenotypes. However, a subsequent randomised controlled phase II trial did not show significant improvements in primary outcomes although two secondary clinical endpoints showed positive changes. To identify molecular biomarkers of response and surrogate endpoints, we used RNA sequencing to measure differential gene expression in whole blood samples of participants in the abovementioned phase I mecasermin trial. When all participants (n = 9) were analysed, gene expression was unchanged during the study (baseline vs. end of treatment, T0-T3). However, when participants were subclassified in terms of breathing phenotype improvement, specifically by their plethysmography-based apnoea index, individuals with moderate-severe apnoea and breathing improvement (Responder group) displayed significantly different transcript profiles compared to the other participants in the study (Mecasermin Study Reference group, MSR). Many of the differentially expressed genes are involved in the regulation of cell cycle processes and immune responses, as well as in IGF-1 signalling and breathing regulation. While the Responder group showed limited gene expression changes in response to mecasermin, the MSR group displayed marked differences in the expression of genes associated with inflammatory processes (e.g., neutrophil activation, complement activation) throughout the trial. Our analyses revealed gene expression profiles associated with severe breathing phenotype and its improvement after mecasermin administration in RTT, and suggest that inflammatory/immune pathways and IGF-1 signalling contribute to treatment response. Overall, these data support the notion that transcript profiles have potential as biomarkers of response to IGF-1 and related compounds.
Collapse
Affiliation(s)
- Stephen Shovlin
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Lindsay Swanson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Snow Bach
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Daniela Tropea
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
15
|
Sun X, Chen X, Zhao J, Ma C, Yan C, Liswaniso S, Xu R, Qin N. Transcriptome comparative analysis of ovarian follicles reveals the key genes and signaling pathways implicated in hen egg production. BMC Genomics 2021; 22:899. [PMID: 34911438 PMCID: PMC8672471 DOI: 10.1186/s12864-021-08213-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/26/2021] [Indexed: 01/19/2023] Open
Abstract
Background Ovarian follicle development plays an important role in determination of poultry egg production. The follicles at the various developmental stages possess their own distinct molecular genetic characteristics and have different biological roles in chicken ovary development and function. In the each stage, several genes of follicle-specific expression and biological pathways are involved in the vary-sized follicular development and physiological events. Identification of the pivotal genes and signaling pathways that control the follicular development is helpful for understanding their exact regulatory functions and molecular mechanisms underlying egg-laying traits of laying hens. Results The comparative mRNA transcriptomic analysis of ovarian follicles at three key developmental stages including slow growing white follicles (GWF), small yellow follicles (SYF) of recruitment into the hierarchy, and differentiated large yellow follicles (LYF), was accomplished in the layers with lower and higher egg production. Totally, 137, 447, and 229 of up-regulated differentially expressed genes (DEGs), and 99, 97, and 157 of down-regulated DEGs in the GWF, SYF and LYF follicles, including VIPR1, VIPR2, ADRB2, and HSD17B1 were identified, respectively. Moreover, NDUFAB1 and GABRA1 genes, two most promising candidates potentially associated with egg-laying performance were screened out from the 13 co-expressed DEGs in the GWF, SYF and LYF samples. We further investigated the biological effects of NDUFAB1 and GABRA1 on ovarian follicular development and found that NDUFAB1 promotes follicle development by stimulating granulosa cell (GC) proliferation and decreasing cell apoptosis, increases the expression of CCND1 and BCL-2 but attenuates the expression of caspase-3, and facilitates steroidogenesis by enhancing the expression of STAR and CYP11A1. In contrast, GABRA1 inhibits GC proliferation and stimulates cell apoptosis, decreases the expression of CCND1, BCL-2, STAR, and CYP11A1 but elevates the expression of caspase-3. Furthermore, the three crucial signaling pathways such as PPAR signaling pathway, cAMP signaling pathway and neuroactive ligand-receptor interaction were significantly enriched, which may play essential roles in ovarian follicle growth, differentiation, follicle selection, and maturation. Conclusions The current study provided new molecular data for insight into the regulatory mechanism underlying ovarian follicle development associated with egg production in chicken. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08213-w.
Collapse
Affiliation(s)
- Xue Sun
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoxia Chen
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jinghua Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chang Ma
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Chunchi Yan
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Simushi Liswaniso
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Rifu Xu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. .,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Ning Qin
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. .,Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
16
|
Vashi N, Ackerley C, Post M, Justice MJ. Aberrant lung lipids cause respiratory impairment in a Mecp2-deficient mouse model of Rett syndrome. Hum Mol Genet 2021; 30:2161-2176. [PMID: 34230964 PMCID: PMC8561422 DOI: 10.1093/hmg/ddab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Severe respiratory impairment is a prominent feature of Rett syndrome (RTT), an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, while surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, while deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor corepressor 1/2 (NCOR1/2) transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.
Collapse
Affiliation(s)
- Neeti Vashi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Cameron Ackerley
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Monica J Justice
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| |
Collapse
|
17
|
Transcriptomic and Epigenomic Landscape in Rett Syndrome. Biomolecules 2021; 11:biom11070967. [PMID: 34209228 PMCID: PMC8301932 DOI: 10.3390/biom11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is an extremely invalidating, cureless, developmental disorder, and it is considered one of the leading causes of intellectual disability in female individuals. The vast majority of RTT cases are caused by de novo mutations in the X-linked Methyl-CpG binding protein 2 (MECP2) gene, which encodes a multifunctional reader of methylated DNA. MeCP2 is a master epigenetic modulator of gene expression, with a role in the organization of global chromatin architecture. Based on its interaction with multiple molecular partners and the diverse epigenetic scenario, MeCP2 triggers several downstream mechanisms, also influencing the epigenetic context, and thus leading to transcriptional activation or repression. In this frame, it is conceivable that defects in such a multifaceted factor as MeCP2 lead to large-scale alterations of the epigenome, ranging from an unbalanced deposition of epigenetic modifications to a transcriptional alteration of both protein-coding and non-coding genes, with critical consequences on multiple downstream biological processes. In this review, we provide an overview of the current knowledge concerning the transcriptomic and epigenomic alterations found in RTT patients and animal models.
Collapse
|
18
|
Zalosnik MI, Fabio MC, Bertoldi ML, Castañares CN, Degano AL. MeCP2 deficiency exacerbates the neuroinflammatory setting and autoreactive response during an autoimmune challenge. Sci Rep 2021; 11:10997. [PMID: 34040112 PMCID: PMC8155097 DOI: 10.1038/s41598-021-90517-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Rett syndrome is a severe and progressive neurological disorder linked to mutations in the MeCP2 gene. It has been suggested that immune alterations may play an active role in the generation and/or maintenance of RTT phenotypes. However, there is no clear consensus about which pathways are regulated in vivo by MeCP2 in the context of immune activation. In the present work we set to characterize the role of MeCP2 during the progression of Experimental Autoimmune Encephalomyelitis (EAE) using the MeCP2308/y mouse model (MUT), which represents a condition of "MeCP2 function deficiency". Our results showed that MeCP2 deficiency increased the susceptibility to develop EAE, along with a defective induction of anti-inflammatory responses and an exacerbated MOG-specific IFNγ expression in immune sites. In MUT-EAE spinal cord, we found a chronic increase in pro-inflammatory cytokines gene expression (IFNγ, TNFα and IL-1β) and downregulation of genes involved in immune regulation (IL-10, FoxP3 and CX3CR1). Moreover, our results indicate that MeCP2 acts intrinsically upon immune activation, affecting neuroimmune homeostasis by regulating the pro-inflammatory/anti-inflammatory balance in vivo. These results are relevant to identify the potential consequences of MeCP2 mutations on immune homeostasis and to explore novel therapeutic strategies for MeCP2-related disorders.
