1
|
Rguez S, Hammami M, Aidi Wannes W, Hamrouni Sellami I. Bioguided fractionation of procyanidin B2 as potent anti coxsackie virus B and Herpes simplex from cypress ( Cupressus sempervirens L.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:191-200. [PMID: 36264708 DOI: 10.1080/09603123.2022.2137475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The methanolic extracts of cypress (Cupressus sempervirens L.) collected at three phenological stages were evaluated for their cytotoxicity on Vero cells by MTT test as well as on Herpes simplex (HSV-2) and coxsackie (CVB-3) viruses by plaque reduction assay. The methanolic extract exhibited the highest cytotoxicity against HSV-2 (IC50 = 20.40 µg/mL) and CVB-3 (IC50 = 47.50 µg/mL) at the flowering stage. This extract also exhibited a virucidal action both during the entry of viruses and the release of newly formed virions. The methanolic extract bioguided purification showed that the ethyl-acetate fraction was responsible for virucidal activity. This fraction was endowed with more important selectivity index of 8.15 for HSV-2 and 4.40 for CVB-3. The ethyl acetate fraction was subjected to thin layer chromatography fractionation and identification by HPLC-DAD-ESI-MSn. Results showed that the condensed tannin procyanidin B2 was identified for the first time responsible of the antiviral activity of cypress.
Collapse
Affiliation(s)
- Safa Rguez
- Laboratory of Medicinal and Aromatic Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Majdi Hammami
- Laboratory of Medicinal and Aromatic Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Wissem Aidi Wannes
- Laboratory of Medicinal and Aromatic Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Ibtissem Hamrouni Sellami
- Laboratory of Medicinal and Aromatic Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Lin X, Wu H, Huang G, Wu Q, Yao ZP. Rapid authentication of red wine by MALDI-MS combined with DART-MS. Anal Chim Acta 2023; 1283:341966. [PMID: 37977790 DOI: 10.1016/j.aca.2023.341966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
A simple, rapid and high-throughput approach was developed for authentication of red wine for the first time, by combining spectral results from matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and direct analysis in real time mass spectrometry (DART-MS). By coupling with orthogonal partial least squares discrimination analysis (OPLS-DA), this approach enabled successful classification of 535 wines from 8 countries, with the correct classification rates of 100% on the calibration set and over 90% on the validation set for almost all countries, and 26 potential characteristic markers selected. Compared to one single technique, this approach allowed detection of more compound ions, and with better fitting and predictive performances. The satisfactory differentiation results of vintages and grape varieties further verified the robustness of the approach. This study demonstrated the feasibility of combining multiple mass spectrometric techniques for wine analysis, which can be extended to other fields or to combinations of other analytical techniques.
Collapse
Affiliation(s)
- Xuewei Lin
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Hao Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Gefei Huang
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Qian Wu
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; Research Institute for Future Food, and Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region of China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Oliveira Lago L, Swit P, Moura da Silva M, Telles Biasoto Marques A, Welke J, Montero L, Herrero M. Evolution of anthocyanin content during grape ripening and characterization of the phenolic profile of the resulting wine by comprehensive two-dimensional liquid chromatography. J Chromatogr A 2023; 1704:464131. [PMID: 37315446 DOI: 10.1016/j.chroma.2023.464131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The typical phenolic profile in grapes is characterized by its complexity both in terms of number of diverse chemical structures and their variation during ripening. Besides, the specific phenolic composition of grapes directly influences the presence of those components in the resulting wine. In this contribution, a new method based on the application of comprehensive two-dimensional liquid chromatography coupled to a diode array detector and tandem mass spectrometry has been developed to obtain the typical phenolic profile of Malbec grapes cultivated in Brazil. Moreover, the method has been demonstrated to be useful to study how the phenolic composition in grapes evolved during a 10-week ripening period. Main detected compounds in grapes and in the wine derived from them were anthocyanins, although a good number of polymeric flavan-3-ols were also tentatively identified, among other compounds. Results show how the amount of anthocyanins present in grapes was increased during ripening up to 5-6 weeks and then decreased towards week 9. The two-dimensional approach applied was demonstrated to be useful for the characterization of the complex phenolic profile of these samples, involving more than 40 different structures and has the potential to be further applied to the study of this important fraction is different grapes and wines systematically.
Collapse
Affiliation(s)
- Laura Oliveira Lago
- Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul (UFRGS), Zip Code 91501970, Porto Alegre, Brazil
| | - Pawel Swit
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Mairon Moura da Silva
- Department of Agronomy, Academic Unit of Garanhuns, Federal Rural University of Pernambuco (UAG-UFRPE), Garanhuns, PE, Brazil
| | | | - Juliane Welke
- Institute of Food Science and Technology (ICTA), Federal University of Rio Grande do Sul (UFRGS), Zip Code 91501970, Porto Alegre, Brazil
| | - Lidia Montero
- Laboratory of Foodomics, Institute of Food Science Research - CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research - CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Singh Y, Rawat P, Kumar A, Singh SK, Mishra DK, Kanojiya S. Exploration of new and alternative sources of targeted bioflavonoids using ultra‐performance liquid chromatography‐tandem mass spectrometry. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Yatendra Singh
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
| | - Priyanka Rawat
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Akhilesh Kumar
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Sumit K. Singh
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Dipak K. Mishra
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility & Research, Division CSIR‐Central Drug Research Institute Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
5
|
Rawat P, Singh Y, Tiwari S, Mishra DK, Kanojiya S. The characterization and quantification of structures of Cajanus scarabaeoides phytochemicals and their seasonal variation analysis using ultra-performance liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9440. [PMID: 36411261 DOI: 10.1002/rcm.9440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Cajanus scarabaeoides, belonging to the Fabaceae family, is an underutilized herb and traditionally used to treat several ailments. However, it is not well explored phytochemically. Therefore, mass spectrometry (MS)-based phytochemical analysis was carried out to investigate the bioactive ingredients of the herb. METHODS A ultra-performance liquid chromatography (UPLC) coupled to photodiode array detection (PDA) and electrospray ionization (ESI) tandem mass spectrometry (UPLC-PDA-ESI-MS/MS) system was used for the qualitative and quantitative analysis of phytochemicals. The chromatographic separation was achieved on the Acquity BEH C18 column (150 × 2.1 mm, 1.7 μm) using a gradient system consisting of three solvents, acetonitrile, methanol, and 0.1% formic acid, used at a flow rate of 0.300 ml/min. RESULTS Sixteen bioactive ingredients (gallic acid, gallocatechin, epigallocatechin, catechin, procyanidin dimer, epicatechin, procyanidin trimer, isoorientin, orientin, vitexin, isovitexin, quercetin-mono-O-glycoside, isoquercitrin, luteolin-7-O-glucoside, quercetin, and luteolin) were identified and structurally characterized. Consequently, 12 compounds were reported for the first time from C. scarabaeoides, and 13 were quantitatively determined in different seasons. Isoorientin (10.2-7.1% w/w) and orientin (5.78-5.17% w/w) were the most abundant constituents in the dry weight of plant material, followed by vitexin and isovitexin in the rainy season. CONCLUSIONS The phytochemical investigation has revealed that C. scarabaeoides could be a potential alternate source of bioactive ingredients, namely, isoorientin, orientin, vitexin, and isovitexin, contributing to further exploration of its biological activity. In addition, analytical methods can be used for the rapid identification and quantification of bioactive ingredients in C. scarabaeoides.
