1
|
Sudhakar MP, Nived SA, Dharani G. Fabrication and Characterization of Agar- and Seaweed-Derived Biomembrane Films for Biomedical and Other Applications. Biopolymers 2025; 116:e23643. [PMID: 39655893 DOI: 10.1002/bip.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
This study focused on seaweed-based biomembrane development. The physical, mechanical, thermal, and biological properties of the fabricated films with different combinations of materials, such as agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, were characterized. The surface morphology of the films was analyzed using SEM. The maximum tensile strength (53.11 N/mm2), elongation at break (3.42%), and Young's modulus (15.52) of the biomembrane were recorded for the agar + chitosan combination. FT-Raman analysis confirmed the functional groups shift between the biopolymer and plasticizer used in this study. TG-DSC analysis of the biomembranes revealed a Tg in the range of 92.80°C-115°C. The maximum antioxidant activity was reported for quercetin (58.62%), and the maximum antimicrobial activity was observed for the chitosan and quercetin compounds against E. coli. A minimum hemolysis of 0.95% was achieved for the combination of agar + quercetin (AQ), agar + PEG (APE), Gracilaria corticata extract + PVA + quercetin (GCPQ) and agar + chitosan (AC) biomembranes. The minimum cytotoxicity of the biomembrane was 62.51% and 63.87% for Gracilaria corticata extract + PVA + quercetin (GCPQ), and agar + PVA, respectively. The proposed biomembrane films were found to be suitable for biomedical and packaging applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| | - Sureshkumar Ambika Nived
- School of Chemical & Biotechnology, The Shanmugha Arts Science, Technology & Research Academy (SASTRA, Deemed to be University), Thanjavur, India
| | - Gopal Dharani
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| |
Collapse
|
2
|
Khan A, Tripathi A, Gandhi M, Bellare J, Srivastava R. Development of injectable upconversion nanoparticle-conjugated doxorubicin theranostics electrospun nanostructure for targeted photochemotherapy in breast cancer. J Biomed Mater Res A 2024; 112:1612-1626. [PMID: 38545952 DOI: 10.1002/jbm.a.37713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 07/12/2024]
Abstract
Nanotheranostic-based photochemotherapies with targeted drug delivery have considerably surfaced in cancer therapy. In the presented work, polyethyleneimine-coated upconversion nanoparticles were engineered to conjugate covalently with doxorubicin. Upconversion nanoparticles (UCNP)-Doxorubicin (DOX)/synthesized epidermal growth factor receptor-targeting peptide blended with polymer composite was electrospun and formulated as the injectable dosage form. The size of the UCNP and the nanofiber diameter were assessed as 26.75 ± 1.54 and 162 ± 2.82 nm, respectively. The optimized ratio of dopants resulted in UCNP photoluminescence with maximum emission intensity at around 800 nm upon 980 nm excitation wavelength. The paramagnetic nature of UCNPs and amide conjugation with the drug was confirmed analytically. The loading capacity of UCNP for doxorubicin was determined to be 54.56%, while nanofibers exhibited 98.74% capacity to encapsulate UCNP-DOX. The release profile of UCNP-DOX from nanofiber formulation ranged from sustained to controlled, with relative enhancement in acidic conditions. The nanofiber demonstrated good mechanical strength, robust swelling, and degradation rate. Biocompatibility tests showed more than 90% cell viability on L929 and NIH/3T3 cell lines with UCNP-DOX@NF/pep nanoformulation. The IC50 values of 2.15 ± 0.54, 2.87 ± 0.67, and 3.42 ± 0.45 μg/mL on MDA-MB-231, 4T1, and MCF-7 cancer cell line, respectively, with a significant cellular uptake, has been reported. The UCNP protruded a ≈62.7°C temperature rise within 5 min of 980 nm laser irradiation and a power density of 0.5 W cm-2. The nanoformulation induced reactive oxygen species of 65.67% ± 3.21% and apoptosis by arresting the cell cycle sub-G1 phase. The evaluation conveys the effectiveness of the developed injectable theranostic delivery system in cancer therapy.
Collapse
Affiliation(s)
- Amreen Khan
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Mayuri Gandhi
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
3
|
Karthäuser JF, Gruhn D, Martínez Guajardo A, Kopecz R, Babel N, Stervbo U, Laschewsky A, Viebahn R, Salber J, Rosenhahn A. In vitro biocompatibility analysis of protein-resistant amphiphilic polysulfobetaines as coatings for surgical implants in contact with complex body fluids. Front Bioeng Biotechnol 2024; 12:1403654. [PMID: 39086500 PMCID: PMC11288920 DOI: 10.3389/fbioe.2024.1403654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
The fouling resistance of zwitterionic coatings is conventionally explained by the strong hydrophilicity of such polymers. Here, the in vitro biocompatibility of a set of systematically varied amphiphilic, zwitterionic copolymers is investigated. Photocrosslinkable, amphiphilic copolymers containing hydrophilic sulfobetaine methacrylate (SPe) and butyl methacrylate (BMA) were systematically synthesized in different ratios (50:50, 70:30, and 90:10) with a fixed content of photo-crosslinker by free radical copolymerization. The copolymers were spin-coated onto substrates and subsequently photocured by UV irradiation. Pure pBMA and pSPe as well as the prepared amphiphilic copolymers showed BMA content-dependent wettability in the dry state, but overall hydrophilic properties a fortiori in aqueous conditions. All polysulfobetaine-containing copolymers showed high resistance against non-specific adsorption (NSA) of proteins, platelet adhesion, thrombocyte activation, and bacterial accumulation. In some cases, the amphiphilic coatings even outperformed the purely hydrophilic pSPe coatings.
Collapse
Affiliation(s)
- Jana F. Karthäuser
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Dierk Gruhn
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | | | - Regina Kopecz
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nina Babel
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - André Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Jochen Salber
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Ligtenberg LJW, Rabou NCA, Goulas C, Duinmeijer WC, Halfwerk FR, Arens J, Lomme R, Magdanz V, Klingner A, Klein Rot EAM, Nijland CHE, Wasserberg D, Liefers HR, Jonkheijm P, Susarrey-Arce A, Warlé M, Khalil ISM. Ex vivo validation of magnetically actuated intravascular untethered robots in a clinical setting. COMMUNICATIONS ENGINEERING 2024; 3:68. [PMID: 39901022 PMCID: PMC11099159 DOI: 10.1038/s44172-024-00215-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/30/2024] [Indexed: 02/05/2025]
Abstract
Intravascular surgical instruments require precise navigation within narrow vessels, necessitating maximum flexibility, minimal diameter, and high degrees of freedom. Existing tools often lack control during insertion due to undesirable bending, limiting vessel accessibility and risking tissue damage. Next-generation instruments aim to develop hemocompatible untethered devices controlled by external magnetic forces. Achieving this goal remains complex due to testing and implementation challenges in clinical environments. Here we assess the operational effectiveness of hemocompatible untethered magnetic robots using an ex vivo porcine aorta model. The results demonstrate a linear decrease in the swimming speed of untethered magnetic robots as arterial blood flow increases, with the capability to navigate against a maximum arterial flow rate of 67 mL/min. The untethered magnetic robots effectively demonstrate locomotion in a difficult-to-access target site, navigating through the abdominal aorta and reaching the distal end of the renal artery.
Collapse
Affiliation(s)
| | - Nicole C A Rabou
- Department of Biomechanical Engineering, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Constantinos Goulas
- Department of Design Production and Management, University of Twente, 7500 AE, Enschede, The Netherlands
- Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Wytze C Duinmeijer
- Department of Biomechanical Engineering, University of Twente, 7500 AE, Enschede, The Netherlands
- Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Frank R Halfwerk
- Department of Biomechanical Engineering, University of Twente, 7500 AE, Enschede, The Netherlands
- Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Jutta Arens
- Department of Biomechanical Engineering, University of Twente, 7500 AE, Enschede, The Netherlands
- Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Roger Lomme
- Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Veronika Magdanz
- Department of System Design Engineering, University of Waterloo, ON, N2L 3G1, Waterloo, Canada
| | - Anke Klingner
- Department of Physics, German University in Cairo, New Cairo, 11835, Egypt
| | | | | | - Dorothee Wasserberg
- LipoCoat B.V., 7521 AG, Enschede, The Netherlands
- Laboratory of Biointerface Chemistry, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - H Remco Liefers
- Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Pascal Jonkheijm
- LipoCoat B.V., 7521 AG, Enschede, The Netherlands
- Laboratory of Biointerface Chemistry, TechMed Centre, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Arturo Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Michiel Warlé
- Department of Surgery, Division of Vascular and Transplant Surgery, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Islam S M Khalil
- Department of Biomechanical Engineering, University of Twente, 7500 AE, Enschede, The Netherlands.