Collapse
Affiliation(s)
- M I Zalosnik
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CIQUIBIC, CONICET), Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - M C Fabio
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba, Argentina
| | - M L Bertoldi
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CIQUIBIC, CONICET), Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - C N Castañares
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Córdoba (INIMEC-CONICET-UNC), Córdoba, Argentina
| | - A L Degano
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CIQUIBIC, CONICET), Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
19
|
Chen X, Sun X, Chimbaka IM, Qin N, Xu X, Liswaniso S, Xu R, Gonzalez JM. Transcriptome Analysis of Ovarian Follicles Reveals Potential Pivotal Genes Associated With Increased and Decreased Rates of Chicken Egg Production. Front Genet 2021; 12:622751. [PMID: 33777097 PMCID: PMC7987945 DOI: 10.3389/fgene.2021.622751] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Egg production is an important economic trait in the commercial poultry industry. Ovarian follicle development plays a pivotal role in regulation of laying hen performance and reproductive physiology. However, the key genes and signaling pathways involved in the various-stages of laying hen follicular development remain poorly understood. In this study, transcriptomes of ovarian follicles at three developmental stages, the large white follicle (LWF), small yellow follicle (SYF), and large yellow follicle (LYF), were comparatively analyzed in hens with high (HR) and low (LR) egg-laying rates by RNA-sequencing. Eighteen cDNA libraries were constructed and a total of 236, 544, and 386 unigenes were significantly differentially expressed in the LWF, SYF, and LYF follicles of HR and LR hens, respectively. Among them, 47 co-transcribed differentially expressed genes (DEGs) in LWF and SYF, 68 co-expressed DEGs in SYF and LYF, and 54 co-expressed DEGs in LWF and LYF were mined. Thirteen co-expressed DEGs were found in LWF, SYF, and LYF follicles. Eighteen candidate genes, including P2RX1, CAB39L, BLK, CSMD3, GPR65, ADRB2, CSMD1, PLPP4, ATF3, PRLL, STMN3, RORB, PIK3R1, PERP1, ACSBG1, MRTO4, CDKN1A, and EDA2R were identified to be potentially related to egg production. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis indicated neuroactive ligand-receptor interaction, cell adhesion molecules, peroxisome proliferator-activated receptor pathway, and cAMP signaling pathway might elicit an important role in formation of egg-laying traits by influencing ovarian follicle development. This study represents the first transcriptome analysis of various-sized follicles between HR and LR hens. These results provide useful molecular evidence for elucidating the genetic mechanism underlying ovarian follicle development associated with egg production in chicken.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ignatius Musenge Chimbaka
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xiaoxing Xu
- College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Simushi Liswaniso
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - John Michael Gonzalez
- College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
20
|
Bilinovich SM, Uhl KL, Lewis K, Soehnlen X, Williams M, Vogt D, Prokop JW, Campbell DB. Integrated RNA Sequencing Reveals Epigenetic Impacts of Diesel Particulate Matter Exposure in Human Cerebral Organoids. Dev Neurosci 2021; 42:195-207. [PMID: 33657557 DOI: 10.1159/000513536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) manifests early in childhood. While genetic variants increase risk for ASD, a growing body of literature has established that in utero chemical exposures also contribute to ASD risk. These chemicals include air-based pollutants like diesel particulate matter (DPM). A combination of single-cell and direct transcriptomics of DPM-exposed human-induced pluripotent stem cell-derived cerebral organoids revealed toxicogenomic effects of DPM exposure during fetal brain development. Direct transcriptomics, sequencing RNA bases via Nanopore, revealed that cerebral organoids contain extensive RNA modifications, with DPM-altering cytosine methylation in oxidative mitochondrial transcripts expressed in outer radial glia cells. Single-cell transcriptomics further confirmed an oxidative phosphorylation change in cell groups such as outer radial glia upon DPM exposure. This approach highlights how DPM exposure perturbs normal mitochondrial function and cellular respiration during early brain development, which may contribute to developmental disorders like ASD by altering neurodevelopment.
Collapse
Affiliation(s)
- Stephanie M Bilinovich
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Katie L Uhl
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Kristy Lewis
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Xavier Soehnlen
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA
| | - Michael Williams
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA.,Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel Vogt
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA.,Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Jeremy W Prokop
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA.,Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, Michigan, USA.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Daniel B Campbell
- Department of Pediatrics & Human Development, Michigan State University, Grand Rapids, Michigan, USA, .,Center for Research in Autism, Intellectual, and other Neurodevelopmental Disabilities, Michigan State University, East Lansing, Michigan, USA, .,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA,
| |
Collapse
|
21
|
Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021; 12:620859. [PMID: 33552148 PMCID: PMC7859524 DOI: 10.3389/fgene.2021.620859] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett syndrome (RTT), a rare neurodevelopmental disorder with a notable period of developmental regression following apparently normal initial development. Such MeCP2 alterations often result in changes to DNA binding and chromatin clustering ability, and in the stability of this protein. Among other functions, MeCP2 binds to methylated genomic DNA, which represents an important epigenetic mark with broad physiological implications, including neuronal development. In this review, we will summarize the genetic foundations behind RTT, and the variable degrees of protein stability exhibited by MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be explored, and we suggest that these molecules could be missing links in understanding the epigenetic consequences incurred from genetic ablation of this important chromatin modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has been most extensively studied, the role of this protein and its alterations in other tissues cannot be ignored and will also be discussed. Finally, the additional complexity to RTT pathology introduced by structural and functional implications of the two MeCP2 isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are gaining clinical popularity, yet treatment for Rett syndrome is more complicated than would be anticipated for a purely epigenetic disorder, which should be taken into account in future clinical contexts.
Collapse
Affiliation(s)
- Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
22
|
Cicaloni V, Pecorelli A, Cordone V, Tinti L, Rossi M, Hayek J, Salvini L, Tinti C, Valacchi G. A proteomics approach to further highlight the altered inflammatory condition in Rett syndrome. Arch Biochem Biophys 2020; 696:108660. [PMID: 33159892 DOI: 10.1016/j.abb.2020.108660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder caused by mutations in the X-linked MECP2 gene. RTT patients show multisystem disturbances associated with perturbed redox homeostasis and inflammation, which appear as possible key factors in RTT pathogenesis. In this study, using primary dermal fibroblasts from control and RTT subjects, we performed a proteomic analysis that, together with data mining approaches, allowed us to carry out a comprehensive characterization of RTT cellular proteome. Functional and pathway enrichment analyses showed that differentially expressed proteins in RTT were mainly enriched in biological processes related to immune/inflammatory responses. Overall, by using proteomic data mining as supportive approach, our results provide a detailed insight into the molecular pathways involved in RTT immune dysfunction that, causing tissue and organ damage, can increase the vulnerability of affected patients to unknown endogenous factors or infections.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Laura Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Marco Rossi
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Joussef Hayek
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Laura Salvini
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Cristina Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
23
|
Dickey B, Madhu LN, Shetty AK. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol Ther 2020; 220:107716. [PMID: 33164782 DOI: 10.1016/j.pharmthera.2020.107716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Gulf War Illness (GWI), a chronic multisymptom health problem, afflicts ~30% of veterans served in the first GW. Impaired brain function is among the most significant symptoms of GWI, which is typified by persistent cognitive and mood impairments, concentration problems, headaches, chronic fatigue, and musculoskeletal pain. This review aims to discuss findings from animal prototypes and veterans with GWI on mechanisms underlying its pathophysiology and emerging therapeutic strategies for alleviating brain dysfunction in GWI. Animal model studies have linked brain impairments to incessantly elevated oxidative stress, chronic inflammation, inhibitory interneuron loss, altered lipid metabolism and peroxisomes, mitochondrial dysfunction, modified expression of genes relevant to cognitive function, and waned hippocampal neurogenesis. Furthermore, the involvement of systemic alterations such as the increased intensity of reactive oxygen species and proinflammatory cytokines in the blood, transformed gut microbiome, and activation of the adaptive immune response have received consideration. Investigations in veterans have suggested that brain dysfunction in GWI is linked to chronic activation of the executive control network, impaired functional connectivity, altered blood flow, persistent inflammation, and changes in miRNA levels. Lack of protective alleles from Class II HLA genes, the altered concentration of phospholipid species and proinflammatory factors in the circulating blood have also been suggested as other aiding factors. While some drugs or combination therapies have shown promise for alleviating symptoms in clinical trials, larger double-blind, placebo-controlled trials are needed to validate such findings. Based on improvements seen in animal models of GWI, several antioxidants and anti-inflammatory compounds are currently being tested in clinical trials. However, reliable blood biomarkers that facilitate an appropriate screening of veterans for brain pathology need to be discovered. A liquid biopsy approach involving analysis of brain-derived extracellular vesicles in the blood appears efficient for discerning the extent of neuropathology both before and during clinical trials.