Collapse
Affiliation(s)
- Priyanka Rawat
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yatendra Singh
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, India
| | - Swati Tiwari
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, India
| | - Dipak K Mishra
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Lyu X, Agar OT, Barrow CJ, Dunshea FR, Suleria HAR. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants (Basel) 2023; 12:antiox12010185. [PMID: 36671046 PMCID: PMC9855119 DOI: 10.3390/antiox12010185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Avocados (Persea americana M.) are highly valued fruits consumed worldwide, and there are numerous commercially available varieties on the market. However, the high demand for fruit also results in increased food waste. Thus, this study was conducted for comprehensive profiling of polyphenols of Hass, Reed, and Wurtz avocados obtained from the Australian local market. Ripe Hass peel recorded the highest TPC (77.85 mg GAE/g), TTC (148.98 mg CE/g), DPPH (71.03 mg AAE/g), FRAP (3.05 mg AAE/g), RPA (24.45 mg AAE/g), and ABTS (75.77 mg AAE/g) values; unripe Hass peel recorded the highest TFC (3.44 mg QE/g); and Wurtz peel recorded the highest TAC (35.02 mg AAE/g). Correlation analysis revealed that TPC and TTC were significantly correlated with the antioxidant capacity of the extracts. A total of 348 polyphenols were screened in the peel. A total of 134 compounds including 36 phenolic acids, 70 flavonoids, 11 lignans, 2 stilbenes, and another 15 polyphenols, were characterised through LC-ESI-QTOF-MS/MS, where the majority were from peels and seeds of samples extract. Overall, the hierarchical heat map revealed that there were a significant amount of polyphenols in peels and seeds. Epicatechin, kaempferol, and protocatechuic acid showed higher concentrations in Reed pulp. Wurtz peel contains a higher concentration of hydroxybenzoic acid. Our results showed that avocado wastes have a considerable amount of polyphenols, exhibiting antioxidant activities. Each sample has its unique value proposition based on its phenolic profile. This study may increase confidence in utilising by-products and encourage further investigation into avocado by-products as nutraceuticals.
Collapse
Affiliation(s)
- Xiaoyan Lyu
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Osman Tuncay Agar
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Frank R. Dunshea
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Hafiz A. R. Suleria
- Faculty of Science, School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
- Correspondence: ; Tel.: +61-4-7043-9670
| |
Collapse
|
7
|
Cheng C, Zhou Y, Nelson HM, Ahmadullah T, Piao H, Wang Z, Guo W, Wang JG, Lai G, Zhu Z. Molecular identification of wines using in situ liquid SIMS and PCA analysis. Front Chem 2023; 11:1124229. [PMID: 36923690 PMCID: PMC10008862 DOI: 10.3389/fchem.2023.1124229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Composition analysis in wine is gaining increasing attention because it can provide information about the wine quality, source, and nutrition. In this work, in situ liquid secondary ion mass spectrometry (SIMS) was applied to 14 representative wines, including six wines manufactured by a manufacturer in Washington State, United States, four Cabernet Sauvignon wines, and four Chardonnay wines from other different manufacturers and locations. In situ liquid SIMS has the unique advantage of simultaneously examining both organic and inorganic compositions from liquid samples. Principal component analysis (PCA) of SIMS spectra showed that red and white wines can be clearly differentiated according to their aromatic and oxygen-contained organic species. Furthermore, the identities of different wines, especially the same variety of wines, can be enforced with a combination of both organic and inorganic species. Meanwhile, in situ liquid SIMS is sample-friendly, so liquid samples can be directly analyzed without any prior sample dilution or separation. Taken together, we demonstrate the great potential of in situ liquid SIMS in applications related to the molecular investigation of various liquid samples in food science.