- Technical Medical Centre, University of Twente, 7500 AE, Enschede, The Netherlands.
| |
Collapse
|
5
|
An X, Zhou F, Li G, Wei Y, Huang B, Li M, Zhang Q, Xu K, Zhao RC, Su J. Cyaonoside A-loaded composite hydrogel microspheres to treat osteoarthritis by relieving chondrocyte inflammation. J Mater Chem B 2024; 12:4148-4161. [PMID: 38591180 DOI: 10.1039/d4tb00294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1β-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Xingyan An
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100190, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100730, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
6
|
Van Daele L, Chausse V, Parmentier L, Brancart J, Pegueroles M, Van Vlierberghe S, Dubruel P. 3D-Printed Shape Memory Poly(alkylene terephthalate) Scaffolds as Cardiovascular Stents Revealing Enhanced Endothelialization. Adv Healthc Mater 2024; 13:e2303498. [PMID: 38329408 DOI: 10.1002/adhm.202303498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.
Collapse
Affiliation(s)
- Lenny Van Daele
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Victor Chausse
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium
| | - Marta Pegueroles
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), EEBE, Barcelona, 08019, Spain
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent, B-9000, Belgium
| |
Collapse
|
7
|
Shankar D, Jambagi SC, Gowda N, Lakshmi KS, Jayanthi KJ, Chaudhary VK. Effect of Surface Chemistry on Hemolysis, Thrombogenicity, and Toxicity of Carbon Nanotube Doped Thermally Sprayed Hydroxyapatite Implants. ACS Biomater Sci Eng 2024; 10:1403-1417. [PMID: 38308598 DOI: 10.1021/acsbiomaterials.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Assessing blood compatibility is crucial before in vivo procedures and is considered more reliable than many in vitro tests. This study examines the physiochemical properties and blood compatibility of bioactive powders ((0.5-2 wt % carbon nanotube (CNT)/alumina)-20 wt %)) produced through a heterocoagulation colloidal technique followed by ball milling with hydroxyapatite (HAp). The 1 wt % CNT composite demonstrated a surface charge ∼5 times higher than HAp at pH 7.4, with a value of -11 mV compared to -2 mV. This increase in electrostatic charge is desirable for achieving hemocompatibility, as evidenced by a range of blood compatibility assessments, including hemolysis, blood clotting, platelet adhesion, platelet activation, and coagulation assays (prothrombin time (PT) and activated partial thrombin time (aPTT)). The 1 wt % CNT composite exhibited hemolysis ranging from 2 to 7%, indicating its hemocompatibility. In the blood clot investigation, the absorbance values for 1-2 wt % CNT samples were 0.927 ± 0.038 and 1.184 ± 0.128, respectively, indicating their nonthrombogenicity. Additionally, the percentage of platelet adhered on the 1 wt % CNT sample (∼5.67%) showed a ∼2.5-fold decrement compared to the clinically used negative control, polypropylene (∼13.73%). The PT and aPTT experiments showed no difference in the coagulation time for CNT samples even at higher concentrations, unlike HAC2 (80 mg). In conclusion, the 1 wt % CNT sample was nontoxic to human blood, making it more hemocompatible, nonhemolytic, and nonthrombogenic than other samples. This reliable study reduces the need for additional in vitro and in vivo studies before clinical trials, saving time and cost.
Collapse
Affiliation(s)
- Deep Shankar
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, Surathkal 575025, India
| | - Sudhakar C Jambagi
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, Surathkal 575025, India
| | - Niranjan Gowda
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - K S Lakshmi
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - K J Jayanthi
- Pathology Lab, Department of Pathology, Sanjay Gandhi Institute of Trauma and Orthopedics, Jayanagar East, Bengaluru 560011, India
| | - Vikash Kumar Chaudhary
- Surface Engineering Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Srinivasnagar, Surathkal 575025, India
| |
Collapse
|
8
|
Klimosch SN, Weber M, Caballé-Serrano J, Knorpp T, Munar-Frau A, Schaefer BM, Schmolz M. A Human Whole Blood Culture System Reveals Detailed Cytokine Release Profiles of Implant Materials. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2024; 17:23-36. [PMID: 38196508 PMCID: PMC10775699 DOI: 10.2147/mder.s441403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Introduction Common in vitro cell culture systems for testing implant material immune compatibility either rely on immortal human leukocyte cell lines or isolated primary cells. Compared to in vivo conditions, this generates an environment of substantially reduced complexity, often lacking important immune cell types, such as neutrophil granulocytes and others. The aim of this study was to establish a reliable test system for in vitro testing of implant materials under in vivo-like conditions. Methods Test materials were incubated in closed, CO2-independent, tube-based culture vessels containing a proprietary cell culture medium and human whole blood in either a static or occasionally rotating system. Multiplex cytokine analysis was used to analyze immune cell reactions. Results To demonstrate the applicability of the test system to implant materials, three commercially available barrier membranes (polytetrafluoroethylene (PTFE), polycaprolactone (PCL) and collagen) used for dental, trauma and maxillofacial surgery, were investigated for their potential interactions with immune cells. The results showed characteristic differences between the static and rotated incubation methods and in the overall activity profiles with very low immune cell responses to PTFE, intermediate ones to collagen and strong reactions to PCL. Conclusion This in vitro human whole blood model, using a complex organotypic matrix, is an excellent, easily standardized tool for categorizing immune cell responses to implant materials. Compared to in vitro cell culture systems used for materials research, this new assay system provides a far more detailed picture of response patterns the immune system can develop when interacting with different types of materials and surfaces.
Collapse
Affiliation(s)
| | | | - Jordi Caballé-Serrano
- Department of Oral and Maxillofacial Surgery, Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Periodontology, School of Dental Medicine - University of Bern, Bern, Switzerland
| | | | - Antonio Munar-Frau
- Department of Oral and Maxillofacial Surgery, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | | |
Collapse
|
9
|
Struczyńska M, Firkowska‐Boden I, Levandovsky N, Henschler R, Kassir N, Jandt KD. How Crystallographic Orientation-Induced Fibrinogen Conformation Affects Platelet Adhesion and Activation on TiO 2. Adv Healthc Mater 2023; 12:e2202508. [PMID: 36691300 PMCID: PMC11469089 DOI: 10.1002/adhm.202202508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Control of protein adsorption is essential for successful integration of healthcare materials into the body. Human plasma fibrinogen (HPF), especially its conformation is a key upstream regulator for platelet behavior and thus pathological clot formation at the blood-biomaterial interface. A previous study by the authors revealed that the conformation of adsorbed HPF can be controlled by rutile surface crystallographic orientation. Therefore, it is hypothesized that pre-adsorbed HPF on specific rutile orientation can regulate platelets adhesion and activation. Here, it is shown that platelets exposed to the four low index (110), (100), (101), (001) facets of TiO2 (rutile) exhibit surface-specific behavior. Scanning electron microscopy (SEM) observations of platelets morphology and P-selectin expression measurement revealed that on (110) facets, platelets adhesion and activation are suppressed. In contrast, extensive surface coverage by fully activated platelets is observed on (001) facets. Platelets' behavior has been linked to the HPF conformation and thereby availability of platelet-binding sequences. Atomic force microscopy (AFM) imaging supported by immunochemical analysis shows that on (110) facets, HPF is adsorbed in trinodular conformation rendering the γ400-411 platelet-binding sequence inaccessible. This research has potential implications on the bioactivity of different materials crystal facets, reducing the risk of pathological clot formation and thromboembolic complications.
Collapse
Affiliation(s)
- Maja Struczyńska
- Chair of Materials Science (CMS)Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaLöbdergraben 3207743JenaGermany
- Jena School for Microbial Communication (JSMC)Neugasse 2307743JenaGermany
| | - Izabela Firkowska‐Boden
- Chair of Materials Science (CMS)Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaLöbdergraben 3207743JenaGermany
| | - Nathan Levandovsky
- Applied Research InstituteUniversity of Illinois Urbana‐Champaign2100 S Oak StChampaignIL61820USA
| | - Reinhard Henschler
- Institute for Transfusion MedicineUniversity Medical CenterUniversity of LeipzigJohannisallee 3204103LeipzigGermany
| | - Nour Kassir
- Institute for Transfusion MedicineUniversity Medical CenterUniversity of LeipzigJohannisallee 3204103LeipzigGermany
| | - Klaus D. Jandt
- Chair of Materials Science (CMS)Otto Schott Institute of Materials Research (OSIM)Friedrich Schiller University JenaLöbdergraben 3207743JenaGermany
- Jena School for Microbial Communication (JSMC)Neugasse 2307743JenaGermany
| |
Collapse
|
10
|
Marimuthu A, Logesh M, El Mabrouk K, Ballamurugan AM. In vitro hemocompatibility studies on small-caliber stents for cardiovascular applications. RSC Adv 2023; 13:6793-6799. [PMID: 36860538 PMCID: PMC9969537 DOI: 10.1039/d2ra06831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
The doping of biologically meaningful ions into biphasic calcium phosphate (BCP) bioceramics, which exhibit biocompatibility with human body parts, has led to their effective use in biomedical applications in recent years. Doping with metal ions while changing the characteristics of the dopant ions, an arrangement of various ions in the Ca/P crystal structure. In our work, small-diameter vascular stents based on BCP and biologically appropriate ion substitute-BCP bioceramic materials were developed for cardiovascular applications. The small-diameter vascular stents were created using an extrusion process. FTIR, XRD, and FESEM were used to identify the functional groups, crystallinity, and morphology of the synthesized bioceramic materials. In addition, investigation of the blood compatibility of the 3D porous vascular stents was carried out via hemolysis. The outcomes indicate that the prepared grafts are appropriate for clinical requirements.
