1
|
Ye S, Lee S, Kang S, Jun SH, Kang NG. Improvement of Skin Condition Through RXR Alpha-Activating Materials. Biomolecules 2025; 15:296. [PMID: 40001599 PMCID: PMC11853381 DOI: 10.3390/biom15020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Retinol is well-known anti-aging material in the cosmetics industry, owing to its proven superior efficacy both in vitro and in vivo. Despite its high efficacy, retinol is associated with limitations, such as skin irritation and its potential photodegradation. Retinol is converted into retinoid acid within cells, which then exerts a cellular response by activating both the retinoic acid receptor (RAR) and retinoid x receptor (RXR). Noting that RAR activity is associated with skin irritation and RXR activation alone can enhance skin-related indicators without inducing inflammation, we developed an alternative approach for skin anti-aging focusing solely on RXR activation. We found that combined treatment of andrographolide and Bidens pilosa extract successfully activated RXR alpha and enhanced RXRA gene expression. Moreover, we investigated their efficacy using dermal fibroblasts and keratinocytes and found that they enhanced the gene expression of extracellular matrix (ECM) proteins with anti-oxidant and anti-inflammation efficacies. Finally, in a human clinical trial, we confirmed that our materials successfully improved wrinkles in various areas, skin elasticity and hydration without causing irritating side effects. These findings highlight the potential of our RXR alpha-activating materials as an anti-wrinkle solution that avoids the typical side effects associated with retinol.
Collapse
Affiliation(s)
| | | | | | - Seung-Hyun Jun
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.Y.); (S.L.); (S.K.)
| | - Nae-Gyu Kang
- LG Household and Health Care R&D Center, Seoul 07795, Republic of Korea; (S.Y.); (S.L.); (S.K.)
| |
Collapse
|
2
|
Kah G, Chandran R, Abrahamse H. Green silver nanoparticles curcumin conjugate induced photodynamic therapy of lung cancer and lung cancer stem cells. RSC Adv 2025; 15:5020-5041. [PMID: 39957816 PMCID: PMC11827557 DOI: 10.1039/d4ra06035k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
Lung cancer remains a dreaded disease globally due to its high mortality rates. New cases of lung cancer are estimated at 1.8 million a year, with about 1.6 million deaths. Conventional treatment regimens are inefficient due to their failure to eradicate lung cancer stem cells (LCSCs). LCSCs are noted to self-renew, cause relapse, strengthen metastasis, preserve tumorigenicity, and are very resistant to treatment. This shows the need for a novel treatment modality that can target lung cancer and its stem cells. In this study, a photoactive curcumin-silver nanoparticle-polymer conjugate (Cum-PEG-BpAgNPs) was developed to enhance lung cancer photodynamic therapy (PDT). Lung cancer cells and LCSCs were treated with Cum-PEG-BpAgNPs followed by light irradiation at 470 nm. Post-analytical assays including 3-[4,5-dimethylthiazole-2yl]-2,5-diphenyl tetrazolium bromide, lactate dehydrogenase, adenosine triphosphate, ROS by DCFH-DA, annexin V-FITC/PI cell death studies, and morphological analysis were performed. The characterization analysis confirmed the bio-formulation of Cum-PEG-BpAgNPs conjugate. The LCSCs characterization indicated the presence of LCSCs in the isolated cell population. The biochemical assays post-PDT revealed substantial cytotoxicity when lower concentrations of Cum-PEG-BpAgNPs were used. The IC50 value of the conjugate was noted at 4.014 μg mL-1 and 2.373 μg mL-1 for lung cancer cells and LCSCs, respectively. An elevated ROS production was induced, leading to apoptosis post-PDT. Therefore, Cum-PEG-BpAgNPs could be used in the mediation PDT to eliminate lung cancer cells effectively.
Collapse
Affiliation(s)
- Glory Kah
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg Johannesburg 2028 South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg Johannesburg 2028 South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg Johannesburg 2028 South Africa
| |
Collapse
|
3
|
Suschinel R, Jaimes-Mogollón AL, Sim SF, Ting W, Cáceres-Tarazona JM, Alvarez-Valdez E, Rosero-Moreano M, Diouani MF, Chouihi E, Brebu M, Simion V, Barasona JA, Ionescu R. Identification of putative volatile biomarkers of canine leishmaniasis in dog's breath and hair employing a novel algorithm for automated chromatographic peak detection and matching. Anal Bioanal Chem 2025; 417:771-783. [PMID: 39722103 DOI: 10.1007/s00216-024-05691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
The analysis of the volatile compounds released by biological samples represents a promising approach for the non-invasive diagnosis of a disease. The present study, focused on a population of dogs infected with canine leishmaniasis, aimed to decipher the volatolomic profile associated with this disease in dogs, which represent the main animal reservoir for Leishmania pathogen transmission to humans. The volatiles emitted by the breath and hair of dogs were analysed employing the gas chromatography-mass spectrometry (GC-MS) technique. The acquired chromatograms were investigated using a novel algorithm developed in this study for automated chromatographic peak detection and matching in untargeted GC-MS analysis, which includes various steps that comprise noise reduction, m/z filtering, background subtraction, peak detection, peak matching, and generation of a peak table for compounds identification. The results revealed one tentative breath volatile biomarker and five tentative hair volatile biomarkers for the cutaneous form of the disease, which is characterised by skin ulcerations. Additionally, nine tentative breath volatile biomarkers and four tentative hair volatile biomarkers were found for the visceral form of the disease, which affects internal organs such as spleen, liver and bone marrow. All tentative biomarkers identified in this study were upregulated in cutaneous leishmaniasis, while in visceral leishmaniasis, all tentative biomarkers were upregulated in the breath and only one out of four in the hair. Only one compound (glyceryl monooleate) was identified as tentative volatile biomarker for both forms of the disease, in the hair of dogs.
Collapse
Affiliation(s)
- Raluca Suschinel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia
- VISAVET Health Surveillance Center and Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Aylen Lisset Jaimes-Mogollón
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia
- GISM Group, Faculty of Engineering and Architecture, University of Pamplona, 543050, Pamplona, Colombia
| | - Siong Fong Sim
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Woei Ting
- Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | | | - Eliana Alvarez-Valdez
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, 170004, Manizales, Colombia
| | - Milton Rosero-Moreano
- Grupo de Investigación en Cromatografía y Técnicas Afines GICTA, Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, 170004, Manizales, Colombia
| | | | - Emira Chouihi
- Pasteur Institute of Tunis, LR16IPT01, 1002, Tunis-Belvédère, Tunisia
| | - Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, 700487, Iasi, Romania
| | - Violeta Simion
- Faculty of Veterinary Medicine, Spiru Haret University, 030171, Bucharest, Romania
| | - Jose Angel Barasona
- VISAVET Health Surveillance Center and Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Radu Ionescu
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006, Tartu, Estonia.
| |
Collapse
|
4
|
Alum EU, Tufail T, Uti DE, Aja PM, Offor CE, Ibiam UA, Ukaidi CUA, Alum BN. Utilizing Indigenous Flora in East Africa for Breast Cancer Treatment: An Overview. Anticancer Agents Med Chem 2025; 25:99-113. [PMID: 39297456 DOI: 10.2174/0118715206338557240909081833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND Breast cancer is a significant global health challenge, contributing substantially to cancer- related deaths. Conventional treatment methods, including hormone therapy, chemotherapy, surgical interventions, and radiation, have long been utilized. However, these traditional treatments are often associated with serious side effects and drug resistance, limiting their efficacy. AIM This review aims to explore the potential of medicinal plants used in breast cancer management in East Africa, focusing on their bioactive compounds and anticancer properties. METHODS A comprehensive literature search was conducted to examine the effectiveness of medicinal plants in treating breast cancer across Kenya, Ethiopia, Uganda, Tanzania, and Rwanda. Relevant studies published between 2003 and 2023 were identified using keywords related to breast cancer and medicinal plants. The search was performed across multiple databases, including Google Scholar, PubMed, Scopus, Web of Science Core Collection, and Science Direct. RESULTS Numerous natural compounds found in East African medicinal plants including Cymbopogon citratus (Lemongrass,) Tabebuia avellanedae, Prunus africana (African Cherry), Euclea divinorum, Berberis holstii, Withania somnifera (Ashwagandha, Curcuma longa (Turmeric), Garcinia mangostana (Mangosteen, Vitis vinifera (Grapevine), Eugenia jambolana (Java Plum), Moringa oleifera (Drumstick Tree), Camellia sinensis (Tea), Glycine max (Soybean), Catharanthus roseus, Madagascar Periwinkle), Rhus vulgaris (Wild Currant) exhibit significant anticancer properties. These compounds have demonstrated the ability to reduce breast cancer aggressiveness, inhibit cancer cell proliferation, and modulate cancer-related pathways. Current research focuses on these natural and dietary compounds to develop more effective strategies for treating breast cancer. CONCLUSION The findings suggested that East African medicinal plants hold promise as complementary treatments for breast cancer, offering potential benefits such as affordability, cultural appropriateness, and sustainability. Further research into these plants and their bioactive compounds could revolutionize breast cancer treatment, improving survival rates and addressing the rising incidence of breast cancer-related fatalities. Other: The review underscores the importance of continued research, conservation, and the integration of ancient healing methods to fully harness the potential of East African flora in breast cancer management.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, P. O. Box 20000, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Tabussam Tufail
- School of Food and Biological, Engineering Jiangsu, University Zhenjiang Kampala, China
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, Kampala, P. O. Box 20000, Uganda
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
- Department of Biochemistry, Kampala International University, Western Campus, Kampala, Uganda
| | - Christian Emeka Offor
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Udu Ama Ibiam
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
- Department of Biochemistry, College of Science, Evangel University Akaeze, Abakaliki, Ebonyi State, Nigeria
| | - Chris U A Ukaidi
- College of Economics and Management, Kampala International University, Kampala, Uganda
| | - Benedict Nnachi Alum
- Department of Research and Publications, Kampala International University, Kampala, P. O. Box 20000, Uganda
| |
Collapse
|
5
|
Hou WW, Chang YT, Yang WC, Gong HY, Pan YJ, Hsu TH, Huang CW. Enhancing the color and stress tolerance of cherry shrimp (Neocaridina davidi var. red) using astaxanthin and Bidens Pilosa. PLoS One 2024; 19:e0315585. [PMID: 39700112 DOI: 10.1371/journal.pone.0315585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
This study aimed to evaluate the effects of different concentrations of astaxanthin and Bidens Pilosa compound feed additives on the color and hypoxia tolerance of cherry shrimp (Neocaridina davidi var. red). Color parameters were assessed using CIELAB color space, and differential gene expression related to color and stress was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR) to understand the gene regulatory mechanisms affecting color expression and stability. Over a 56-day rearing period, the feed additives AX100 (astaxanthin 100 mg/kg) and AX100+BP (astaxanthin 100 mg/kg + B. pilosa 5 g/kg) significantly reduced the color difference values compared to the standard sample (ΔE*ab), indicating notable color boosting effects. This included a reduction in lightness (L*), a decrease in color hue angle (h*) with AX100, and an increase in redness (a*) and chroma (C*) with AX100+BP. We further designed 22 color-related gene primers, 16 of which amplified the target fragment. Six gene sets exhibited significant differences among all feed treatment groups and were correlated with color expression. After 9 hours of hypoxic stress, body color remained stable in the feed additive groups, especially in the AX100 + BP and AX200 + BP (astaxanthin 200 mg/kg + B. pilosa 5 g/kg) groups, with color differences before and after hypoxic stress remaining below the discernible threshold of the human eye, indicating optimal color stability. Additionally, the CAT gene, among the stress-related genes that successfully amplified, showed significant differences among feed treatment groups and correlated with color stability based on color difference values. In conclusion, the composite addition of 100 mg/kg astaxanthin and 5 g/kg Bidens pilosa (AX100 + BP) was identified as the most effective treatment. This formulation significantly enhanced cherry shrimp color, evidenced by improved parameters such as decreased lightness and increased redness. Moreover, AX100 + BP demonstrated superior color stability under hypoxic conditions, with ΔE*ab values remaining below the discernible threshold of the human eye, highlighting its potential for maintaining optimal color during transportation. Offering a basis for enhancing the commercial value and reducing the sale risks of cherry shrimp.