Collapse
Affiliation(s)
- Cuixia Cheng
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, China.,Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Yadong Zhou
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States.,Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Holden M Nelson
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States.,Department of Chemical and Physical Sciences, Westfield State University, Westfield, MA, United States
| | - Tasneem Ahmadullah
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hailan Piao
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Zhaoying Wang
- Center for Imaging and Systems Biology, Minzu University of China, Beijing, China
| | - Wenxiao Guo
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jun-Gang Wang
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States.,School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei, China
| | - Zihua Zhu
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
8
|
Characterization of Berry Skin Phenolic Profiles in Dalmatian Grapevine Varieties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Dalmatian vineyards host many autochthonous varieties. The phenolic profile, defined by the relative proportions of different phenolic compounds, is specific for each grape variety. The aim of this study was to determine and analyze the flavonoid compounds of twenty rare red grape varieties. Nineteen phenolic compounds, represented by anthocyanins, flavanols, and flavonols, were detected and quantified using HPLC in three consecutive vintages. The content of grape skin anthocyanins (10414.06 (Plavac mali crni)-19.58 (Trišnjavac) mg kg−1 d.w. of grape skin), flavonols (1742.08 (Pošip crni)-215.56 (Crljenak viški) mg kg−1 d.w. of grape skin), and flavan-3-ols (448.04 (Pošip crni)-87.88 (Glavinuša) mg kg−1 d.w. of grape skin) showed significant differences in investigated varieties. According to the investigated phenolic compounds, Pošip crni, Ljutun, Zadarka, Dobričić, Plavac mali crni, and Trnjak differed from other investigated varieties. These local varieties can be perceived as an alternative to widespread varieties in Dalmatia. This was shown by one of the first studies on phenolic profiles of (mostly) rare autochthonous varieties.
Collapse
|
9
|
Dou Y, Mei M, Kettunen T, Mäkinen M, Jänis J. Chemical fingerprinting of phenolic compounds in Finnish berry wines using Fourier transform ion cyclotron resonance mass spectrometry. Food Chem 2022; 383:132303. [PMID: 35196582 DOI: 10.1016/j.foodchem.2022.132303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Chemical fingerprinting of phenolic compounds present in Finnish berry wines was performed using a direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The main aim of this study was to compare the phenolics profiles of wines produced from natural and/or cultivated berries and to demonstrate the feasibility of FT-ICR MS for a direct chemical analysis of the wine samples without chromatographic separation. First, phenolic compounds were recovered from the wine samples by solid-phase extraction (SPE), and the total phenolic content (TPC) was then determined by a Folin-Ciocalteau assay. The TPC of the original berry wines varied from 421 to 2108 mg/L, while the TPC of the extracts was 157-1525 mg/L. Over fifty phenolic compounds were tentatively identified from the wine samples by FT-ICR MS, whose concentrations highly varied depending on the types of berries used in the winemaking process.
Collapse
Affiliation(s)
- Yanning Dou
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| | - Menglan Mei
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| | - Timo Kettunen
- Hermanni Winery Ltd, Käymiskuja 2, FI-82900, Ilomantsi, Finland.
| | - Marko Mäkinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, FI-80130 Joensuu, Finland.
| |
Collapse
|
10
|
Extraction of Antioxidants from Grape and Apple Pomace: Solvent Selection and Process Kinetics. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyphenols have become a research target due to their antioxidant, anti-inflammatory and antimicrobial activity. Obtention via extraction from natural sources includes the revalorization of food wastes such as grape pomace (GP) or apple pomace (AP). In this work, GP and AP were submitted to a liquid–solid extraction using different solvents of industrial interest. Process kinetics were studied measuring the total phenolic content (TPC) and antioxidant capacity (AC), while the extraction liquor composition was analyzed employing chromatographic methods. Extraction processes using water-solvent mixtures stood out as the better options, with a particular preference for water 30%–ethanol 70% (v/v) at 90 °C, a mixture that quickly extracts up to 68.46 mg GAE/gds (Gallic Acid Equivalent per gram dry solid) and 122.67 TEAC/gds (TROLOX equivalent antioxidant capacity per gram dry solid) in case of GP, while ethylene water 10%–ethylene glycol 90% (v/v) at 70 °C allows to reach 27.19 mg GAE/gds and 27.45 TEAC/gds, in the case of AP. These extraction processes can be well-described by a second-order kinetic model that includes a solubility-related parameter for the first and fast-washing and two parameters for the slow mass transfer controlled second extraction phase. AP liquors were found to be rich in quercetin with different sugar moieties and GP extracts highlighted flavonols, cinnamic acids, and anthocyanins. Therefore, using identical extraction conditions for AP and GP and a comparative kinetic analysis of TPC and AC results for the first time, we concluded that ethanol/water mixtures are adequate solvents for polyphenols extraction due to their high efficiency and environmentally benign nature.
Collapse
|
11
|
Carra JB, Matos RLND, Novelli AP, Couto ROD, Yamashita F, Ribeiro MADS, Meurer EC, Verri WA, Casagrande R, Georgetti SR, Arakawa NS, Baracat MM. Spray-drying of casein/pectin bioconjugate microcapsules containing grape (Vitis labrusca) by-product extract. Food Chem 2022; 368:130817. [PMID: 34411863 DOI: 10.1016/j.foodchem.2021.130817] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 01/25/2023]
Abstract
Novel microcapsules containing grape peel by-product extract were obtained. In this pursuit, complex coacervation of casein/pectin bioconjugate and spray-drying were combined. We have investigated the role of the dispersion feed rate (FR), drying air inlet temperature (IT) and drying air flow rate (AR) in the drying yield, microencapsulation efficiency, total polyphenols and anthocyanins contents, antioxidant activity, and morphology of the products. Also, the first-order degradation kinetics of the phytochemicals for both the extract and dried microcapsules was assessed and compared. The loss on the phytochemicals during spray-drying was attenuated in up to 88%, and the IT was the main factor affecting the particle properties. The polyphenols on the extract interacted with the polymers, influencing the assemble of the bioconjugate and the particle's features. Such microencapsulation strategy enhanced the thermal stability of the phytochemicals and rendered biocompatible and biodegradable products of which the nutraceutical and cosmeceutical application may have potential.
