1
|
Saini S, Panchal SS. Role of Diabetes and its metabolic pathways in Epilepsy: An insight to various target approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04245-1. [PMID: 40347278 DOI: 10.1007/s00210-025-04245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025]
Abstract
The human brain acts as a crucial organ that requires a high glucose metabolic content. However, abnormal glucose levels act as a major factor for frequent epileptic foci. Thus, it has come to attention in the recent past that epilepsy is a metabolic problem in addition to a neurological condition. However, several studies have postulated a link between epilepsy and diabetes mellitus, but very few have emphasized the exact molecular mechanism behind it and its related specific targets. Hence, this article mainly outlines in-depth knowledge about the molecular mechanisms involved and its associated target approaches. Data from several publications, such as meta-analysis, systematic and narrative reviews, and research papers obtained from electronic databases, have been used for postulating a strong evidence in order to establish a comprehensive article addressing this problem in depth. The data discussed here have revealed how adiponectin levels and mitochondrial activity impact obesity, type 2 diabetes mellitus (T2DM), and epilepsy. We have also tried to give a brief idea about the possible theories that would also impact the severity of these two conditions, including adequate exercise and the impact of commonly used AEDs. Furthermore, one of the factors causing genetic predisposition to seizures due to glucose metabolism, such as GLUT-1 deficiency, has also been described briefly. It has to be mentioned that researchers and clinical practitioners might need to take these factors into account while discovering and evaluating a suitable novel therapeutic in the future.
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G Highway, Ahmedabad, 382 481, Gujarat, India
| | - Shital S Panchal
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G Highway, Ahmedabad, 382 481, Gujarat, India.
| |
Collapse
|
2
|
Braczko A, Stawarska K, Kawecka A, Walczak I, Slomińska EM, Kutryb-Zając B, Smoleński RT. Pharmacological interventions that activate mitochondrial biogenesis stimulate nucleotide generation in isoproterenol-stressed rat cardiomyocytes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-12. [PMID: 39895099 DOI: 10.1080/15257770.2025.2453105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Mitochondrial dysfunction in failing hearts has been described as a driving force for energy deprivation and cardiomyocyte energy supply-demand imbalance. Isoproterenol (ISO), the β1/β2-adrenergic receptor agonist that leads to myocardial stress and mitochondrial damage, is extensively used for in vitro and in vivo studies to test the efficacy of therapeutic strategies in heart failure (HF). This study evaluated the cell morphology, nucleotide concentrations, and mitochondrial function of ISO-treated cardiomyocytes stimulated with the activators of mitochondrial biogenesis and nucleotide precursors. H9c2 rat cardiomyocyte line cells were treated with ISO in the presence of mitochondrial biogenesis stimuli quercetin (Que), rosiglitazone (Ros), S-Nitroso-N-acetyl-DL-penicillamin (SNAP), and NAD+ precursor, nicotinamide riboside (NR). The intracellular concentrations of nucleotides were analyzed using high-performance liquid chromato-graphy, and the Seahorse metabolic flux analyzer determined the mitochondrial function. ISO decreased intracellular ATP concentration in H9c2 cells as compared to control. The treatment with SNAP increased ATP concentration compared to ISO-only treated cells, while Que, Ros, and NR had no effect. NR treatment led to the elevation of intracellular NAD+ concentration, while the treatment with SNAP, Ros, and NR stimulated the mitochondrial respiration in ISO-pretreated H9c2 cells. In conclusion, mitochondrial biogenesis activators consistently improved cardiomyocyte mitochondrial function, but only selected molecules helped to improve ATP or NAD+ concentrations. This information may help to optimize treatment to ameliorate energy imbalance in failing cardiomyocytes.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Ewa M Slomińska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | | |
Collapse
|
3
|
Cardoso-Pires C, Vieira HLA. Carbon monoxide and mitochondria: Cell energy and fate control. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167446. [PMID: 39079605 DOI: 10.1016/j.bbadis.2024.167446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024]
Abstract
Carbon monoxide (CO) is a ubiquitously produced endogenous gas in mammalian cells and is involved in stress response being considered as a cytoprotective and homeostatic factor. In the present review, the underlying mechanisms of CO are discussed, in particular CO's impact on cellular metabolism affecting cell fate and function. One of the principal signaling molecules of CO is reactive oxygen species (ROS), particularly hydrogen peroxide, which is mainly generated at the mitochondrial level. Likewise, CO acts on mitochondria modulating oxidative phosphorylation and mitochondria quality control, namely mitochondrial biogenesis (mitobiogenesis) and mitophagy. Other metabolic pathways are also involved in CO's mode of action such as glycolysis and pentose phosphate pathway. The review ends with some new perspectives on CO Biology research. Carboxyhemoglobin (COHb) formation can also be implicated in the CO mode of action, as well as its potential biological role. Finally, other organelles such as peroxisomes hold the potential to be targeted and modulated by CO.
Collapse
Affiliation(s)
- Catarina Cardoso-Pires
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
4
|
Kim MB, Lee J, Lee JY. Targeting Mitochondrial Dysfunction for the Prevention and Treatment of Metabolic Disease by Bioactive Food Components. J Lipid Atheroscler 2024; 13:306-327. [PMID: 39355406 PMCID: PMC11439752 DOI: 10.12997/jla.2024.13.3.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/21/2024] [Accepted: 05/13/2024] [Indexed: 10/03/2024] Open
Abstract
Dysfunctional mitochondria have been linked to the pathogenesis of obesity-associated metabolic diseases. Excessive energy intake impairs mitochondrial biogenesis and function, decreasing adenosine-5'-triphosphate production and negatively impacting metabolically active tissues such as adipose tissue, skeletal muscle, and the liver. Compromised mitochondrial function disturbs lipid metabolism and increases reactive oxygen species production in these tissues, contributing to the development of insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease. Recent studies have demonstrated the therapeutic potential of bioactive food components, such as resveratrol, quercetin, coenzyme Q10, curcumin, and astaxanthin, by enhancing mitochondrial function. This review provides an overview of the current understanding of how these bioactive compounds ameliorate mitochondrial dysfunction to mitigate obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Jaeeun Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
5
|
Li K, Kidawara M, Chen Q, Munemasa S, Murata Y, Nakamura T, Nakamura Y. Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes. Int J Mol Sci 2024; 25:9038. [PMID: 39201725 PMCID: PMC11354654 DOI: 10.3390/ijms25169038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
| | - Minori Kidawara
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
| | - Qiguang Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China;
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; (K.L.); (M.K.); (S.M.); (Y.M.); (T.N.)
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Shaw S, Chourasia M, Nayak R, Kumeria T, Ghosh MP, Santoshi S, Bose S. Molecular interaction of quercetin and its derivatives against nucleolin in breast cancer: in-silico and in-vitro study. J Biomol Struct Dyn 2024:1-12. [PMID: 38468538 DOI: 10.1080/07391102.2024.2326668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Nucleolin, a multifaceted RNA binding domain protein is overexpressed in various cancers leading to dysfunction of several cellular signaling pathways. Quercetin, a distinctive bioactive molecule, along with its derivatives have shown exclusive physio-chemical properties which makes them appealing choices for drug development, yet their role in targeted cancer therapy is limited. Here, the RBD domain structure of Nucleolin was modeled and stabilized by MD simulations for a period of 1000 ns. Molecular docking was performed to determine the binding capability of ligands with the target. To determine the stability of the ligand inside the binding pocket of the protein, MD simulation was performed for a period of 250 ns each for Quercetin-4'-o'-Glucoside, Quercetin_9 and Quercetin complexes. Further, in-vitro studies including cytotoxicity and RT-PCR assays were performed to validate quercetin against Nucleolin. Molecular docking and MD Simulation studies suggested a potential mechanism of interaction of Quercetin-4'-o'-Glucoside, Querectin_9 and Quercetin with Nucleolin with the binding free energy of -63.653, -58.86 and -46.9 kcal/mol, respectively. Moreover, Lys 348 and Glu379 were identified as important amino acids in ligand interaction located at the RRM2 motif of Nucleolin. In-vitro studies showed significant downregulation in Nucleolin expression by 15.18 and 2.51-fold at 48h and 72h respectively in MCF-7 cells with Quercetin (IC50 = 160 µM). Our findings suggested the potential role of specific RRM motifs in interaction with natural compounds targeting Nucleolin. This could be an effective strategy in the identification of potential molecules in targeting Nucleolin which can be further explored for developing targeted therapies for breast cancer.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Mukesh Chourasia
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, Australia
| | - Madhumita P Ghosh
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Seneha Santoshi
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh
| |
Collapse
|
7
|
Kumar S, Chhabra V, Shenoy S, Daksh R, Ravichandiran V, Swamy RS, Kumar N. Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress. Mini Rev Med Chem 2024; 24:908-919. [PMID: 37861054 DOI: 10.2174/0113895575259219230920093214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Flavonoids are a widespread category of naturally occurring polyphenols distinguished by the flavan nucleus in plant-based foods and beverages, known for their various health benefits. Studies have suggested that consuming 150-500 mg of flavonoids daily is beneficial for health. Recent studies suggest that flavonoids are involved in maintaining mitochondrial activity and preventing impairment of mitochondrial dynamics by oxidative stress. OBJECTIVE This review emphasized the significance of studying the impact of flavonoids on mitochondrial dynamics, oxidative stress, and inflammatory response. METHODS This review analysed and summarised the findings related to the impact of flavonoids on mitochondria from publicly available search engines namely Pubmed, Scopus, and Web of Science. DESCRIPTION Any disruption in mitochondrial dynamics can contribute to cellular dysfunction and diseases, including cancer, cardiac conditions, and neurodegeneration. Flavonoids have been shown to modulate mitochondrial dynamics by regulating protein expression involved in fission and fusion events. Furthermore, flavonoids exhibit potent antioxidant properties by lowering the production of ROS and boosting the performance of antioxidant enzymes. Persistent inflammation is a characteristic of many different disorders. This is because flavonoids also alter the inflammatory response by controlling the expression of numerous cytokines and chemokines involved in the inflammatory process. Flavonoids exhibit an impressive array of significant health effects, making them an effective therapeutic agent for managing various disorders. Further this review summarised available mechanisms underlying flavonoids' actions on mitochondrial dynamics and oxidative stress to recognize the optimal dose and duration of flavonoid intake for therapeutic purposes. CONCLUSION This review may provide a solid foundation for developing targeted therapeutic interventions utilizing flavonoids, ultimately benefiting individuals afflicted with various disorders.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| |
Collapse
|
8
|
Piano I, Votta A, Colucci P, Corsi F, Vitolo S, Cerri C, Puppi D, Lai M, Maya-Vetencourt JF, Leigheb M, Gabellini C, Ferraro E. Anti-inflammatory reprogramming of microglia cells by metabolic modulators to counteract neurodegeneration; a new role for Ranolazine. Sci Rep 2023; 13:20138. [PMID: 37978212 PMCID: PMC10656419 DOI: 10.1038/s41598-023-47540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Microglia chronic activation is a hallmark of several neurodegenerative diseases, including the retinal ones, possibly contributing to their etiopathogenesis. However, some microglia sub-populations have anti-inflammatory and neuroprotective functions, thus making arduous deciphering the role of these cells in neurodegeneration. Since it has been proposed that functionally different microglia subsets also rely on different metabolic routes, we hypothesized that modulating microglia metabolism might be a tool to enhance their anti-inflammatory features. This would have a preventive and therapeutic potential in counteracting neurodegenerative diseases. For this purpose, we tested various molecules known to act on cell metabolism, and we revealed the anti-inflammatory effect of the FDA-approved piperazine derivative Ranolazine on microglia cells, while confirming the one of the flavonoids Quercetin and Naringenin, both in vitro and in vivo. We also demonstrated the synergistic anti-inflammatory effect of Quercetin and Idebenone, and the ability of Ranolazine, Quercetin and Naringenin to counteract the neurotoxic effect of LPS-activated microglia on 661W neuronal cells. Overall, these data suggest that using the selected molecules -also in combination therapies- might represent a valuable approach to reduce inflammation and neurodegeneration while avoiding long term side effects of corticosteroids.