Collapse
Affiliation(s)
- Arumugam Marimuthu
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India
| | - Mahendran Logesh
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India
| | - Khalil El Mabrouk
- Euromed Engineering Faculty, Euromed Research Center, Euromed University of Fes, Eco-Campus, Campus UEMFFesMorocco
| | | |
Collapse
|
11
|
Liang X, Lei Y, Ding K, Huang X, Zheng C, Wang Y. Poly(2-methoxyethyl acrylate) coated bioprosthetic heart valves by copolymerization with enhanced anticoagulant, anti-inflammatory, and anti-calcification properties. J Mater Chem B 2022; 10:10054-10064. [PMID: 36448545 DOI: 10.1039/d2tb01826h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Commercial glutaraldehyde (Glut) cross-linked bioprosthetic heart valves (BHVs) fabricated from the pericardium have become the most popular choice for treating heart valve diseases. Nevertheless, thrombosis, inflammation and calcification might lead to structural valve degeneration (SVD), which limited the durability of BHVs. Herein, to improve the biocompatibility of BHVs, we fabricated a poly-(2-methoxyethyl acrylate) (PMEA) coated porcine pericardium (PMEA-PP) through grafting PMEA to the porcine pericardium (PP) that was pre-treated with Glut and methacrylated polylysine. PMEA coating mitigated the side effects caused by aldehyde residues. It was shown that the PMEA coating reduced cytotoxicity and inflammation reactions and improved endothelialization potential, and its hydrophilic surface improved the anti-thrombotic properties of PPs. And the PMEA coating significantly reduced the calcification of PPs. This strategy promoted the endothelialization potential and improve the anti-thrombosis and anti-calcification properties of BHVs, and is expected to overcome the defects of commercial BHVs.
Collapse
Affiliation(s)
- Xuyue Liang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yang Lei
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Kailei Ding
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xueyu Huang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
12
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
13
|
Roberts TR, Garren MRS, Wilson SN, Handa H, Batchinsky AI. Development and In Vitro Whole Blood Hemocompatibility Screening of Endothelium-Mimetic Multifunctional Coatings. ACS APPLIED BIO MATERIALS 2022; 5:2212-2223. [PMID: 35404571 DOI: 10.1021/acsabm.2c00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multifunctional antithrombotic surface modifications for blood-contacting medical devices have emerged as a solution for foreign surface-mediated coagulation disturbance. Herein, we have developed and evaluated an endothelium-inspired strategy to reduce the thrombogenicity of medical plastics by imparting nitric oxide (NO) elution and heparin immobilization on the material surface. This dual-action approach (NO+Hep) was applied to polyethylene terephthalate (PET) blood incubation vials and compared to isolated modifications. Vials were characterized to evaluate NO surface flux as well as heparin density and activity. Hemocompatibility was assessed in vitro using whole blood from human donors. Compared to unmodified surfaces, blood incubated in the NO+Hep vials exhibited reduced platelet aggregation (15% decrease AUC, p = 0.040) and prolonged plasma clotting times (aPTT = 147% increase, p < 0.0001, prothrombin time = 5% increase, p = 0.0002). Prolongation of thromboelastography reaction time and elevated antifactor Xa levels in blood from NO+Hep versus PET vials suggests some heparin leaching from the vial surface, confirmed by post-blood incubation heparin density assessment. Results suggest NO+Hep surface modification is a promising approach for blood-contacting plastics; however, careful tuning of NO flux and heparin stabilization are essential and require assessment using human blood as performed here.
Collapse
Affiliation(s)
- Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle Bldg 125, San Antonio, Texas 78235, United States
| | - Mark R S Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah N Wilson
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States.,Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, 2509 Kennedy Circle Bldg 125, San Antonio, Texas 78235, United States
| |
Collapse
|
14
|
Motta SE, Zaytseva P, Fioretta ES, Lintas V, Breymann C, Hoerstrup SP, Emmert MY. Endothelial Progenitor Cell-Based in vitro Pre-Endothelialization of Human Cell-Derived Biomimetic Regenerative Matrices for Next-Generation Transcatheter Heart Valves Applications. Front Bioeng Biotechnol 2022; 10:867877. [PMID: 35433657 PMCID: PMC9008229 DOI: 10.3389/fbioe.2022.867877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Hemocompatibility of cardiovascular implants represents a major clinical challenge and, to date, optimal antithrombotic properties are lacking. Next-generation tissue-engineered heart valves (TEHVs) made from human-cell-derived tissue-engineered extracellular matrices (hTEMs) demonstrated their recellularization capacity in vivo and may represent promising candidates to avoid antithrombotic therapy. To further enhance their hemocompatibility, we tested hTEMs pre-endothelialization potential using human-blood-derived endothelial-colony-forming cells (ECFCs) and umbilical vein cells (control), cultured under static and dynamic orbital conditions, with either FBS or hPL. ECFCs performance was assessed via scratch assay, thereby recapitulating the surface damages occurring in transcatheter valves during crimping procedures. Our study demonstrated: feasibility to form a confluent and functional endothelium on hTEMs with expression of endothelium-specific markers; ECFCs migration and confluency restoration after crimping tests; hPL-induced formation of neo-microvessel-like structures; feasibility to pre-endothelialize hTEMs-based TEHVs and ECFCs retention on their surface after crimping. Our findings may stimulate new avenues towards next-generation pre-endothelialized implants with enhanced hemocompatibility, being beneficial for selected high-risk patients.
Collapse
Affiliation(s)
- Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Emanuela S. Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Valentina Lintas
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Christian Breymann
- Department of Obstetrics and Gynaecology, University Hospital Zurich, Obstetric Research, Feto- Maternal Haematology Research Group, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- *Correspondence: Maximilian Y. Emmert,
| |
Collapse
|
15
|
Fisher C, Shao H, Ho CH. Improved hemocompatibility of polysulfone hemodialyzers with Endexo® surface modifying molecules. J Biomed Mater Res B Appl Biomater 2021; 110:1335-1343. [PMID: 34951744 DOI: 10.1002/jbm.b.35003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022]
Abstract
Anticoagulation therapy is widely used to reduce clotting during hemodialysis (HD), but may cause adverse effects in end-stage kidney disease patients. A new hemodialyzer with a membrane modified by surface modifying molecule was developed to improve hemocompatibility that aimed to reduce the need for anticoagulation during dialysis treatments. We compared membrane surface characteristics and in vitro hemocompatibility of the new hemodialyzer to the standard polysulfone (PSF) hemodialyzer membrane. Scanning electron microscopy, contact angle measurement (68° ± 3° test vs. 41.6° ± 6° control), and X-ray photoelectron spectrometry measurement for fluorine atomic % (7.4% ± 0.4% test vs. not detectable control), showed that the membrane surface was modified with surface modifying macromolecule (SMM1) but maintained membrane structure and surface hydrophilicity. Zeta potential of the blood-contacting surface showed that the absolute surface charge was reduced at neutral pH (-3.3 mV ± 1.1 mV test vs. -15.6 mV ± 1.0 mV control). Platelet count reduction was significantly less for the SMM1-modified dialyzer (40.88% ± 21.89%) compared to the standard PSF dialyzer (62.62% ± 34.13%), along with Platelet Factor 4 (1824.10 ng/ml ± 436.26 ng/ml test vs. 2479.00 ng/ml ± 852.96 ng/ml control). These studies demonstrate the successful incorporation of SMM1 into the new hemodialyzer with the expected results. Our in vitro experiments indicate that the SMM1-modified hemodialyzers could improve hemocompatibility compared to standard PSF hemodialyzers and have the potential to minimize the patient's anticoagulant requirements during HD. Additional research with SMM1 additives incorporated into the entire dialysis circuit and use in a clinical settings are required to confirm these promising findings.