Collapse
Affiliation(s)
- Wei-Wei Hou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Tzi Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang, Taipei, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Yen-Ju Pan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Te-Hua Hsu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Wen Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
6
|
Guo L, Zhou Y, Ma R. Exploring the anti-gastric cancer mechanism of action of Bidentis Bipinnatae Herba based on network pharmacology, molecular docking, and cellular experimental validation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8681-8690. [PMID: 38822119 DOI: 10.1007/s00210-024-03169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
The purpose of this study is to explore the potential molecular mechanism of Bidentis Bipinnatae Herba against gastric cancer by using network pharmacology methods, molecular docking, and cellular experimental validation. Medicinal plants related to gastric cancer were queried through TCMSP, SymMap, and Herb databases. The TCSMP database (drug-likeness ≥ 0.18) was used to retrieve the bioactive constituents. TCSMP, SwissTargetPrediction, and Herb databases were used to retrieve the target genes, and Cytoscape software was used to construct the "active ingredient-target" network. After protein interaction analysis using String 11.0 platform, the hub genes were screened using CytoHubba. The obtained hub genes were uploaded to the cBioPortal for pathway enrichment. The genes involved in gastric cancer-related RTK-RAS pathway were molecularly docked and experimentally validated. Bidentis Bipinnatae Herba was common to TCMSP, SymMap, and Herb databases. A total of nine active ingredients were obtained in Bidentis Bipinnatae Herba, acting on 192 targets. Seven hub genes were obtained from these target genes and enriched in the RTK-RAS pathway in gastric cancer. MAPK1 and EGFR had good molecular docking results with their corresponding chemicals. Cellular experiments showed that the treatment of luteolin, quercetin, and Okanin reduced the expression of EGFR in AGS cells; the treatment of luteolin and quercetin could reduce the expression of MAPK1. Bidentis Bipinnatae Herba contained active components, which may be anti-gastric cancer in a multi-target (MAPK1 and EGFR) manner.
Collapse
Affiliation(s)
- Linglong Guo
- Department of Oncology, Yizheng Hospital of TCM, Yizheng, 211400, China
| | - Yuyi Zhou
- Graduate School, Zhejiang Chinese Medical University, Zhejiang, 310053, China
| | - Rui Ma
- Department of Traditional Chinese Medicine, Nanjing Luhe People's Hospital, No. 9, Jiankang Lane, Xiongzhou Street, Luhe District, Nanjing, 211500, China.
| |
Collapse
|
7
|
Soyekwo D, Opiyo EA, Austin R, Ochaya S. Assessing the Malaria Burden and Community Response to the Malaria Control and Management Programs in Omoro District, Northern Uganda. J Parasitol Res 2024; 2024:8009447. [PMID: 39502088 PMCID: PMC11535283 DOI: 10.1155/2024/8009447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Background: Malaria remains the leading cause of hospitalization and death in the healthcare system. This study explored the malaria burden and community response to government malaria control programs in Omoro district. Method: This retrospective study involved 576 patient results from purposely selected health facilities data from health center III (HCIII) of Odek, Bobi, and Lapainat and health center IV (HCIV) of Lalogi. And prospective random section study involved 288 participants from Lutori and Lagude cells and Atyang A and Lagwaya villages who consented to answer the pretested questionnaire. Results: The prevalence of malaria in Omoro district in 2018 and 2019 was 81.6% and 97.2% for hospital record positivity and community surveys, respectively. The participants had 100% knowledge of malaria signs, symptoms, and cause. The average number of malaria attacks an individual received in the district from the health facility and community data was three. Nonadherence to government control programs was associated with an increased incidence of malaria infections. From questionnaire, the proportion of people that used local herbal remedies for treatment and prevention of malaria were 21.2% of the sampled 288 participants. Conclusion: The high rate of malaria attacks indicates that the area has a high prevalence of malaria-carrying mosquitoes. The increase in the proportion of malaria attacks in 2019 suggests that the burden of malaria increased compared with that in the previous year, with approximately 21% of local herbal remedies for malaria treatment and management. The findings of this study suggest that malaria attacks are associated with household size, age, sex, occupation, and the household head. Participants who did not respond positively to government programs experienced more malaria attacks. These findings can be used to develop interventions to reduce the incidence of malaria in this population.
Collapse
Affiliation(s)
- Divas Soyekwo
- Department of Biology, Faculty of Science, Gulu University 166, Gulu, Uganda
| | - Elizabeth A. Opiyo
- Department of Biology, Faculty of Science, Gulu University 166, Gulu, Uganda
| | - Reiginald Austin
- Department of Biology, Faculty of Science, Gulu University 166, Gulu, Uganda
| | - Stephen Ochaya
- Department of Biology, Faculty of Science, Gulu University 166, Gulu, Uganda
- Department of Microbiology and Immunology, Faculty of Medicine, Gulu University 166, Gulu, Uganda
- Department of Clinical Pathology, Uppsala Academic Hospital, Uppsala, Sweden
| |
Collapse
|
8
|
Widodo A, Huang HT, Dewi NR, Chen BY, Wu YS, Hu YF, Nan FH. Comparative Effects of Crude Extracts and Bioactive Compounds from Bidens pilosa and Bidens alba on Nonspecific Immune Responses and Antibacterial Activity Against Vibrio sp. in Coculture with Lactic Acid Bacteria in Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals (Basel) 2024; 14:2990. [PMID: 39457920 PMCID: PMC11506134 DOI: 10.3390/ani14202990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the effect of substances on nonspecific immune responses of head kidney leukocytes, the antimicrobial activity against Vibrio sp., as well as the time-kill of Vibrio sp. by combining the substances with lactic acid bacteria (LAB) and Pediococcus sp. The substances are B. pilosa hot water extract, B. pilosa powder extract, B. pilosa methanol extract, B. pilosa ethanol extract, B. alba hot water extract, B. alba powder extract, B. alba methanol extract, B. alba ethanol extract, and bioactive compounds, namely cytopiloyne, flavonoid, phenol, ethyl caffeate, luteolin, chlorogenic acid, butein, and linoleic acid. The results showed that some of them were nontoxic to the head kidney leukocytes, which can increase the phagocytic rate, phagocytic index, and respiratory burst. These substances were able to inhibit the growth of Vibrio sp.; they can even completely kill the pathogenic bacteria. The largest of the inhibition zone formed from the EC group at a concentration range of 5-50 µg/mL against V. parahaemolyticus, V. alginolyticus, and V. harveyi with a value of 19.7 ± 0.56, 19.3 ± 1.53, and 20.6 ± 1.53 mm. Furthermore, the time-kill studies showed that the LAB and P. acidilactici can completely kill the Vibrio sp. at 6 h incubation time, mainly in the group of combination with EC.
Collapse
Affiliation(s)
- Ari Widodo
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (A.W.); (H.-T.H.); (N.R.D.); (B.-Y.C.); (Y.-F.H.)
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (A.W.); (H.-T.H.); (N.R.D.); (B.-Y.C.); (Y.-F.H.)
| | - Novi Rosmala Dewi
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (A.W.); (H.-T.H.); (N.R.D.); (B.-Y.C.); (Y.-F.H.)
| | - Bo-Ying Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (A.W.); (H.-T.H.); (N.R.D.); (B.-Y.C.); (Y.-F.H.)
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung City 900, Taiwan;
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (A.W.); (H.-T.H.); (N.R.D.); (B.-Y.C.); (Y.-F.H.)
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (A.W.); (H.-T.H.); (N.R.D.); (B.-Y.C.); (Y.-F.H.)
| |
Collapse
|
9
|
Said W, Khattab AA, Aly Hamed S, Abo-Elmaaty SA, Khalil H. Identification of Bioactive and Anticancer Properties of Bidens Pilosa in-vitro Evidence. Asian Pac J Cancer Prev 2024; 25:3551-3558. [PMID: 39471021 PMCID: PMC11711352 DOI: 10.31557/apjcp.2024.25.10.3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/09/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVES Bidens pilosa and Trianthema portulacastrum are noteworthy weeds with a series of bioactive flavonoid constituents, hence, they can be utilized as potential health supplements and readily available sources of natural antioxidants, as well as effective constituents in medicinal applications. The current study aims to assess the anti-proliferative activity of B. pilosa and T. portulacastrum extracts using the HepG2 cell line. Methods The prepared extracts were evaluated for their cytotoxic influence and their potential CC50 in HepG2 cell lines and normal hepatocytes using the MTT assay. Using quantitative real-time polymerase chain reaction (qRT-PCR), the relative gene expression of Raf-1, MEK-1, LC3B, and Atg12 was quantified in treated cells to detect the expression levels of cell proliferation factors and autophagy-related genes. The quantification analysis of the released interleukin-1beta (IL-1β) and interleukin-1alpha (IL-1α) was also done using an ELISA assay. RESULTS The activities of B. pilosa extract showed an anti-proliferative influence on HepG2 cell lines upon treatment as compared to normal cells. It was assessed for cytotoxicity using molecular studies against both Raf-1 and MEK-1 as proposed anticancer mechanisms and showed promising inhibitory activity against Raf-1 and MEK-1 gene expression. Likewise, the reduction of autophagy-related genes, Atg12 and LC3B, in HepG2 cells pre-treated with B. pilosa extract, further confirmed its influence in the induction of programmed cell death (PCD). The ELISA assay revealed a substantial elevation of the pro-inflammatory cytokines IL-1α and IL-1β upon treatment. CONCLUSION This study found that B. pilosa extract, without any detectable cytotoxic effects, had potential inhibitory activities against both Raf-1 and MEK-1 gene expression, and a significant reduction in autophagic machinery upon treatment. .
Collapse
Affiliation(s)
- Walid Said
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | - Abeer Ahmed Khattab
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | - Saadia Aly Hamed
- Botany and Microbiology Department, Faculty of Science, Benha University, Egypt.
| | | | - Hany Khalil
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
| |
Collapse
|
10
|
Chen CC, Lin CY, Lu HY, Liou CH, Ho YN, Huang CW, Zhang ZF, Kao CH, Yang WC, Gong HY. Transcriptomics and gut microbiome analysis of the edible herb Bidens pilosa as a functional feed additive to promote growth and metabolism in tilapia (Oreochromis spp.). BMC Genomics 2024; 25:785. [PMID: 39138417 PMCID: PMC11323441 DOI: 10.1186/s12864-024-10674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.
Collapse
Affiliation(s)
- Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Yen Lin
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yun Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chyng-Hwa Liou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Wen Huang
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Zhong-Fu Zhang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Hsin Kao
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Wen-Chin Yang
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Yi Gong
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
11
|
Lee YS, Umam K, Kuo TF, Yang YL, Feng CS, Yang WC. Functional and mechanistic studies of a phytogenic formulation, Shrimp Best, in growth performance and vibriosis in whiteleg shrimp. Sci Rep 2024; 14:11584. [PMID: 38773245 PMCID: PMC11109214 DOI: 10.1038/s41598-024-62436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
Climate change and disease threaten shrimp farming. Here, we studied the beneficial properties of a phytogenic formulation, Shrimp Best (SB), in whiteleg shrimp. Functional studies showed that SB dose-dependently increased shrimp body weight and decreased feed conversion ratio. We found that SB protected against Vibrio parahaemolyticus as evidenced by survival rate, bacterial load, and hepatopancreatic pathology in shrimp. Finally, we explored the likely mechanism by which SB affects growth performance and vibriosis in shrimp. The 16S rRNA sequencing data showed that SB increased 6 probiotic genera and decreased 6 genera of pathogenic bacteria in shrimp. Among these, SB increased the proportion of Lactobacillus johnsonii and decreased that of V. parahaemolyticus in shrimp guts. To dissect the relationship among SB, Lactobacillus and Vibrio, we investigated the in vitro regulation of Lactobacillus and Vibrio by SB. SB at ≥ 0.25 μg/mL promoted L. johnsonii growth. Additionally, L. johnsonii and its supernatant could inhibit V. parahaemolyticus. Furthermore, SB could up-regulate five anti-Vibrio metabolites of L. johnsonii, which caused bacterial membrane destruction. In parallel, we identified 3 fatty acids as active compounds from SB. Overall, this work demonstrated that SB improved growth performance and vibriosis protection in shrimp via the regulation of gut microbiota.
Collapse
Affiliation(s)
- Yi-San Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Khotibul Umam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- National Chung Hsing University, Taichung, Taiwan
- Faculty of Life Science and Technology, Biotechnology, Sumbawa University of Technology, Sumbawa, Indonesia
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan.
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- National Chung Hsing University, Taichung, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Tian J, Yu S, Wang L, Kong D, Zhao W, Tian Z, Zhou H. New polyacetylenes from Bidens procera. Nat Prod Res 2024; 38:1148-1156. [PMID: 36255124 DOI: 10.1080/14786419.2022.2134864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 10/24/2022]
Abstract
A phytochemical investigation of Bidens procera L.C.Xu ex X.W.Zheng afforded two novel polyacetylenes, tridecane-2E-monoene-4,6,8-triyntylen-1,13-diol-12-O-β-glucoside (1) and tetradecane-2E,8E-diene-4,6-diyne-1,14-diol-13-O-β-glucoside (2), together with ten known compounds (3 - 12). Their chemical structures were elucidated by NMR and MS spectrums as well as the comparison of the published data. Furthermore, the chemotaxonomy of the yielded compounds was also discussed.