Collapse
Affiliation(s)
- Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Arianna Votta
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Sara Vitolo
- Department of Biology, University of Pisa, Pisa, Italy
| | - Chiara Cerri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Italian Institute of Technology (IIT), Genova, Italy
| | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, "Maggiore della Carità" Hospital, Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | | | | |
Collapse
|
9
|
Wendt F, Wittig F, Rupprecht A, Ramer R, Langer P, Emmert S, Frank M, Hinz B. A Thia-Analogous Indirubin N-Glycoside Disrupts Mitochondrial Function and Causes the Death of Human Melanoma and Cutaneous Squamous Cell Carcinoma Cells. Cells 2023; 12:2409. [PMID: 37830623 PMCID: PMC10572502 DOI: 10.3390/cells12192409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Skin cancer is the most common malignant disease worldwide and, therefore, also poses a challenge from a pharmacotherapeutic perspective. Derivatives of indirubin are an interesting option in this context. In the present study, the effects of 3-[3'-oxo-benzo[b]thiophen-2'-(Z)-ylidene]-1-(β-d-glucopyranosyl)-oxindole (KD87), a thia-analogous indirubin N-glycoside, on the viability and mitochondrial properties of melanoma (A375) and squamous cell carcinoma cells (A431) of the skin were investigated. In both cell lines, KD87 caused decreased viability, the activation of caspases-3 and -7, and the inhibition of colony formation. At the mitochondrial level, a concentration-dependent decrease in both the basal and ATP-linked oxygen consumption rate and in the reserve capacity of oxidative respiration were registered in the presence of KD87. These changes were accompanied by morphological alterations in the mitochondria, a release of mitochondrial cytochrome c into the cytosol and significant reductions in succinate dehydrogenase complex subunit B (SDHB, subunit of complex II) in A375 and A431 cells and NADH:ubiquinone oxidoreductase subunit B8 (NDUFB8, subunit of complex I) in A375 cells. The effect of KD87 was accompanied by a significant upregulation of the enzyme heme oxygenase-1, whose inhibition led to a partial but significant reduction in the metabolic-activity-reducing effect of KD87. In summary, our data show a mitochondria-targeting effect of KD87 as part of the cytotoxic effect of this compound on skin cancer cells, which should be considered in future studies with this class of compounds.
Collapse
Affiliation(s)
- Franziska Wendt
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Anne Rupprecht
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| | - Peter Langer
- Institute of Organic Chemistry, University of Rostock, 18059 Rostock, Germany;
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology, Rostock University Medical Centre, 18057 Rostock, Germany;
| | - Marcus Frank
- Electron Microscopy Centre, Rostock University Medical Centre, 18057 Rostock, Germany;
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (F.W.); (F.W.); (A.R.); (R.R.)
| |
Collapse
|
10
|
Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, Lucchin L, Mollica MP. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants (Basel) 2023; 12:1172. [PMID: 37371902 DOI: 10.3390/antiox12061172] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita D'Angelo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, 39100 Bolzano, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
11
|
Liu J, Chen H, Lin H, Peng S, Chen L, Cheng X, Yao P, Tang Y. Iron-frataxin involved in the protective effect of quercetin against alcohol-induced liver mitochondrial dysfunction. J Nutr Biochem 2023; 114:109258. [PMID: 36587874 DOI: 10.1016/j.jnutbio.2022.109258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Emerging evidence supports the beneficial effect of quercetin on liver mitochondrial disorders. However, the molecular mechanism by which quercetin protects mitochondria is limited, especially in alcoholic liver disease. In this study, C57BL/6N mice were fed with Lieber De Carli liquid diet (28% ethanol-derived calories) for 12 weeks plus a single binge ethanol and intervened with quercetin (100 mg/kg.bw). Moreover, HepG2CYP2E1+/+ were stimulated with ethanol (100 mM) and quercetin (50 µM) to investigate the effects of mitochondrial protein frataxin. The results indicated that quercetin alleviated alcohol-induced histopathological changes and mitochondrial functional disorders in mice livers. Consistent with increased PINK1, Parkin, Bnip3 and LC3II as well as decreased p62, TOM20 and VDAC1 expression, the inhibition of mitophagy by ethanol was blocked by quercetin. Additionally, quercetin improved the imbalance of iron metabolism-related proteins expression in alcohol-fed mice livers. Compared with ethanol-treated Lv-empty HepG2CYP2E1+/+ cells, frataxin deficiency further exacerbated the inhibition of mitochondrial function. Conversely, restoration of frataxin expression ameliorated the effect of ethanol. Furthermore, frataxin deficiency reduced the protective effects of quercetin on mitochondria disordered by ethanol. Attentively, ferric ammonium citrate (FAC) and deferiprone decreased or increased frataxin expression in HepG2CYP2E1+/+, respectively. Notably, we further found FAC reversed the increasing effect of quercetin on frataxin expression. Ultimately, silencing NCOA4 attenuated the inhibition of quercetin on LDH release and mitochondrial membrane potential increase, and similar results were observed by adding FAC. Collectively, these findings demonstrated quercetin increased frataxin expression through regulating iron level, thereby mitigating ethanol-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Henan Center for Disease Control and Prevention, Zhengzhou 450016, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongkun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shufen Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Giacomini I, Cortini M, Tinazzi M, Baldini N, Cocetta V, Ragazzi E, Avnet S, Montopoli M. Contribution of Mitochondrial Activity to Doxorubicin-Resistance in Osteosarcoma Cells. Cancers (Basel) 2023; 15:cancers15051370. [PMID: 36900165 PMCID: PMC10000149 DOI: 10.3390/cancers15051370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Osteosarcoma is considered the most common bone tumor affecting children and young adults. The standard of care is chemotherapy; however, the onset of drug resistance still jeopardizes osteosarcoma patients, thus making it necessary to conduct a thorough investigation of the possible mechanisms behind this phenomenon. In the last decades, metabolic rewiring of cancer cells has been proposed as a cause of chemotherapy resistance. Our aim was to compare the mitochondrial phenotype of sensitive osteosarcoma cells (HOS and MG-63) versus their clones when continuously exposed to doxorubicin (resistant cells) and identify alterations exploitable for pharmacological approaches to overcome chemotherapy resistance. Compared with sensitive cells, doxorubicin-resistant clones showed sustained viability with less oxygen-dependent metabolisms, and significantly reduced mitochondrial membrane potential, mitochondrial mass, and ROS production. In addition, we found reduced expression of TFAM gene generally associated with mitochondrial biogenesis. Finally, combined treatment of resistant osteosarcoma cells with doxorubicin and quercetin, a known inducer of mitochondrial biogenesis, re-sensitizes the doxorubicin effect in resistant cells. Despite further investigations being needed, these results pave the way for the use of mitochondrial inducers as a promising strategy to re-sensitize doxorubicin cytotoxicity in patients who do not respond to therapy or reduce doxorubicin side effects.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Margherita Cortini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Mattia Tinazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Correspondence: (S.A.); (M.M.)