Collapse
Affiliation(s)
- Brandon Dickey
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA; Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA.
| |
Collapse
|
24
|
Cicaloni V, Pecorelli A, Tinti L, Rossi M, Benedusi M, Cervellati C, Spiga O, Santucci A, Hayek J, Salvini L, Tinti C, Valacchi G. Proteomic profiling reveals mitochondrial alterations in Rett syndrome. Free Radic Biol Med 2020; 155:37-48. [PMID: 32445864 DOI: 10.1016/j.freeradbiomed.2020.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder associated with mutation in MECP2 gene. Despite a well-defined genetic cause, there is a growing consensus that a metabolic component could play a pivotal role in RTT pathophysiology. Indeed, perturbed redox homeostasis and inflammation, i.e. oxinflammation, with mitochondria dysfunction as the central hub between the two phenomena, appear as possible key contributing factors to RTT pathogenesis and its clinical features. While these RTT-related changes have been widely documented by transcriptomic profiling, proteomics studies supporting these evidences are still limited. Here, using primary dermal fibroblasts from control and patients, we perform a large-scale proteomic analysis that, together with data mining approaches, allow us to carry out the first comprehensive characterization of RTT cellular proteome, showing mainly changes in expression of proteins involved in the mitochondrial network. These findings parallel with an altered expression of key mediators of mitochondrial dynamics and mitophagy associated with abnormal mitochondrial morphology. In conclusion, our proteomic analysis confirms the pathological relevance of mitochondrial dysfunction in RTT pathogenesis and progression.
Collapse
Affiliation(s)
- Vittoria Cicaloni
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA
| | - Laura Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Marco Rossi
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Mascia Benedusi
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Carlo Cervellati
- Department of Morphology and Experimental Medicine University of Ferrara, via Borsari 46, 44121, Ferrara, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, Via Aldo Moro 2, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, Via Aldo Moro 2, University of Siena, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Viale M. Bracci 16, 53100, Siena, Italy
| | - Laura Salvini
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Cristina Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Animal Science Dept., NC Research Campus, NC State University, 600 Laureate Way, Kannapolis, NC, 28081, USA; Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
25
|
Zuliani I, Urbinati C, Valenti D, Quattrini MC, Medici V, Cosentino L, Pietraforte D, Di Domenico F, Perluigi M, Vacca RA, De Filippis B. The Anti-Diabetic Drug Metformin Rescues Aberrant Mitochondrial Activity and Restrains Oxidative Stress in a Female Mouse Model of Rett Syndrome. J Clin Med 2020; 9:jcm9061669. [PMID: 32492904 PMCID: PMC7355965 DOI: 10.3390/jcm9061669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Metformin is the first-line therapy for diabetes, even in children, and a promising attractive candidate for drug repurposing. Mitochondria are emerging as crucial targets of metformin action both in the periphery and in the brain. The present study evaluated whether treatment with metformin may rescue brain mitochondrial alterations and contrast the increased oxidative stress in a validated mouse model of Rett syndrome (RTT), a rare neurologic disorder of monogenic origin characterized by severe behavioral and physiological symptoms. No cure for RTT is available. In fully symptomatic RTT mice (12 months old MeCP2-308 heterozygous female mice), systemic treatment with metformin (100 mg/kg ip for 10 days) normalized the reduced mitochondrial ATP production and ATP levels in the whole-brain, reduced brain oxidative damage, and rescued the increased production of reactive oxidizing species in blood. A 10-day long treatment with metformin also boosted pathways related to mitochondrial biogenesis and antioxidant defense in the brain of metformin-treated RTT mice. This treatment regimen did not improve general health status and motor dysfunction in RTT mice at an advanced stage of the disease. Present results provide evidence that systemic treatment with metformin may represent a novel, repurposable therapeutic strategy for RTT.
Collapse
Affiliation(s)
- Ilaria Zuliani
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | | | - Vanessa Medici
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
| | | | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (I.Z.); (F.D.D.); (M.P.)
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (V.M.); (L.C.)
- Correspondence:
| |
Collapse
|
26
|
Varderidou-Minasian S, Hinz L, Hagemans D, Posthuma D, Altelaar M, Heine VM. Quantitative proteomic analysis of Rett iPSC-derived neuronal progenitors. Mol Autism 2020; 11:38. [PMID: 32460858 PMCID: PMC7251722 DOI: 10.1186/s13229-020-00344-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rett syndrome (RTT) is a progressive neurodevelopmental disease that is characterized by abnormalities in cognitive, social, and motor skills. RTT is often caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). The mechanism by which impaired MeCP2 induces the pathological abnormalities in the brain is not understood. Both patients and mouse models have shown abnormalities at molecular and cellular level before typical RTT-associated symptoms appear. This implies that underlying mechanisms are already affected during neurodevelopmental stages. Methods To understand the molecular mechanisms involved in disease onset, we used an RTT patient induced pluripotent stem cell (iPSC)-based model with isogenic controls and performed time-series of proteomic analysis using in-depth high-resolution quantitative mass spectrometry during early stages of neuronal development. Results We provide mass spectrometry-based quantitative proteomic data, depth of about 7000 proteins, at neuronal progenitor developmental stages of RTT patient cells and isogenic controls. Our data gives evidence of proteomic alteration at early neurodevelopmental stages, suggesting alterations long before the phase that symptoms of RTT syndrome become apparent. Significant changes are associated with the GO enrichment analysis in biological processes cell-cell adhesion, actin cytoskeleton organization, neuronal stem cell population maintenance, and pituitary gland development, next to protein changes previously associated with RTT, i.e., dendrite morphology and synaptic deficits. Differential expression increased from early to late neural stem cell phases, although proteins involved in immunity, metabolic processes, and calcium signaling were affected throughout all stages analyzed. Limitations The limitation of our study is the number of RTT patients analyzed. As the aim of our study was to investigate a large number of proteins, only one patient was considered, of which 3 different RTT iPSC clones and 3 isogenic control iPSC clones were included. Even though this approach allowed the study of mutation-induced alterations due to the usage of isogenic controls, results should be validated on different RTT patients to suggest common disease mechanisms. Conclusions During early neuronal differentiation, there are consistent and time-point specific proteomic alterations in RTT patient cells carrying exons 3–4 deletion in MECP2. We found changes in proteins involved in pathway associated with RTT phenotypes, including dendrite morphology and synaptogenesis. Our results provide a valuable resource of proteins and pathways for follow-up studies, investigating common mechanisms involved during early disease stages of RTT syndrome.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Lisa Hinz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dominique Hagemans
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584, CH, Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Vivi M Heine
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Jagtap S, Thanos JM, Fu T, Wang J, Lalonde J, Dial TO, Feiglin A, Chen J, Kohane I, Lee JT, Sheridan SD, Perlis RH. Aberrant mitochondrial function in patient-derived neural cells from CDKL5 deficiency disorder and Rett syndrome. Hum Mol Genet 2020; 28:3625-3636. [PMID: 31518399 DOI: 10.1093/hmg/ddz208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023] Open
Abstract
The X-linked neurodevelopmental diseases CDKL5 deficiency disorder (CDD) and Rett syndrome (RTT) are associated with intellectual disability, infantile spasms and seizures. Although mitochondrial dysfunction has been suggested in RTT, less is understood about mitochondrial function in CDD. A comparison of bioenergetics and mitochondrial function between isogenic wild-type and mutant neural progenitor cell (NPC) lines revealed increased oxygen consumption in CDD mutant lines, which is associated with altered mitochondrial function and structure. Transcriptomic analysis revealed differential expression of genes related to mitochondrial and REDOX function in NPCs expressing the mutant CDKL5. Furthermore, a similar increase in oxygen consumption specific to RTT patient-derived isogenic mutant NPCs was observed, though the pattern of mitochondrial functional alterations was distinct from CDKL5 mutant-expressing NPCs. We propose that aberrant neural bioenergetics is a common feature between CDD and RTT disorders. The observed changes in oxidative stress and mitochondrial function may facilitate the development of therapeutic agents for CDD and related disorders.