Collapse
Affiliation(s)
| | | | - Ana Paula Novelli
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Renê Oliveira do Couto
- Universidade Federal de São João del-Rei, Campus Centro-Oeste (Dona Lindu), Divinópolis, MG, Brazil
| | - Fabio Yamashita
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | - Eduardo César Meurer
- Universidade Federal do Paraná, Campus Jandaia do Sul, Rua Doutor João Maximiano, 426, Vila Operária, 86900-000 Jandaia do Sul, PR, Brazil
| | | | - Rubia Casagrande
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Sandra Regina Georgetti
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Nilton Syogo Arakawa
- Departamento de Química, Universidade Estadual de Londrina, Londrina, PR, Brazil; Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcela Maria Baracat
- Departamento de Química, Universidade Estadual de Londrina, Londrina, PR, Brazil; Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
12
|
Promising Antiviral Activity of Agrimonia pilosa Phytochemicals against Severe Acute Respiratory Syndrome Coronavirus 2 Supported with In Vivo Mice Study. Pharmaceuticals (Basel) 2021; 14:ph14121313. [PMID: 34959713 PMCID: PMC8709118 DOI: 10.3390/ph14121313] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
The global emergence of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused the entire world’s attention toward searching for a potential remedy for this disease. Thus, we investigated the antiviral activity of Agrimonia pilosa ethanol extract (APEE) against SARS-CoV-2 and it exhibited a potent antiviral activity with IC50 of 1.1 ± 0.03 µg/mL. Its mechanism of action was elucidated, and it exhibited a virucidal activity and an inhibition of viral adsorption. Moreover, it presented an immunomodulatory activity as it decreased the upregulation of gene expression of COX-2, iNOS, IL-6, TNF-α, and NF-κB in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells. A comprehensive analysis of the phytochemical fingerprint of APEE was conducted using LC-ESI-MS/MS technique for the first time. We detected 81 compounds and most of them belong to the flavonoid and coumarin classes. Interestingly, isoflavonoids, procyanidins, and anthocyanins were detected for the first time in A. pilosa. Moreover, the antioxidant activity was evidenced in DPPH (IC50 62.80 µg/mL) and ABTS (201.49 mg Trolox equivalents (TE)/mg) radical scavenging, FRAP (60.84 mg TE/mg), and ORAC (306.54 mg TE/g) assays. Furthermore, the protective effect of APEE was investigated in Lipopolysaccharides (LPS)-induced acute lung injury (ALI) in mice. Lung W/D ratio, serum IL-6, IL-18, IL-1β, HO-1, Caspase-1, caspase-3, TLR-4 expression, TAC, NO, MPO activity, and histopathological examination of lung tissues were assessed. APEE induced a marked downregulation in all inflammation, oxidative stress, apoptosis markers, and TLR-4 expression. In addition, it alleviated all histopathological abnormalities confirming the beneficial effects of APEE in ALI. Therefore, APEE could be a potential source for therapeutic compounds that could be investigated, in future preclinical and clinical trials, in the treatment of patients with COVID-19.
Collapse
|
13
|
Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. MATERIALS 2021; 14:ma14247640. [PMID: 34947237 PMCID: PMC8706457 DOI: 10.3390/ma14247640] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022]
Abstract
It is well-known that the utilization of mushrooms as therapeutic agents is not new. Over the past years, they have been used by local individuals as food, as well as medicines, throughout the world. Nowadays, mushrooms are excessively used in the medicine, pharmacy, food, and fermentation fields as well. Wild mushrooms are of particular interest, especially Trametes versicolor (commonly known as turkey mushrooms) due to their various uses in the food and pharmaceutical industries. They represent not only a huge storehouse of vitamins, minerals, and dietary fiber, but they are also an important source of bioactive polysaccharides. They are widely used in traditional oriental therapies. The fruiting bodies are used in the preparation of health tonics and tea. The present review is necessary to explore more about this mushroom-like classical taxonomy, morphology, nutritional value, bioactivity, various health attributes, mechanism of bioactive components against various diseases, and food applications. The influence of processing processes on the nutritional properties and bioactivity of the fungus is discussed. Potential bioactive components promising health attributes of Trametes versicolor are extensively described. Additionally, several in vivo and in vitro studies have demonstrated the beneficial effects of polysaccharopeptides (PSP) and Polysaccharide-K (PSK) on the aspects related to immune function and inflammation, also presenting an anticancerous effect. Moreover, PSP and PSK were successfully described to decrease several life-threatening diseases. The potential food applications of Trametes versicolor were detailed to signify the effective utilization of the mushroom in functional food formulation.
Collapse
Affiliation(s)
- Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, India;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India;
- Correspondence: (P.C.); (M.F.); (S.Z.)
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India;
| | - Agnieszka Najda
- Department of Vegetable and Heerbal Crops, University of Life Science in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland;
| | - Melinda Fogarasi
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăstur 3–5, 400372 Cluj-Napoca, Romania
- Correspondence: (P.C.); (M.F.); (S.Z.)
| | - Szabolcs Fogarasi
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
- Correspondence: (P.C.); (M.F.); (S.Z.)
| |
Collapse
|
14
|
UHPLC–DAD–ESI–MS/MS characterization of St. John’s wort infusions from Serbia origin. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Negro C, Aprile A, Luvisi A, De Bellis L, Miceli A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants (Basel) 2021; 10:1406. [PMID: 34573038 PMCID: PMC8465212 DOI: 10.3390/antiox10091406] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
The wine industry annually produces millions of tons of by-products rich in polyphenolic compounds that can be reused as secondary raw material in the food, cosmetic and pharmaceutical industries. The purpose of this work was to describe the presence of nutraceutical compounds and to evaluate the antioxidant activity of pomaces from three Apulian (South Italy, Italy) grape varieties (Negroamaro, Malvasia di Lecce and Primitivo) and to compare them with one of the most cultivated wines in Europe (Cabernet Sauvignon). The main classes of polyphenolic substances were characterized via high performance liquid chromatography/diode array detector/mass spectrometer time of flight (HPLC/DAD/TOF) and the antioxidant activity was evaluated with three different methods. The four investigated grape marcs have shown different polyphenols and antioxidant activities. Primitivo marc showed the higher antioxidant activity due to the excellent level of polyphenols, followed by the Negroamaro cultivar. In addition, marcs from traditional Apulian vines showed higher antioxidant activities than Cabernet Sauvignon because of an elevated level of active polyphenolic substances such as catechin, epicatechin, quercetin and its derivatives.