Collapse
Affiliation(s)
- Jinli Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Shaohua Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Lu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Degang Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Wei Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Zhenhua Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, P.R. China
| |
Collapse
|
13
|
Galagali A, Patil VS, Hiremath K, Sampat GH, Patil R, Virge R, Harish DR, Hedge HV, Roy S. Investigation of alpha amylase inhibitors from Bidens pilosa L. by in silico and in vitro studies. In Silico Pharmacol 2024; 12:9. [PMID: 38327875 PMCID: PMC10844173 DOI: 10.1007/s40203-023-00187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Bidens pilosa L. has been traditionally used as an anti-diabetic herbal medicine; however, its mechanism of action remains elusive. In this study, the potential role of B. pilosa compounds on alpha-amylase inhibition and regulation of multiple pathways was investigated via computational and experimental studies. The phytocompounds were retrieved from plant databases and published literature. The druggability profile of these compounds was predicted using MolSoft. The probable targets of these phytocompounds were predicted using BindingDB (similarity index ≥ 0.7). Further, compound-gene set-pathway and functional enrichment analysis were performed using STRING and KEGG pathway databases. The network between compound-protein-pathway was constructed using Cytoscape. Molecular docking was performed using AutoDock Vina, executed through the POAP pipeline. The stability of the best docked complex was subjected to all-atom molecular dynamics (MD) simulation for 100 ns to investigate their structural stabilities and intermolecular interactions using GROMACS software. Finally, B. pilosa hydroalcoholic extract was subjected to LC-MS and tested for dose- and time-dependent alpha-amylase inhibitory activity. Out of 31 bioactive compounds, 13 were predicted to modulate the human pancreatic alpha-amylase (AMY2A) and 12 pathways associated with diabetes mellitus. PI3K-Akt signaling pathway (hsa04151) scored the lowest false discovery rate by triggering 15 genes. Further intermolecular interaction analysis of the docked complex revealed that Brassidin had the highest active site interaction and lowest binding energy compared to standard acarbose, and MD reveals the formation of a stable complex throughout 100 ns production run. LC-MS analysis revealed the presence of 13 compounds (targeting AMY2A) in B. pilosa hydroalcoholic extract, which showed potent AMY2A inhibition by in vitro studies that corroborate in silico findings for its anti-diabetic activity. Based on these findings, enriched fractions/pure compounds inhibitory activity that can be performed in future for drug discovery. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00187-9.
Collapse
Affiliation(s)
- Akshay Galagali
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research (Deemed-to-be-University), Nehru Nagar, Belagavi, Karnataka 590010 India
| | - Vishal S. Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
| | - Ganesh H. Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
| | - Rajlaxmi Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research (Deemed-to-be-University), Nehru Nagar, Belagavi, Karnataka 590010 India
| | - Rajashri Virge
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
| | | | - Harsha V. Hedge
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka 590010 India
| |
Collapse
|
14
|
Kato-Noguchi H, Kurniadie D. The Invasive Mechanisms of the Noxious Alien Plant Species Bidens pilosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:356. [PMID: 38337889 PMCID: PMC10857670 DOI: 10.3390/plants13030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Bidens pilosa L. is native to tropical America and has widely naturized from tropical to warm temperate regions in Europe, Africa, Asia, Australia, and North and South America. The species has infested a wide range of habitats such as grasslands, forests, wetlands, streamlines, coastal areas, pasture, plantations, agricultural fields, roadsides, and railway sides and has become a noxious invasive weed species. B. pilosa forms thick monospecific stands, quickly expands, and threatens the indigenous plant species and crop production. It is also involved in pathogen transmission as a vector. The species was reported to have (1) a high growth ability, producing several generations in a year; (2) a high achene production rate; (3) different biotypes of cypselae, differently germinating given the time and condition; (4) a high adaptative ability to various environmental conditions; (5) an ability to alter the microbial community, including mutualism with arbuscular mycorrhizal fungi; and (6) defense functions against natural enemies and allelopathy. The species produces several potential allelochemicals such as palmitic acid, p-coumaric acid, caffeic acid, ferulic acid, p-hydroxybenzoic acid, vanillic acid, salycilic acid, quercetin, α-pinene, and limonene and compounds involved in the defense functions such as 1-phenylhepta-1,3,5-trine, 5-phenyl-2-(1-propynyl)-thiophene, 5-actoxy-2-phenylethinyl-thiophene, and icthyothereol acetate. These characteristics of B. pilosa may contribute to the naturalization and invasiveness of the species in the introduced ranges. This is the first review article focusing on the invasive mechanisms of the species.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Denny Kurniadie
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Jawa Barat, Indonesia
| |
Collapse
|
15
|
Reyes-Ardila WL, Rugeles-Silva PA, Duque-Zapata JD, Vélez-Martínez GA, Tarazona Pulido L, Cardona Tobar KM, Díaz Gallo SA, Muñoz Flórez JE, Díaz-Ariza LA, López-Alvarez D. Exploring Genomics and Microbial Ecology: Analysis of Bidens pilosa L. Genetic Structure and Soil Microbiome Diversity by RAD-Seq and Metabarcoding. PLANTS (BASEL, SWITZERLAND) 2024; 13:221. [PMID: 38256774 PMCID: PMC10818919 DOI: 10.3390/plants13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Bidens pilosa L., native to South America and commonly used for medicinal purposes, has been understudied at molecular and genomic levels and in its relationship with soil microorganisms. In this study, restriction site-associated DNA markers (RADseq) techniques were implemented to analyze genetic diversity and population structure, and metabarcoding to examine microbial composition in soils from Palmira, Sibundoy, and Bogotá, Colombia. A total of 2,984,123 loci and 3485 single nucleotide polymorphisms (SNPs) were identified, revealing a genetic variation of 12% between populations and 88% within individuals, and distributing the population into three main genetic groups, FST = 0.115 (p < 0.001) and FIT = 0.013 (p > 0.05). In the soil analysis, significant correlations were found between effective cation exchange capacity (ECEC) and apparent density, soil texture, and levels of Mg and Fe, as well as negative correlations between ECEC and Mg, and Mg, Fe, and Ca. Proteobacteria and Ascomycota emerged as the predominant bacterial and fungal phyla, respectively. Analyses of alpha, beta, and multifactorial diversity highlight the influence of ecological and environmental factors on these microbial communities, revealing specific patterns of clustering and association between bacteria and fungi in the studied locations.
Collapse
Affiliation(s)
- Wendy Lorena Reyes-Ardila
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Paula Andrea Rugeles-Silva
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Juan Diego Duque-Zapata
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Glever Alexander Vélez-Martínez
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Lina Tarazona Pulido
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Karen Melissa Cardona Tobar
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Sergio Alberto Díaz Gallo
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Jaime Eduardo Muñoz Flórez
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
| | - Lucia Ana Díaz-Ariza
- Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá D.C. 110231, Colombia;
| | - Diana López-Alvarez
- Grupo de Investigación en Diversidad Biológica, Departamento de Ciencias Biológicas, Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Sede Palmira, Palmira 763533, Colombia; (P.A.R.-S.); (J.D.D.-Z.); (G.A.V.-M.)
| |
Collapse
|
16
|
Wang H, Xu D, Jiang F, Wang S, Wang A, Liu H, Lei L, Qian W, Fan W. The genomes of Dahlia pinnata, Cosmos bipinnatus, and Bidens alba in tribe Coreopsideae provide insights into polyploid evolution and inulin biosynthesis. Gigascience 2024; 13:giae032. [PMID: 38869151 PMCID: PMC11170221 DOI: 10.1093/gigascience/giae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The Coreopsideae tribe, a subset of the Asteraceae family, encompasses economically vital genera like Dahlia, Cosmos, and Bidens, which are widely employed in medicine, horticulture, ecology, and food applications. Nevertheless, the lack of reference genomes hinders evolutionary and biological investigations in this tribe. RESULTS Here, we present 3 haplotype-resolved chromosome-level reference genomes of the tribe Coreopsideae, including 2 popular flowering plants (Dahlia pinnata and Cosmos bipinnatus) and 1 invasive weed plant (Bidens alba), with assembled genome sizes 3.93 G, 1.02 G, and 1.87 G, respectively. We found that Gypsy transposable elements contribute mostly to the larger genome size of D. pinnata, and multiple chromosome rearrangements have occurred in tribe Coreopsideae. Besides the shared whole-genome duplication (WGD-2) in the Heliantheae alliance, our analyses showed that D. pinnata and B. alba each underwent an independent recent WGD-3 event: in D. pinnata, it is more likely to be a self-WGD, while in B. alba, it is from the hybridization of 2 ancestor species. Further, we identified key genes in the inulin metabolic pathway and found that the pseudogenization of 1-FEH1 and 1-FEH2 genes in D. pinnata and the deletion of 3 key residues of 1-FFT proteins in C. bipinnatus and B. alba may probably explain why D. pinnata produces much more inulin than the other 2 plants. CONCLUSIONS Collectively, the genomic resources for the Coreopsideae tribe will promote phylogenomics in Asteraceae plants, facilitate ornamental molecular breeding improvements and inulin production, and help prevent invasive weeds.
Collapse
Affiliation(s)
- Hengchao Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dong Xu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Fan Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Sen Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Anqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Hangwei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Lihong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wanqiang Qian
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Fan
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
17
|
Fatima N, Ashique S, Upadhyay A, Kumar S, Kumar H, Kumar N, Kumar P. Current Landscape of Therapeutics for the Management of Hypertension - A Review. Curr Drug Deliv 2024; 21:662-682. [PMID: 37357524 DOI: 10.2174/1567201820666230623121433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 06/27/2023]
Abstract
Hypertension is a critical health problem. It is also the primary reason for coronary heart disease, stroke, and renal vascular disease. The use of herbal drugs in the management of any disease is increasing. They are considered the best immune booster to fight against several types of diseases. To date, the demand for herbal drugs has been increasing because of their excellent properties. This review highlights antihypertensive drugs, polyphenols, and synbiotics for managing hypertension. Evidence is mounting in favour of more aggressive blood pressure control with reduced adverse effects, especially for specific patient populations. This review aimed to present contemporary viewpoints and novel treatment options, including cutting-edge technological applications and emerging interventional and pharmaceutical therapies, as well as key concerns arising from several years of research and epidemiological observations related to the management of hypertension.
Collapse
Affiliation(s)
- Neda Fatima
- Department of Pharmacology, Amity University, Lucknow Campus, Lucknow, Uttar Pradesh 226010, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal 713378, India
| | - Aakash Upadhyay
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Himanshu Kumar
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Prashant Kumar
- College of Pharmacy, Teerthanker Mahaveer University, Moradabad-244001, UP, India
| |
Collapse
|
18
|
Islam MR, Dhar PS, Akash S, Syed SH, Gupta JK, Gandla K, Akter M, Rauf A, Hemeg HA, Anwar Y, Aljohny BO, Wilairatana P. Bioactive molecules from terrestrial and seafood resources in hypertension treatment: focus on molecular mechanisms and targeted therapies. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:45. [PMID: 37902881 PMCID: PMC10616036 DOI: 10.1007/s13659-023-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023]
Abstract
Hypertension (HTN), a complex cardiovascular disease (CVD), significantly impacts global health, prompting a growing interest in complementary and alternative therapeutic approaches. This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN, with an emphasis on the molecular mechanisms of action found in substances found in plants, herbs, and seafood. Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies. Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure (BP)-regulating effects of these natural substances better. Polyphenols, flavonoids, alkaloids, and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone, reducing oxidative stress (OS), reducing inflammation, and improving endothelial function. The article explains the vasodilatory, diuretic, and renin-angiotensin-aldosterone system (RAAS) modifying properties of vital plants such as garlic and olive leaf. Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs, providing diverse strategies to combat HTN due to their biological actions. The review also discusses the functions of calcium channel blockers originating from natural sources, angiotensin-converting enzyme (ACE) inhibitors, and nitric oxide (NO) donors. Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN. Omega-3 fatty acids, peptides, and minerals obtained from seafood sources have anti-inflammatory, vasodilatory, and antioxidant properties that improve vascular health and control BP. Overall, we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Sabeena Hussain Syed
- School of Pharmacy, Vishwakarma University, Survey No 2, 3,4, Kondhwa Main Rd, Laxmi Nagar, Betal Nagar, Kondhwa, Pune, Maharashtra, 411048, India
| | | | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to Be University), Himayath Nagar, Hyderabad, Telangana, 500075, India
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan.