Collapse
Affiliation(s)
- Smita Jagtap
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Ting Fu
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Thomas O Dial
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ariel Feiglin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey Chen
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine, and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Pecorelli A, Cervellati C, Cordone V, Hayek J, Valacchi G. Compromised immune/inflammatory responses in Rett syndrome. Free Radic Biol Med 2020; 152:100-106. [PMID: 32119978 DOI: 10.1016/j.freeradbiomed.2020.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Mutations in X-linked gene methyl-CpG-binding protein 2 (MECP2), a key transcriptional regulator, account for most cases of Rett syndrome (RTT), a devastating neurodevelopmental disorder with no known cure. Despite extensive research to elucidate MeCP2 functions, the mechanisms underlying RTT pathophysiology are still unclear. In addition to a variety of neurological symptoms, RTT also includes a plethora of additional phenotypical features including altered lipid metabolism, redox imbalance, immune dysfunction and mitochondrial abnormalities that explain its multisystemic nature. Here, we provide an overview of the current knowledge on the potential role of dysregulated inflammatory and immune responses in RTT. The findings show that abnormalities of humoral and cell-mediated immunity together with chronic low-grade inflammation in multiple organs represent not only clinical manifestations of RTT but rather can contribute to its development and deteriorating course. A future research challenge could be to target therapeutically immune dysfunction as a novel means for RTT management.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA
| | - Carlo Cervellati
- Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Valeria Cordone
- Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, 53100, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Dept. of Animal Science, NC Research Campus, NC State University, Kannapolis, 28081, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121, Ferrara, Italy; Dept. of Food and Nutrition, Kyung Hee University, 02447, Seoul, South Korea.
| |
Collapse
|
29
|
Sbardella D, Tundo GR, Cunsolo V, Grasso G, Cascella R, Caputo V, Santoro AM, Milardi D, Pecorelli A, Ciaccio C, Di Pierro D, Leoncini S, Campagnolo L, Pironi V, Oddone F, Manni P, Foti S, Giardina E, De Felice C, Hayek J, Curatolo P, Galasso C, Valacchi G, Coletta M, Graziani G, Marini S. Defective proteasome biogenesis into skin fibroblasts isolated from Rett syndrome subjects with MeCP2 non-sense mutations. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165793. [PMID: 32275946 DOI: 10.1016/j.bbadis.2020.165793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023]
Abstract
Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.
Collapse
Affiliation(s)
- Diego Sbardella
- IRCSS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | - Grazia Raffaella Tundo
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | | | - Danilo Milardi
- Institute of Crystallography, National Research Council, Catania, Italy
| | - Alessandra Pecorelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Chiara Ciaccio
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donato Di Pierro
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Virginia Pironi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | | | - Priscilla Manni
- Ophthalmology Unit, St. Andrea Hospital, Faculty of Medicine and Psychology, NESMOS Department, University of Rome "Sapienza", Rome, Italy
| | - Salvatore Foti
- Department of Chemistry, University of Catania, Catania, Italy
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Joussef Hayek
- Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; "Isola di Bau", Multi-Specialist Centre, Certaldo (Florence), Italy
| | - Paolo Curatolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Cinzia Galasso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Massimiliano Coletta
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
30
|
Aldosary M, Al-Bakheet A, Al-Dhalaan H, Almass R, Alsagob M, Al-Younes B, AlQuait L, Mustafa OM, Bulbul M, Rahbeeni Z, Alfadhel M, Chedrawi A, Al-Hassnan Z, AlDosari M, Al-Zaidan H, Al-Muhaizea MA, AlSayed MD, Salih MA, AlShammari M, Faiyaz-Ul-Haque M, Chishti MA, Al-Harazi O, Al-Odaib A, Kaya N, Colak D. Rett Syndrome, a Neurodevelopmental Disorder, Whole-Transcriptome, and Mitochondrial Genome Multiomics Analyses Identify Novel Variations and Disease Pathways. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:160-171. [PMID: 32105570 DOI: 10.1089/omi.2019.0192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder reported worldwide in diverse populations. RTT is diagnosed primarily in females, with clinical findings manifesting early in life. Despite the variable rates across populations, RTT has an estimated prevalence of ∼1 in 10,000 live female births. Among 215 Saudi Arabian patients with neurodevelopmental and autism spectrum disorders, we identified 33 patients with RTT who were subsequently examined by genome-wide transcriptome and mitochondrial genome variations. To the best of our knowledge, this is the first in-depth molecular and multiomics analyses of a large cohort of Saudi RTT cases with a view to informing the underlying mechanisms of this disease that impact many patients and families worldwide. The patients were unrelated, except for 2 affected sisters, and comprised of 25 classic and eight atypical RTT cases. The cases were screened for methyl-CpG binding protein 2 (MECP2), CDKL5, FOXG1, NTNG1, and mitochondrial DNA (mtDNA) variants, as well as copy number variations (CNVs) using a genome-wide experimental strategy. We found that 15 patients (13 classic and two atypical RTT) have MECP2 mutations, 2 of which were novel variants. Two patients had novel FOXG1 and CDKL5 variants (both atypical RTT). Whole mtDNA sequencing of the patients who were MECP2 negative revealed two novel mtDNA variants in two classic RTT patients. Importantly, the whole-transcriptome analysis of our RTT patients' blood and further comparison with previous expression profiling of brain tissue from patients with RTT revealed 77 significantly dysregulated genes. The gene ontology and interaction network analysis indicated potentially critical roles of MAPK9, NDUFA5, ATR, SMARCA5, RPL23, SRSF3, and mitochondrial dysfunction, oxidative stress response and MAPK signaling pathways in the pathogenesis of RTT genes. This study expands our knowledge on RTT disease networks and pathways as well as presents novel mutations and mtDNA alterations in RTT in a population sample that was not previously studied.