Collapse
Affiliation(s)
- Colleen Fisher
- Biosciences Department, Fresenius Medical Care North America Global Research and Development, Ogden, Utah, USA
| | - Hui Shao
- Product Development Department, Fresenius Medical Care North America Global Research and Development, Ogden, Utah, USA
| | - Chih-Hu Ho
- Biosciences Department, Fresenius Medical Care North America Global Research and Development, Ogden, Utah, USA
| |
Collapse
|
16
|
Mokhtari N, Zargar Kharazi A. Blood compatibility and cell response improvement of poly glycerol sebacate/poly lactic acid scaffold for vascular graft applications. J Biomed Mater Res A 2021; 109:2673-2684. [PMID: 34228399 DOI: 10.1002/jbm.a.37259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Plasma surface modification is one of the new methods for improving the surface properties of the scaffold and accelerating tissue regeneration. The aim of this study was to create poly glycerol sebacate/poly lactic acid (PGS/PLA) composite scaffold by electrospun method and modified the scaffold by oxygen plasma for use as a vascular graft. Plasma surface modified PGS/PLA scaffold morphology study showed relatively uniform fibers with an average diameter of 637 ± 149.4 nm and porosity of 82%. The mechanical evaluation of the PGS/PLA scaffold showed properties close to the natural vessels. Atomic force microscopy images exhibited an increase in the roughness of the scaffold after plasma surface modification; however, hemocompatibility studies revealed that it had no adverse effect on blood compatibility. Wettability studies revealed the superhydrophilic property of the modified scaffold (contact angle near to zero). Besides, the human umbilical vein endothelial cells proliferation and adhesion were improved significantly. Obtaining mechanical properties near to the natural vessels due to the suitable composition and significant improvement in blood compatibility and cell growth make the modified PGS/PLA composite a suitable candidate for vascular tissue regeneration.
Collapse
Affiliation(s)
- Niloofar Mokhtari
- Tissue Engineering Group, Department of Materials Engineering, Islamic Azad University Najafabad Branch, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
In vitro hemocompatibility testing of medical devices. Thromb Res 2020; 195:146-150. [DOI: 10.1016/j.thromres.2020.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
|
18
|
Pacharra S, McMahon S, Duffy P, Basnett P, Yu W, Seisel S, Stervbo U, Babel N, Roy I, Viebahn R, Wang W, Salber J. Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications. Front Bioeng Biotechnol 2020; 8:991. [PMID: 32903548 PMCID: PMC7438451 DOI: 10.3389/fbioe.2020.00991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022] Open
Abstract
Although the use of bioresorbable materials in stent production is thought to improve long-term safety compared to their durable counterparts, a recent FDA report on the 2-year follow-up of the first FDA-approved bioresorbable vascular stent showed an increased occurrence of major adverse cardiac events and thrombosis in comparison to the metallic control. In order to overcome the issues of first generation bioresorbable polymers, a series of polyethylene glycol-functionalized poly-L-lactide-co-ε-caprolactone copolymers with varying lactide-to-caprolactone content is developed using a novel one-step PEG-functionalization and copolymerization strategy. This approach represents a new facile way toward surface enhancement for cellular interaction, which is shown by screening these materials regarding their cyto- and hemocompatibility in terms of cytotoxicity, hemolysis, platelet adhesion, leucocyte activation and endothelial cell adhesion. By varying the lactide-to-caprolactone polymer composition, it is possible to gradually affect endothelial and platelet adhesion which allows fine-tuning of the biological response based on polymer chemistry. All polymers developed were non-cytotoxic, had acceptable leucocyte activation levels and presented non-hemolytic (<2% hemolysis rate) behavior except for PLCL-PEG 55:45 which presented hemolysis rate of 2.5% ± 0.5. Water contact angles were reduced in the polymers containing PEG functionalization (PLLA-PEG: 69.8° ± 2.3, PCL-PEG: 61.2° ± 7.5) versus those without (PLLA: 79.5° ± 3.2, PCL: 76.4° ± 10.2) while the materials PCL-PEG550, PLCL-PEG550 90:10 and PLCL-PEG550 70:30 demonstrated best endothelial cell adhesion. PLLA-PEG550 and PLCL-PEG550 70:30 presented as best candidates for cardiovascular implant use from a cytocompatibility perspective across the spectrum of testing completed. Altogether, these polymers are excellent innovative materials suited for an application in stent manufacture due to the ease in translation of this one-step synthesis strategy to device production and their excellent in vitro cyto- and hemocompatibility.
Collapse
Affiliation(s)
- Sandra Pacharra
- Salber Laboratory, Centre for Clinical Research, Department of Experimental Surgery, Ruhr-Universität Bochum, Bochum, Germany
| | - Seán McMahon
- Laboratory A, Synergy Centre, Ashland Specialties Ireland Ltd., Dublin, Ireland
| | - Patrick Duffy
- Laboratory A, Synergy Centre, Ashland Specialties Ireland Ltd., Dublin, Ireland
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Wenfa Yu
- Rosenhahn Group, Faculty of Chemistry and Biochemistry, Analytical Chemistry - Biointerfaces, Ruhr-Universität Bochum, Bochum, Germany
| | - Sabine Seisel
- Faculty of Chemistry and Biochemistry, Analytical Chemistry - Center for Electrochemical Sciences, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrik Stervbo
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Ipsita Roy
- Roy Group, Kroto Innovation Centre, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Richard Viebahn
- Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Wenxin Wang
- The Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Jochen Salber
- Salber Laboratory, Centre for Clinical Research, Department of Experimental Surgery, Ruhr-Universität Bochum, Bochum, Germany.,Department of Surgery, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| |
Collapse
|
19
|
Zheng W, Liu M, Qi H, Wen C, Zhang C, Mi J, Zhou X, Zhang L, Fan D. Mussel-inspired triblock functional protein coating with endothelial cell selectivity for endothelialization. J Colloid Interface Sci 2020; 576:68-78. [DOI: 10.1016/j.jcis.2020.04.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
|
20
|
Elblbesy MA, Hanafy TA, Kandil BA. Effect of gelatin concentration on the characterizations and hemocompatibility of polyvinyl alcohol-gelatin hydrogel. Biomed Mater Eng 2020; 31:225-234. [PMID: 32716341 DOI: 10.3233/bme-201096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The design and fabrication of hemocompatible and low-toxicity formulations remains a challenging task. Hydrogels are of considerable importance for biomedical applications since they are highly compatible with living tissue, both in vivo and in vitro. OBJECTIVE The present study aimed to develop and evaluate the characterizations and in vitro hemocompatibility of a hydrogel using polyvinyl alcohol and gelatin with different concentrations. METHODS The gelling process was realized by cross-linking the polyvinyl alcohol and gelatin. The morphological and structural examinations of the synthetic hydrogels were done by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The swelling behavior of the prepared hydrogels in water was evaluated. Prothrombin time, activated partial thromboplastin time, and thrombin time were measured, and a hemolysis test was done to evaluate the hemocompatibility of prepared hydrogels. RESULTS The increase of the gelatin concentration in polyvinyl gelatin hydrogel increases the porosity and enhances the absorptivity of the prepared hydrogel. The measured hematological parameters indicated enhancement of hemocompatibility as the gelatin concentration was increased in the prepared hydrogel. CONCLUSIONS The results obtained from this study confirm that gelatin was able to improve the properties of the polyvinyl alcohol-gelatin hydrogel and enhance the hemocompatibility. Thus, the prepared hydrogel could be used in a variety of biomedical applications.
Collapse
Affiliation(s)
- Mohamed A Elblbesy
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Egypt.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia
| | - Taha A Hanafy
- Nanotechnology Research Laboratory, Department of Physics, Faculty of Science, University of Tabuk, Saudi Arabia.,Physics Department, Faculty of Science, El Fayoum University, Egypt
| | - Bothaina A Kandil
- Department of Radiological Science and Medical Imaging, Faculty of Allied Medical Science, Pharos University, Egypt
| |
Collapse
|
21
|
Ngo BKD, Barry ME, Lim KK, Johnson JC, Luna DJ, Pandian NK, Jain A, Grunlan MA. Thromboresistance of Silicones Modified with PEO-Silane Amphiphiles. ACS Biomater Sci Eng 2020; 6:2029-2037. [DOI: 10.1021/acsbiomaterials.0c00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bryan Khai D. Ngo
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Mikayla E. Barry
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kendrick K. Lim
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jessica C. Johnson
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - David J. Luna
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Navaneeth K.R. Pandian
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Abhishek Jain
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
22
|
Hong JK, Gao L, Singh J, Goh T, Ruhoff AM, Neto C, Waterhouse A. Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomater Sci 2020; 8:5824-5845. [DOI: 10.1039/d0bm01284j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the importance of flow in medical device thrombosis and explores current and emerging technologies to evaluate dynamic biomaterial Thrombosis in vitro.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- School of Medical Sciences
- Faculty of Medicine and Health
| | - Lingzi Gao
- Heart Research Institute
- Newtown
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jasneil Singh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Tiffany Goh
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Alexander M. Ruhoff
- Heart Research Institute
- Newtown
- Australia
- The Charles Perkins Centre
- The University of Sydney
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- School of Medical Sciences
- Faculty of Medicine and Health
- The University of Sydney
- Australia
- Heart Research Institute
| |
Collapse
|
23
|
Kapnisis K, Seidner H, Prokopi M, Pasias D, Pitsillides C, Anayiotos A, Kaliviotis E. The effects of stenting on hemorheological parameters: An in vitro investigation under various blood flow conditions. Clin Hemorheol Microcirc 2019; 72:375-393. [PMID: 31006672 PMCID: PMC7739967 DOI: 10.3233/ch-180540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite their wide clinical usage, stent functionality may be compromised by complications at the site of implantation, including early/late stent thrombosis and occlusion. Although several studies have described the effect of fluid-structure interaction on local haemodynamics, there is yet limited information on the effect of the stent presence on specific hemorheological parameters. The current work investigates the red blood cell (RBC) mechanical behavior and physiological changes as a result of flow through stented vessels. Blood samples from healthy volunteers were prepared as RBC suspensions in plasma and in phosphate buffer saline at 45% haematocrit. Self-expanding nitinol stents were inserted in clear perfluoroalkoxy alkane tubing which was connected to a syringe, and integrated in a syringe pump. The samples were tested at flow rates of 17.5, 35 and 70 ml/min, and control tests were performed in non-stented vessels. For each flow rate, the sample viscosity, RBC aggregation and deformability, and RBC lysis were estimated. The results indicate that the presence of a stent in a vessel has an influence on the hemorheological characteristics of blood. The viscosity of all samples increases slightly with the increase of the flow rate and exposure. RBC aggregation and elongation index (EI) decrease as the flow rate and exposure increases. RBC lysis for the extreme cases is evident. The results indicate that the stresses developed in the stent area for the extreme conditions could be sufficiently high to influence the integrity of the RBC membrane.