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland
- Correspondence: (S.A.); (M.M.)
| |
Collapse
|
13
|
Chen Y, Zhao Y, Miao C, Yang L, Wang R, Chen B, Zhang Q. Quercetin alleviates cyclophosphamide-induced premature ovarian insufficiency in mice by reducing mitochondrial oxidative stress and pyroptosis in granulosa cells. J Ovarian Res 2022; 15:138. [PMID: 36572950 PMCID: PMC9793602 DOI: 10.1186/s13048-022-01080-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Exposure to cyclophosphamide (CTX) induces premature ovarian insufficiency (POI). Quercetin is a natural flavonoid that exhibits anti-inflammatory and antioxidant properties, and its antioxidant activity is correlated with POI. However, the mechanism underlying its protective role in CTX-induced ovarian dysfunction is unclear. This study aimed to explore whether quercetin can protect ovarian reserves by activating mitochondrial biogenesis and inhibiting pyroptosis. METHODS Thirty-six female C57BL/6 mice were randomly subdivided into six groups. Except for the control group, all groups were injected with 90 mg/kg CTX to establish a POI model and further treated with coenzyme 10 or various doses of quercetin. The mice were sacrificed 48 h after 10 IU pregnant mare serum gonadotropin was injected four weeks after treatments. We used enzyme-linked immunosorbent assays to detect serum hormone expression and light and transmission electron microscopy to assess ovarian tissue morphology and mitochondria. Additionally, we tested oxidant and antioxidant levels in ovarian tissues and mitochondrial function in granulosa cells (GCs). The expression of mitochondrial biogenesis and pyroptosis-related proteins and mRNA was analyzed using western blotting and RT-qPCR. RESULTS Quercetin elevated serum anti-Müllerian hormone, estradiol, and progesterone levels, decreased serum follicle-stimulating hormone and luteinizing hormone levels, and alleviated ovarian pathology. It reduced the mitochondrial DNA content and mitochondrial membrane potential. Furthermore, it upregulated ATP levels and the mRNA and protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), mitochondrial transcription factor A, and superoxide dismutase 2. In addition, it suppressed NOD-like receptor pyrin domain containing 3, caspase-1, interleukin-1β, and gasdermin D levels in the GCs of POI mice. CONCLUSIONS Quercetin protected the ovarian reserve from CTX-induced ovarian damage by reversing mitochondrial dysfunction and activating mitochondrial biogenesis via the PGC1-α pathway. Moreover, quercetin may improve ovarian functions by downregulating pyroptosis in the CTX-induced POI model. Thus, quercetin can be considered a potential agent for treating POI.
Collapse
Affiliation(s)
- Yun Chen
- grid.268505.c0000 0000 8744 8924Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Xihu District, Hangzhou, 310007 Zhejiang Province China
| | - Ying Zhao
- grid.268505.c0000 0000 8744 8924Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Xihu District, Hangzhou, 310007 Zhejiang Province China
| | - Chenyun Miao
- grid.268505.c0000 0000 8744 8924Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Xihu District, Hangzhou, 310007 Zhejiang Province China
| | - Liuqing Yang
- grid.268505.c0000 0000 8744 8924Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Xihu District, Hangzhou, 310007 Zhejiang Province China
| | - Ruye Wang
- grid.268505.c0000 0000 8744 8924Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Xihu District, Hangzhou, 310007 Zhejiang Province China
| | - Bixia Chen
- grid.268505.c0000 0000 8744 8924Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Xihu District, Hangzhou, 310007 Zhejiang Province China
| | - Qin Zhang
- grid.268505.c0000 0000 8744 8924Department of TCM Gynecology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, 453 Tiyuchang Road, Xihu District, Hangzhou, 310007 Zhejiang Province China
| |
Collapse
|
14
|
Mitochondrial Aging and Senolytic Natural Products with Protective Potential. Int J Mol Sci 2022; 23:ijms232416219. [PMID: 36555859 PMCID: PMC9784569 DOI: 10.3390/ijms232416219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Living organisms do not disregard the laws of thermodynamics and must therefore consume energy for their survival. In this way, cellular energy exchanges, which aim above all at the production of ATP, a fundamental molecule used by the cell for its metabolisms, favor the formation of waste products that, if not properly disposed of, can contribute to cellular aging and damage. Numerous genes have been linked to aging, with some favoring it (gerontogenes) and others blocking it (longevity pathways). Animal model studies have shown that calorie restriction (CR) may promote longevity pathways, but given the difficult application of CR in humans, research is investigating the use of CR-mimetic substances capable of producing the same effect. These include some phytonutrients such as oleuropein, hydroxytyrosol, epigallo-catechin-gallate, fisetin, quercetin, and curcumin and minerals such as magnesium and selenium. Some of them also have senolytic effects, which promote the apoptosis of defective cells that accumulate over the years (senescent cells) and disrupt normal metabolism. In this article, we review the properties of these natural elements that can promote a longer and healthier life.
Collapse
|
15
|
Wu Y, Guo X, Peng Y, Fang Z, Zhang X. Roles and Molecular Mechanisms of Physical Exercise in Sepsis Treatment. Front Physiol 2022; 13:879430. [PMID: 35845992 PMCID: PMC9277456 DOI: 10.3389/fphys.2022.879430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Physical exercise is a planned, purposeful action to keep a healthy lifestyle and improve physical fitness. Physical exercise has been widely used as a non-pharmacological approach to preventing and improving a wide range of diseases, including cardiovascular disease, cancer, metabolic disease, and neurodegenerative disease. However, the effects of physical exercise on sepsis have not been summarized until now. In this review, we discuss the effects of physical exercise on multiple organ functions and the short- and long-time outcomes of sepsis. Furthermore, the molecular mechanisms underlying the protective effects of physical exercise on sepsis are discussed. In conclusion, we consider that physical exercise may be a beneficial and non-pharmacological alternative for the treatment of sepsis.
Collapse
Affiliation(s)
- You Wu
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Guo
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Intensive Care Unit, Joint Logistics Force No. 988 Hospital, Zhengzhou, China
| | - Yuliang Peng
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zongping Fang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
16
|
Rupprecht A, Theisen U, Wendt F, Frank M, Hinz B. The Combination of Δ9-Tetrahydrocannabinol and Cannabidiol Suppresses Mitochondrial Respiration of Human Glioblastoma Cells via Downregulation of Specific Respiratory Chain Proteins. Cancers (Basel) 2022; 14:cancers14133129. [PMID: 35804909 PMCID: PMC9265124 DOI: 10.3390/cancers14133129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L. that exhibits no psychoactivity and, like the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC), shows anticancer effects in preclinical cell and animal models. Previous studies have indicated a stronger cancer-targeting effect when THC and CBD are combined. Here, we investigated how the combination of THC and CBD in a 1:1 ratio affects glioblastoma cell survival. The compounds were found to synergistically enhance cell death, which was attributed to mitochondrial damage and disruption of energy metabolism. A detailed look at the mitochondrial electron transfer chain showed that THC/CBD selectively decreased certain subunits of complexes I and IV. These data highlight the fundamental changes in cellular energy metabolism when cancer cells are exposed to a mixture of cannabinoids and underscore the potential of combining cannabinoids in cancer treatment. Abstract Phytocannabinoids represent a promising approach in glioblastoma therapy. Previous work has shown that a combined treatment of glioblastoma cells with submaximal effective concentrations of psychoactive Δ9-tetrahydrocannabinol (THC) and non-psychoactive cannabidiol (CBD) greatly increases cell death. In the present work, the glioblastoma cell lines U251MG and U138MG were used to investigate whether the combination of THC and CBD in a 1:1 ratio is associated with a disruption of cellular energy metabolism, and whether this is caused by affecting mitochondrial respiration. Here, the combined administration of THC and CBD (2.5 µM each) led to an inhibition of oxygen consumption rate and energy metabolism. These effects were accompanied by morphological changes to the mitochondria, a release of mitochondrial cytochrome c into the cytosol and a marked reduction in subunits of electron transport chain complexes I (NDUFA9, NDUFB8) and IV (COX2, COX4). Experiments with receptor antagonists and inhibitors showed that the degradation of NDUFA9 occurred independently of the activation of the cannabinoid receptors CB1, CB2 and TRPV1 and of usual degradation processes mediated via autophagy or the proteasomal system. In summary, the results describe a previously unknown mitochondria-targeting mechanism behind the toxic effect of THC and CBD on glioblastoma cells that should be considered in future cancer therapy, especially in combination strategies with other chemotherapeutics.
Collapse
Affiliation(s)
- Anne Rupprecht
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
| | - Ulrike Theisen
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
| | - Franziska Wendt
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
| | - Marcus Frank
- Electron Microscopy Centre, Rostock University Medical Centre, 18057 Rostock, Germany;
- Department Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (A.R.); (U.T.); (F.W.)