Collapse
Affiliation(s)
- Carmine Negro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, 73100 Lecce, Italy; (A.A.); (A.L.); (L.D.B.); (A.M.)
| | | | | | | | | |
Collapse
|
16
|
Anti-Diabetic and Antioxidant Activities of Red Wine Concentrate Enriched with Polyphenol Compounds under Experimental Diabetes in Rats. Antioxidants (Basel) 2021; 10:antiox10091399. [PMID: 34573031 PMCID: PMC8471289 DOI: 10.3390/antiox10091399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022] Open
Abstract
We obtained red wine concentrate, which was enriched with natural polyphenolic compounds (PC concentrate). The main purpose was to study the hypoglycemic and antioxidant effects of the red wine concentrate, and its impact on key hematological parameters of rats with experimental diabetes mellitus. While administrating the red wine concentrate to rats with diabetes, partial recovering of glucose tolerance was promoted, as well as normalization of glycated hemoglobin level, an increase in the quantity of erythrocytes and hemoglobin concentration. PC concentrate had anti-radical effect, which was determined using 2,2-diphenyl-1-picrylhydrazylradical (DPPH) method and effectively inhibited oxidation of phosphatidylcholine liposomes, induced by 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) as a free radical generator. It was also confirmed that PC concentrate had antioxidant properties in vivo. The contents of lipid peroxidation and protein oxidation products, the activity of catalase, and glutathione peroxidase (GPx) were increased in the plasma of rats with diabetes mellitus. At the same time, the activity of superoxide dismutase (SOD) was decreased. The concentrate of red wine had a corrective effect on investigated indicators and caused their normalization in plasma of diabetic animals.
Collapse
|
17
|
Tufariello M, Rizzuti A, Palombi L, Ragone R, Capozzi V, Gallo V, Mastrorilli P, Grieco F. Non-targeted metabolomic approach as a tool to evaluate the chemical profile of sparkling wines fermented with autochthonous yeast strains. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Physico-Chemical and Sensory Characterization of a Fruit Beer Obtained with the Addition of Cv. Lambrusco Grapes Must. BEVERAGES 2021. [DOI: 10.3390/beverages7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In 2015, Italian Grape Ale (IGA) beers have been included as a new provisional sub-category of special-type fruit beers by the Beer Judge Certification Program, including those products whose brewing process is carried out in presence of determined quantities of grape must. However, information on the effects of these additions on the composition of final beers are still scarce. This work is hence focused on the chromatic, volatile, phenolic and sensory characterization of IGA beers obtained with the addition of grape musts during brewing process. To this aim, different amounts of must (5, 10 and 20%) from cv. Lambrusco red grapes were added to a lager wort before primary fermentation. Beers were then characterized by HPLC-MS, GC-MS and sensory analysis in order to determine phenolic and aroma compounds along with their sensory attributes. Results confirmed the addition of must from cv. Lambrusco grapes capable to enrich beers in color, acids, phenolic (up to 7-folded increased) and volatile compounds, while giving complexity to beers. These results, which were confirmed by a trained sensory panel, are among the very first insights on the impact of red grape must in brewing, both from a compositional and sensory point of view.
Collapse
|
19
|
LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. SEPARATIONS 2021. [DOI: 10.3390/separations8050062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Custard apple is an edible fruit grown in tropical and subtropical regions. Due to its abundant nutrient content and perceived health benefits, it is a popular food for consumption and is utilized as a medicinal aid. Although some published research had provided the phenolic compound of custard apple, the comprehensive phenolic profiling of Australian grown custard apple is limited. Hence, this research aimed to evaluate the phenolic content and antioxidant potential by various phenolic content and antioxidant assays, followed by characterization and quantification of the phenolic profile using LC-ESI-QTOF-MS/MS and HPLC-PDA. African Pride peel had the highest value in TPC (61.69 ± 1.48 mg GAE/g), TFC (0.42 ± 0.01 mg QE/g) and TTC (43.25 ± 6.70 mg CE/g), followed by Pink’s Mammoth peel (19.37 ± 1.48 mg GAE/g for TPC, 0.27 ± 0.03 mg QE/g for TFC and 10.25 ± 1.13 mg CE/g for TTC). African Pride peel also exhibited the highest antioxidant potential for TAC (43.41 ± 1.66 mg AAE/g), FRAP (3.60 ± 0.14 mg AAE/g) and ABTS (127.67 ± 4.60 mg AAE/g), whereas Pink’s Mammoth peel had the highest DPPH (16.09 ± 0.34 mg AAE/g), RPA (5.32 ± 0.14 mg AAE/g), •OH-RSA (1.23 ± 0.25 mg AAE/g) and FICA (3.17 ± 0.18 mg EDTA/g). LC-ESI-QTOF-MS/MS experiment successfully characterized 85 phenolic compounds in total, encompassing phenolic acids (20), flavonoids (42), stilbenes (4), lignans (6) and other polyphenols (13) in all three parts (pulp, peel and seeds) of custard apple. The phenolic compounds in different portions of custard apples were quantified by HPLC-PDA, and it was shown that African Pride peel had higher concentrations of the most abundant phenolics. This is the first study to provide the comprehensive phenolic profile of Australian grown custard apples, and the results highlight that each part of custard apple can be a rich source of phenolics for the utilization of custard apple fruit and waste in the food, animal feeding and nutraceutical industries.