Collapse
Affiliation(s)
- K Kapnisis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - H Seidner
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - M Prokopi
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - D Pasias
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - C Pitsillides
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - A Anayiotos
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus
| | - E Kaliviotis
- Department of Mechanical Engineering and Material Science and Engineering, Cyprus University of Technology, Limasol, Cyprus.,Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
24
|
Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In Vitro Thrombogenicity Testing of Biomaterials. Adv Healthc Mater 2019; 8:e1900527. [PMID: 31612646 DOI: 10.1002/adhm.201900527] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed.
Collapse
Affiliation(s)
- Steffen Braune
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Robert A. Latour
- Rhodes Engineering Research CenterDepartment of BioengineeringClemson University Clemson SC 29634 USA
| | - Markus Reinthaler
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Ulf Landmesser
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam Karl‐Liebknecht‐Strasse 24‐25 14476 Potsdam Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| |
Collapse
|
25
|
Rebholz M, Dual S, Batliner M, Meboldt M, Schmid Daners M. Short-term physiological response to high-frequency-actuated pVAD support. Artif Organs 2019; 43:1170-1181. [PMID: 31211873 DOI: 10.1111/aor.13521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023]
Abstract
Ventricular assist devices (VADs) are an established treatment option for heart failure (HF). However, the devices are often plagued by material-related hemocompatibility issues. In contrast to continuous flow VADs with high shear stresses, pulsatile VADs (pVADs) offer the potential for an endothelial cell coating that promises to prevent many adverse events caused by an insufficient hemocompatibility. However, their size and weight often precludes their intracorporeal implantation. A reduction of the pump body size and weight of the pump could be achieved by an increase in the stroke frequency while maintaining a similar cardiac output. We present a new pVAD system consisting of a pump and an actuator specifically designed for actuation frequencies of up to 240 bpm. In vitro and in vivo results of the short-term reaction of the cardiovascular system show no significant changes in left ventricular and aortic pressure between actuation frequencies from 60 to 240 bpm. The aortic pulsatility increases when the actuation frequency is raised while the heart rate remains unaffected in vivo. These results lead us to the conclusion that the cardiovascular system tolerates short-term increases of the pVAD stroke frequencies.
Collapse
Affiliation(s)
- Mathias Rebholz
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Seraina Dual
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Martin Batliner
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | - Mirko Meboldt
- Product Development Group Zurich, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
26
|
Sarode DN, Roy S. In Vitro models for thrombogenicity testing of blood-recirculating medical devices. Expert Rev Med Devices 2019; 16:603-616. [PMID: 31154869 DOI: 10.1080/17434440.2019.1627199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Blood-recirculating medical devices, such as mechanical circulatory support (MCS), extracorporeal membrane oxygenators (ECMO), and hemodialyzers, are commonly used to treat or improve quality of life in patients with cardiac, pulmonary, and renal failure, respectively. As part of their regulatory approval, guidelines for thrombosis evaluation in pre-clinical development have been established. In vitro testing evaluates a device's potential to produce thrombosis markers in static and dynamic flow loops. AREAS COVERED This review focuses on in vitro static and dynamic models to assess thrombosis in blood-recirculating medical devices. A summary of key devices is followed by a review of molecular markers of contact activation. Current thrombosis testing guidance documents, ISO 10993-4, ASTM F-2888, and F-2382 will be discussed, followed by analysis of their application to in vitro testing models. EXPERT OPINION In general, researchers have favored in vivo models to thoroughly evaluate thrombosis, limiting in vitro evaluation to hemolysis. In vitro studies are not standardized and it is often difficult to compare studies on similar devices. As blood-recirculating devices have advanced to include wearable and implantable artificial organs, expanded guidelines standardizing in vitro testing are needed to identify the thrombotic potential without excessive use of in vivo resources during pre-clinical development.
Collapse
Affiliation(s)
- Deepika N Sarode
- a Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA , USA
| | - Shuvo Roy
- a Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA , USA
| |
Collapse
|
27
|
Reinthaler M, Johansson JB, Braune S, Al-Hindwan HSA, Lendlein A, Jung F. Shear-induced platelet adherence and activation in an in-vitro dynamic multiwell-plate system. Clin Hemorheol Microcirc 2019; 71:183-191. [PMID: 30584128 DOI: 10.3233/ch-189410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Circulating blood cells are prone to varying flow conditions when contacting cardiovascular devices. For a profound understanding of the complex interplay between the blood components/cells and cardiovascular implant surfaces, testing under varying shear conditions is required. Here, we study the influence of arterial and venous shear conditions on the in vitro evaluation of the thrombogenicity of polymer-based implant materials.Medical grade poly(dimethyl siloxane) (PDMS), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE) films were included as reference materials. The polymers were exposed to whole blood from healthy humans. Blood was agitated orbitally at low (venous shear stress: 2.8 dyne · cm-2) and high (arterial shear stress: 22.2 dyne · cm-2) agitation speeds in a well-plate based test system. Numbers of non-adherent platelets, platelet activation (P-Selectin positive platelets), platelet function (PFA100 closure times) and platelet adhesion (laser scanning microscopy (LSM)) were determined.Microscopic data and counting of the circulating cells revealed increasing numbers of material-surface adherent platelets with increasing agitation speed. Also, activation of the platelets was substantially increased when tested under the high shear conditions (P-Selectin levels, PFA-100 closure times). At low agitation speed, the platelet densities did not differ between the three materials. Tested at the high agitation speed, lowest platelet densities were observed on PDMS, intermediate levels on PET and highest on PTFE. While activation of the circulating platelets was affected by the implant surfaces in a similar manner, PFA closure times did not reflect this trend.Differences in the thrombogenicity of the studied polymers were more pronounced when tested at high agitation speed due to the induced shear stresses. Testing under varying shear stresses, thus, led to a different evaluation of the implant thrombogenicity, which emphasizes the need for testing under various flow conditions. Our data further confirmed earlier findings where the same reference implants were tested under static (and not dynamic) conditions and with fresh human platelet rich plasma instead of whole blood. This supports that the application of common reference materials may improve inter-study comparisons, even under varying test conditions.
Collapse
Affiliation(s)
- Markus Reinthaler
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Department of Cardiology, Medical Clinic II, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Johan Bäckemo Johansson
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Haitham Saleh Ali Al-Hindwan
- Department of Cardiology, Medical Clinic II, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
28
|
Urbán P, Liptrott NJ, Bremer S. Overview of the blood compatibility of nanomedicines: A trend analysis of in vitro and in vivo studies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1546. [PMID: 30556649 PMCID: PMC7816241 DOI: 10.1002/wnan.1546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022]
Abstract
As nanomedicines have the potential to address many currently unmet medical needs, the early identification of regulatory requirements that could hamper a smooth translation of nanomedicines from the laboratory environment to clinical applications is of utmost importance. The blood system is especially relevant as many nanomedicinal products that are currently under development are designed for intravenous administration and cells of the blood system will be among the first biological systems exposed to the injected nanomedicine. This review collects and summarizes the current knowledge related to the blood compatibility of nanomedicines and nanomaterials with a potential use in biomedical applications. Different types of nanomedicines were analyzed for their toxicity to the blood system, and the role of their physicochemical properties was further elucidated. Trends were identified related to: (a) the nature of the most frequently occurring blood incompatibilities such as thrombogenicity and complement activation, (b) the contribution of physicochemical properties to these blood incompatibilities, and (c) the similarities between data retrieved from in vivo and in vitro studies. Finally, we provide an overview of available standards that allow evaluating the compatibility of a material with the blood system. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Patricia Urbán
- Consumer Products Safety Unit, Directorate F ‐ Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC)Ispra (VA)Italy
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational Medicine, University of LiverpoolLiverpoolUK
| | - Susanne Bremer
- Consumer Products Safety Unit, Directorate F ‐ Health, Consumers and Reference Materials, European Commission Joint Research Centre (JRC)Ispra (VA)Italy
| |
Collapse
|
29
|
Ramachandran B, Muthuvijayan V. Kinetic study of NTPDase immobilization and its effect of haemocompatibility on polyethylene terephthalate. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2019; 30:437-449. [PMID: 30696363 DOI: 10.1080/09205063.2019.1575943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Poor haemocompatibility of material surfaces is a serious limitation that can lead to failure of blood-contacting devices and implants. In this work, we have improved the haemocompatibility of polyethylene terephthalate (PET) surfaces by immobilizing apyrase/ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) on to the carboxylated PET. NTPDase immobilized PET surfaces scavenge the ADP released by activated platelets, which prevents further platelet activation and aggregation. The surface properties of the modified PET were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDAX), and contact angle measurement. The enzyme attachment and stability on the modified PET surfaces were evaluated. The kinetics of free enzyme and immobilized enzyme were studied and fitted using the Michaelis-Menten kinetic model. Both free and immobilized NTPDase followed Michaelis-Menten kinetics with similar Michaelis-Menten constants (Km). This suggests that the activity of NTPDase was unchanged upon immobilization. Protein adsorption and %hemolysis was significantly reduced for carboxylated PET and NTPDase immobilized PET surfaces compared to unmodified PET. Lactate dehydrogenase assay showed that the number of adhered platelets reduced by more than an order of magnitude for the NTPDase immobilized PET surface compared to unmodified PET. These results clearly indicate that NTPDase immobilization significantly enhances the haemocompatibility of PET surfaces.