- Correspondence:
| |
Collapse
|
17
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
18
|
A Multidrug Approach to Modulate the Mitochondrial Metabolism Impairment and Relative Oxidative Stress in Fanconi Anemia Complementation Group A. Metabolites 2021; 12:metabo12010006. [PMID: 35050128 PMCID: PMC8777953 DOI: 10.3390/metabo12010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a rare recessive genetic disorder characterized by aplastic anemia due to a defective DNA repair system. In addition, dysfunctional energy metabolism, lipid droplets accumulation, and unbalanced oxidative stress are involved in FA pathogenesis. Thus, to modulate the altered metabolism, Fanc-A lymphoblast cell lines were treated with quercetin, a flavonoid compound, C75 (4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid), a fatty acid synthesis inhibitor, and rapamycin, an mTOR inhibitor, alone or in combination. As a control, isogenic FA cell lines corrected with the functional Fanc-A gene were used. Results showed that: (i) quercetin recovered the energy metabolism efficiency, reducing oxidative stress; (ii) C75 caused the lipid accumulation decrement and a slight oxidative stress reduction, without improving the energy metabolism; (iii) rapamycin reduced the aerobic metabolism and the oxidative stress, without increasing the energy status. In addition, all molecules reduce the accumulation of DNA double-strand breaks. Two-by-two combinations of the three drugs showed an additive effect compared with the action of the single molecule. Specifically, the quercetin/C75 combination appeared the most efficient in the mitochondrial and lipid metabolism improvement and in oxidative stress production reduction, while the quercetin/rapamycin combination seemed the most efficient in the DNA breaks decrement. Thus, data reported herein suggest that FA is a complex and multifactorial disease, and a multidrug strategy is necessary to correct the metabolic alterations.
Collapse
|
19
|
Lycium barbarum Polysaccharides Promotes Mitochondrial Biogenesis and Energy Balance in a NAFLD Cell Model. Chin J Integr Med 2021; 28:975-982. [PMID: 34874519 DOI: 10.1007/s11655-021-3309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To explore the protective effect and underlying mechanism of Lycium barbarum polysaccharides (LBP) in a non-alcoholic fatty liver disease (NAFLD) cell model. METHODS Normal human hepatocyte LO2 cells were treated with 1 mmol/L free fatty acids (FFA) mixture for 24 h to induce NAFLD cell model. Cells were divided into 5 groups, including control, model, low-, medium- and high dose LBP (30,100 and 300 µg/mL) groups. The monosaccharide components of LBP were analyzed with high performance liquid chromatography. Effects of LBP on cell viability and intracellular lipid accumulation were assessed by cell counting Kit-8 assay and oil red O staining, respectively. Triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), adenosine triphosphate (ATP) and oxidative stress indicators were evaluated. Energy balance and mitochondrial biogenesis related mRNA and proteins were determined by quantitative real-time polymerase chain reaction and Western blot, respectively. RESULTS Heteropolysaccharides with mannose and glucose are the main components of LBP. LBP treatment significantly decreased intracellular lipid accumulation as well as TG, ALT, AST and malondialdehyde levels (P<0.05 or P<0.01), increased the levels of superoxide dismutase, phospholipid hydroperoxide glutathione peroxidase, catalase, and ATP in NAFLD cell model (P<0.05). Meanwhile, the expression of uncoupling protein 2 was down-regulated and peroxisome proliferator-activated receptor gamma coactivator-1α/nuclear respiratory factor 1/mitochondrial transcription factor A pathway was up-regulated (P<0.05). CONCLUSION LBP promotes mitochondrial biogenesis and improves energy balance in NAFLD cell model.
Collapse
|
20
|
Li Y, Batibawa JW, Du Z, Liang S, Duan J, Sun Z. Acute exposure to PM 2.5 triggers lung inflammatory response and apoptosis in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112526. [PMID: 34303042 DOI: 10.1016/j.ecoenv.2021.112526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Severe haze events, especially with high concentration of fine particulate matter (PM2.5), are frequent in China, which have gained increasing attention among public. The purpose of our study was explored the toxic effects and potential damage mechanisms about PM2.5 acute exposure. Here, the diverse dosages of PM2.5 were used to treat SD rats and human bronchial epithelial cell (BEAS-2B) for 24 h, and then the bioassays were performed at the end of exposure. The results show that acute exposure to diverse dosages of PM2.5 could trigger the inflammatory response and apoptosis. The severely oxidative stress may contribute to the apoptosis. Also, the activation of Nrf2-ARE pathway was an important compensatory process of antioxidant damage during the early stage of acute exposure to PM2.5. Furthermore, the HO-1 was suppression by siRNA that promoted cell apoptosis triggered by PM2.5. In other words, enhancing the expression of HO-1 may mitigate the cell apoptosis caused by acute exposure to PM2.5. In summary, our findings present the first time that prevent or mitigate the damage triggered by PM2.5 through antioxidant approaches was a promising strategy.
Collapse
Affiliation(s)
- Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Josevata Werelagi Batibawa
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
21
|
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4946711. [PMID: 34336094 PMCID: PMC8289611 DOI: 10.1155/2021/4946711] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Appropriate mitochondrial physiology is an essential for health and survival. Cells have developed unique mechanisms to adapt to stress circumstances and changes in metabolic demands, by meditating mitochondrial function and number. In this context, sufficient mitochondrial biogenesis is necessary for efficient cell function and haemostasis, which is dependent on the regulation of ATP generation and maintenance of mitochondrial DNA (mtDNA). These procedures play a primary role in the processes of inflammation, aging, cancer, metabolic diseases, and neurodegeneration. Polyphenols have been considered as the main components of plants, fruits, and natural extracts with proven therapeutic effects during the time. These components regulate the intracellular pathways of mitochondrial biogenesis. Therefore, the current review is aimed at representing an updated review which determines the effects of different natural polyphenol compounds from various plant kingdoms on modulating signaling pathways of mitochondrial biogenesis that could be a promising alternative for the treatment of several disorders.
Collapse
Affiliation(s)
- Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Mutlu Dilsiz Aytemir
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Sıhhiye, Ankara, Turkey
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 35620, Çiğli, İzmir, Turkey
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
22
|
da Cunha Menezes Souza L, Chen M, Ikeno Y, Salvadori DMF, Bai Y. The implications of mitochondria in doxorubicin treatment of cancer in the context of traditional and modern medicine. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s2575900020300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (DOX) is an antibiotic anthracycline extensively used in the treatment of different malignancies, such as breast cancer, lymphomas and leukemias. The cardiotoxicity induced by DOX is one of the most important pathophysiological events that limit its clinical application. Accumulating evidence highlights mitochondria as a central role in this process. Modulation of mitochondrial functions as therapeutic strategy for DOX-induced cardiotoxicity has thus attracted much attention. In particular, emerging studies investigated the potential of natural mitochondria-targeting compounds from Traditional Chinese Medicine (TCM) as adjunct or alternative treatment for DOX-induced toxicity. This review summarizes studies about the mechanisms of DOX-induced cardiotoxicity, evidencing the importance of mitochondria and presenting TCM treatment alternatives for DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, P. R. China
| | - Yuji Ikeno
- Barshop Institute of Longevity and Aging Research, University of Texas Health San Antonio, San Antonio, Texas, USA
| | | | - Yidong Bai
- Barshop Institute of Longevity and Aging Research, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| |
Collapse
|
23
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
24
|
Vásquez-Reyes S, Velázquez-Villegas LA, Vargas-Castillo A, Noriega LG, Torres N, Tovar AR. Dietary bioactive compounds as modulators of mitochondrial function. J Nutr Biochem 2021; 96:108768. [PMID: 34000412 DOI: 10.1016/j.jnutbio.2021.108768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/25/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
The increase in incidence and prevalence of metabolic diseases, such as diabetes, obesity, and metabolic syndrome, is a health problem worldwide. Nutritional strategies that can impact on mitochondrial activity represent a novel and effective option to modulate energy expenditure and energetic metabolism in cells and tissues and could be used as adjuvant treatments for metabolic-associated disorders. Dietary bioactive compounds also known as "food bioactives" have proven to exert multiple health benefits and counteract metabolic alterations. In the last years, it has been consistently reported that the modulation of mitochondrial function represents one of the mechanisms behind the bioactive compounds-dependent health improvements. In this review, we focus on gathering, summarizing, and discussing the evidence that supports the effect of dietary bioactive compounds on mitochondrial activity and the relation of these effects in the pathological context. Despite the evidence presented here on in vivo and in vitro effects, more studies are needed to determine their effectiveness in humans.