Collapse
|
20
|
Amer RI, Ezzat SM, Aborehab NM, Ragab MF, Mohamed D, Hashad A, Attia D, Salama MM, El Bishbishy MH. Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed Pharmacother 2021; 138:111537. [PMID: 34311535 DOI: 10.1016/j.biopha.2021.111537] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 01/19/2023] Open
Abstract
Aging of the skin is a complicated bioprocess that is affected by constant exposure to ultraviolet irradiation. The application of herbal-based anti-aging creams is still the best choice for treatment. In the present study, Citrus sinensis L. fruit peels ethanolic extract (CSPE) was formulated into lipid nanoparticles (LNPs) anti-aging cream. Eight different formulations of CSEP-LNPs were prepared and optimized using 23 full factorial designs. In vivo antiaging effect of the best formula was tested in Swiss albino mice where photo-aging was induced by exposure to UV radiation. HPLC-QToF-MS/MS metabolic profiling of CSPE led to the identification of twenty-nine metabolites. CSPE was standardized to a hesperidin content of 15.53 ± 0.152 mg% using RP-HPLC. It was suggested that the optimized formulation (F7) had (245 nm) particle size, (91.065%) EE, and (91.385%) occlusive effect with a spherical and smooth surface. The visible appearance of UV-induced photoaging in mice was significantly improved after topical application on CSPE-NLC cream for 5 weeks, levels of collagen and SOD were significantly increased in CSPE- NLC group, while levels of PGE2, COX2, JNK, MDA, and elastin was reduced. Finally, The prepared anti-aging CSPE-NLC cream represents a safe, convenient, and promising skincare cosmetic product.
Collapse
Affiliation(s)
- Reham I Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai F Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; Department of Analytical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Amira Hashad
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
21
|
Mohammed HA, Khan RA, Abdel-Hafez AA, Abdel-Aziz M, Ahmed E, Enany S, Mahgoub S, Al-Rugaie O, Alsharidah M, Aly MSA, Mehany ABM, Hegazy MM. Phytochemical Profiling, In Vitro and In Silico Anti-Microbial and Anti-Cancer Activity Evaluations and Staph GyraseB and h-TOP-IIβ Receptor-Docking Studies of Major Constituents of Zygophyllum coccineum L. Aqueous-Ethanolic Extract and Its Subsequent Fractions: An Approach to Validate Traditional Phytomedicinal Knowledge. Molecules 2021; 26:molecules26030577. [PMID: 33499325 PMCID: PMC7866194 DOI: 10.3390/molecules26030577] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Zygophyllum coccineum, an edible halophytic plant, is part of the traditional medicine chest in the Mediterranean region for symptomatic relief of diabetes, hypertension, wound healing, burns, infections, and rheumatoid arthritis pain. The current study aimed to characterize Z. coccineum phytoconstituents, and the evaluations of the anti-microbial-biofilm, and anti-cancers bioactivities of the plant’s mother liquor, i.e., aqueous-ethanolic extract, and its subsequent fractions. The in silico receptors interaction feasibility of Z. coccineum major constituents with Staph GyraseB, and human topoisomerase-IIβ (h-TOP-IIβ) were conducted to confirm the plant’s anti-microbial and anti-cancer biological activities. Thirty-eight secondary metabolites of flavonoids, stilbene, phenolic acids, alkaloids, and coumarin classes identified by LC-ESI-TOF-MS spectrometric analysis, and tiliroside (kaempferol-3-O-(6′′′′-p-coumaroyl)-glucoside, 19.8%), zygophyloside-F (12.78%), zygophyloside-G (9.67%), and isorhamnetin-3-O-glucoside (4.75%) were identified as the major constituents. A superior biofilm obliteration activity established the minimum biofilm eradication concentration (MBEC) for the chloroform fraction at 3.9–15.63 µg/mL, as compared to the positive controls (15.63–31.25 µg/mL) against all the microbial strains that produced the biofilm under study, except the Aspergillus fumigatus. The aqueous-ethanolic extract showed cytotoxic effects with IC50 values at 3.47, 3.19, and 2.27 µg/mL against MCF-7, HCT-116, and HepG2 cell-lines, respectively, together with the inhibition of h-TOP-IIβ with IC50 value at 45.05 ng/mL in comparison to its standard referral inhibitor (staurosporine, IC50, 135.33 ng/mL). This conclusively established the anti-cancer activity of the aqueous-ethanolic extract that also validated by in silico receptor-binding predicted energy levels and receptor-site docking feasibility of the major constituents of the plant’s extract. The study helped to authenticate some of the traditional phytomedicinal properties of the anti-infectious nature of the plant.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt;
- Correspondence: (H.A.M.); (R.A.K.); Tel.: +966-566-176-074 (H.A.M.)
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Correspondence: (H.A.M.); (R.A.K.); Tel.: +966-566-176-074 (H.A.M.)
| | - Atef A. Abdel-Hafez
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
| | - Marwa Abdel-Aziz
- Regional Center for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo 11371, Egypt;
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Proteomics and Metabolomics Unit, Department of Basic Research, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt;
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Unit, Department of Basic Research, Children’s Cancer Hospital Egypt 57357, Cairo 11441, Egypt;
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Osamah Al-Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, P.O. Box 991, Qassim 51911, Saudi Arabia;
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Qassim 51452, Saudi Arabia;
| | | | - Ahmed B. M. Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11371, Egypt;
| | - Mostafa M. Hegazy
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt;
| |
Collapse
|
22
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
23
|
Polyphenols: Natural Antioxidants to Be Used as a Quality Tool in Wine Authenticity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyphenols are a diverse group of compounds possessing various health-promoting properties that are of utmost importance for many wine sensory attributes. Apart from genetic and environmental parameters, the implementation of specific oenological practices as well as the subsequent storage conditions deeply affect the content and nature of the polyphenols present in wine. However, polyphenols are effectively employed in authenticity studies. Provision of authentic wines to the market has always been a prerequisite meaning that the declarations on the wine label should mirror the composition and provenance of this intriguing product. Nonetheless, multiple cases of intentional or unintentional wine mislabeling have been recorded alarming wine consumers who demand for strict controls safeguarding wine authenticity. The emergence of novel platforms employing instrumentation of exceptional selectivity and sensitivity along with the use of advanced chemometrics such as NMR (nuclear magnetic resonance)- and MS (mass spectrometry)-based metabolomics is considered as a powerful asset towards wine authentication.