Collapse
Affiliation(s)
- Balaji Ramachandran
- a Department of Biotechnology , Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , India
| | - Vignesh Muthuvijayan
- a Department of Biotechnology , Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras , Chennai , India
| |
Collapse
|
30
|
Blok SLJ, van Oeveren W, Engels GE. The optimal incubation time for in vitro hemocompatibility testing: Assessment using polymer reference materials under pulsatile flow with physiological wall shear stress conditions. J Biomed Mater Res B Appl Biomater 2019; 107:2335-2342. [PMID: 30697956 PMCID: PMC6767118 DOI: 10.1002/jbm.b.34326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/08/2018] [Accepted: 01/05/2019] [Indexed: 12/19/2022]
Abstract
During hemocompatibility testing, activation products may reach plateau values which can result in less distinction between hemocompatible and hemo‐incompatible materials. Of concern is an underestimation of the blood activation caused by the biomaterial of interest, which may result in a false assessment of hemocompatibility. To elucidate the optimal incubation time for in vitro hemocompatibility testing, we used the Haemobile circulation model with human whole blood. Blood from healthy volunteers was in vitro incubated under pulsatile flow with physiological wall shear stress conditions at 37°C for 30, 60, 120, or 240 min. Test loops containing low‐density polyethylene and polydimethylsiloxane served as low and high reference materials, that is, hemocompatible and hemo‐incompatible biomaterials, respectively. In addition, empty loops served as a negative reference. Thrombogenicity, platelet function, inflammatory response, coagulation, and hemolysis between references and incubation times were compared. We found that thrombogenicity and platelet function were significantly affected by both the duration of incubation and the type of material. In particular, thrombogenicity and platelet function assessments were affected by incubation time. We found that an exposure time of 60 min was sufficient, and for almost all variables an optimal incubation time to discriminate between the low and high reference material. © 2019 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2335–2342, 2019.
Collapse
Affiliation(s)
| | - Willem van Oeveren
- HaemoScan BV, 9723 JC, Groningen, The Netherlands.,Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Gerwin Erik Engels
- HaemoScan BV, 9723 JC, Groningen, The Netherlands.,Department of Cardiothoracic Surgery, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
31
|
Mukhopadhyay S, Veroniaina H, Chimombe T, Han L, Zhenghong W, Xiaole Q. Synthesis and compatibility evaluation of versatile mesoporous silica nanoparticles with red blood cells: an overview. RSC Adv 2019; 9:35566-35578. [PMID: 35528069 PMCID: PMC9074774 DOI: 10.1039/c9ra06127d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Protean mesoporous silica nanoparticles are propitious candidates over decades for nanoscale drug delivery systems due to their unique characteristics, including changeable pore size, mesoporosity, high drug loading capacity and biodegradability.
Collapse
Affiliation(s)
- Subhankar Mukhopadhyay
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | | | - Tadious Chimombe
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Lidong Han
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Wu Zhenghong
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Qi Xiaole
- Key Laboratory of Modern Chinese Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
32
|
A nanofibrous bilayered scaffold for tissue engineering of small-diameter blood vessels. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Pacharra S, Ortiz R, McMahon S, Wang W, Viebahn R, Salber J, Quintana I. Surface patterning of a novel PEG-functionalized poly-l-lactide polymer to improve its biocompatibility: Applications to bioresorbable vascular stents. J Biomed Mater Res B Appl Biomater 2018; 107:624-634. [PMID: 30091510 PMCID: PMC6585964 DOI: 10.1002/jbm.b.34155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/03/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022]
Abstract
Today, research in the field of bioresorbable vascular stents (BVS) not only focusses on a new material being nontoxic but also tries to enhance its biocompatibility in terms of endothelialization potential and hemocompatibility. To this end, we used picosecond laser ablation technology as a single‐step and contactless method for surface microstructuring of a bioresorbable polymer which can be utilized in stent manufacture. The method works on all materials via fast material removal, can be easily adapted for micropatterning of tubular or more complex sample shapes and scaled up by means of micropatterning of metal molds for manufacturing. Here, picosecond laser ablation was applied to a bioresorbable, biologically inactive and polyethylene glycol‐modified poly‐l‐lactide polymer (PEGylated PLLA) to generate parallel microgrooves with varying geometries. The different patterns were thoroughly evaluated by a series of cyto‐ and hemocompatibility tests revealing that all surfaces were non‐toxic and non‐hemolytic. More importantly, patterns with 20 to 25 µm wide and 6 to 7 µm deep grooves significantly enhanced endothelial cell adhesion in comparison to samples with smaller grooves. Here, human cardiac microvascular endothelial cells were found to align along the groove direction, which is thought to encourage endothelialization of intraluminal surfaces of BVS. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000–000, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 624–634, 2019.
Collapse
Affiliation(s)
- Sandra Pacharra
- Zentrum für klinische Forschung, Ruhr-Universität Bochum, Bochum, Germany.,Universitätsklinikum Knappschaftskrankenhaus, Chirurgische Klinik, Bochum, Germany
| | - Rocio Ortiz
- Ultraprecision Processes Unit, IK4-TEKNIKER Technological Research Center, Eibar, Gipuzkoa, Spain
| | - Sean McMahon
- Vornia Ltd, Laboratory A, Synergy Centre, Tallaght, Dublin, Ireland.,The Charles Institute of Dermatology, School of Medicine and Medical Science, University College, Dublin, Dublin, Ireland
| | - Wenxin Wang
- Vornia Ltd, Laboratory A, Synergy Centre, Tallaght, Dublin, Ireland.,The Charles Institute of Dermatology, School of Medicine and Medical Science, University College, Dublin, Dublin, Ireland
| | - Richard Viebahn
- Zentrum für klinische Forschung, Ruhr-Universität Bochum, Bochum, Germany.,Universitätsklinikum Knappschaftskrankenhaus, Chirurgische Klinik, Bochum, Germany
| | - Jochen Salber
- Zentrum für klinische Forschung, Ruhr-Universität Bochum, Bochum, Germany.,Universitätsklinikum Knappschaftskrankenhaus, Chirurgische Klinik, Bochum, Germany
| | - Iban Quintana
- Ultraprecision Processes Unit, IK4-TEKNIKER Technological Research Center, Eibar, Gipuzkoa, Spain
| |
Collapse
|
34
|
Genotoxicity and Hemocompatibility of a Novel Calcium Aluminate-Based Cement. Eur Endod J 2018; 3:87-92. [PMID: 32161862 PMCID: PMC7006562 DOI: 10.14744/eej.2018.43531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/21/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Objective: The aim of this in vitro study was to evaluate the genotoxicity and hemocompatibility of a novel calcium aluminate-based cement, EndoBinder (EB) (Binderware, São Carlos, SP, Brazil) and compare it with Angelus White Mineral Trioxide Aggregate (MTA) (AWMTA) (Angelus, Soluções Odontológicas, Londrina, PR, Brazil). Methods: For evaluation of genotoxicity, a comet assay was performed with Chinese hamster ovary (CHO) cells that had been grown for 24 h in Dulbecco’s Modified Eagle Medium incubated with each of the cements for 24 h at 37°C. DNA percentage in head and Olive tail moment were analyzed. For assessment of hemocompatibility, erythrocyte lysis quantification, and concentration of plasma fibrinogen were determined in human blood samples placed in contact with each of the materials. One way analysis of variance (ANOVA) followed by post hoc Tukey test and Student t-test were used for data analysis of genotoxicity and hemocompatibility, respectively. Results: Results showed that the genotoxic effects of EB and AWMTA were comparable to that of the negative control, with no statistically significant differences between AWMTA and negative control (P>0.05). Compared to AWMTA, EB showed greater hemolytic potential when placed in direct contact with erythrocytes (P<0.05). Fibrinogen values were low for both materials, with protein concentration being greater in samples exposed to EB than to AWMTA. Conclusion: Both materials presented a higher hemolytic behaviour compared to what is established by international standards. Fibrinogen formation was low for both materials, and DNA damage induction was not observed in a comet assay.