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Bassam Oudh Aljohny
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
19
|
Mohanta YK, Mishra AK, Nongbet A, Chakrabartty I, Mahanta S, Sarma B, Panda J, Panda SK. Potential use of the Asteraceae family as a cure for diabetes: A review of ethnopharmacology to modern day drug and nutraceuticals developments. Front Pharmacol 2023; 14:1153600. [PMID: 37608892 PMCID: PMC10441548 DOI: 10.3389/fphar.2023.1153600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The diabetes-associated mortality rate is increasing annually, along with the severity of its accompanying disorders that impair human health. Worldwide, several medicinal plants are frequently urged for the management of diabetes. Reports are available on the use of medicinal plants by traditional healers for their blood-sugar-lowering effects, along with scientific evidence to support such claims. The Asteraceae family is one of the most diverse flowering plants, with about 1,690 genera and 32,000 species. Since ancient times, people have consumed various herbs of the Asteraceae family as food and employed them as medicine. Despite the wide variety of members within the family, most of them are rich in naturally occurring polysaccharides that possess potent prebiotic effects, which trigger their use as potential nutraceuticals. This review provides detailed information on the reported Asteraceae plants traditionally used as antidiabetic agents, with a major focus on the plants of this family that are known to exert antioxidant, hepatoprotective, vasodilation, and wound healing effects, which further action for the prevention of major diseases like cardiovascular disease (CVD), liver cirrhosis, and diabetes mellitus (DM). Moreover, this review highlights the potential of Asteraceae plants to counteract diabetic conditions when used as food and nutraceuticals. The information documented in this review article can serve as a pioneer for developing research initiatives directed at the exploration of Asteraceae and, at the forefront, the development of a botanical drug for the treatment of DM.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, kelambakkam, Tamil Nadu, India
| | | | - Amilia Nongbet
- Department of Botany, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ishani Chakrabartty
- Learning and Development Solutions, Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | - Saurov Mahanta
- Guwahati Centre, National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Bhaskar Sarma
- Department of Botany, Dhemaji College, Dhemaji, Assam, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Sujogya Kumar Panda
- Center of Environment Climate Change and Public Health, RUSA 2.0, Utkal University, Bhubaneswar, Odisha, India
| |
Collapse
|
20
|
Vargas-Casanova Y, Bravo-Chaucanés CP, Martínez AXH, Costa GM, Contreras-Herrera JL, Medina RF, Rivera-Monroy ZJ, García-Castañeda JE, Parra-Giraldo CM. Combining the Peptide RWQWRWQWR and an Ethanolic Extract of Bidens pilosa Enhances the Activity against Sensitive and Resistant Candida albicans and C. auris Strains. J Fungi (Basel) 2023; 9:817. [PMID: 37623588 PMCID: PMC10455339 DOI: 10.3390/jof9080817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/26/2023] Open
Abstract
The antifungal activity of palindromic peptide RWQWRWQWR and its derivatives was evaluated against clinical isolates of Candida albicans and C. auris. Also, Bidens pilosa ethanolic extracts of leaves and stem were evaluated. Furthermore, combinations of peptide, extract, and/or fluconazole (FLC) were evaluated. The cytotoxicity of peptides and extracts in erythrocytes and fibroblasts was determined. The original palindromic peptide, some derivative peptides, and the ethanolic extract of leaves of B. pilosa exhibited the highest activity in some of the strains evaluated. Synergy was obtained between the peptide and the FLC against C. auris 435. The combination of the extract and the original palindromic peptide against C. albicans SC5314, C. auris 435, and C. auris 537 decreased the minimal inhibitory concentrations (MICs) by a factor of between 4 and 16. These mixtures induced changes in cell morphology, such as deformations on the cell surface. The results suggest that the combination of RWQWRWQWR and B. pilosa extract is an alternative for enhancing antifungal activity and decreasing cytotoxicity and costs and should be considered to be a promising strategy for treating diseases caused by Candida spp.
Collapse
Affiliation(s)
- Yerly Vargas-Casanova
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
| | | | | | - Geison Modesti Costa
- Chemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.X.H.M.); (G.M.C.)
| | | | - Ricardo Fierro Medina
- Faculty of Sciences, Universidad Nacional of Colombia, Bogotá 111321, Colombia; (R.F.M.); (Z.J.R.-M.); (J.E.G.-C.)
| | - Zuly Jenny Rivera-Monroy
- Faculty of Sciences, Universidad Nacional of Colombia, Bogotá 111321, Colombia; (R.F.M.); (Z.J.R.-M.); (J.E.G.-C.)
| | | | - Claudia Marcela Parra-Giraldo
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
| |
Collapse
|
21
|
Hankiso M, Warkineh B, Asfaw Z, Debella A. Ethnobotany of wild edible plants in Soro District of Hadiya Zone, southern Ethiopia. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:21. [PMID: 37269005 DOI: 10.1186/s13002-023-00588-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/01/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Despite their paramount importance all over the globe in supporting food security, information about wild edible plants is generally patchy. In this study, we investigated the wild edible plants used by the local people in the Soro District of Hadiya Zone, southern Ethiopia. The main purpose of the study was to document and analyze the indigenous and local knowledge of the people on their abundance, diversity, use and management. METHODS AND MATERIALS Purposive sampling and systematic random sampling were used to identify informants who can give information about the wild edible plants of the area. Data were collected by interviewing 26 purposively sampled key informants and 128 systematically randomly sampled general informants using semi-structured interviews. Guided observations and 13 focus group discussions (FGDs) consisting of 5-12 participants/discussants at each FGD session were also undertaken. Statistical analyses (mainly descriptive statistics approaches) and common analytical tools of ethnobotany including informant consensus, informant consensus factor, preference ranking, direct matrix ranking, paired comparison and index of fidelity level were applied to the data sets. RESULTS A total of 64 wild edible plant species belonging to 52 genera and 39 families were recorded. All of these species are indigenous, 16 are new additions to the database and seven of them, including Urtica simensis and Thymus schimperi, are endemic to Ethiopia. In about 82.81% of the species, the edible plant part is also used in the Ethiopian traditional herbal medicine. It is striking to see that almost all wild edible plants recorded from the study area are nutraceutical plant species, serving multiple roles as food and therapeutic sources for the local people. We recorded five growth habits of 34.38% trees, 32.81% herbs, 25% shrubs, 6.25% climbers, and 1.56% liana. We found the Flacourtiaceae, Solanaceae, and Moraceae to be families that represented more species (4 each), followed by Acanthaceae, Apocynaceae, Amaranthaceae, and Asteraceae, which accounted for 3 species each. Fruits (53.13%) and leaves (31.25%) were consumed in more proportions than other edible parts (15.63%); mostly the ripe, raw fruit is eaten upon simple processing, followed by leaves eaten after boiling, roasting and cooking. CONCLUSION The frequency and intensity of consumption of these plants varied significantly (P < 0.05) with gender differences, key and general informants, and people's religious backgrounds. We postulate that priority setting for in situ and ex situ conservation of multipurpose wild edible plants in human-inhabited landscapes is essential to warrant sustainable use and conservation of the species as well as the use of new modes of application and valorization.
Collapse
Affiliation(s)
- Mulatu Hankiso
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
- Biology Department, College of Natural and Computational Sciences, Hossana College of Education, P.O. Box 94, Hossana, Ethiopia.
| | - Bikila Warkineh
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Zemede Asfaw
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Asfaw Debella
- Ethiopian Public Health Institute, P.O. Box 1242/5654, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Rodríguez-Mesa XM, Contreras Bolaños LA, Mejía A, Pombo LM, Modesti Costa G, Santander González SP. Immunomodulatory Properties of Natural Extracts and Compounds Derived from Bidens pilosa L.: Literature Review. Pharmaceutics 2023; 15:pharmaceutics15051491. [PMID: 37242733 DOI: 10.3390/pharmaceutics15051491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Bidens pilosa L. has been used in different parts of the world mainly to treat diseases associated with immune response disorders, such as autoimmunity, cancer, allergies, and infectious diseases. The medicinal properties of this plant are attributed to its chemical components. Nevertheless, there is little conclusive evidence that describes the immunomodulatory activity of this plant. In this review, a systematic search was carried out in the PubMed-NLM, EBSCO Host and BVS databases focused on the pre-clinical scientific evidence of the immunomodulatory properties of B. pilosa. A total of 314 articles were found and only 23 were selected. The results show that the compounds or extracts of Bidens modulate the immune cells. This activity was associated with the presence of phenolic compounds and flavonoids that control proliferation, oxidative stress, phagocytosis, and the production of cytokines of different cells. Most of the scientific information analyzed in this paper supports the potential use of B. pilosa mainly as an anti-inflammatory, antioxidant, antitumoral, antidiabetic, and antimicrobial immune response modulator. It is necessary that this biological activity be corroborated through the design of specialized clinical trials that demonstrate the effectiveness in the treatment of autoimmune diseases, chronic inflammation, and infectious diseases. Until now there has only been one clinical trial in phase I and II associated with the anti-inflammatory activity of Bidens in mucositis.
Collapse
Affiliation(s)
- Xandy Melissa Rodríguez-Mesa
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | | | - Antonio Mejía
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Luis Miguel Pombo
- Plant Pharmacology and Alternative Therapeutics, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| | - Geison Modesti Costa
- Phytochemistry Research Group (GIFUJ), Pontificia Universidad Javeriana, Bogotá Carrera 7 #40-62, Bogota 110231, Colombia
| | - Sandra Paola Santander González
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá Carrera 111 #159A-61, Bogota 111321, Colombia
| |
Collapse
|
23
|
Phytochemical-Based Evidence of the Health Benefits of Bidens Pilosa Extracts and Cytotoxicity. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Purpose
Bidens pilosa L. is traditionally used as a flavouring agent in foods, in the treatment of diseases, in agriculture as a biopesticide and herbicide, and in the phytoremediation of soils contaminated with heavy metals. The vast range of uses of B. pilosa for a variety of purposes is questionable, hence motivating the objectives of this study, which are to assess the cytotoxicity, health benefits, and/or risks of B. pilosa using chemical-based evidence.
Methods
A real-time cell analysis (xCELLigence system), ultra-high-performance liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometer, high-performance liquid chromatography with a diode array detector, and chemical-based spectrophotometric methods were adopted in the study.
Results
High concentrations of the ethanol extracts exhibited cytotoxic activity on HepG2 (cancerous), and Vero (non-cancerous) cell lines, whereas the water extracts promoted cell proliferation at selected concentrations. The chemical profiling enabled the separation as well as characterisation of 137 phytochemicals. These were mainly phenolic acids, flavonoids, fatty acids, coumarins, and furanocoumarins. There was no toxic compound identified.
Conclusion
The ethanol extracts are generally more potent and exhibit stronger antioxidant activity and cytotoxicity, probably due to the presence of more flavonoids and phenolic acids, validating the uses of B. pilosa and its relevance as a source of functional phytochemicals.
Collapse
|
24
|
Zhang D, Tu J, Ding X, Guan W, Gong L, Qiu X, Huang Z, Su H. Analysis of the chloroplast genome and phylogenetic evolution of Bidens pilosa. BMC Genomics 2023; 24:113. [PMID: 36918765 PMCID: PMC10015693 DOI: 10.1186/s12864-023-09195-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Chloroplast genomes for 3 Bidens plants endemic to China (Bidens bipinnata Linn., Bidens pilosa Linn., and Bidens alba var. radiata) have been sequenced, assembled and annotated in this study to distinguish their molecular characterization and phylogenetic relationships. The chloroplast genomes are in typical quadripartite structure with two inverted repeat regions separating a large single copy region and a small single copy region, and ranged from 151,599 to 154,478 bp in length. Similar number of SSRs and long repeats were found in Bidens, wherein mononucleotide repeats (A/T), forward and palindromic repeats were the most in abundance. Gene loss of clpP and psbD, IR expansion and contraction were detected in these Bidens plants. It seems that ndhE, ndhF, ndhG, and rpl32 from the Bidens plants were under positive selection while the majority of chloroplast genes were under purifying selection. Phylogenetic analysis revealed that 3 Bidens plants clustered together and further formed molophyletic clade with other Bidens species, indicating Bidens plants might be under radiation adaptive selection to the changing environment world-widely. Moreover, mutation hotspot analysis and in silico PCR analysis indicated that inter-genic regions of ndhD-ccsA, ndhI-ndhG, ndhF-rpl32, trnL_UAG-rpl32, ndhE-psaC, matK-rps16, rps2-atpI, cemA-petA, petN-psbM were candidate markers of molecular identification for Bidens plants. This study may provide useful information for genetic diversity analysis and molecular identification for Bidens species.
Collapse
Affiliation(s)
- Danchun Zhang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiajun Tu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxia Ding
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wan Guan
- Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, 318050, Zhejiang, China
| | - Lu Gong
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Luqiao Hospital, Taizhou Enze Medical Center (Group), Taizhou, 318050, Zhejiang, China
| | - Xiaohui Qiu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China.
| | - He Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. .,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
25
|
A Novel Phytogenic Formulation, EUBIO-BPSG, as a Promising One Health Approach to Replace Antibiotics and Promote Reproduction Performance in Laying Hens. Bioengineering (Basel) 2023; 10:bioengineering10030346. [PMID: 36978737 PMCID: PMC10045918 DOI: 10.3390/bioengineering10030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gut microbiota play a key role in health maintenance and disease pathogenesis in animals. Dietary phytochemicals are crucial factors shaping gut bacteria. Here, we investigated the function and mechanism of a phytogenic formulation, EUBIO-BPSG (BP), in laying hens. We found that BP dose-dependently improved health and egg production in 54-week-old hens. Furthermore, BP was correlated with increased fecal Lactobacillus, decreased Escherichia coli and Salmonella enterica, and reduced antibiotic resistance (AR) and antibiotic resistance genes (ARG) in chicken stools. The 16S rDNA data showed that BP increased seven genera of probiotics and reduced 13 genera of pathogens in chicken feces. In vitro co-culture experiments showed that BP at 4 µg/mL and above promoted growth of L. reuteri while large 100- and 200-fold higher doses suppressed growth of E. coli and S. enterica, respectively. Mechanistic studies indicated that L. reuteri and its supernatants antagonized growth of E. coli and S. enterica but not vice-versa. Five short-chain fatty acids and derivatives (SCFA) produced from L. reuteri directly killed both pathogens via membrane destruction. Furthermore, BP inhibited conjugation and recombination of ARG via interference with conjugation machinery and integrase activity in E. coli. Collectively, this work suggests that BP promotes host health and reproductive performance in laying hens through regulation of gut microbiota through increasing probiotics and decreasing pathogens and spreading ARG.