Collapse
Affiliation(s)
- Mazhor Aldosary
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - AlBandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Hesham Al-Dhalaan
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rawan Almass
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Maysoon Alsagob
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Banan Al-Younes
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Laila AlQuait
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Osama Mufid Mustafa
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa Bulbul
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Genetics Division, Department of Pediatrics, King Abdullah Specialized Children Hospital, Riyadh, Saudi Arabia
| | - Aziza Chedrawi
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammed AlDosari
- Center for Pediatric Neurosciences, Cleveland Clinic, Cleveland, Ohio
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mohammad A Al-Muhaizea
- Department of Neuroscience, and King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Moeenaldeen D AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mai AlShammari
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | | | - Mohammad Azhar Chishti
- Department of Biochemistry, King Khalid Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Olfat Al-Harazi
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Cordone V, Pecorelli A, Amicarelli F, Hayek J, Valacchi G. The complexity of Rett syndrome models: Primary fibroblasts as a disease-in-a-dish reliable approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ddmod.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Can K, Menzfeld C, Rinne L, Rehling P, Kügler S, Golubiani G, Dudek J, Müller M. Neuronal Redox-Imbalance in Rett Syndrome Affects Mitochondria as Well as Cytosol, and Is Accompanied by Intensified Mitochondrial O 2 Consumption and ROS Release. Front Physiol 2019; 10:479. [PMID: 31114506 PMCID: PMC6503037 DOI: 10.3389/fphys.2019.00479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rett syndrome (RTT), an X chromosome-linked neurodevelopmental disorder affecting almost exclusively females, is associated with various mitochondrial alterations. Mitochondria are swollen, show altered respiratory rates, and their inner membrane is leaking protons. To advance the understanding of these disturbances and clarify their link to redox impairment and oxidative stress, we assessed mitochondrial respiration in defined brain regions and cardiac tissue of male wildtype (WT) and MeCP2-deficient (Mecp2-/y ) mice. Also, we quantified for the first time neuronal redox-balance with subcellular resolution in cytosol and mitochondrial matrix. Quantitative roGFP1 redox imaging revealed more oxidized conditions in the cytosol of Mecp2-/y hippocampal neurons than in WT neurons. Furthermore, cytosol and mitochondria of Mecp2-/y neurons showed exaggerated redox-responses to hypoxia and cell-endogenous reactive oxygen species (ROS) formation. Biochemical analyzes exclude disease-related increases in mitochondrial mass in Mecp2-/y hippocampus and cortex. Protein levels of complex I core constituents were slightly lower in Mecp2-/y hippocampus and cortex than in WT; those of complex V were lower in Mecp2-/y cortex. Respiratory supercomplex-formation did not differ among genotypes. Yet, supplied with the complex II substrate succinate, mitochondria of Mecp2-/y cortex and hippocampus consumed more O2 than WT. Furthermore, mitochondria from Mecp2-/y hippocampus and cortex mediated an enhanced oxidative burden. In conclusion, we further advanced the molecular understanding of mitochondrial dysfunction in RTT. Intensified mitochondrial O2 consumption, increased mitochondrial ROS generation and disturbed redox balance in mitochondria and cytosol may represent a causal chain, which provokes dysregulated proteins, oxidative tissue damage, and contributes to neuronal network dysfunction in RTT.
Collapse
Affiliation(s)
- Karolina Can
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christiane Menzfeld
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lena Rinne
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Peter Rehling
- Zentrum Biochemie und Molekulare Zellbiologie, Institut für Zellbiochemie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Klinik für Neurologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gocha Golubiani
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Jan Dudek
- Zentrum Biochemie und Molekulare Zellbiologie, Institut für Zellbiochemie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Müller
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Zentrum Physiologie und Pathophysiologie, Institut für Neuro- und Sinnesphysiologie, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Sanfeliu A, Hokamp K, Gill M, Tropea D. Transcriptomic Analysis of Mecp2 Mutant Mice Reveals Differentially Expressed Genes and Altered Mechanisms in Both Blood and Brain. Front Psychiatry 2019; 10:278. [PMID: 31110484 PMCID: PMC6501143 DOI: 10.3389/fpsyt.2019.00278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome is a rare neuropsychiatric disorder with a wide symptomatology including impaired communication and movement, cardio-respiratory abnormalities, and seizures. The clinical presentation is typically associated to mutations in the gene coding for the methyl-CpG-binding protein 2 (MECP2), which is a transcription factor. The gene is ubiquitously present in all the cells of the organism with a peak of expression in neurons. For this reason, most of the studies in Rett models have been performed in brain. However, some of the symptoms of Rett are linked to the peripheral expression of MECP2, suggesting that the effects of the mutations affect gene expression levels in tissues other than the brain. We used RNA sequencing in Mecp2 mutant mice and matched controls, to identify common genes and pathways differentially regulated across different tissues. We performed our study in brain and peripheral blood, and we identified differentially expressed genes (DEGs) and pathways in each tissue. Then, we compared the genes and mechanisms identified in each preparation. We found that some genes and molecular pathways that are differentially expressed in brain are also differentially expressed in blood of Mecp2 mutant mice at a symptomatic-but not presymptomatic-stage. This is the case for the gene Ube2v1, linked to ubiquitination system, and Serpin1, involved in complement and coagulation cascades. Analysis of biological functions in the brain shows the enrichment of mechanisms correlated to circadian rhythms, while in the blood are enriched the mechanisms of response to stimulus-including immune response. Some mechanisms are enriched in both preparations, such as lipid metabolism and response to stress. These results suggest that analysis of peripheral blood can reveal ubiquitous altered molecular mechanisms of Rett and have applications in diagnosis and treatments' assessments.
Collapse
Affiliation(s)
- Albert Sanfeliu
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
- Department of Psychiatry, School of Medicine, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
35
|
Mitochondrial Electron Transport Chain Complex Dysfunction in MeCP2 Knock-Down Astrocytes: Protective Effects of Quercetin Hydrate. J Mol Neurosci 2018; 67:16-27. [PMID: 30519865 DOI: 10.1007/s12031-018-1197-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022]
Abstract
Astrocytes play the central role in CNS metabolism to support neuronal functions. Mehyl-CpG-binding protein 2 (MeCP2) is the global transcription factor with differential expression in neuronal and non-neuronal cells. MeCP2 mutation and downstream detrimental effects have been reported in astrocytes also in MeCP2-associated neurodevelopmental disorder-Rett syndrome. Several studies have shown mitochondrial impairment linked to ROS production and reduced ATP synthesis in Rett patients and models, but consequences of MeCP2 deficiency on mitochondrial electron transport chain complexes in astrocytes and effect of known antioxidant quercetin aglycone has not yet been reported. The present study aimed to investigate effect of quercetin on mitochondrial functioning in MeCP2-deficient astrocytes. Our data show onefold upregulated Uqcrc1 and Ndufv2 gene expression, subtle change in protein expression, and significantly reduced mitochondrial respiratory chain complex-II and complex-III enzyme activities in MeCP2 knock-down astrocytes. Intracellular calcium robustly increased and mitochondrial membrane potential decreased, while no change in ROS was observed in MeCP2 knock-down astrocytes. Quercetin increased MeCP2 and normalized Uqcrc1 and Ndufv2 gene expression but did not modulate MeCP2 and Ndufv2 proteins expression. Interestingly, quercetin upregulated significantly the mitochondrial respiratory complex-II, complex-III, and complex-IV activities in dose-dependent manner. It also restored intracellular calcium level and mitochondrial membrane potential. In vitro observations suggest the beneficial effect of quercetin in mitochondrial functioning in MeCP2-deficient condition. There are no reports focusing on role of quercetin in mitochondrial function in MeCP2-deficient astrocytes, and these observations serve as preliminary data to evaluate quercetin's effects in vivo.
Collapse
|
36
|
Son G, Han J. Roles of mitochondria in neuronal development. BMB Rep 2018; 51:549-556. [PMID: 30269744 PMCID: PMC6283025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 04/06/2024] Open
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria- regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed. [BMB Reports 2018; 51(11): 549-556].