Collapse
|
35
|
Kröger N, Kopp A, Staudt M, Rusu M, Schuh A, Liehn EA. Hemocompatibility of plasma electrolytic oxidation (PEO) coated Mg-RE and Mg-Zn-Ca alloys for vascular scaffold applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:819-826. [PMID: 30184811 DOI: 10.1016/j.msec.2018.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/15/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022]
Abstract
Percutaneous transluminal coronary angioplasty and subsequent vascular scaffold implantation remains the prevalent invasive treatment of coronary heart disease. In-stent restenosis remained a problem with bare metal stents, until drug-eluting stents were introduced. The inhibition of the healing process by the antimitotic drug coating and the permanent metallic remnant can promote sub-acute and delayed stent thrombosis. Thus, the development of biodegradable stents emerged as a subject of research. Magnesium-based bioabsorbable devices can provide sufficient radial force in the acute phase of vessel-treatment and degrade thoroughly in aqueous environment, making them potential new candidates for vascular scaffold applications. Magnesium alloys tend to degrade very quickly due to their high electrochemical corrosion potential. Plasma Electrolytic Oxidation modification of magnesium alloys improves interface and degradadation properties and may therefore enhance the performance and suitability for vascular scaffold applications of these materials. Assuring the hemocompatibility and foremost assessing the thrombogenicity of new biomaterials prior to their use is essential in order to avoid adverse effects. The goal was to assess thrombocyte adhesion on coated Mg-RE and Mg-Zn-Ca alloys. Static experiments with human blood were carried out on the plasma-electrolytically treated or corresponding untreated Mg alloy in order to assess quantity and quality of thrombocyte adhesion via standardized SEM imaging. In a second step, a parallel plate flow chamber was designed in order to examine thrombocyte adhesion under dynamic flow conditions. During flow chamber experiments the test-materials were exposed to human thrombocyte concentrate and the number of adherent thrombocytes was assessed. The flow chamber was additionally perfused with human blood and thrombocyte adhesion was semiquantitatively and qualitatively assessed via SEM imaging and subsequent scoring. In conclusion, a new parallel plate flow chamber design simulating blood-circulation was successfully established, enabling the further assessment of platelet adhesion on bioabsorbable materials under dynamic flow conditions. Static and dynamic experiments showed, that plasma-electrolytically treated specimens showed low thrombocyte adhesion on both alloys, proposing their potential use in vascular scaffolds. The uncoated magnesium alloys showed rapid degradation along with gas formation due to the chemically active surface and therefore give concern regarding their safety and suitability for vascular applications.
Collapse
Affiliation(s)
- Nadja Kröger
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | | | - Mareike Staudt
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Mihaela Rusu
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Alexander Schuh
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Germany
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany; Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, RWTH Aachen University, Germany; Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania.
| |
Collapse
|
36
|
Weber M, Steinle H, Golombek S, Hann L, Schlensak C, Wendel HP, Avci-Adali M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front Bioeng Biotechnol 2018; 6:99. [PMID: 30062094 PMCID: PMC6054932 DOI: 10.3389/fbioe.2018.00099] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Hemocompatibility of blood-contacting biomaterials is one of the most important criteria for their successful in vivo applicability. Thus, extensive in vitro analyses according to ISO 10993-4 are required prior to clinical applications. In this review, we summarize essential aspects regarding the evaluation of the hemocompatibility of biomaterials and the required in vitro analyses for determining the blood compatibility. Static, agitated, or shear flow models are used to perform hemocompatibility studies. Before and after the incubation of the test material with fresh human blood, hemolysis, cell counts, and the activation of platelets, leukocytes, coagulation and complement system are analyzed. Furthermore, the surface of biomaterials are evaluated concerning attachment of blood cells, adsorption of proteins, and generation of thrombus and fibrin networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Brancato L, Decrop D, Lammertyn J, Puers R. Surface Nanostructuring of Parylene-C Coatings for Blood Contacting Implants. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1109. [PMID: 29966223 PMCID: PMC6073716 DOI: 10.3390/ma11071109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
This paper investigates the effects on the blood compatibility of surface nanostructuring of Parylene-C coating. The proposed technique, based on the consecutive use of O₂ and SF₆ plasma, alters the surface roughness and enhances the intrinsic hydrophobicity of Parylene-C. The degree of hydrophobicity of the prepared surface can be precisely controlled by opportunely adjusting the plasma exposure times. Static contact angle measurements, performed on treated Parylene-C, showed a maximum contact angle of 158°. The nanostructured Parylene-C retained its hydrophobicity up to 45 days, when stored in a dry environment. Storing the samples in a body-mimicking solution caused the contact angle to progressively decrease. However, at the end of the measurement, the plasma treated surfaces still exhibited a higher hydrophobicity than the untreated counterparts. The proposed treatment improved the performance of the polymer as a water diffusion barrier in a body simulating environment. Modifying the nanotopography of the polymer influences the adsorption of different blood plasma proteins. The adsorption of albumin—a platelet adhesion inhibitor—and of fibrinogen—a platelet adhesion promoter—was studied by fluorescence microscopy. The adsorption capacity increased monotonically with increasing hydrophobicity for both studied proteins. The effect on albumin adsorption was considerably higher than on fibrinogen. Study of the proteins simultaneous adsorption showed that the albumin to fibrinogen adsorbed ratio increases with substrate hydrophobicity, suggesting lower thrombogenicity of the nanostructured surfaces. Animal experiments proved that the treated surfaces did not trigger any blood clot or thrombus formation when directly exposed to the arterial blood flow. The findings above, together with the exceptional mechanical and insulation properties of Parylene-C, support its use for packaging implants chronically exposed to the blood flow.
Collapse
Affiliation(s)
- Luigi Brancato
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium.
| | - Deborah Decrop
- Department of Biosystems⁻MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Jeroen Lammertyn
- Department of Biosystems⁻MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium.
| | - Robert Puers
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium.
| |
Collapse
|
38
|
Düregger K, Trik S, Leonhardt S, Eblenkamp M. Additive-manufactured microporous polymer membranes for biomedical in vitro applications. J Biomater Appl 2018; 33:116-126. [PMID: 29874967 DOI: 10.1177/0885328218780460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microscale porous membranes are used in a wide range of technical and medical applications such as water treatment, dialysis and in vitro test systems. A promising approach to control membrane properties and overcome limitations of conventional fabrication techniques is given by additive manufacturing (AM). In this study, we designed and printed a microporous membrane via digital light processing and validated its use for biomedical in vitro applications based on the example of a cell culture insert. A multi-layer technique was developed, resulting in an eight-layer membrane with an average pore diameter of 25 µm. Image analyses proved the printing accuracy to be high with small deviations for an increasing number of layers. Permeability tests with brilliant blue FCF (E133, triarylmethane dye) and growth factors comparing the printed to track-etched membranes showed similar transfer dynamics and confirmed sufficient separation properties. Overall, the results showed that printing microporous polymer membranes is possible and highlight the potential of AM for biomedical in vitro applications such as cell culture inserts, scaffolds for tissue engineering or bioreactors.
Collapse
Affiliation(s)
- Katharina Düregger
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Sina Trik
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Stefan Leonhardt
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Markus Eblenkamp
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
39
|
Yu K, Andruschak P, Yeh HH, Grecov D, Kizhakkedathu JN. Influence of dynamic flow conditions on adsorbed plasma protein corona and surface-induced thrombus generation on antifouling brushes. Biomaterials 2018; 166:79-95. [PMID: 29549767 DOI: 10.1016/j.biomaterials.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022]
Abstract
The information regarding the nature of protein corona (and its changes) and cell binding on biomaterial surface under dynamic conditions is critical to dissect the mechanism of surface-induced thrombosis. In this manuscript, we investigated the nature of protein corona and blood cell binding in heparinized recalcified human plasma, platelet rich plasma and whole blood on three highly hydrophilic antifouling polymer brushes, (poly(N, N-dimethylacrylamide) (PDMA), poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[N-(2-hydroxypropyl) methacrylamide] (PHPMA) using an in vitro blood loop model at comparable arterial and venous flow, and static conditions. A fluid dynamics model was used initially to better understand the resulting flow patterns in a vertical channel containing the substrates to arrive at the placement of the substrates within the blood loop. The protein binding on the brush modified substrates was determined using ellipsometry, fluorescence microscopy and the nature of the protein corona was investigated using mass spectrometry based proteomics. The flow elevated fouling on brush coated surface from blood. The extent of plasma protein adsorption and platelet adhesion onto PDMA brush was lower than other surfaces in both static and flow conditions. The profiles of adsorbed protein corona showed strong dependence on the test conditions (static vs. flow), and the chemistry of the polymer brushes. Specially, the PDMA brush under flow conditions was more enriched with coagulation proteins, complement proteins, vitronectin and fibronectin but was less enriched with serum albumin. Apolipoprotein B-100 and complement proteins were the most abundant proteins seen on PMPC and PHPMA surfaces under both flow and static conditions, respectively. Unlike PDMA brush, the flow conditions did not affect the composition of protein corona on PMPC and PHPMA brushes. The nature of the protein corona formed in flow conditions influenced the platelet and red blood cell binding. The dependence of shear stress on platelet adhesion from platelet rich plasma and whole blood highlights the contribution of red blood cells in enhancing platelet adhesion on the surface under high shear condition.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paula Andruschak
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Han Hung Yeh
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dana Grecov
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
40
|
Bernard M, Jubeli E, Pungente MD, Yagoubi N. Biocompatibility of polymer-based biomaterials and medical devices – regulations,in vitroscreening and risk-management. Biomater Sci 2018; 6:2025-2053. [DOI: 10.1039/c8bm00518d] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials play an increasing role in modern health care systems.