Collapse
|
26
|
Acute and Subchronic Toxicity Studies on the Aqueous Extract of the Plant Mixture ( Bidens pilosa and Cymbopogon citratus Aerial Parts) in Rat Model. J Toxicol 2022; 2022:1998433. [PMID: 36506716 PMCID: PMC9733988 DOI: 10.1155/2022/1998433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Bidens pilosa (B. pilosa) and Cymbopogon citratus (C. citratus) are plants used individually or in combination in the traditional treatment of several ailments such as cardiovascular disorders. In order to valorise their traditional use, a toxicological study was conducted on the aqueous extract of the mixture of aerial parts of B. pilosa and C. citratus. The acute and subchronic toxicity studies were conducted according to the OECD 425 and 407 guidelines. Regarding the acute study, the aqueous extract of the mixture of B. pilosa and C. citratus 50 : 50 (2000 and 5000 mg/kg) was administered once to rats of both sexes. In the subchronic study, the aqueous extract of the mixture of B. pilosa and C. citratus (200, 400 and 800 mg/kg) was administered once daily to rats for 28 days. The aqueous extract of the mixture of B. pilosa and C. citratus (2000 and 5000 mg/kg) did not cause death and did not induce any apparent sign of toxicity during the 14 days of observation. The DL50 of the extract is therefore greater than 5000 mg/kg. Taken daily for 28 days, the extract had no significant effect on selected parameters (creatinine, AST, ALT, urea, and uric acid) of renal and hepatic function, as well as on the number of some blood cells. However, the aqueous extract of the mixture of B. pilosa and C. citratus (200 and 400 mg/kg) caused a significant (p < 0.05; p < 0.001, respectively) decrease in creatinine levels in male rats as compared to normal control animals. In females, the aqueous extract of the mixture of B. pilosa and C. citratus (200 and 400 mg/kg) resulted in a significant (p < 0.05) increase in total cholesterol levels as compared to normal control animals. The study showed that the aqueous extract of the mixture of B. pilosa and C. citratus has a low toxicity and does not cause any injury to the liver, kidney, lungs, or spleen.
Collapse
|
27
|
Woldeamanuel MM, Geda MK, Mohapatra S, Bastia TK, Rath P, Panda AK. Ethnobotanical study of endemic and non-endemic medicinal plants used by indigenous people in environs of Gullele botanical garden Addis Ababa, central Ethiopia: A major focus on Asteraceae family. Front Pharmacol 2022; 13:1020097. [PMID: 36506590 PMCID: PMC9727095 DOI: 10.3389/fphar.2022.1020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Gullele Botanical Garden (GBG) in Addis Ababa, Ethiopia is a joint venture of Addis Ababa government and the university. The garden has been built mainly to conserve the endemic plants and to advance the research on the endemic and non-endemic plants collected from different part of Ethiopia. Many traditional healers from the environs of GBG and different subcities of Addis Ababa depend on the garden for their practice of traditional medicine but there is no systematic documentation of the traditional medicinal knowledge of these healers. The main objective of the present study is to comprehensively document the ethnobotanical and ethnomedicinal information from the traditional healers of different ethnic and cultural groups depending on GBG and to create a database of the endemic plants used by these healers. The ethnobotanical and ethnomedicinal data obtained from 60 traditional healers have been analyzed both qualitatively and quantitatively. A total of 81 medicinal plants belonging to 47 families have been identified. Majority of the plants used belonged to Asteraceae (12) family. The most frequently used plant form and plant parts are herbs and leaves. The major method adopted by the healers for preparation and administration of traditional medicine is crushing and topical, respectively. Skin and general diseases are the most important ailments treated by the healers. The three most cited plants used to treat diseases are Echinops kebericho Mesfin (60), Hagenia abyssinica (Bruce) J.F.Gmel (60) and Laggera tomentosa (A.Rich.) Sch.Bip. ex Oliv. & Hiern (58). The present study is the first systematic, qualitative, and quantitative ethnobotanical analysis and documentation done on the use of the medicinal plants from GBG for traditional medicine. In addition, our study reveals that E. kebericho is endemic and endangered plant and is highly used in traditional medicine. Therefore, GBG authorities should take steps for the propagation and restoration of this plant. Further it is suggested that the pharmacological properties of the roots and leaves of E. kebericho should be compared to find the possibility of use of leaves in place of roots for the preparation of traditional medicine which would help in conserving this endemic plant of Ethiopia.
Collapse
Affiliation(s)
- Melaku Masresha Woldeamanuel
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India,College of Natural and Computational Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Mohammed Kasso Geda
- College of Natural and Computational Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Shibani Mohapatra
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Tapan Kumar Bastia
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Prasanta Rath
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India,*Correspondence: Prasanta Rath, ; Alok Kumar Panda,
| | - Alok Kumar Panda
- Environmental Science Laboratory School of Applied Sciences, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India,*Correspondence: Prasanta Rath, ; Alok Kumar Panda,
| |
Collapse
|
28
|
Zhang R, Chen D, Liu H, Guo C, Tang L, Wang H, Chen Y, Luo K. Effect of temperature and water potential on the germination of seeds from three different populations of Bidens pilosa as a potential Cd hyperaccumulator. BMC PLANT BIOLOGY 2022; 22:487. [PMID: 36224525 PMCID: PMC9558385 DOI: 10.1186/s12870-022-03876-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Bidens pilosa L., an annual herb, has recently been shown to be a potential Cd-hyperaccumulating plant. The germination characteristics of B. pilosa have been documented, while the difference among populations remains unclear. Understanding variability in seed germination among populations is crucial for determining which populations to use for soil remediation programs. RESULTS Present study was conducted to compare the requirements of temperature and water potential for germination of B. pilosa cypselae (the central type, hereafter seeds) from three populations using the thermal time, hydrotime, and hydrothermal time models. Seeds of three populations were incubated at seven constant temperatures (8, 12, 15, 20, 25, 30, and 35 °C) and at each of four water potentials (0, -0.3, -0.6, and -0.9 MPa). The results showed that germination percentage and rate of B. pilosa seeds were significantly by population, temperature, water potential and their interaction except for the interaction of population and water potential. Seeds from Danzhou population displayed a higher base temperature (Tb) for germination than those from Guilin and Baoshan population, however the ceiling temperature (Tc) had no consistent level among the populations but varied according to the water potential. In addition, the median base water potential [ψb(50)] for germination of seeds from Danzhou population was higher than that for seeds from Baoshan and Guilin population at low temperatures (< 25 °C), which was opposite at high temperatures (≥ 25 °C). CONCLUSION Seed germination requirements of B. pilosa on temperature and water differed significantly among populations. Differences in seed germination among populations may be complicated, which could not be simply explained by the temperature and rainfall conditions where the seeds were produced as previously reported. The results suggested that programme management should consider variation in seed germination traits when select which population could be applied to what kind of target remediation sites.
Collapse
Affiliation(s)
- Rui Zhang
- School of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Dali Chen
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Huizhuan Liu
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Changlin Guo
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Li Tang
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Honggang Wang
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yinhua Chen
- School of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Kai Luo
- School of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
29
|
Dofuor AK, Djameh GI, Amoa-Bosompem M, Kwain S, Osei E, Tetevi GM, Ayertey F, Bolah P, Okine LK, Kyeremeh K, Gwira TM, Ohashi M. In vitro effects and mechanisms of action of Bidens pilosa in Trypanosoma brucei. J Tradit Complement Med 2022; 12:260-268. [PMID: 35493314 PMCID: PMC9039108 DOI: 10.1016/j.jtcme.2021.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 10/25/2022] Open
Abstract
Background and aim African trypanosomiasis poses serious health and economic concerns to humans and livestock in several sub-Saharan African countries. The aim of the present study was to identify the antitrypanosomal compounds from B. pilosa (whole plant) through a bioactivity-guided isolation and investigate the in vitro effects and mechanisms of action against Trypanosoma brucei (T. brucei). Experimental procedure Crude extracts and fractions were prepared from air-dried pulverized plant material of B. pilosa using the modified Kupchan method of solvent partitioning. The antitrypanosomal activities of the fractions were determined through cell viability analysis. Effects of fractions on cell death and cell cycle of T. brucei were determined using flow cytometry, while fluorescence microscopy was used to investigate alterations in cell morphology and distribution. Results and conclusion The solvent partitioning dichloromethane (BPFD) and methanol (BPFM) fractions of B. pilosa exhibited significant activities against T. brucei with respective half-maximal inhibitory concentrations (IC50s) of 3.29 μg/ml and 5.86 μg/ml and resulted in the formation of clumpy subpopulation of T. brucei cells. Butyl (compound 1) and propyl (compound 2) esters of tryptophan were identified as the major antitrypanosomal compounds of B. pilosa. Compounds 1 and 2 exhibited significant antitrypanosomal effects with respective IC50 values of 0.66 and 1.46 μg/ml. At the IC50 values, both compounds significantly inhibited the cell cycle of T. brucei at the G0-G1 phase while causing an increase in G2-M phase. The results suggest that tryptophan esters may possess useful chemotherapeutic properties for the control of African trypanosomiasis.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Georgina Isabella Djameh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Michael Amoa-Bosompem
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samuel Kwain
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | - Enoch Osei
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | - Gilbert Mawuli Tetevi
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | | | - Peter Bolah
- Center for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Laud Kenneth Okine
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Kwaku Kyeremeh
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon, Ghana
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Mitsuko Ohashi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Dual Inhibition of Phosphodiesterase and Ca++ Channels Explains the Medicinal Use of Balanites aegyptiaca (L.) in Hyperactive Gut Disorders. PLANTS 2022; 11:plants11091183. [PMID: 35567184 PMCID: PMC9105777 DOI: 10.3390/plants11091183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/03/2023]
Abstract
The present study attempted to evaluate and rationalize the medicinal use of the methanolic extract of the fruits of Balanites aegyptiaca (B. aegyptiaca) in the treatment of hyperactive gut disorders. The in vivo, castor oil-induced diarrhea model in mice was followed to test its antidiarrheal effect. To test the antispasmodic effect and to explore its pharmacodynamic details, isolated small intestines (ileum) obtained from rats were selected to provide physiological conditions for the ex vivo assays. In the in vivo assays, the orally administered extract of B. aegyptiaca protected mice from diarrheal drops with resultant percent inhibitions of 40% and 80% at the respective doses of 200 mg/kg and 400 mg/kg, while the highest protection (100%) was observed with a positive control drug, loperamide, at 10 mg/kg. In the ileum, B. aegyptiaca produced an antispasmodic effect in a concentration-dependent manner by inhibiting the carbachol (CCh; 1 µM) and high K+ (80 mM)-evoked spasms with resultant EC50 values of 1.44 mg/mL (1.08–1.78) and 1.27 mg/mL (0.98–1.66), respectively. Papaverine, a known phosphodiesterase enzyme (PDE) inhibitor and blocker of Ca++ channels (CCB), also inhibited both CCh and high K+ induced contractions at comparable EC50 values of 8.72 µM (7.92–9.24) and 8.14 µM (7.62–8.84), respectively. Contrary to the extract and papaverine, verapamil showed distinctly higher potency in regard to inhibiting high K+, compared to CCh-evoked spasms that had EC50 values of 0.16 µM (0.13–0.261) and 2.54 µM (2.28–2.92), respectively. The inhibitory effects of B. aegyptiaca on PDE were further confirmed when the pre-incubated extract shifted the isoprenaline-mediated relaxation curves (CRCs) towards the left, similar to papaverine, whereas the CCB-like effect was confirmed when the pre-incubated tissues with B. aegyptiaca caused deflection in the Ca++ CRCs towards the right, constructed in Ca++ free medium with suppression of the maximum response. Thus, this study provides detailed, mechanistic support for the medicinal use of B. aegyptiaca in the treatment of hyperactive gut disorders.
Collapse
|
31
|
Ashrafi S, Rahman M, Ahmed P, Alam S, Hossain MA. Prospective Asian plants with corroborated antiviral potentials: Position standing in recent years. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:47. [PMID: 35402627 PMCID: PMC8980796 DOI: 10.1186/s43088-022-00218-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Viral diseases are extremely widespread infections caused by viruses. Amongst numerous other illnesses, viral infections have challenged human existence severely. Over the history of mankind, new viruses have emerged and presented us with new tests. The range of viral infections varies from familiar infectious diseases such as the common cold, flu, and warts to severe ailments such as AIDS, Ebola, and COVID-19. The world has been racing to find an effective cure for the newly evolving viruses. Toxic effects, non-selectivity, drug resistance, and high price are the most common complications of conventional treatment procedures. Nature is a marvelous source of phytoconstituents with incredible varieties of biological activities. By tradition, medicinal plants have been utilized for the treatment of countless infectious diseases worldwide, some of which contain a broad spectrum of activities. Modern drug discovery and development techniques offer highly efficient separation techniques, inauguration of vector-based schemes where the original infectious virus is cloned to the non-infectious one for antiviral screening targets. The objective of the review was to gather available data on 20 both cultivated and native plants of Asia giving antiviral activities and provide comprehensive information on the phytochemical analysis of the plants and potential antiviral compounds isolated from these plants.