Collapse
Affiliation(s)
- Sarai Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
25
|
Sonowal H, Saxena A, Qiu S, Srivastava S, Ramana KV. Aldose reductase regulates doxorubicin-induced immune and inflammatory responses by activating mitochondrial biogenesis. Eur J Pharmacol 2021; 895:173884. [PMID: 33482179 DOI: 10.1016/j.ejphar.2021.173884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/19/2023]
Abstract
We have recently demonstrated that aldose reductase (AR) inhibitor; fidarestat prevents doxorubicin (Dox)-induced cardiotoxic side effects and inflammation in vitro and in vivo. However, the effect of fidarestat and its combination with Dox on immune cell activation and the immunomodulatory effects are not known. In this study, we examined the immunomodulatory effects of fidarestat in combination with Dox in vivo and in vitro. We observed that fidarestat decreased Dox-induced upregulation of CD11b in THP-1 monocytes. Fidarestat further attenuated Dox-induced upregulation of IL-6, IL-1β, and Nos2 in murine BMDM. Fidarestat also attenuated Dox-induced activation and infiltration of multiple subsets of inflammatory immune cells identified by expression of markers CD11b+, CD11b+F4/80+, Ly6C+CCR2high, and Ly6C+CD11b+ in the mouse spleen and liver. Furthermore, significant upregulation of markers of mitochondrial biogenesis PGC-1α, COX IV, TFAM, and phosphorylation of AMPKα1 (Ser485) was observed in THP-1 cells and livers of mice treated with Dox in combination with fidarestat. Our results suggest that fidarestat by up-regulating mitochondrial biogenesis exerts protection against Dox-induced immune and inflammatory responses in vitro and in vivo, providing further evidence for developing fidarestat as a combination agent with anthracycline drugs to prevent chemotherapy-induced inflammation and toxicity.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sumin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sanjay Srivastava
- Department of Environmental Cardiology, University of Louisville, KY, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
26
|
Salazar J, Cano C, Pérez JL, Castro A, Díaz MP, Garrido B, Carrasquero R, Chacín M, Velasco M, D Marco L, Rojas-Quintero J, Bermúdez V. Role of Dietary Polyphenols in Adipose Tissue Browning: A Narrative Review. Curr Pharm Des 2021; 26:4444-4460. [PMID: 32611294 DOI: 10.2174/1381612826666200701211422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, synthetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, resveratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT browning, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José L Pérez
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas, Venezuela
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology department, Valencia, Espana
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
27
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
28
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
29
|
Modulation and Protection Effects of Antioxidant Compounds against Oxidant Induced Developmental Toxicity in Zebrafish. Antioxidants (Basel) 2020; 9:antiox9080721. [PMID: 32784515 PMCID: PMC7463582 DOI: 10.3390/antiox9080721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022] Open
Abstract
The antioxidant effect of compounds is regularly evaluated by in vitro assays that do not have the capability to predict in vivo protective activity or to determine their underlying mechanisms of action. The aim of this study was to develop an experimental system to evaluate the in vivo protective effects of different antioxidant compounds, based on the zebrafish embryo test. Zebrafish embryos were exposed to tert-butyl hydroperoxide (tBOOH), tetrachlorohydroquinone (TCHQ) and lipopolysaccharides from Escherichia coli (LPS), chemicals that are known inducers of oxidative stress in zebrafish. The developmental toxic effects (lethality or dysmorphogenesis) induced by these chemicals were modulated with n-acetyl l-cysteine and Nω-nitro l-arginine methyl ester hydrochloride, dimethyl maleate and dl-buthionine sulfoximine in order to validate the oxidant mechanism of oxidative stress inducers. The oxidant effects of tBOOH, TCHQ, and LPS were confirmed by the determination of significant differences in the comparison between the concentration–response curves of the oxidative stress inducers and of the modulators of antioxidant status. This concept was also applied to the study of the effects of well-known antioxidants, such as vitamin E, quercetin, and lipoic acid. Our results confirm the zebrafish model as an in vivo useful tool to test the protective effects of antioxidant compounds.
Collapse
|
30
|
Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules 2020; 25:molecules25133060. [PMID: 32635481 PMCID: PMC7412508 DOI: 10.3390/molecules25133060] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of diverse mechanisms that lead to cytoprotection have been described to date. Perhaps, not surprisingly, the role of mitochondria in these phenomena is notable. In addition to being metabolic centers, due to their role in cell catabolism, ATP synthesis, and biosynthesis these organelles are triggers and/or end-effectors of a large number of signaling pathways. Their role in the regulation of the intrinsic apoptotic pathway, calcium homeostasis, and reactive oxygen species signaling is well documented. In this review, we aim to characterize the prospects of influencing cytoprotective mitochondrial signaling routes by natural substances of plant origin, namely, flavonoids (e.g., flavanones, flavones, flavonols, flavan-3-ols, anthocyanidins, and isoflavones). Flavonoids are a family of widely distributed plant secondary metabolites known for their beneficial effects on human health and are widely applied in traditional medicine. Their pharmacological characteristics include antioxidative, anticarcinogenic, anti-inflammatory, antibacterial, and antidiabetic properties. Here, we focus on presenting mitochondria-mediated cytoprotection against various insults. Thus, the role of flavonoids as antioxidants and modulators of antioxidant cellular response, apoptosis, mitochondrial biogenesis, autophagy, and fission and fusion is reported. Finally, an emerging field of flavonoid-mediated changes in the activity of mitochondrial ion channels and their role in cytoprotection is outlined.
Collapse
|
31
|
Figueiredo-Pereira C, Dias-Pedroso D, Soares NL, Vieira HLA. CO-mediated cytoprotection is dependent on cell metabolism modulation. Redox Biol 2020; 32:101470. [PMID: 32120335 PMCID: PMC7049654 DOI: 10.1016/j.redox.2020.101470] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Carbon monoxide (CO) is a gasotransmitter endogenously produced by the activity of heme oxygenase, which is a stress-response enzyme. Endogenous CO or low concentrations of exogenous CO have been described to present several cytoprotective functions: anti-apoptosis, anti-inflammatory, vasomodulation, maintenance of homeostasis, stimulation of preconditioning and modulation of cell differentiation. The present review revises and discuss how CO regulates cell metabolism and how it is involved in the distinct cytoprotective roles of CO. The first found metabolic effect of CO was its increase on cellular ATP production, and since then much data have been generated. Mitochondria are the most described and studied cellular targets of CO. Mitochondria exposure to this gasotransmitter leads several consequences: ROS generation, stimulation of mitochondrial biogenesis, increased oxidative phosphorylation or mild uncoupling effect. Likewise, CO negatively regulates glycolysis and improves pentose phosphate pathway. More recently, CO has also been disclosed as a regulating molecule for metabolic diseases, such as obesity and diabetes with promising results.
Collapse
Affiliation(s)
- Cláudia Figueiredo-Pereira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Daniela Dias-Pedroso
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - Nuno L Soares
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal
| | - Helena L A Vieira
- CEDOC, Faculdade de Ciência Médicas/NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal; UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901, Oeiras, Portugal.
| |
Collapse
|
32
|
PI3K/Akt pathway-mediated HO-1 induction regulates mitochondrial quality control and attenuates endotoxin-induced acute lung injury. J Transl Med 2019; 99:1795-1809. [PMID: 31570770 DOI: 10.1038/s41374-019-0286-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/26/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022] Open
Abstract
Sepsis-related acute lung injury (ALI) remains a major cause of mortality in critically ill patients and lacks specific therapy. Mitochondrial dysfunction is involved in the progression of septic lung injury. Mitochondrial dynamics, mitophagy, and biogenesis converge to constitute the assiduous quality control of mitochondria (MQC). Heme oxygenase-1 (HO-1) protects against sepsis-induced ALI through the modulation of mitochondrial dynamics. However, the causal relationship between HO-1 and the general processes of MQC, and their associated cellular pathways in sepsis-related ALI remain ill-defined. Herein, lipopolysaccharide (LPS)-induced ALI in Sprague-Dawley rats together with LPS-induced oxidative injury in RAW264.7 macrophages were used to investigate whether the PI3K/Akt pathway-mediated induction of HO-1 preserves MQC and alleviates septic lung injury. After pretreatment with hemin, a potent inducer of HO-1, LPS-induced cell apoptosis, enhanced mitochondrial fragmentation, and mitochondrial membrane potential damage were significantly reduced in macrophages. In rats, these effects were accompanied by a higher survival rate, less damage to lung tissue, a 28.5% elevation in lung mitochondria MnSOD activity, and a 39.2% increase in respiratory control ratios. Concomitantly, HO-1 induction preserved the dynamic process of mitochondrial fusion/fission (Mfn2, OPA1, Drp1), promoted mitochondrial biogenesis (NRF1, PGC1α, Tfam), and facilitated the key mediators of mitochondrial mitophagy (Parkin, PINK1) at mRNA and protein levels. Notably, LY294002, a PI3K inhibitor, or knockdown of PI3K by small interfering RNA significantly suppressed Akt phosphorylation, attenuated HO-1 induction, and further reversed these beneficial effects evoked by hemin pretreatment in RAW264.7 cells or rats received LPS, indicating a direct involvement of PI3K/Akt pathway. Taken together, our results indicated that HO-1 activation, through PI3K/Akt pathway, plays a critical role in protecting lung from oxidative injury in the setting of sepsis by regulating MQC. HO-1 may therefore be a therapeutic target for the prevention sepsis-related lung injury.
Collapse
|
33
|
Wang B, Gao X, Liu B, Li Y, Bai M, Zhang Z, Xu E, Xiong Z, Hu Y. Protective effects of curcumin against chronic alcohol-induced liver injury in mice through modulating mitochondrial dysfunction and inhibiting endoplasmic reticulum stress. Food Nutr Res 2019; 63:3567. [PMID: 31762728 PMCID: PMC6852329 DOI: 10.29219/fnr.v63.3567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background Curcumin is a major active ingredient extracted from powdered dry rhizome of Curcuma longa. In Ayurveda and traditional Chinese medicine, it has been used as a hepatoprotective agent for centuries. However, the underlying mechanisms are not clear. Objective The present study is to investigate the hepatoprotective effects of curcumin in chronic alcohol-induced liver injury and explore its mechanism. Design Alcohol-exposed Balb/c mice were treated with curcumin (75 and 150 mg/kg) once per day for 8 weeks. Tissue from individual was fixed with formaldehyde for pathological examination. The activities of mitochondrial antioxidant enzymes, Na+/k+-ATPase, Ca2+-ATPase, and Ca2+Mg2+-ATPase, were determined. The level of mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPTP) opening was also determined. The expression of PGC-1α, NRF1, Mn-SOD, GRP78, PERK, IRE1α, nuclear NF-κB, and phosphorylated IκBα was quantified by western blot. The contents of TNF-α, IL-1β, and IL-6 in the liver were measured using the ELISA method. Results Curcumin significantly promoted hepatic mitochondrial function by reducing the opening of MPTP, thus increasing the MMP, promoting the activity of Na+/k+-ATPase, Ca2+-ATPase, and Ca2+/Mg2+-ATPase, and attenuating oxidative stress. Curcumin upregulated the expression of PGC-1α, NRF1, and Mn-SOD, and downregulated the expression of GRP78, PERK, and IRE1α in hepatic tissue. Curcumin also attenuated inflammation by inhibiting the IκBα–NF-κB pathway, which reduced the production of TNF, IL-1β, and IL-6. Conclusion Curcumin attenuates alcohol-induced liver injury via improving mitochondrial function and attenuating endoplasmic reticulum stress and inflammation. This study provides strong evidence for the beneficial effects of curcumin in the treatment of chronic alcohol-induced liver injury.