Collapse
Affiliation(s)
- Mélisande Bernard
- Paris-Sud University
- Faculty of Pharmacy
- EA 401
- “Groupe Matériaux et Santé”
- Paris
| | - Emile Jubeli
- Paris-Sud University
- Faculty of Pharmacy
- EA 401
- “Groupe Matériaux et Santé”
- Paris
| | | | - Najet Yagoubi
- Paris-Sud University
- Faculty of Pharmacy
- EA 401
- “Groupe Matériaux et Santé”
- Paris
| |
Collapse
|
41
|
Aussel A, Thébaud NB, Bérard X, Brizzi V, Delmond S, Bareille R, Siadous R, James C, Ripoche J, Durand M, Montembault A, Burdin B, Letourneur D, L’Heureux N, David L, Bordenave L. Chitosan-based hydrogels for developing a small-diameter vascular graft:
in vitro
and
in vivo
evaluation. Biomed Mater 2017; 12:065003. [DOI: 10.1088/1748-605x/aa78d0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
42
|
Puppi D, Pirosa A, Lupi G, Erba PA, Giachi G, Chiellini F. Design and fabrication of novel polymeric biodegradable stents for small caliber blood vessels by computer-aided wet-spinning. ACTA ACUST UNITED AC 2017; 12:035011. [PMID: 28589916 DOI: 10.1088/1748-605x/aa6a28] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biodegradable stents have emerged as one of the most promising approaches in obstructive cardiovascular disease treatment due to their potential in providing mechanical support while it is needed and then leaving behind only the healed natural vessel. The aim of this study was to develop polymeric biodegradable stents for application in small caliber blood vessels. Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHHx), a renewable microbial aliphatic polyester, and poly(ε-caprolactone), a synthetic polyester approved by the US Food and Drug Administration for different biomedical applications, were investigated as suitable polymers for stent development. A novel manufacturing approach based on computer-aided wet-spinning of a polymeric solution was developed to fabricate polymeric stents. By tuning the fabrication parameters, it was possible to develop stents with different morphological characteristics (e.g. pore size and wall thickness). Thermal analysis results suggested that material processing did not cause changes in the molecular structure of the polymers. PHBHHx stents demonstrated great radial elasticity while PCL stents showed higher axial and radial mechanical strength. The developed stents resulted able to sustain proliferation of human umbilical vein endothelial cells within two weeks of in vitro culture and they showed excellent results in terms of thromboresistivity when in contact with human blood.
Collapse
Affiliation(s)
- D Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, via Moruzzi 13, I-56124, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Sandeman SR, Zheng Y, Ingavle GC, Howell CA, Mikhalovsky SV, Basnayake K, Boyd O, Davenport A, Beaton N, Davies N. A haemocompatible and scalable nanoporous adsorbent monolith synthesised using a novel lignin binder route to augment the adsorption of poorly removed uraemic toxins in haemodialysis. Biomed Mater 2017; 12:035001. [DOI: 10.1088/1748-605x/aa6546] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Haemocompatibility of Modified Nanodiamonds. MATERIALS 2017; 10:ma10040352. [PMID: 28772710 PMCID: PMC5506996 DOI: 10.3390/ma10040352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
This study reports the interactions of modified nanodiamond particles in vitro with human blood. Modifications performed on the nanodiamond particles include oxygenation with a chemical method and hydrogenation upon chemical vapor deposition (CVD) plasma treatment. Such nanodiamonds were later incubated in whole human blood for different time intervals, ranging from 5 min to 5 h. The morphology of red blood cells was assessed along with spectral measurements and determination of haemolysis. The results showed that no more than 3% of cells were affected by the nanodiamonds. Specific modifications of the nanodiamonds give us the possibility to obtain nanoparticles which are biocompatible with human blood. They can form a basis for the development of nanoscale biomarkers and parts of sensing systems and devices useful in biomedical environments.
Collapse
|
45
|
Reviakine I, Jung F, Braune S, Brash JL, Latour R, Gorbet M, van Oeveren W. Stirred, shaken, or stagnant: What goes on at the blood-biomaterial interface. Blood Rev 2016; 31:11-21. [PMID: 27478147 DOI: 10.1016/j.blre.2016.07.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023]
Abstract
There is a widely recognized need to improve the performance of vascular implants and external medical devices that come into contact with blood by reducing adverse reactions they cause, such as thrombosis and inflammation. These reactions lead to major adverse cardiovascular events such as heart attacks and strokes. Currently, they are managed therapeutically. This need remains unmet by the biomaterials research community. Recognized stagnation of the blood-biomaterial interface research translates into waning interest from clinicians, funding agencies, and practitioners of adjacent fields. The purpose of this contribution is to stir things up. It follows the 2014 BloodSurf meeting (74th International IUVSTA Workshop on Blood-Biomaterial Interactions), offers reflections on the situation in the field, and a three-pronged strategy integrating different perspectives on the biological mechanisms underlying blood-biomaterial interactions. The success of this strategy depends on reengaging clinicians and on the renewed cooperation of the funding agencies to support long-term efforts.
Collapse
Affiliation(s)
- Ilya Reviakine
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - Steffen Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
| | - John L Brash
- Department of Chemical Engineering, School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Robert Latour
- Rhodes Engineering Research Center, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Maud Gorbet
- Department of Systems Design Engineering, Biomedical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Wim van Oeveren
- HaemoScan, Stavangerweg 23-23, 9723JC Groningen, The Netherlands
| |
Collapse
|
46
|
Everett W, Scurr DJ, Rammou A, Darbyshire A, Hamilton G, de Mel A. A Material Conferring Hemocompatibility. Sci Rep 2016; 6:26848. [PMID: 27264087 PMCID: PMC4893622 DOI: 10.1038/srep26848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/09/2016] [Indexed: 12/15/2022] Open
Abstract
There is a need for biomimetic materials for use in blood-contacting devices. Blood contacting surfaces maintain their patency through physico-chemical properties of a functional endothelium. A poly(carbonate-urea) urethane (PCU) is used as a base material to examine the feasibility of L-Arginine methyl ester (L-AME) functionalized material for use in implants and coatings. The study hypothesizes that L-AME, incorporated into PCU, functions as a bioactive porogen, releasing upon contact with blood to interact with endothelial nitric oxide synthase (eNOS) present in blood. Endothelial progenitor cells (EPC) were successfully cultured on L-AME functionalized material, indicating that L-AME -increases cell viability. L-AME functionalized material potentially has broad applications in blood-contacting medical devices, as well as various other applications requiring endogenous up-regulation of nitric oxide, such as wound healing. This study presents an in-vitro investigation to demonstrate the novel anti-thrombogenic properties of L-AME, when in solution and when present within a polyurethane-based polymer.
Collapse
Affiliation(s)
- William Everett
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - David J Scurr
- Interface and Surface Analysis Centre, Boots Science Building, University of Nottingham, University Park, Nottingham, UK
| | - Anna Rammou
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | - Arnold Darbyshire
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| | | | - Achala de Mel
- Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
| |
Collapse
|
47
|
|
48
|
Differences in intracellular calcium dynamics cause differences in α-granule secretion and phosphatidylserine expression in platelets adhering on glass and TiO2. Biointerphases 2016; 11:029807. [DOI: 10.1116/1.4947047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Mayuri P, Bhatt A, Joseph R, Ramesh P. Effect of photografting 2-hydroxyethyl acrylate on the hemocompatibility of electrospun poly(ethylene-co-vinyl alcohol) fibroporous mats. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 60:19-29. [DOI: 10.1016/j.msec.2015.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/13/2015] [Accepted: 11/03/2015] [Indexed: 11/25/2022]
|
50
|
Biosynthesis, property comparison, and hemocompatibility of bacterial and haloarchaeal poly(3-hydroxybutyrate- co -3-hydroxyvalerate). Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0923-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|