Collapse
Affiliation(s)
- Sania Ashrafi
- Department of Pharmacy, BRAC University, Mohakhali, Dhaka, 1212 Bangladesh
| | - Mamunur Rahman
- Department of Pharmacy, East West University, Aftabnagar, Dhaka, 1212 Bangladesh
| | - Pollob Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka, Bangladesh
| | - Safaet Alam
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid road, Dhanmondi, Dhaka, 1205 Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka, Bangladesh
| |
Collapse
|
32
|
Preventive Potential of the Aqueous Extract of the Mixture of Bidens pilosa (Asteraceae) and Cymbopogon citratus (Poaceae) Aerial Parts on Hypertension Induced by a Chronic Salt and Alcohol Consumption on the Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1980622. [PMID: 35310038 PMCID: PMC8926541 DOI: 10.1155/2022/1980622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
High blood pressure (HBP) is currently one of the main risk factors for cardiovascular and kidney diseases. Nowadays, populations make extensive use of alternative medicine for their health problems. Bidens pilosa (B. pilosa) and Cymbopogon citratus (C. citratus) are used individually in the traditional treatment of cardiovascular disorders. This study assessed the effects of the mixture of these two plants aqueous extract on HBP in rats. Male rats (42) were divided into 7 groups of 6 rats each. Normotensive rats received only distilled water and formed group 1. The other animals received ethanol + salt preceded by distilled water (10 mL/kg; group 2) and spironolactone (10 mg/kg; group 3); the aqueous extracts of the mixture (100 and 200 mg/kg; groups 4 and 5) isolated plants B. pilosa (200 mg/kg; group 6) and C. citratus (200 mg/kg; group 7). Animals were treated for 7 weeks during which water consumption and urine volume were assessed; then, hemodynamic parameters were recorded, and rats were sacrificed. Serum and some organs (liver, kidney, heart, and aorta) were used to evaluate biochemical parameters. Ingestion of ethanol + salt leads to a significant increase in urinary volume and water intake that were significantly prevented by the extracts from the mixture and isolated plants. Ethanol + salt solution significantly increased the blood pressure, heart rate, triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-chol), very-low-density lipoprotein cholesterol (VLDL-chol), atherogenic indices, liver and kidney function parameters, and malondialdehyde (MDA) levels. However, the levels of high-density lipoprotein cholesterol (HDL-chol), albumin, reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) activity were significantly reduced. The extracts of the mixture and isolated plants significantly prevented all these variations with a more pronounced action for the lowest dose of the mixture on the lipid profile, oxidative stress, and kidney function. These observations confirm the beneficial effects of B. pilosa and C. citratus to manage hypertension.
Collapse
|
33
|
Zahara K, Bibi Y, Masood S, Nisa S, Sher A, Ali N, Kumar S, Qayyum A, Ahmed W, Sami R, Al-Mushhin AAM, Aljahani AH. Isolation and Identification of Bioactive Compounds from Bidens spp. Using HPLC-DAD and GC-MS Analysis and Their Biological Activity as Anticancer Molecules. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061927. [PMID: 35335292 PMCID: PMC8950169 DOI: 10.3390/molecules27061927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022]
Abstract
The genus Bidens a member of family Compositae, is widely documented as an ethno-medicinally important genus of plants. In the present study, anticancer potential of three ethno-medicinally important species i.e., B. bipinnata, B. biternata and B. pilosa were tested. For in-vitro evaluation, an MTT (Thiazolyl blue tetrazolium bromide) assay was performed against cervical cancer cells (HeLa), hepatocellular carcinoma (HepG), and adenocarcinoma human alveolar basal epithelial cells (A549). For in vivo evaluation, Artemia salina, Danio rerio, and Caenorhabditis elegans were used. Among all the tested extracts, the ethanol extract of B. biternata appeared to have highest anticancer activity, and the compounds responsible for this activity were identified to be Tris (2,4-di-tert-butylphenyl), 4-hydroxy-2,4′-dimethoxychalcone, and 2,4-di-tert-butylphenol. This is the first report of the isolation of Tris (2,4-di-tert-butylphenyl) phosphate from the genus Bidens and the first report of 4-hydroxy-2,4′-dimethoxychalcone and 2,4-di-tert-butylphenol from B. biternata. Among the isolated compounds, 4-hydroxy-2,4′-dimethoxychalcone showed the highest anticancer activity with an LD50 value of 236.7 µg/mL. Therefore, this compound carries promising potential for being established as a pharmaceutical for chemoprevention and chemotherapy.
Collapse
Affiliation(s)
- Kulsoom Zahara
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Yamin Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
- Correspondence: (Y.B.); (A.Q.)
| | - Saadia Masood
- Department of Statistics & Mathematics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Sobia Nisa
- Department of Microbiology, The University of Haripur, Haripur 22620, Pakistan;
| | - Ahmad Sher
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub Campus, Layyah 31200, Pakistan;
| | - Naushad Ali
- Department of Plant Breeding & Genetics, The University of Haripur, Haripur 22620, Pakistan;
| | - Sunjeet Kumar
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China;
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
- Correspondence: (Y.B.); (A.Q.)
| | - Waseem Ahmed
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
34
|
Ezz El-Din Ibrahim M, Alqurashi RM, Alfaraj FY. Antioxidant Activity of Moringa oleifera and Olive Olea europaea L. Leaf Powders and Extracts on Quality and Oxidation Stability of Chicken Burgers. Antioxidants (Basel) 2022; 11:antiox11030496. [PMID: 35326147 PMCID: PMC8944647 DOI: 10.3390/antiox11030496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidation is the main cause of quality deterioration in meat-based foods, such as burgers. Antioxidants inhibit the oxidation process; recently, natural antioxidants have gained interest, due to safety concerns. In this study, the effects of leaf powder and crude extracts of both Moringa oleifera and olive in chicken burgers were studied for their antioxidant potential in preventing fat oxidation during storage. Antioxidant activities were evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl). The results showed the highest DPPH radical scavenging with IC50 values of 2.397 ± 0.10 mg/mL in the Moringa leaf. Total phenolic content (TPC) was crude olive extract > crude Moringa extract > olive leaf > Moringa leaf. The total flavonoid content (TFC) was significantly higher in the olive leaf and its crude extract than in the Moringa leaf and its crude extract. The pH, total volatile nitrogen, and sensory properties were affected by the addition of olive and Moringa (leaf and crude extracts) to chicken burgers refrigerated for 20 days. The addition of Moringa and olive leaf powder decreased lipid oxidation and PV after 10 days of storage. In general, Moringa and olive leaf treatments slowed the deterioration of meat, suggesting their use as preservatives to extend the shelf-life of chicken burgers.
Collapse
Affiliation(s)
- Marwa Ezz El-Din Ibrahim
- Department of Food and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.E.-D.I.); (F.Y.A.)
- Department of Nutrition and Food Science, College of Home Economic, Helwan University, Cairo 11795, Egypt
| | - Randah Miqbil Alqurashi
- Department of Food and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.E.-D.I.); (F.Y.A.)
- Correspondence:
| | - Fatimah Yousef Alfaraj
- Department of Food and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.E.E.-D.I.); (F.Y.A.)
| |
Collapse
|
35
|
Farinacci P, Mevissen M, Ayrle H, Maurer V, Sørensen Dalgaard T, Melzig MF, Walkenhorst M. Medicinal Plants for Prophylaxis and Therapy of Common Infectious Diseases In Poultry-A Systematic Review of In Vivo Studies. PLANTA MEDICA 2022; 88:200-217. [PMID: 34359086 DOI: 10.1055/a-1543-5502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants for prophylaxis and therapy of common infectious diseases in poultry have been studied for several years. The goal of this review was to systematically identify plant species and evaluate their potential in prophylaxis and therapy of common diseases in poultry caused by bacteria and gastrointestinal protozoa. The procedure followed the recommendations of the PRISMA statement and the AMSTAR measurement tool. The PICOS scheme was used to design the research questions. Two databases were consulted, and publications were manually selected, according to predefined in- and exclusion criteria. A scoring system was established to evaluate the remaining publications. Initially, 4197 identified publications were found, and 77 publications remained after manual sorting, including 38 publications with 70 experiments on bacterial infections and 39 publications with 78 experiments on gastrointestinal protozoa. In total, 83 plant species from 42 families were identified. Asteraceae and Lamiaceae were the most frequently found families with Artemisia annua being the most frequently found plant, followed by Origanum vulgare. As compared to placebo and positive or negative control groups, antimicrobial effects were found in 46 experiments, prebiotic effects in 19 experiments, and antiprotozoal effects in 47 experiments. In summary, a total of 274 positive effects predominated over 241 zero effects and 37 negative effects. Data indicate that O. vulgare, Coriandrum sativum, A. annua, and Bidens pilosa are promising plant species for prophylaxis and therapy of bacterial and protozoal diseases in poultry.
Collapse
Affiliation(s)
- Patricia Farinacci
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Meike Mevissen
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hannah Ayrle
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Veronika Maurer
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | | | | | - Michael Walkenhorst
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
36
|
Wu L, Nie L, Guo S, Wang Q, Wu Z, Lin Y, Wang Y, Li B, Gao T, Yao H. Identification of Medicinal Bidens Plants for Quality Control Based on Organelle Genomes. Front Pharmacol 2022; 13:842131. [PMID: 35242042 PMCID: PMC8887618 DOI: 10.3389/fphar.2022.842131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
Bidens plants are annuals or perennials of Asteraceae and usually used as medicinal materials in China. They are difficult to identify by using traditional identification methods because they have similar morphologies and chemical components. Universal DNA barcodes also cannot identify Bidens species effectively. This situation seriously hinders the development of medicinal Bidens plants. Therefore, developing an accurate and effective method for identifying medicinal Bidens plants is urgently needed. The present study aims to use phylogenomic approaches based on organelle genomes to address the confusing relationships of medicinal Bidens plants. Illumina sequencing was used to sequence 12 chloroplast and eight mitochondrial genomes of five species and one variety of Bidens. The complete organelle genomes were assembled, annotated and analysed. Phylogenetic trees were constructed on the basis of the organelle genomes and highly variable regions. The organelle genomes of these Bidens species had a conserved gene content and codon usage. The 12 chloroplast genomes of the Bidens species were 150,489 bp to 151,635 bp in length. The lengths of the eight mitochondrial genomes varied from each other. Bioinformatics analysis revealed the presence of 50–71 simple sequence repeats and 46–181 long repeats in the organelle genomes. By combining the results of mVISTA and nucleotide diversity analyses, seven candidate highly variable regions in the chloroplast genomes were screened for species identification and relationship studies. Comparison with the complete mitochondrial genomes and common protein-coding genes shared by each organelle genome revealed that the complete chloroplast genomes had the highest discriminatory power for Bidens species and thus could be used as a super barcode to authenticate Bidens species accurately. In addition, the screened highly variable region trnS-GGA-rps4 could be also used as a potential specific barcode to identify Bidens species.
Collapse
Affiliation(s)
- Liwei Wu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Nie
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiying Guo
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Qing Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengjun Wu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Yulin Lin
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoli Li
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Gao
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hui Yao
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
- *Correspondence: Hui Yao,
| |
Collapse
|
37
|
Zirintunda G, Biryomumaisho S, Kasozi KI, Batiha GES, Kateregga J, Vudriko P, Nalule S, Olila D, Kajoba M, Matama K, Kwizera MR, Ghoneim MM, Abdelhamid M, Zaghlool SS, Alshehri S, Abdelgawad MA, Acai-Okwee J. Emerging Anthelmintic Resistance in Poultry: Can Ethnopharmacological Approaches Offer a Solution? Front Pharmacol 2022; 12:774896. [PMID: 35237147 PMCID: PMC8883056 DOI: 10.3389/fphar.2021.774896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 01/09/2023] Open
Abstract
Limited pharmacological studies have been conducted on plant species used against poultry helminths. The objective of this study was to provide a basis for plant based anthelmintics as possible alternatives against poultry anthelmintic resistance. The study justified the need for alternative anthelmintics. The study places emphasis on the increasing anthelmintic resistance, mechanism of resistance, and preparational protocols for plant anthelmintics and their associated mechanism of action. Pharmaceutical studies on plants as alternative therapies for the control of helminth parasites have not been fully explored especially in several developing countries. Plants from a broad range of species produce a wide variety of compounds that are potential anthelmintics candidates. Important phenolic acids have been found in Brassica rapa L. and Terminalia avicenniodes Guill. and Perri that affect the cell signaling pathways and gene expression. Benzo (c) phenanthridine and isoquinoline alkaloids are neurotoxic to helminths. Steroidal saponins (polyphyllin D and dioscin) interact with helminthic mitochondrial activity, alter cell membrane permeability, vacuolation and membrane damage. Benzyl isothiocyanate glucosinolates interfere with DNA replication and protein expression, while isoflavones from Acacia oxyphylla cause helminth flaccid paralysis, inhibit energy generation, and affect calcium utilization. Condensed tannins have been shown to cause the death of nematodes and paralysis leading to expulsion from the gastro-intestinal tract. Flavonoids from Chenopodium album L and Mangifera indica L act through the action of phosphodiesterase and Ca2+-ATPase, and flavonoids and tannins have been shown to act synergistically and are complementary to praziquantel. Artemisinins from Artemisia cina O. Berg are known to disrupt mitochondrial ATP production. Terpenoids from Cucurbita moschata L disrupt neurotransmission leading to paralysis as well as disruption of egg hatching. Yeast particle encapsulated terpenes are effective for the control of albendazole-resistant helminths.