Collapse
Affiliation(s)
- Geurim Son
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Jinju Han
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141,
Korea
| |
Collapse
|
37
|
Shovlin S, Tropea D. Transcriptome level analysis in Rett syndrome using human samples from different tissues. Orphanet J Rare Dis 2018; 13:113. [PMID: 29996871 PMCID: PMC6042368 DOI: 10.1186/s13023-018-0857-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of neuro-genetic disorders have been mostly investigated in the brain, however, for some pathologies, transcriptomic analysis in multiple tissues represent an opportunity and a challenge to understand the consequences of the genetic mutation. This is the case for Rett Syndrome (RTT): a neurodevelopmental disorder predominantly affecting females that is characterised by a loss of purposeful movements and language accompanied by gait abnormalities and hand stereotypies. Although the genetic aetiology is largely associated to Methyl CpG binding protein 2 (MECP2) mutations, linking the pathophysiology of RTT and its clinical symptoms to direct molecular mechanisms has been difficult.One approach used to study the consequences of MECP2 dysfunction in patients, is to perform transcriptomic analysis in tissues derived from RTT patients or Induced Pluripotent Stem cells. The growing affordability and efficiency of this approach has led to a far greater understanding of the complexities of RTT syndrome but is also raised questions about previously held convictions such as the regulatory role of MECP2, the effects of different molecular mechanisms in different tissues and role of X Chromosome Inactivation in RTT.In this review we consider the results of a number of different transcriptomic analyses in different patients-derived preparations to unveil specific trends in differential gene expression across the studies. Although the analyses present limitations- such as the limited sample size- overlaps exist across these studies, and they report dysregulations in three main categories: dendritic connectivity and synapse maturation, mitochondrial dysfunction, and glial cell activity.These observations have a direct application to the disorder and give insights on the altered mechanisms in RTT, with implications on potential diagnostic criteria and treatments.
Collapse
Affiliation(s)
- Stephen Shovlin
- Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute- TTMI, St James Hospital, D8, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics Research Group, Trinity Translational Medicine Institute- TTMI, St James Hospital, D8, Dublin, Ireland
- Trinity College Institute of Neuroscience, TCIN, Loyd Building, Dublin2, Dublin, Ireland
| |
Collapse
|
38
|
Gogliotti RG, Fisher NM, Stansley BJ, Jones CK, Lindsley CW, Conn PJ, Niswender CM. Total RNA Sequencing of Rett Syndrome Autopsy Samples Identifies the M 4 Muscarinic Receptor as a Novel Therapeutic Target. J Pharmacol Exp Ther 2018; 365:291-300. [PMID: 29523700 PMCID: PMC5878667 DOI: 10.1124/jpet.117.246991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/08/2018] [Indexed: 02/04/2023] Open
Abstract
Mutations in the MeCP2 gene are responsible for the neurodevelopmental disorder Rett syndrome (RTT). MeCP2 is a DNA-binding protein whose abundance and ability to complex with histone deacetylase 3 is linked to the regulation of chromatin structure. Consequently, loss-of-function mutations in MeCP2 are predicted to have broad effects on gene expression. However, to date, studies in mouse models of RTT have identified a limited number of gene or pathway-level disruptions, and even fewer genes have been identified that could be considered amenable to classic drug discovery approaches. Here, we performed RNA sequencing (RNA-seq) on nine motor cortex and six cerebellar autopsy samples from RTT patients and controls. This approach identified 1887 significantly affected genes in the motor cortex and 2110 genes in the cerebellum, with a global trend toward increased expression. Pathway-level analysis identified enrichment in genes associated with mitogen-activated protein kinase signaling, long-term potentiation, and axon guidance. A survey of our RNA-seq results also identified a significant decrease in expression of the CHRM4 gene, which encodes a receptor [muscarinic acetylcholine receptor 4 (M4)] that is the subject of multiple large drug discovery efforts for schizophrenia and Alzheimer's disease. We confirmed that CHRM4 expression was decreased in RTT patients, and, excitingly, we demonstrated that M4 potentiation normalizes social and cognitive phenotypes in Mecp2+/- mice. This work provides an experimental paradigm in which translationally relevant targets can be identified using transcriptomics in RTT autopsy samples, back-modeled in Mecp2+/- mice, and assessed for preclinical efficacy using existing pharmacological tool compounds.
Collapse
Affiliation(s)
- Rocco G Gogliotti
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Nicole M Fisher
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Branden J Stansley
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Carrie K Jones
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Craig W Lindsley
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - P Jeffrey Conn
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| | - Colleen M Niswender
- Departments of Pharmacology (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.) and Chemistry (C.W.L.), and Vanderbilt Center for Neuroscience Drug Discovery (R.G.G., N.M.F., B.J.S., C.K.J., C.W.L., P.J.C., C.M.N.), Vanderbilt University, Nashville, Tennessee; and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (P.J.C., C.M.N.)
| |
Collapse
|
39
|
Kang T, Jensen P, Solovyeva V, Brewer JR, Larsen MR. Dynamic Changes in the Protein Localization in the Nuclear Environment in Pancreatic β-Cell after Brief Glucose Stimulation. J Proteome Res 2018. [PMID: 29518335 DOI: 10.1021/acs.jproteome.7b00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Characterization of molecular mechanisms underlying pancreatic β-cell function in relation to glucose-stimulated insulin secretion is incomplete, especially with respect to global response in the nuclear environment. We focus on the characterization of proteins in the nuclear environment of β-cells after brief, high glucose stimulation. We compared purified nuclei derived from β-cells stimulated with 17 mM glucose for 0, 2, and 5 min using quantitative proteomics, a time frame that most likely does not result in translation of new protein in the cell. Among the differentially regulated proteins, we identified 20 components of the nuclear organization processes, including nuclear pore organization, ribonucleoprotein complex, and pre-mRNA transcription. We found alteration of the nuclear pore complex, together with calcium/calmodulin-binding chaperones that facilitate protein and RNA import or export to/from the nucleus to the cytoplasm. Putative insulin mRNA transcription-associated factors were identified among the regulated proteins, and they were cross-validated by Western blotting and confocal immunofluorescence imaging. Collectively, our data suggest that protein translocation between the nucleus and the cytoplasm is an important process, highly involved in the initial molecular mechanism underlying glucose-stimulated insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Taewook Kang
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Pia Jensen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Vita Solovyeva
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Jonathan R Brewer
- MEMPHYS-Centre for Biomembrane Physics, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Martin R Larsen
- Protein Research Group, Department of Biochemistry and Molecular Biology , University of Southern Denmark , DK-5230 Odense M , Denmark
| |
Collapse
|
40
|
Kodali M, Hattiangady B, Shetty G, Bates A, Shuai B, Shetty A. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav Immun 2018; 69:499-514. [PMID: 29454881 PMCID: PMC7023905 DOI: 10.1016/j.bbi.2018.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Diminished cognitive and mood function are among the most conspicuous symptoms of Gulf War Illness (GWI). Our previous studies in a rat model of GWI have demonstrated that persistent cognitive and mood impairments are associated with substantially declined neurogenesis, chronic low-grade inflammation, increased oxidative stress and mitochondrial dysfunction in the hippocampus. We tested the efficacy of curcumin (CUR) to maintain better cognitive and mood function in a rat model of GWI because of its neurogenic, antiinflammatory, antioxidant, and memory and mood enhancing properties. Male rats were exposed daily to low doses of GWI-related chemicals, pyridostigmine bromide, N,N-diethyl-m-toluamide (DEET) and permethrin, and 5-minutes of restraint stress for 28 days. Animals were next randomly assigned to two groups, which received daily CUR or vehicle treatment for 30 days. Animals also received 5'-bromodeoxyuridine during the last seven days of treatment for analysis of neurogenesis. Behavioral studies through object location, novel object recognition and novelty suppressed feeding tests performed sixty days after treatment revealed better cognitive and mood function in CUR treated GWI rats. These rats also displayed enhanced neurogenesis and diminished inflammation typified by reduced astrocyte hypertrophy and activated microglia in the hippocampus. Additional studies showed that CUR treatment to GWI rats enhanced the expression of antioxidant genes and normalized the expression of multiple genes related to mitochondrial respiration. Thus, CUR therapy is efficacious for maintaining better memory and mood function in a model of GWI. Enhanced neurogenesis, restrained inflammation and oxidative stress with normalized mitochondrial respiration may underlie better memory and mood function mediated by CUR treatment.