Collapse
Affiliation(s)
- Baoying Wang
- Key Laboratory for Modern Research on Zhongjing's Herbal Formulae of Henan Province, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaolin Gao
- Basic Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baoguang Liu
- Key Laboratory for Modern Research on Zhongjing's Herbal Formulae of Henan Province, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yucheng Li
- Key Laboratory for Modern Research on Zhongjing's Herbal Formulae of Henan Province, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ming Bai
- Key Laboratory for Modern Research on Zhongjing's Herbal Formulae of Henan Province, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenqiang Zhang
- Key Laboratory for Modern Research on Zhongjing's Herbal Formulae of Henan Province, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Erping Xu
- Key Laboratory for Modern Research on Zhongjing's Herbal Formulae of Henan Province, Scientific Research and Experiment Center, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhang'e Xiong
- Department of Gastroenterology and Key Laboratory for Molecular Diagnosis of Hubei, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastroenterology, Hubei Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yunlian Hu
- Department of Gastroenterology, Hubei Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
34
|
The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol 2019; 28:101364. [PMID: 31731101 PMCID: PMC6920089 DOI: 10.1016/j.redox.2019.101364] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a self-defense response to protect individuals from infection and tissue damage, but excessive or persistent inflammation can have adverse effects on cell survival. Many individuals become especially susceptible to chronic-inflammation-induced sensorineural hearing loss as they age, but the intrinsic molecular mechanism behind aging individuals' increased risk of hearing loss remains unclear. FoxG1 (forkhead box transcription factor G1) is a key transcription factor that plays important roles in hair cell survival through the regulation of mitochondrial function, but how the function of FoxG1 changes during aging and under inflammatory conditions is unknown. In this study, we first found that FoxG1 expression and autophagy both increased gradually in the low concentration lipopolysaccharide (LPS)-induced inflammation model, while after high concentration of LPS treatment both FoxG1 expression and autophagy levels decreased as the concentration of LPS increased. We then used siRNA to downregulate Foxg1 expression in hair cell-like OC-1 cells and found that cell death and apoptosis were significantly increased after LPS injury. Furthermore, we used d-galactose (D-gal) to create an aging model with hair cell-like OC-1 cells and cochlear explant cultures in vitro and found that the expression of Foxg1 and the level of autophagy were both decreased after D-gal and LPS co-treatment. Lastly, we knocked down the expression of Foxg1 under aged inflammation conditions and found increased numbers of dead and apoptotic cells. Together these results suggest that FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways.
Collapse
|
35
|
Averilla JN, Oh J, Kim JS. Carbon Monoxide Partially Mediates Protective Effect of Resveratrol Against UVB-Induced Oxidative Stress in Human Keratinocytes. Antioxidants (Basel) 2019; 8:E432. [PMID: 31581413 PMCID: PMC6827139 DOI: 10.3390/antiox8100432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 12/14/2022] Open
Abstract
Based on the antioxidative effect of resveratrol (RES) in mitigating reactive oxygen species (ROS) production through the induction of nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxigenase-1 (HO-1) signaling pathway, we investigated whether the protective activity of RES against ROS-mediated cytotoxicity is mediated by intracellular carbon monoxide (CO), a product of HO-1 activity, in ultraviolet B (UVB)-irradiated human keratinocyte HaCaT cells. The cells were exposed to UVB radiation following treatment with RES and/or CO-releasing molecule-2 (CORM-2). RES and/or CORM-2 upregulated HO-1 protein expression, accompanied by a gradual reduction of UVB-induced intracellular ROS levels. CORM-2 reduced intracellular ROS in the presence of tin protoporphyrin IX, an HO-1 inhibitor, indicating that the cytoprotection observed was mediated by intracellular CO and not by HO-1 itself. Moreover, CORM-2 decreased RES-stimulated mitochondrial quantity and respiration and increased the cytosolic protein expressions of radical-scavenging superoxide dismutases, SOD1 and SOD2. Taken together, our observations suggest that RES and intracellular CO act independently, at least partly, in attenuating cellular oxidative stress by promoting antioxidant enzyme expressions and inhibiting mitochondrial respiration in UVB-exposed keratinocytes.
Collapse
Affiliation(s)
- Janice N Averilla
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea.
| | - Jong-Sang Kim
- School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University, Daegu 41566, Korea.
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
36
|
Islam H, Hood DA, Gurd BJ. Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Appl Physiol Nutr Metab 2019; 45:11-23. [PMID: 31158323 DOI: 10.1139/apnm-2019-0069] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite its widespread acceptance as the "master regulator" of mitochondrial biogenesis (i.e., the expansion of the mitochondrial reticulum), peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 alpha (PGC-1α) appears to be dispensable for the training-induced augmentation of skeletal muscle mitochondrial content and respiratory function. In fact, a number of regulatory proteins have emerged as important players in skeletal muscle mitochondrial biogenesis and many of these proteins share key attributes with PGC-1α. In an effort to move past the simplistic notion of a "master regulator" of mitochondrial biogenesis, we highlight the regulatory mechanisms by which nuclear factor erythroid 2-related factor 2 (Nrf2), estrogen-related receptor gamma (ERRγ), PPARβ, and leucine-rich pentatricopeptide repeat-containing protein (LRP130) may contribute to the control of skeletal muscle mitochondrial biogenesis. We also present evidence supporting/refuting the ability of sulforaphane, quercetin, and epicatechin to promote skeletal muscle mitochondrial biogenesis and their potential to augment mitochondrial training adaptations. Targeted activation of specific pathways by these compounds may allow for greater mechanistic insight into the molecular pathways controlling mitochondrial biogenesis in human skeletal muscle. Dietary activation of mitochondrial biogenesis may also be useful in clinical populations with basal reductions in mitochondrial protein content, enzyme activities, and/or respiratory function as well as individuals who exhibit a blunted skeletal muscle responsiveness to contractile activity. Novelty The existence of redundant pathways leading to mitochondrial biogenesis refutes the simplistic notion of a "master regulator" of mitochondrial biogenesis. Dietary activation of specific pathways may provide greater mechanistic insight into the exercise-induced mitochondrial biogenesis in human skeletal muscle.
Collapse
Affiliation(s)
- Hashim Islam
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON K7L 3N6, Canada
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
37
|
Houghton MJ, Kerimi A, Tumova S, Boyle JP, Williamson G. Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radic Biol Med 2018; 129:296-309. [PMID: 30266680 DOI: 10.1016/j.freeradbiomed.2018.09.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 01/15/2023]
Abstract
Hyperglycemia augments formation of intracellular reactive oxygen species (ROS) with associated mitochondrial damage and increased risk of insulin resistance in type 2 diabetes. We examined whether quercetin could reverse chronic high glucose-induced oxidative stress and mitochondrial dysfunction. Following long-term high glucose treatment, complex I activity was significantly decreased in isolated mitochondria from HepG2 cells. Quercetin dose-dependently recovered complex I activity and lowered cellular ROS generation under both high and normal glucose conditions. Respirometry studies showed that quercetin could counteract the detrimental increase in inner mitochondrial membrane proton leakage resulting from high glucose while it increased oxidative respiration, despite a decrease in electron transfer system (ETS) capacity, and lower non-ETS oxygen consumption. A quercetin-stimulated increase in cellular NAD+/NADH was evident within 2 h and a two-fold increase in PGC-1α mRNA within 6 h, in both normal and high glucose conditions. A similar pattern was also found for the mRNA expression of the repulsive guidance molecule b (RGMB) and its long non-coding RNA (lncRNA) RGMB-AS1 with quercetin, indicating a potential change of the glycolytic phenotype and suppression of aberrant cellular growth which is characteristic of the HepG2 cells. Direct effects of quercetin on PGC-1α activity were minimal, as quercetin only weakly enhanced PGC-1α binding to PPARα in vitro at higher concentrations. Our results suggest that quercetin may protect mitochondrial function from high glucose-induced stress by increasing cellular NAD+/NADH and activation of PGC-1α-mediated pathways. Lower ROS in combination with improved complex I activity and ETS coupling efficiency under conditions of amplified oxidative stress could reinforce mitochondrial integrity and improve redox status, beneficial in certain metabolic diseases.