Collapse
Affiliation(s)
- Gerald Zirintunda
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Savino Biryomumaisho
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom
- School of Medicine, Kabale University, Kabale, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Albeheira, Egypt
| | - John Kateregga
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Patrick Vudriko
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Sarah Nalule
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Deogracious Olila
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Soroti, Uganda
| | - Mariam Kajoba
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Kevin Matama
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mercy Rukundo Kwizera
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Mohammed M. Ghoneim
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Sameh S. Zaghlool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al Jouf, Saudi Arabia
| | - James Acai-Okwee
- School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| |
Collapse
|
38
|
Tendulkar R, Chouhan A, Gupta A, Chaudhary A, Dubey C, Shukla S. Structure-Based Drug Design and Development of Novel Synthetic Compounds with Anti-Viral Property against SARS-COV-2. Curr Drug Discov Technol 2022; 19:e280122200663. [PMID: 35088672 DOI: 10.2174/1570163819666220128145724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
• Background : The world is suffering from health and economic devastation due to the Corona Virus Disease-2019 (COVID-19) pandemic. Given the number of people affected and also the death rate, the virus is definitely a serious threat to humanity. By analogy with previous reports on the Severe Acute Respiratory Syndrome (SARS-CoV-2) virus, the novel replication mechanism of the coronavirus is likely well understood. • Objective : The antiviral activity of various compounds of the flavonoid class was checked against SARS-COVID-19 using diverse tools and software. • Method : From the flavonoid compound class, 100 synthetic compounds with potential antiviral activity were selected and improved for screening and induced fit docking, which was reduced to 25 compounds with good docking score and docking energy. In addition to the apparent match of the molecule with the shape of the binding pocket, a full analysis of the non-covalent interactions in the active site was assessed. • Results : Compounds (nol26), (fla37-fl40), (an32), (an39) showed a maximum docking score, which shows essential interactions for a tight bond. Now, all compounds are synthetic with beneficial drug-like properties. • Conclusion : During the docking study, an increased lipophilic interaction of compounds due to the presence of chlorine in (nol26), (fla37-fl40), (an32), (an39) was discovered. (fla37-fla40) can be investigated as lead molecules against SARS-COV-2 in futuristic drug development.
Collapse
|
39
|
El-Shall NA, Abd El-Hack ME, Albaqami NM, Khafaga AF, Taha AE, Swelum AA, El-Saadony MT, Salem HM, El-Tahan AM, AbuQamar SF, El-Tarabily KA, Elbestawy AR. Phytochemical control of poultry coccidiosis: a review. Poult Sci 2022; 101:101542. [PMID: 34871985 PMCID: PMC8649401 DOI: 10.1016/j.psj.2021.101542] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Avian coccidiosis is a major parasitic disorder in chickens resulting from the intracellular apicomplexan protozoa Eimeria that target the intestinal tract leading to a devastating disease. Eimeria life cycle is complex and consists of intra- and extracellular stages inducing a potent inflammatory response that results in tissue damage associated with oxidative stress and lipid peroxidation, diarrheal hemorrhage, poor growth, increased susceptibility to other disease agents, and in severe cases, mortality. Various anticoccidial drugs and vaccines have been used to prevent and control this disorder; however, many drawbacks have been reported. Drug residues concerning the consumers have directed research toward natural, safe, and effective alternative compounds. Phytochemical/herbal medicine is one of these natural alternatives to anticoccidial drugs, which is considered an attractive way to combat coccidiosis in compliance with the "anticoccidial chemical-free" regulations. The anticoccidial properties of several natural herbal products (or their extracts) have been reported. The effect of herbal additives on avian coccidiosis is based on diminishing the oocyst output through inhibition or impairment of the invasion, replication, and development of Eimeria species in the gut tissues of chickens; lowering oocyst counts due to the presence of phenolic compounds in herbal extracts which reacts with cytoplasmic membranes causing coccidial cell death; ameliorating the degree of intestinal lipid peroxidation; facilitating the repair of epithelial injuries; and decreasing the intestinal permeability induced by Eimeria species through the upregulation of epithelial turnover. This current review highlights the anticoccidial activity of several herbal products, and their other beneficial effects.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Elbehira 22758, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Najah M Albaqami
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511 , Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211 , Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain,15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain,15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
40
|
Feature-Based Molecular Networks Identification of Bioactive Metabolites from Three Plants of the Polynesian Cosmetopoeia Targeting the Dermal Papilla Cells of the Hair Cycle. Molecules 2021; 27:molecules27010105. [PMID: 35011341 PMCID: PMC8746341 DOI: 10.3390/molecules27010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The term cosmetopoeia refers to the use of plants in folks’ cosmetics. The aerial parts of Bidens pilosa L., the leaves of Calophyllum inophyllum L. and the fruits of Fagraea berteroana A.Gray ex Benth are traditionally used in French Polynesia for hair and skin care. During the hair cycle, dermal papilla cells and their interaction with epithelial cells are essential to promote hair follicle elongation. The aim of our investigations was the identification of metabolites from these three plants and chemical families responsible for their hair growth activity. A bioactivity-based molecular network was produced by mapping the correlation between features obtained from LC-MS/MS data and dermal papilla cell proliferation, using the Pearson correlation coefficient. The analyses pointed out glycosylated flavonols and phenolic acids from B. pilosa and C. inophyllum, along with C-flavonoids, iridoids and secoiridoids from F. berteroana, as potential bioactive molecules involved in the proliferation of hair follicle dermal papilla cells. Our results highlight the metabolites of the plant species potentially involved in the induction of hair follicle growth and support the traditional uses of these plants in hair care.
Collapse
|
41
|
Duitama M, Moreno Y, Santander SP, Casas Z, Sutachan JJ, Torres YP, Albarracín SL. TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules 2021; 12:1. [PMID: 35053150 PMCID: PMC8774023 DOI: 10.3390/biom12010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channels are critical receptors in the transduction of nociceptive stimuli. The microenvironment of diverse types of cancer releases substances, including growth factors, neurotransmitters, and inflammatory mediators, which modulate the activity of TRPs through the regulation of intracellular signaling pathways. The modulation of TRP channels is associated with the peripheral sensitization observed in patients with cancer, which results in mild noxious sensory stimuli being perceived as hyperalgesia and allodynia. Secondary metabolites derived from plant extracts can induce the activation, blocking, and desensitization of TRP channels. Thus, these compounds could act as potential therapeutic agents, as their antinociceptive properties could be beneficial in relieving cancer-derived pain. In this review, we will summarize the role of TRPV1 and TRPA1 in pain associated with cancer and discuss molecules that have been reported to modulate these channels, focusing particularly on the mechanisms of channel activation associated with molecules released in the tumor microenvironment.
Collapse
Affiliation(s)
- Milena Duitama
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yurany Moreno
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA;
| | - Sandra Paola Santander
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá 111111, Colombia;
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| |
Collapse
|
42
|
Kamyab R, Namdar H, Torbati M, Ghojazadeh M, Araj-Khodaei M, Fazljou SMB. Medicinal Plants in the Treatment of Hypertension: A Review. Adv Pharm Bull 2021; 11:601-617. [PMID: 34888207 PMCID: PMC8642800 DOI: 10.34172/apb.2021.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/09/2022] Open
Abstract
Traditional medicine is a comprehensive term for ancient, culture-bound health care practices that existed before the use of science in health matters and has been used for centuries. Medicinal plants are used to treat patients with cardiovascular diseases, which may occur due to ailments of the heart and blood vessels and comprise heart attacks, cerebrovascular diseases, hypertension, and heart failure. Hypertension causes difficulty in the functioning of the heart and is involved in atherosclerosis, raising the risk of heart attack and stroke. Many drugs are available for managing these diseases, though common antihypertensive drugs are generally accompanied by many side effects. Medicinal herbs have several active substances with pharmacological and prophylactic properties that can be used in the treatment of hypertension. This review presents an overview of some medicinal plants that have been shown to have hypotensive or antihypertensive properties.
Collapse
Affiliation(s)
- Raha Kamyab
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Namdar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Ghojazadeh
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
43
|
Clemen-Pascual LM, Macahig RAS, Rojas NRL. Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicol Rep 2021; 9:22-35. [PMID: 34976744 PMCID: PMC8685920 DOI: 10.1016/j.toxrep.2021.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023] Open
Abstract
The study compares the toxicity of 53 selected medicinal plants commonly used in the Philippines to treat various diseases. It uses as a benchmark Vitex negundo L., which was approved by the Philippine Food and Drug Administration as an herbal drug for cough and asthma after passing clinical trials for safety and efficacy. The methods were chosen for their simplicity and accessibility even for resource-limited laboratories. Extracts (95 % ethanol) of the medicinal parts of the plants were (1) chemically profiled using qualitative phytochemical tests that detect the presence of key classes of bioactive compounds; and (2) evaluated for toxicity using the brine shrimp (Artemia sp.) lethality assay (BSLA). General phytochemical screening revealed the presence of tannins in 50 plant extracts, alkaloids in 43, glycosides in 33, flavonoids in 31, steroids in 21, triterpenoids in 20, anthraquinones in 10, and saponins in 8. Extracts from eight plants had LC50 values lower than the potassium dichromate control (approximately 12 μg/mL) and were considered highly toxic; extracts from 21 plants had LC50 values between 12 μg/mL and 100 μg/mL and were considered moderately toxic; extracts from 19 plant extracts, including Vitex negundo and some common vegetables, had LC50 values between 100 μg/mL and 500 μg/mL, and were considered mildly toxic and likely to have reasonable safety margins; five plant extracts, including common vegetables, had LC50 values above 500 μg/mL and were considered essentially nontoxic. No apparent correlation could be found between toxicity and chemical diversity or a specific class of phytochemicals present. Our findings may serve as a guide for herbal drug and nutraceutical development, especially in prioritizing plants for more detailed safety studies.
Collapse
Affiliation(s)
- Lydia M. Clemen-Pascual
- Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Loyola Heights, Quezon City, 1108, Philippines
- Department of Chemistry, College of Arts and Sciences, University of Southern Mindanao, North Cotabato, 9407, Philippines
| | - Rene Angelo S. Macahig
- Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Loyola Heights, Quezon City, 1108, Philippines
| | - Nina Rosario L. Rojas
- Department of Chemistry, School of Science and Engineering, Ateneo de Manila University, Loyola Heights, Quezon City, 1108, Philippines
| |
Collapse
|
44
|
Kissanga R, Sales J, Moldão M, Alves V, Mendes H, Romeiras MM, Lages F, Catarino L. Nutritional and Functional Properties of Wild Leafy Vegetables for Improving Food Security in Southern Angola. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.791705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Southern Angola, numerous non-woody forest products are sold at local markets, namely in Lubango (Huíla Province). Such is the case of herbaceous wild plants, locally known as lombi, which are sold fresh throughout the year and cooked as a vegetable. Although these wild leafy vegetables are commercialized and widely used in local food, there is still a lack of scientific knowledge about their properties. Thus, this study aimed to identify and characterize the species sold, and to determine their nutritional and functional properties. Our results revealed that three species—Amaranthus hybridus, Bidens pilosa, and Galinsoga parviflora—are usually sold at Lubango markets and consumed by local populations. These are annual exotic plants, native to Southern America, and usually occur spontaneously in croplands or disturbed areas, but can also be cultivated, particularly A. hybridus. Physico-chemical analyses of lombi species and mixtures sold at the markets included measurements of moisture, protein, lipid, and mineral content, as well as total phenolic content, antioxidant activity, and levels of heavy metal contaminants. The results revealed that lombi contain a significant amount of protein (20–28 g/100 g, dry basis), high values of macronutrients and micronutrients, as well as of phenolic compounds (10–40 mg GAE/g) and a good antioxidant capacity. Given the availability of lombi throughout the year, our study demonstrated the importance of wild edible plants in Angola, both as a valuable natural resources and as a complementary food sources, as well as additional sources of income for many families.