Collapse
Affiliation(s)
- M. Kodali
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Hattiangady
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - G.A. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A. Bates
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Shuai
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A.K. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA,Corresponding author at: Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843, USA. (A.K. Shetty)
| |
Collapse
|
41
|
Valacchi G, Pecorelli A, Cervellati C, Hayek J. 4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation. Free Radic Biol Med 2017; 111:270-280. [PMID: 28063942 DOI: 10.1016/j.freeradbiomed.2016.12.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022]
Abstract
In the last 15 years a strong correlation between oxidative stress (OxS) and Rett syndrome (RTT), a rare neurodevelopmental disorder known to be caused in 95% of the cases, by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, has been well documented. Here, we revised, summarized and discussed the current knowledge on the role of lipid peroxidation byproducts, with special emphasis on 4-hydroxynonenal (4HNE), in RTT pathophysiology. The posttranslational modifications of proteins via 4HNE, known as 4HNE protein adducts (4NHE-PAs), causing detrimental effects on protein functions, appear to contribute to the clinical severity of the syndrome, since their levels increase significantly during the subsequent 4 clinical stages, reaching the maximum degree at stage 4, represented by a late motor deterioration. In addition, 4HNE-PA are only partially removed due to the compromised functionality of the proteasome activity, contributing therefore to the cellular damage in RTT. All this will lead to a characteristic subclinical inflammation, defined "OxInflammation", derived by a positive feedback loop between OxS byproducts and inflammatory mediators that in a long run further aggravates the clinical features of RTT patients. Therefore, in a pathology completely orphan of any therapy, aiming 4HNE as a therapeutic target could represent a coadjuvant treatment with some beneficial impact in these patients..
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy.
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, NC State University, NC Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, AOUS, Viale Mario Bracci, 53100 Siena, Italy
| |
Collapse
|
42
|
Increased Mitochondrial Mass and Cytosolic Redox Imbalance in Hippocampal Astrocytes of a Mouse Model of Rett Syndrome: Subcellular Changes Revealed by Ratiometric Imaging of JC-1 and roGFP1 Fluorescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3064016. [PMID: 28894505 PMCID: PMC5574314 DOI: 10.1155/2017/3064016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder with mutations in the MECP2 gene. Mostly girls are affected, and an apparently normal development is followed by cognitive impairment, motor dysfunction, epilepsy, and irregular breathing. Various indications suggest mitochondrial dysfunction. In Rett mice, brain ATP levels are reduced, mitochondria are leaking protons, and respiratory complexes are dysregulated. Furthermore, we found in MeCP2-deficient mouse (Mecp2−/y) hippocampus an intensified mitochondrial metabolism and ROS generation. We now used emission ratiometric 2-photon imaging to assess mitochondrial morphology, mass, and membrane potential (ΔΨm) in Mecp2−/y hippocampal astrocytes. Cultured astrocytes were labeled with the ΔΨm marker JC-1, and semiautomated analyses yielded the number of mitochondria per cell, their morphology, and ΔΨm. Mecp2−/y astrocytes contained more mitochondria than wild-type (WT) cells and were more oxidized. Mitochondrial size, ΔΨm, and vulnerability to pharmacological challenge did not differ. The antioxidant Trolox opposed the oxidative burden and decreased the mitochondrial mass, thereby dampening the differences among WT and Mecp2−/y astrocytes; mitochondrial size and ΔΨm were not markedly affected. In conclusion, mitochondrial alterations and redox imbalance in RTT also involve astrocytes. Mitochondria are more numerous in Mecp2−/y than in WT astrocytes. As this genotypic difference is abolished by Trolox, it seems linked to the oxidative stress in RTT.
Collapse
|
43
|
Shetty GA, Hattiangady B, Upadhya D, Bates A, Attaluri S, Shuai B, Kodali M, Shetty AK. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness. Front Mol Neurosci 2017; 10:182. [PMID: 28659758 PMCID: PMC5469946 DOI: 10.3389/fnmol.2017.00182] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/26/2017] [Indexed: 01/21/2023] Open
Abstract
Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines (Tnfa, IL1b, IL1a, Tgfb, and Fgf2) and lipid peroxidation byproduct malondialdehyde in the serum, suggesting the presence of an incessant systemic inflammation and elevated oxidative stress. These results imply that chronic oxidative stress, inflammation, and mitochondrial dysfunction in the hippocampus, and heightened systemic inflammation and oxidative stress likely underlie the persistent memory and mood dysfunction observed in GWI.
Collapse
Affiliation(s)
- Geetha A Shetty
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, TempleTX, United States.,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| | - Bharathi Hattiangady
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, TempleTX, United States.,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| | - Dinesh Upadhya
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, TempleTX, United States.,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| | - Adrian Bates
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, TempleTX, United States.,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| | - Bing Shuai
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, TempleTX, United States.,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| | - Maheedhar Kodali
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, TempleTX, United States.,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| | - Ashok K Shetty
- Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, TempleTX, United States.,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College StationTX, United States.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College StationTX, United States
| |
Collapse
|
44
|
Shulyakova N, Andreazza AC, Mills LR, Eubanks JH. Mitochondrial Dysfunction in the Pathogenesis of Rett Syndrome: Implications for Mitochondria-Targeted Therapies. Front Cell Neurosci 2017; 11:58. [PMID: 28352216 PMCID: PMC5348512 DOI: 10.3389/fncel.2017.00058] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023] Open
Abstract
First described over 50 years ago, Rett syndrome (RTT) is a neurodevelopmental disorder caused primarily by mutations of the X-linked MECP2 gene. RTT affects predominantly females, and has a prevalence of roughly 1 in every 10,000 female births. Prior to the discovery that mutations of MECP2 are the leading cause of RTT, there were suggestions that RTT could be a mitochondrial disease. In fact, several reports documented altered mitochondrial structure, and deficiencies in mitochondrial enzyme activity in different cells or tissues derived from RTT patients. With the identification of MECP2 as the causal gene, interest largely shifted toward defining the normal function of MeCP2 in the brain, and how its absence affects the neurodevelopment and neurophysiology. Recently, though, interest in studying mitochondrial function in RTT has been reignited, at least in part due to observations suggesting systemic oxidative stress does play a contributing role in RTT pathogenesis. Here we review data relating to mitochondrial alterations at the structural and functional levels in RTT patients and model systems, and present a hypothesis for how the absence of MeCP2 could lead to altered mitochondrial function and elevated levels of cellular oxidative stress. Finally, we discuss the prospects for treating RTT using interventions that target specific aspects of mitochondrial dysfunction and/or oxidative stress.