Collapse
|
24
|
Parisi V, Vassallo A, Pisano C, Signorino G, Cardile F, Sorrentino M, Colelli F, Fucci A, D’Andrea EL, De Tommasi N, Braca A, De Leo M. A Herbal Mixture from Propolis, Pomegranate, and Grape Pomace Endowed with Anti-Inflammatory Activity in an In Vivo Rheumatoid Arthritis Model. Molecules 2020; 25:molecules25092255. [PMID: 32403241 PMCID: PMC7248927 DOI: 10.3390/molecules25092255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 11/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by the production of inflammatory factors. In order to overcome the side effects of currently used anti-inflammatory drugs, several attempts have been made to identify natural products capable of relieving RA symptoms. In this work, a herbal preparation consisting of propolis, pomegranate peel, and Aglianico grape pomace (PPP) extracts (4:1:1) was designed and evaluated for its effect on a murine collagen-induced arthritis (CIA) model. Firstly, the chemical contents of four different Italian propolis collected in the Campania region (Italy) were here reported for the first time. LC-MS analyses showed the presence of 38 constituents, identified in all propolis extracts, belonging to flavonoids and phenolic acids classes. The Pietradefusi extract was the richest one and thus was selected to design the PPP preparation for the in vivo assay. Our results highlight the impact of PPP on RA onset and progression. By using in vivo CIA models, the treatment with PPP resulted in a delayed onset of the disease and alleviated the severity of the clinical symptoms. Furthermore, we demonstrated that early PPP treatment was associated with a reduction in serum levels of IL-17, IL-1b, and IL-17–triggering cytokines.
Collapse
Affiliation(s)
- Valentina Parisi
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano (SA), Italy;
- Università degli Studi di Salerno, Ph. D. School of Pharmacy, 84084 Fisciano (SA), Italy
| | - Antonio Vassallo
- Dipartimento di Scienze, Università della Basilicata, 85100 Potenza, Italy;
| | - Claudio Pisano
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
- Correspondence: (C.P.); (N.D.T.); Tel.: +39-334-6817269 (C.P.); +39-089-969754 (N.D.T.)
| | - Giacomo Signorino
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Francesco Cardile
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Milena Sorrentino
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Fabiana Colelli
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Alessandra Fucci
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Egildo Luca D’Andrea
- Biogem, Research Institute “G. Salvatore”, 83031 Ariano Irpino (AV), Italy; (G.S.); (F.C.); (M.S.); (F.C.); (A.F.); (E.L.D.)
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano (SA), Italy;
- Correspondence: (C.P.); (N.D.T.); Tel.: +39-334-6817269 (C.P.); +39-089-969754 (N.D.T.)
| | - Alessandra Braca
- Dipartimento di Farmacia, Università di Pisa, 56126 Pisa, Italy; (A.B.); (M.D.L.)
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute “Nutrafood”, Università di Pisa, 56124 Pisa, Italy
| | - Marinella De Leo
- Dipartimento di Farmacia, Università di Pisa, 56126 Pisa, Italy; (A.B.); (M.D.L.)
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute “Nutrafood”, Università di Pisa, 56124 Pisa, Italy
| |
Collapse
|
25
|
Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications-Phytochemical Analysis and In Vitro Bioassays. Molecules 2020; 25:molecules25071563. [PMID: 32235298 PMCID: PMC7180999 DOI: 10.3390/molecules25071563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Girardinia diversifolia, also known as Himalayan nettle, is a perennial herb used in Nepal to make fiber as well as in traditional medicine for the treatment of several diseases. To date, phytochemical studies and biological assays on this plant are scarce. Thus, in the present work, the G. diversifolia extracts have been evaluated for their potential pharmaceutical, cosmetic and nutraceutical uses. For this purpose, detailed phytochemical analyses were performed, evidencing the presence of phytosterols, fatty acids, carotenoids, polyphenols and saponins. The most abundant secondary metabolites were β- and γ-sitosterol (11 and 9% dw, respectively), and trans syringin (0.5 mg/g) was the most abundant phenolic. Fatty acids with an abundant portion of unsaturated derivatives (linoleic and linolenic acid at 22.0 and 9.7 mg/g respectively), vitamin C (2.9 mg/g) and vitamin B2 (0.12 mg/g) were also present. The antioxidant activity was moderate while a significant ability to inhibit acetylcholinesterase (AChE), butyrilcholinesterase (BuChE), tyrosinase, α-amylase and α-glucosidase was observed. A cytotoxic effect was observed on human ovarian, pancreatic and hepatic cancer cell lines. The effect in hepatocarcinoma cells was associated to a downregulation of the low-density lipoprotein receptor (LDLR), a pivotal regulator of cellular cholesterol homeostasis. These data show the potential usefulness of this species for possible applications in pharmaceuticals, nutraceuticals and cosmetics.
Collapse
|
26
|
Abstract
Madeira wine is a fortified Portuguese wine, which has a crucial impact on the Madeira Island economy. The particular properties of Madeira wine result from the unique and specific winemaking and ageing processes that promote the occurrence of chemical reactions among acids, sugars, alcohols, and polyphenols, which are important to the extraordinary quality of the wine. These chemical reactions contribute to the appearance of novel compounds and/or the transformation of others, consequently promoting changes in qualitative and quantitative volatile and non-volatile composition. The current review comprises an overview of Madeira wines related to volatile (e.g., terpenes, norisoprenoids, alcohols, esters, fatty acids) and non-volatile composition (e.g., polyphenols, organic acids, amino acids, biogenic amines, and metals). Moreover, types of aroma compounds, the contribution of volatile organic compounds (VOCs) to the overall Madeira wine aroma, the change of their content during the ageing process, as well as the establishment of the potential ageing markers will also be reviewed. The viability of several analytical methods (e.g., gas chromatography-mass spectrometry (GC-MS), two-dimensional gas chromatography and time-of-flight mass spectrometry (GC×GC-ToFMS)) combined with chemometrics tools (e.g., partial least squares regression (PLS-R), partial least squares discriminant analysis (PLS-DA) was investigated to establish potential ageing markers to guarantee the Madeira wine authenticity. Acetals, furanic compounds, and lactones are the chemical families most commonly related with the ageing process.