Collapse
Affiliation(s)
- Michael J Houghton
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John P Boyle
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, Faculty of Maths and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
38
|
Kerimi A, Williamson G. Differential Impact of Flavonoids on Redox Modulation, Bioenergetics, and Cell Signaling in Normal and Tumor Cells: A Comprehensive Review. Antioxid Redox Signal 2018; 29:1633-1659. [PMID: 28826224 PMCID: PMC6207159 DOI: 10.1089/ars.2017.7086] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Flavonoids can interact with multiple molecular targets to elicit their cellular effects, leading to changes in signal transduction, gene expression, and/or metabolism, which can, subsequently, affect the entire cell and organism. Immortalized cell lines, derived from tumors, are routinely employed as a surrogate for mechanistic studies, with the results extrapolated to tissues in vivo. Recent Advances: We review the activities of selected flavonoids on cultured tumor cells derived from various tissues in comparison to corresponding primary cells or tissues in vivo, mainly using quercetin and flavanols (epicatechin and (-)-epigallocatechin gallate) as exemplars. Several studies have indicated that flavonoids could retard cancer progression in vivo in animal models as well as in tumor cell models. CRITICAL ISSUES Extrapolation from in vitro and animal models to humans is not straightforward given both the extensive conjugation and complex microbiota-dependent metabolism of flavonoids after consumption, as well as the heterogeneous metabolism of different tumors. FUTURE DIRECTIONS Comparison of data from studies on primary cells or in vivo are essential not only to validate results obtained from cultured cell models, but also to highlight whether any differences may be further exploited in the clinical setting for chemoprevention. Tumor cell models can provide a useful mechanistic tool to study the effects of flavonoids, provided that the limitations of each model are understood and taken into account in interpretation of the data.
Collapse
Affiliation(s)
- Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds , Leeds, United Kingdom
| |
Collapse
|
39
|
D'Arena G, Seneca E, Migliaccio I, De Feo V, Giudice A, La Rocca F, Capunzo M, Calapai G, Festa A, Caraglia M, Musto P, Iorio EL, Ruggieri V. Oxidative stress in chronic lymphocytic leukemia: still a matter of debate. Leuk Lymphoma 2018; 60:867-875. [PMID: 30234409 DOI: 10.1080/10428194.2018.1509317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a large body of evidence showing a strong correlation between carcinogenesis of several types of human tumors, including chronic lymphocytic leukemia (CLL), and oxidative stress (OS). The mechanisms by which OS may promote cancer pathogenesis have not been completely deciphered yet and, in CLL, as in other neoplasms, whether OS is a primary cause or simply a downstream effect of the disease is still an open question. It has been demonstrated that, in CLL, OS concomitantly results from increased reactive oxygen species (ROS) production, mainly ascribable to CLL cells mitochondrial activity, and impaired antioxidant defenses. Interestingly, OS evaluation in CLL patients, at diagnosis, seems to have a prognostic significance, thus getting new insights in the biological comprehension of the disease with potential therapeutic implications.
Collapse
Affiliation(s)
- Giovanni D'Arena
- a Hematology and Stem Cell Transplantation Unit , IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | - Elisa Seneca
- a Hematology and Stem Cell Transplantation Unit , IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | - Ilaria Migliaccio
- a Hematology and Stem Cell Transplantation Unit , IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | - Vincenzo De Feo
- b Pharmacology Department , University of Salerno , Salerno , Italy
| | - Aldo Giudice
- c Istituto Nazionale Tumori IRCCS Fondazione Pascale , Napoli , Italy
| | - Francesco La Rocca
- d Laboratory of Preclinical and Translational Research , IRCCS-CROB, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| | - Mario Capunzo
- e Department of Medicine and Surgery , University of Salerno , Salerno , Italy
| | - Gioacchino Calapai
- f Department of Biomedical and Dental Sciences and Morphological and Functional Sciences , University of Messina , Messina , Italy
| | - Agostino Festa
- g Department of Biochimics, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Michele Caraglia
- g Department of Biochimics, Biophysics and General Pathology , University of Campania "Luigi Vanvitelli" , Naples , Italy
| | - Pellegrino Musto
- h Scientific Direction, IRCCS-CROB , Referral Cancer Center of Basilicata, Rionero in Vulture , Italy
| | | | - Vitalba Ruggieri
- d Laboratory of Preclinical and Translational Research , IRCCS-CROB, Referral Cancer Center of Basilicata , Rionero in Vulture , Italy
| |
Collapse
|
40
|
Effects of Polyphenols on Thermogenesis and Mitochondrial Biogenesis. Int J Mol Sci 2018; 19:ijms19092757. [PMID: 30217101 PMCID: PMC6164046 DOI: 10.3390/ijms19092757] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/05/2023] Open
Abstract
Obesity is a health problem worldwide, and energy imbalance has been pointed out as one of the main factors responsible for its development. As mitochondria are a key element in energy homeostasis, the development of obesity has been strongly associated with mitochondrial imbalance. Polyphenols are the largest group of phytochemicals, widely distributed in the plant kingdom, abundant in fruits and vegetables, and have been classically described as antioxidants owing to their well-established ability to eliminate free radicals and reactive oxygen species (ROS). During the last decade, however, growing evidence reports the ability of polyphenols to perform several important biological activities in addition to their antioxidant activity. Special attention has been given to the ability of polyphenols to modulate mitochondrial processes. Thus, some polyphenols are now recognized as molecules capable of modulating pathways that regulate mitochondrial biogenesis, ATP synthesis, and thermogenesis, among others. The present review reports the main benefits of polyphenols in modulating mitochondrial processes that favor the regulation of energy expenditure and offer benefits in the management of obesity, especially thermogenesis and mitochondrial biogenesis.
Collapse
|
41
|
Flutamide Induces Hepatic Cell Death and Mitochondrial Dysfunction via Inhibition of Nrf2-Mediated Heme Oxygenase-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8017073. [PMID: 30057686 PMCID: PMC6051009 DOI: 10.1155/2018/8017073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/22/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Flutamide is a widely used nonsteroidal antiandrogen for prostate cancer therapy, but its clinical application is restricted by the concurrent liver injury. Increasing evidence suggests that flutamide-induced liver injury is associated with oxidative stress, though the precise mechanism is poorly understood. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidants including heme oxygenase-1 (HO-1). This study was designed to delineate the role of Nrf2/HO-1 in flutamide-induced hepatic cell injury. Our results showed that flutamide concentration dependently induced cytotoxicity, hydrogen peroxide accumulation, and mitochondrial dysfunction as indicated by mitochondrial membrane potential loss and ATP depletion. The protein expression of Nrf2 and HO-1 was induced by flutamide at 12.5 μM but was downregulated by higher concentrations of flutamide. Silencing either Nrf2 or HO-1 was found to aggravate flutamide-induced hydrogen peroxide accumulation and mitochondrial dysfunction as well as inhibition of the Nrf2 pathway. Moreover, preinduction of HO-1 by Copp significantly attenuated flutamide-induced oxidative stress and mitochondrial dysfunction, while inhibition of HO-1 by Snpp aggravated these deleterious effects. These findings suggest that flutamide-induced hepatic cell death and mitochondrial dysfunction is assoicated with inhibition of Nrf2-mediated HO-1. Pharmacologic intervention of Nrf2/HO-1 may provide a promising therapeutic approach in flutamide-induced liver injury.
Collapse
|
42
|
Li X, Zhang Y, Yu J, Mu R, Wu L, Shi J, Gong L, Liu D. Activation of protein kinase C-α/heme oxygenase-1 signaling pathway improves mitochondrial dynamics in lipopolysaccharide-activated NR8383 cells. Exp Ther Med 2018; 16:1529-1537. [PMID: 30112072 DOI: 10.3892/etm.2018.6290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/20/2018] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial function and morphology are dynamically regulated by fusion and fission. Heme oxygenase-1 (HO-1), which may be upregulated by protein kinase C-α (PKC-α), improves mitochondrial dynamics by controlling the balance between fusion and fission in vivo and in vitro. However, whether the PKC-α/HO-1 signaling pathway is one of the underlying mechanisms in adjusting mitochondrial dynamics in lipopolysaccharide (LPS)-activated macrophages has remained elusive. To explore this, NR8383 cells were pre-treated with PKC-α inhibitor Go6976 or PKC-α activator phorbol-12-myristate-13-acetate for 30 min and then stimulated with LPS for 24 h. Next, the expression of PKC-α, HO-1, mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), optic atrophy 1 (OPA1), dynamin-related protein 1 (Drp1) and fission 1 (Fis1) was detected to evaluate the possible implication of the PKC-α/HO-1 signaling pathway in the LPS-induced NR8383 cells. The results indicated that activation of the PKC-α/HO-1 signaling pathway increased superoxide dismutase activities and the respiratory control ratio (RCR), decreased the levels of malondialdehyde, reactive oxygen species (ROS), Drp1 and Fis1, and simultaneously enhanced the levels of Mfn1, Mfn2 and OPA1. In contrast, the PKC-α inhibitor decreased the expression of RCR, Mfn1, Mfn2 and OPA1, and increased the expression of MDA and ROS in NR8383 cells. The results suggest that activation of the PKC-α/HO-1 signaling pathway is necessary for the balance of mitochondrial dynamics and oxidative stress in macrophages, which provides clues for probing novel strategies against the detrimental effects of sepsis and other disease states.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Yuan Zhang
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Jianbo Yu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Rui Mu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Lili Wu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Jia Shi
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Lirong Gong
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Daquan Liu
- Department of Pharmacology, Institute of Integrated Traditional Chinese and Western Medicine for Acute Abdominal Diseases, Tianjin 300100, P.R. China
| |
Collapse
|
43
|
Protection by different classes of dietary polyphenols against palmitic acid-induced steatosis, nitro-oxidative stress and endoplasmic reticulum stress in HepG2 hepatocytes. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
44
|
Gasparrini M, Giampieri F, Forbes-Hernandez TY, Afrin S, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Zhang J, Quiles JL, Mezzetti B, Bompadre S, Battino M. Strawberry extracts efficiently counteract inflammatory stress induced by the endotoxin lipopolysaccharide in Human Dermal Fibroblast. Food Chem Toxicol 2018; 114:128-140. [DOI: 10.1016/j.fct.2018.02.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
|
45
|
Loschinski R, Böttcher M, Stoll A, Bruns H, Mackensen A, Mougiakakos D. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget 2018; 9:13125-13138. [PMID: 29568345 PMCID: PMC5862566 DOI: 10.18632/oncotarget.24442] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
T-cell-based therapies represent a promising strategy for cancer treatment. In this context, cytokines are discussed as a bona fide instrument for fine-tuning T- cell biology. One promising candidate is the pleiotropic interleukin-21 (IL-21) with only little being known regarding its direct effects on human T-cells. Thus, we sought out to characterize the impact of IL-21 on T-cell metabolism, fitness, and differentiation. Culturing T-cells in presence of IL-21 elicited a metabolic skewing away from aerobic glycolysis towards fatty acid oxidation (FAO). These changes of the metabolic framework were paralleled by increased mitochondrial fitness and biogenesis. However, oxidative stress levels were not increased but rather decreased. Furthermore, elevated FAO and mitochondrial biomass together with enhanced antioxidative properties are linked to formation of longer lasting memory responses and less PD-1 expression. We similarly observed an IL-21-triggered induction of central memory-like T-cells and reduced levels of PD-1 on the cell surface. Taken together, IL-21 shifts T-cells towards an immunometabolic phenotype that has been associated with increased survivability and enhanced anti-tumor efficacy. In addition, our data reveals a novel interconnection between fatty acid metabolism and immune function regulated by IL 21.