Collapse
|
45
|
Kumadoh D, Archer MA, Yeboah GN, Kyene MO, Boakye-Yiadom M, Adi-Dako O, Osei-Asare C, Adase E, Appiah AA, Mintah SO. A review on anti-peptic ulcer activities of medicinal plants used in the formulation of Enterica, Dyspepsia and NPK 500 capsules. Heliyon 2021; 7:e08465. [PMID: 34917789 PMCID: PMC8645450 DOI: 10.1016/j.heliyon.2021.e08465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 11/19/2021] [Indexed: 11/03/2022] Open
Abstract
Peptic ulcer disease affects many people globally. With the increasing resistance to some orthodox antibiotics such as Clarithromycin and Metronidazole, it is important that new acceptable, safer and effective therapies are developed to manage this disease. Various herbal medicines have been used traditionally for the remedy of peptic ulcer disease (PUD), however scientific information with regards to their anti-peptic ulcer both in-vivo and in-vitro as well as clinical studies supporting their use is still inadequate. The Centre for Plant Medicine Research, (CPMR) Mampong-Akuapem, Ghana manufactures three herbal Products namely Enterica, Dyspepsia and NPK 500 capsules which are currently used for the remedy of PUD as a triple therapy at its out-patient clinic with promising effects. The aim of this review is to gather information from literature on the anti-ulcer properties, pharmacological, phytochemical constituents and related activities of herbal plants used at the CPMR for formulation of the triple herbal therapy. This review may, provide some scientific bases for the use of Enterica, Dyspepsia and NPK 500 capsules in the management of Peptic ulcer at the CPMR out-patient clinic. METHODS Organization for the review involved the on and/or offline search for information from available literature using electronic data and scientific research information resources such as PubMed, Science Direct and Google scholar. RESULTS In this review, fifteen ethno-medicinal plants used for the formulation of Enterica, Dyspepsia and NPK capsules have been discussed, presenting the description of the plants, composition and pharmacological activity. INTERPRETATION Tables with the summary of reviewed medicinal plants with their anti-ulcer models and inference on possible mechanisms of action were drawn up. The mechanism(s) of action of individual plants and products (Enterica, Dyspepsia and NPK 500 capsules) must be further investigated and established experimentally in-vitro in addition to in-vivo pharmacological and clinical activity studies to confirm their use in the remedy of PUD.
Collapse
Affiliation(s)
- Doris Kumadoh
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
- Department of Production, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Mary-Ann Archer
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Genevieve N. Yeboah
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Michael O. Kyene
- Department of Pharmaceutics, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Mavis Boakye-Yiadom
- Department of Clinical Research, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Ofosua Adi-Dako
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Legon, Accra, Ghana
| | - Christina Osei-Asare
- Department of Pharmaceutics and Microbiology, Central University College, Accra, Ghana
| | - Emmanuel Adase
- Department of Production, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Alfred A. Appiah
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| | - Susana O. Mintah
- Department of Microbiology, Centre for Plant Medicine Research, Mampong-Akuapem, Ghana
| |
Collapse
|
46
|
Kasali FM, Kadima JN, Peter EL, Mtewa AG, Ajayi CO, Tusiimire J, Tolo CU, Ogwang PE, Weisheit A, Agaba AG. Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data. Front Pharmacol 2021; 12:757090. [PMID: 34776975 PMCID: PMC8579071 DOI: 10.3389/fphar.2021.757090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Several studies have been conducted and published on medicinal plants used to manage Diabetes Mellitus worldwide. It is of great interest to review available studies from a country or a region to resort to similarities/discrepancies and data quality. Here, we examined data related to ethnopharmacology and bioactivity of antidiabetic plants used in the Democratic Republic of Congo. Data were extracted from Google Scholar, Medline/PubMed, Scopus, ScienceDirect, the Wiley Online Library, Web of Science, and other documents focusing on ethnopharmacology, pharmacology, and phytochemistry antidiabetic plants used in the Democratic Republic of Congo from 2005 to September 2021. The Kew Botanic Royal Garden and Plants of the World Online web databases were consulted to verify the taxonomic information. CAMARADES checklist was used to assess the quality of animal studies and Jadad scores for clinical trials. In total, 213 plant species belonging to 72 botanical families were reported. Only one plant, Droogmansia munamensis, is typically native to the DRC flora; 117 species are growing in the DRC and neighboring countries; 31 species are either introduced from other regions, and 64 are not specified. Alongside the treatment of Diabetes, about 78.13% of plants have multiple therapeutic uses, depending on the study sites. Experimental studies explored the antidiabetic activity of 133 plants, mainly in mice, rats, guinea pigs, and rabbits. Several chemical classes of antidiabetic compounds isolated from 67 plant species have been documented. Rare phase II clinical trials have been conducted. Critical issues included poor quality methodological protocols, author name incorrectly written (16.16%) or absent (14.25%) or confused with a synonym (4.69%), family name revised (17.26%) or missing (1.10%), voucher number not available 336(92.05%), ecological information not reported (49.59%). Most plant species have been identified and authenticated (89.32%). Hundreds of plants are used to treat Diabetes by traditional healers in DRC. However, most plants are not exclusively native to the local flora and have multiple therapeutic uses. The analysis showed the scarcity or absence of high-quality, in-depth pharmacological studies. There is a need to conduct further studies of locally specific species to fill the gap before their introduction into the national pharmacopeia.
Collapse
Affiliation(s)
- Félicien Mushagalusa Kasali
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu, Democratic Republic of Congo
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Justin Ntokamunda Kadima
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu, Democratic Republic of Congo
- Department of Pharmacology, School of Medicine and Pharmacy, University of Rwanda, Huye, Rwanda
| | - Emanuel L. Peter
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Innovation, Technology Transfer and Commercialization, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Andrew G. Mtewa
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Chemistry Section, Department of Applied Studies, Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Clement Olusoji Ajayi
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jonans Tusiimire
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Casim Umba Tolo
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Anke Weisheit
- Pharm-Bio Technology and Traditional Medicine Center, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Amon Ganafa Agaba
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
47
|
Abstract
Se valida la hipótesis que el uso tradicional de plantas introducidas y nativas es análogo en Ecuador. Ciento veinticuatro entrevistas se desarrollan en 13 provincias de Ecuador, a 99 mujeres y 25 hombres, 107 del total son mestizos y 17 son indígenas, mayoritariamente comerciantes con estudios primarios y constan de 1 a 60 años de experiencia, que adquirieron el conocimiento del uso tradicional de las plantas de sus padres o madres principalmente. Se registra el uso de 274 especies, 138 (50,36%) del total son introducidas y 136 (49,63%) son nativas, 3 de las cuales son endémicas (1,09%); pertenecientes a 224 géneros incluidos en 88 familias botánicas, originarias de América (61,85%), Asia (15,68%), Europa (10,45%), África (9,58%) y Oceanía (2,44%). Se presentan 28 usos generales, particularmente como medicinal (71 usos terapéuticos), destacando el uso como antiinflamatorio, analgésico, antibiótico, antiespasmódico, diurético, sedante y antigripal. El conocimiento tradicional de las plantas no varía significativamente entre etnias y género; lo opuesto ocurre a nivel de edad y entre especies nativas e introducidas. Existe gran concordancia entre los informantes sobre los usos etnomedicinales de las plantas con un valor del Factor de Consenso de los Informantes (FIC) de 0,98.
Collapse
|
48
|
Liana D, Rungsihirunrat K. Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery. J Adv Pharm Technol Res 2021; 12:254-260. [PMID: 34345604 PMCID: PMC8300331 DOI: 10.4103/japtr.japtr_238_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed from literature search. Obtained 340 internal transcribed spacer (ITS) sequences of plant list which met criteria were retrieved from GenBank NCBI and analyzed by MUSCLE and maximum likelihood phylogenetic test to generate the phylogenetic tree. Interactive phylogenetic tree was generated by Interactive Tree of Life (ITOL, https://itol.embl.de) and showed strong clustered pattern on Asteraceae. Afterward, 16 species of Asteraceae were selected to investigate the antimalarial activity, phytochemical, and genetic diversity. The presence of phytochemical was determined by standard method. DNA fluorescence-based assay was performed to determine the antimalarial activity against 3D7 Plasmodium falciparum. IC50μg/mL was used to categorize antimalarial activity. On the other hand, ITS universal primer was used to amplify and sequence the obtained extracted DNA of tested plant by cetyltrimethylammonium bromide method. Phylogenetic analyses were performed by MAFFT and RAxML with automatic bootstrapping. ITOL and Adobe Illustrator were used to generate interactive phylogenetic tree. All species tested showed the presence of phenolics and flavonoids, whereas alkaloids and terpenoids were shown vary among tested extracts. Among 16 species tested, 1 species exhibited good-moderate (Sphaeranthus indicus, IC506.59 μg/mL), 4 weak (Artemisia chinensis, Artemisia vulgaris, Tridax procumbens, and Blumea balsamifera), and 3 very weak (Eupatorium capillifolium, Wedelia trilobata, and Vernonia cinerea). Generated phylogenetic tree by ITS data was able to separate the tested species into their tribal classification. In addition, new medicinal properties of A. chinensis were discovered. Combining phylogeny approach with ethnobotanical data is useful to narrow down the selection of antimalarial plants candidate.
Collapse
Affiliation(s)
- Desy Liana
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanchana Rungsihirunrat
- Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
49
|
Ethnopharmacological Survey on Treatment of Hypertension by Traditional Healers in Bukavu City, DR Congo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6684855. [PMID: 34335835 PMCID: PMC8289594 DOI: 10.1155/2021/6684855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
Background Ethnopharmacological studies are relevant for sustaining and improving knowledge of traditional medicine within the framework of complementary/alternative therapeutic practices based solely on experience and observation across generations. Hypertension is a common cardiovascular disorder affecting more than 50% of older people in Africa (PLoS One. 2019; 14 (4): e0214934; published online on April 5, 2019, doi: 10.1371/journal.pone.0214934). Methods We conducted a cross-sectional survey from October 2014 to August 2015 with 18 renowned traditional healers from the city of Bukavu to capture botanical plant species and remedies used by herbalists to manage hypertension in the Democratic Republic of Congo. Results Respondents cited 41 plant species belonging to 25 botanical families. The ten most common plants are Allium sativum, Galinsoga ciliata, Moringa oleifera, Bidens pilosa, Persea americana, Piper capense, Catharanthus roseus, Rauvolfia vomitoria, Sida rhombifolia, and Vernonia amygdalina. The parts used are primary leaves (48.8%) formulated as oral decoctions (65.9%). Conclusion The literature review validated the use of 73.2% of the plants listed. Plants of high local use-value not supported by other studies deserve in-depth chemical and pharmacological studies.
Collapse
|
50
|
Yang J, Luo J, Gan Q, Ke L, Zhang F, Guo H, Zhao F, Wang Y. An ethnobotanical study of forage plants in Zhuxi County in the Qinba mountainous area of central China. PLANT DIVERSITY 2021; 43:239-247. [PMID: 34195509 PMCID: PMC8233530 DOI: 10.1016/j.pld.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/21/2020] [Accepted: 12/27/2020] [Indexed: 05/25/2023]
Abstract
In the Qinba mountainous area of Central China, pig farming has a significant impact on the growth of the rural economy and has substantially increased farmer incomes. Traditional knowledge plays an important role in the selection of forage plant species for pig farming by local people. This study aimed to identify the forage plants used for pig feeding and to catalog indigenous knowledge regarding their use. During 2016 and 2017, ethnobotanical surveys and inventories were conducted in Zhuxi County, Hubei Province, China. Data were collected using semi-structured interviews, key informant reports, free listings, guided field walks, and participatory observations with 77 households in 16 villages in 13 towns/townships. The obtained data were analyzed using a relative frequency citation (RFC) index. Overall, 145 wild forage plants from 91 genera and 31 families were recorded. The most cited families were Asteraceae, Polygonaceae, Urticaceae, Amaranthaceae, Fabaceae, Cruciferae, Caryophyllaceae, and Lamiaceae. Whole plants (75.9%) and tender leaves (12.4%) were the most frequently used parts of the plants. Most of the forage plants were herbaceous (88.9%). Almost all forage plants could be collected throughout the year (62.7%). Raw and cooked were the two main preparation methods. The most frequently cited species were Taraxacum mongolicum, Bidens pilosa, Sonchus oleraceus, Pilea verrucosa, and Pilea pumila var. obtusifolia. A total of 14 species were identified as the top forage plants in Zhuxi County based on their RFC values (RFC value greater than 0.5). Local people possess rich traditional knowledge about the utilization and management of forage plants for pig feeding. However, the maintenance of this traditional knowledge may be seriously threatened by changes in pig feeding modes and the lack of successors. Appropriate strategies and action plans have been suggested for the conservation of traditional knowledge associated with biodiversity and the sustainable use of forage species resources. These include 1) taking targeted measures to protect forage resources and associated traditional knowledge; 2) strengthening research on the forage plants with the highest RFC values for nutritional value, digestibility, other functions, and ecological status; and 3) enhancing the identification of poisonous forage plants.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resource, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jifeng Luo
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resource, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qiliang Gan
- Zhuxi Qiliang Institute of Biology, Zhuxi, 442300, China
| | - Leiyu Ke
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resource, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Fengming Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hairu Guo
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resource, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Fuwei Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resource, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|