Collapse
Affiliation(s)
- Natalya Shulyakova
- Division of Genetics and Development, Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology, University of Toronto Toronto, ON, Canada
| | - Linda R Mills
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Physiology, University of TorontoToronto, ON, Canada; Institute of Medical Sciences, University of TorontoToronto, ON, Canada; Department of Surgery (Neurosurgery), University of TorontoToronto, ON, Canada
| |
Collapse
|
45
|
Pecorelli A, Cervellati C, Hayek J, Valacchi G. OxInflammation in Rett syndrome. Int J Biochem Cell Biol 2016; 81:246-253. [DOI: 10.1016/j.biocel.2016.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/24/2022]
|
46
|
Pecorelli A, Cervellati C, Cortelazzo A, Cervellati F, Sticozzi C, Mirasole C, Guerranti R, Trentini A, Zolla L, Savelli V, Hayek J, Valacchi G. Proteomic analysis of 4-hydroxynonenal and nitrotyrosine modified proteins in RTT fibroblasts. Int J Biochem Cell Biol 2016; 81:236-245. [PMID: 27495376 DOI: 10.1016/j.biocel.2016.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022]
Abstract
Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births. A clear etiological factor present in more than 90% of classical RTT cases is the mutation of the gene encoding methyl-CpG-binding protein 2 (MECP2). Recent work from our group was able to shown a systemic oxidative stress (OxS) in these patients that correlates with the gravity of the clinical features. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have performed a two-dimensional gel electrophoresis in order to evidence the oxidative modifications of proteins with special focus on the formation of protein adducts with 4-hydroxynonenal (4-HNE PAs)-a major secondary product of lipid peroxidation- and Nitrotyrosine, a marker derived from the biochemical interaction of nitric oxide (NO) or nitric oxide-derived secondary products with reactive oxygen species (ROS). Then, oxidatively modified spots were identified by mass spectrometry, LC-ESI-CID-MS/MS. Our results showed that 15 protein spots presented 4-HNE PAs and/or nitrotyrosine adducts in fibroblasts proteome from RTT patients compared to healthy control cells. Post-translationally modified proteins were related to several functional categories, in particular to cytoskeleton structure and protein folding. In addition, clear upregulated expression of the inducible NO synthase (iNOS) with high nitrite levels were observed in RTT fibroblasts, justifying the increased nitrotyrosine protein modifications. The present work describes not only the proteomic profile in RTT fibroblasts, but also identifies the modified proteins by 4-HNE and nitrotyrosine. Of note, for the first time, it appears that a dysregulation of NO pathway can be associated to RTT pathophysiology. In conclusion, the evidence of a wide range of proteins able to forms adducts with 4-HNE, Nitrotyrosine or with both confirms the possible alteration of several aspects of cellular functions that well correlates to the complex clinical features of RTT patients.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessio Cortelazzo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudia Sticozzi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiana Mirasole
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Vinno Savelli
- Department of Medical, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
47
|
Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions. PLoS One 2016; 11:e0152342. [PMID: 27050411 PMCID: PMC4822961 DOI: 10.1371/journal.pone.0152342] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we identified the presence of 23 non-coding features, including four miRNA precursors (miR-7, miR570, miR-1229 and miR-6821), dysregulated across the brain regions. Furthermore, we compared our results with two popular meta-analysis methods RankProd and GeneMeta to validate our findings and performed a sensitivity analysis by removing one dataset at a time to assess the robustness of our results. These new findings may provide new insights into the disease mechanisms and thus make a significant contribution in the near future towards understanding, prevention and cure of AD.
Collapse
Affiliation(s)
- Nisha Puthiyedth
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Carlos Riveros
- Clinical Research Design, Information Technology and Statistics Suport Unit, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
| | - Regina Berretta
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
| | - Pablo Moscato
- Information Based Medicine Program, Hunter Medical Research Institute, New Lambton Heights NSW, Australia
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW, Australia
- * E-mail:
| |
Collapse
|
48
|
Signorini C, De Felice C, Leoncini S, Møller RS, Zollo G, Buoni S, Cortelazzo A, Guerranti R, Durand T, Ciccoli L, D’Esposito M, Ravn K, Hayek J. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome. PLoS One 2016; 11:e0150101. [PMID: 26930212 PMCID: PMC4773238 DOI: 10.1371/journal.pone.0150101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail: (CS); (CDF)
| | - Silvia Leoncini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Rikke S. Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gloria Zollo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sabrina Buoni
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessio Cortelazzo
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies,University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Montpellier, France
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Maurizio D’Esposito
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, Naples, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Joussef Hayek
- Child Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
49
|
Filosa S, Pecorelli A, D'Esposito M, Valacchi G, Hajek J. Exploring the possible link between MeCP2 and oxidative stress in Rett syndrome. Free Radic Biol Med 2015; 88:81-90. [PMID: 25960047 DOI: 10.1016/j.freeradbiomed.2015.04.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/27/2023]
Abstract
Rett syndrome (RTT, MIM 312750) is a rare and orphan progressive neurodevelopmental disorder affecting girls almost exclusively, with a frequency of 1/15,000 live births of girls. The disease is characterized by a period of 6 to 18 months of apparently normal neurodevelopment, followed by early neurological regression, with a progressive loss of acquired cognitive, social, and motor skills. RTT is known to be caused in 95% of the cases by sporadic de novo loss-of-function mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene encoding methyl-CpG binding protein 2 (MeCP2), a nuclear protein able to regulate gene expression. Despite almost two decades of research into the functions and role of MeCP2, little is known about the mechanisms leading from MECP2 mutation to the disease. Oxidative stress (OS) is involved in the pathogenic mechanisms of several neurodevelopmental and neurodegenerative disorders, although in many cases it is not clear whether OS is a cause or a consequence of the pathology. Fairly recently, the presence of a systemic OS has been demonstrated in RTT patients with a strong correlation with the patients' clinical status. The link between MECP2 mutation and the redox imbalance found in RTT is not clear. Animal studies have suggested a possible direct correlation between Mecp2 mutation and increased OS levels. In addition, the restoration of Mecp2 function in astrocytes significantly improves the developmental outcome of Mecp2-null mice and reexpression of Mecp2 gene in the brain of null mice restored oxidative damage, suggesting that Mecp2 loss of function can be involved in oxidative brain damage. Starting from the evidence that oxidative damage in the brain of Mecp2-null mice precedes the onset of symptoms, we evaluated whether, based on the current literature, the dysfunctions described in RTT could be a consequence or, in contrast, could be caused by OS. We also analyzed whether therapies that at least partially treated some RTT symptoms can play a role in defense against OS. At this stage we can propose that OS could be one of the main causes of the dysfunctions observed in RTT. In addition, the major part of the therapies recommended to alleviate RTT symptoms have been shown to interfere with oxidative homeostasis, suggesting that MeCP2 could somehow be involved in the protection of the brain from OS.
Collapse
Affiliation(s)
- Stefania Filosa
- Institute of Biosciences and BioResources-CNR, UOS Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandra Pecorelli
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati-Traverso"-CNR, Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Joussef Hajek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
50
|
Pecorelli A, Cervellati F, Belmonte G, Montagner G, Waldon P, Hayek J, Gambari R, Valacchi G. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients. Cytokine 2015; 77:180-8. [PMID: 26471937 DOI: 10.1016/j.cyto.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Accepted: 10/07/2015] [Indexed: 12/25/2022]
Abstract
A potential role for immune dysfunction in autism spectrum disorders (ASD) has been well established. However, immunological features of Rett syndrome (RTT), a genetic neurodevelopmental disorder closely related to autism, have not been well addressed yet. By using multiplex Luminex technology, a panel of 27 cytokines and chemokines was evaluated in serum from 10 RTT patients with confirmed diagnosis of MECP2 mutation (typical RTT), 12 children affected by classic autistic disorder and 8 control subjects. The cytokine/chemokine gene expression was assessed by real time PCR on mRNA of isolated peripheral blood mononuclear cells (PBMCs). Moreover, ultrastructural analysis of PBMCs was performed using transmission electron microscopy (TEM). Significantly higher serum levels of interleukin-8 (IL-8), IL-9, IL-13 were detected in RTT compared to control subjects, and IL-15 shows a trend toward the upregulation in RTT. In addition, IL-1β and VEGF were the only down-regulated cytokines in autistic patients with respect to RTT. No difference in cytokine/chemokine profile between autistic and control groups was detected. These data were also confirmed by ELISA real time PCR. At the ultrastructural level, the most severe morphological abnormalities were observed in mitochondria of both RTT and autistic PBMCs. In conclusion, our study shows a deregulated cytokine/chemokine profile together with morphologically altered immune cells in RTT. Such abnormalities were not quite as evident in autistic subjects. These findings indicate a possible role of immune dysfunction in RTT making the clinical features of this pathology related also to the immunology aspects, suggesting, therefore, novel possible therapeutic interventions for this disorder.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Franco Cervellati
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montagner
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Joussef Hayek
- Child Neuropsychiatry Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|