Collapse
Affiliation(s)
- Romy Loschinski
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Martin Böttcher
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrej Stoll
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
46
|
Carbon monoxide (CO) modulates hydrogen peroxide (H 2O 2)-mediated cellular dysfunction by targeting mitochondria in rabbit lens epithelial cells. Exp Eye Res 2018; 169:68-78. [PMID: 29407220 DOI: 10.1016/j.exer.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
Mitochondrial components are of great importance for the maintenance of lens transparency. In our previous work, we confirmed that carbon monoxide (CO) can protect human and rabbit lens epithelial cells (LECs) from hydrogen peroxide (H2O2)-mediated apoptosis, while the mechanism remains undefined. Because CO can bind to mitochondrial cytochrome c oxidase (COX), we evaluated the effect of CO on the regulation of mitochondrial biogenesis and function in H2O2-treated rabbit LECs. To evaluate mitochondrial biogenesis, several mitochondrial transcription factors (PGC-1α, NRF-1, and mtTFA) were detected by western blot analysis. To assess cellular metabolism, adenosine triphosphate (ATP) levels and COX enzymatic activity were measured. In addition, mitochondrial permeability transition pores (mPTP) opening, dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c mitochondrial translocation, and apoptotic molecules were also detected to evaluate mitochondrial apoptosis pathway. Furthermore, the interaction of Bcl-2 and COX was assessed by co-immunoprecipitation. Finally, CO-mediated regulation of cellular function was detected in Bcl-2-knockdown cells. Our results confirmed that CO pretreatment restored H2O2-induced down-regulation of mitochondrial transcription factors expression, COX activity and ATP production. Moreover, CO pretreatment attenuated mPTP opening, ΔΨm loss, cytochrome c mitochondrial translocation, and activation of apoptotic molecules. Bcl-2 was identified to bind to COX, and silence of Bcl-2 expression prevented CO-regulated cellular metabolism and cytoprotection. These data suggest that CO modulates H2O2-induced cellular dysfunction by increasing mitochondrial biogenesis, enhancing cellular metabolism, and attenuating mitochondrial apoptosis cascade. Moreover, Bcl-2 expression was vital for CO to regulate cellular metabolism and cytoprotection in LECs.
Collapse
|
47
|
Lowe DT. Cupping therapy: An analysis of the effects of suction on skin and the possible influence on human health. Complement Ther Clin Pract 2017; 29:162-168. [DOI: 10.1016/j.ctcp.2017.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/27/2022]
|
48
|
Zhou W, Yuan X, Zhang L, Su B, Tian D, Li Y, Zhao J, Wang Y, Peng S. Overexpression of HO-1 assisted PM2.5-induced apoptosis failure and autophagy-related cell necrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:605-614. [PMID: 28802142 DOI: 10.1016/j.ecoenv.2017.07.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/16/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
Severe smog/haze events accompanied by extremely high concentrations of airborne fine particulate matter (PM2.5) have emerged frequently in China and the potential health risks have attracted ever-growing attention. During these episodes, a surge in hospital visits for acute respiratory symptoms and respiratory diseases exacerbation has been reported to be associated with acute exposure to high-levels of particulate matters. To investigate cell fate determination and the underlying pathogenic mechanisms during severe haze episodes or smog events, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-400μg/mL) for 24h and found that high doses of PM2.5 caused cell necrosis and autophagy dysfunction, while co-treatment with the autophagy inhibitor 3-MA could partially reduce PM2.5-induced cell necrosis. Exposure to PM2.5 also increased the expression and mitochondrial transposition of heme oxygenase 1 (HO-1), which consequently reduced the release of cytochrome C from mitochondria to cytosol. Knockdown of HO-1 by siRNA attenuated the mitochondrial accumulation of HO-1, reversed HO-1-induced the reduction of cytochrome C release and promoted PM2.5-induced cell apoptosis. In contrast to necrosis, PM2.5-induced autophagy was independent of HO-1. In conclusion, our results demonstrate that acute exposure to high PM2.5 concentrations causes autophagy-related cell necrosis. The decrease in cytochrome C release and apoptosis by upregulation of HO-1 maybe assist PM2.5-induced autophagy-related cell necrosis. Further, this study reveals dual roles for HO-1 in PM2.5-induced cytotoxicity and presents a possible explanation for the onset of acute respiratory symptoms under extreme particulate air pollution.
Collapse
Affiliation(s)
- Wei Zhou
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Xiaoyan Yuan
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Li Zhang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Baoting Su
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dongdong Tian
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Yang Li
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Jun Zhao
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China
| | - Yimei Wang
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China.
| | - Shuangqing Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, PR China.
| |
Collapse
|
49
|
Zhu D, Zhang X, Niu Y, Diao Z, Ren B, Li X, Liu Z, Liu X. Cichoric acid improved hyperglycaemia and restored muscle injury via activating antioxidant response in MLD-STZ-induced diabetic mice. Food Chem Toxicol 2017; 107:138-149. [DOI: 10.1016/j.fct.2017.06.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/04/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
|
50
|
Navarro E, Gonzalez-Lafuente L, Pérez-Liébana I, Buendia I, López-Bernardo E, Sánchez-Ramos C, Prieto I, Cuadrado A, Satrustegui J, Cadenas S, Monsalve M, López MG. Heme-Oxygenase I and PCG-1α Regulate Mitochondrial Biogenesis via Microglial Activation of Alpha7 Nicotinic Acetylcholine Receptors Using PNU282987. Antioxid Redox Signal 2017; 27:93-105. [PMID: 27554853 DOI: 10.1089/ars.2016.6698] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS A loss in brain acetylcholine and cholinergic markers, subchronic inflammation, and impaired mitochondrial function, which lead to low-energy production and high oxidative stress, are common pathological factors in several neurodegenerative diseases (NDDs). Glial cells are important for brain homeostasis, and microglia controls the central immune response, where α7 acetylcholine nicotinic receptors (nAChR) seem to play a pivotal role; however, little is known about the effects of this receptor in metabolism. Therefore, the aim of this study was to evaluate if glial mitochondrial energetics could be regulated through α7 nAChR. RESULTS Primary glial cultures treated with the α7 nicotinic agonist PNU282987 increased their mitochondrial mass and their mitochondrial oxygen consumption without increasing oxidative stress; these changes were abolished when nuclear erythroid 2-related factor 2 (Nrf2) was absent, heme oxygenase-1 (HO-1) was inhibited, or peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) was silenced. More specifically, microglia of animals treated intraperitoneally with the α7 nAChR agonist PNU282987 (10 mg/kg) showed a significant increase in mitochondrial mass. Interestingly, LysMcre-Hmox1Δ/Δ and PGC-1α-/- animals showed lower microglial mitochondrial levels and treatment with PNU282987 did not produce effects on mitochondrial levels. INNOVATION Increases in microglial mitochondrial mass and metabolism can be achieved via α7 nAChR by a mechanism that implicates Nrf2, HO-1, and PGC-1α. This signaling pathway could open a new strategy for the treatment of NDDs, such as Alzheimer's, characterized by a reduction of cholinergic markers. CONCLUSION α7 nAChR signaling increases glial mitochondrial mass, both in vitro and in vivo, via HO-1 and PCG-1α. These effects could be of potential benefit in the context of NDDs. Antioxid. Redox Signal. 27, 93-105.
Collapse
Affiliation(s)
- Elisa Navarro
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Laura Gonzalez-Lafuente
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Irene Pérez-Liébana
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Izaskun Buendia
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Elia López-Bernardo
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | | | - Ignacio Prieto
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Antonio Cuadrado
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Jorgina Satrustegui
- 3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Susana Cadenas
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Maria Monsalve
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Manuela G López
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| |
Collapse
|