Collapse
|
27
|
Post-tetanic Potentiation and Depression in Hippocampal Neurons in a Rat Model of Alzheimer’s Disease: Effects of Teucrium Polium Extract. NEUROPHYSIOLOGY+ 2020. [DOI: 10.1007/s11062-020-09827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Metabolite Profiling of Aquilaria malaccensis Leaf Extract Using Liquid Chromatography-Q-TOF-Mass Spectrometry and Investigation of Its Potential Antilipoxygenase Activity In-Vitro. Processes (Basel) 2020. [DOI: 10.3390/pr8020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Aquilaria malaccensis species of the genus Aquilaria is an abundant source of agarwood resin and many bioactive phytochemicals. Recent data regarding the chemical constituents and biological activities of Aquilaria leaves led us to attempt to qualitatively profile the metabolites of Aquilaria malaccensis leaves from a healthy, noninoculated tree through phytochemical screening, GC-MS, and LC/Q-TOF-MS. The present work is also the first to report the antilipoxygenase activity of A. malaccensis leaves from healthy noninoculated tree and investigate its toxicity on oral mucosal cells. A total of 53 compounds were tentatively identified in the extract, some of which have been described in literature as exhibiting anti-inflammatory activity. A number of compounds were identified for the first time in the extract of A. malaccensis leaf, including quercetin, quercetin-O-hexoside, kaempferol-O-dirhamnoside, isorhamnetin-O-hexoside, syringetin-O-hexoside, myricetin, tetrahydroxyflavanone, hesperetin, sissotrin, and lupeol. The antilipoxygenase assay was used to determine the lipoxygenase (LOX) inhibitory potential of the extract, while a WST-1 assay was conducted to investigate the effect of the extract on oral epithelial cells (OEC). The extract implied moderate anti-LOX activity with IC50 value of 71.6 µg/mL. Meanwhile, the cell viability of OEC ranged between 92.55% (10 µg/mL)–76.06% ± (100 µg/mL) upon treatment, indicating some potential toxicity risks. The results attained encourage future studies of the isolation of bioactive compounds from Aquilaria malaccensis leaves, as well as further investigation on the anti-inflammatory mechanisms and toxicity associated with their use.
Collapse
|
29
|
Miotto-Vilanova L, Courteaux B, Padilla R, Rabenoelina F, Jacquard C, Clément C, Comte G, Lavire C, Ait Barka E, Kerzaon I, Sanchez L. Impact of Paraburkholderia phytofirmans PsJN on Grapevine Phenolic Metabolism. Int J Mol Sci 2019; 20:ijms20225775. [PMID: 31744149 PMCID: PMC6888286 DOI: 10.3390/ijms20225775] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
Phenolic compounds are implied in plant-microorganisms interaction and may be induced in response to plant growth-promoting rhizobacteria (PGPRs). Among PGPR, the beneficial bacterium Paraburkholderia phytofirmans PsJN was previously described to stimulate the growth of plants and to induce a better adaptation to both abiotic and biotic stresses. This study aimed to investigate the impact of PsJN on grapevine secondary metabolism. For this purpose, gene expression (qRT-PCR) and profiling of plant secondary metabolites (UHPLC-UV/DAD-MS QTOF) from both grapevine root and leaves were compared between non-bacterized and PsJN-bacterized grapevine plantlets. Our results showed that PsJN induced locally (roots) and systemically (leaves) an overexpression of PAL and STS and specifically in leaves the overexpression of all the genes implied in phenylpropanoid and flavonoid pathways. Moreover, the metabolomic approach revealed that relative amounts of 32 and 17 compounds in roots and leaves, respectively, were significantly modified by PsJN. Once identified to be accumulated in response to PsJN by the metabolomic approach, antifungal properties of purified molecules were validated in vitro for their antifungal effect on Botrytis cinerea spore germination. Taking together, our findings on the impact of PsJN on phenolic metabolism allowed us to identify a supplementary biocontrol mechanism developed by this PGPR to induce plant resistance against pathogens.
Collapse
Affiliation(s)
- Lidiane Miotto-Vilanova
- Unité de Recherche EA 4707 Résistance Induite et Bioprotection des Plantes (RIBP), Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 51687 Reims Cedex 2, France; (L.M.-V.); (B.C.); (F.R.); (C.J.); (C.C.); (E.A.B.)
| | - Barbara Courteaux
- Unité de Recherche EA 4707 Résistance Induite et Bioprotection des Plantes (RIBP), Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 51687 Reims Cedex 2, France; (L.M.-V.); (B.C.); (F.R.); (C.J.); (C.C.); (E.A.B.)
| | - Rosa Padilla
- Ecologie Microbienne, Université Lyon 1, CNRS, INRA, UMR 5557, 69622 Villeurbanne, France; (R.P.); (G.C.); (C.L.); (I.K.)
| | - Fanja Rabenoelina
- Unité de Recherche EA 4707 Résistance Induite et Bioprotection des Plantes (RIBP), Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 51687 Reims Cedex 2, France; (L.M.-V.); (B.C.); (F.R.); (C.J.); (C.C.); (E.A.B.)
| | - Cédric Jacquard
- Unité de Recherche EA 4707 Résistance Induite et Bioprotection des Plantes (RIBP), Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 51687 Reims Cedex 2, France; (L.M.-V.); (B.C.); (F.R.); (C.J.); (C.C.); (E.A.B.)
| | - Christophe Clément
- Unité de Recherche EA 4707 Résistance Induite et Bioprotection des Plantes (RIBP), Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 51687 Reims Cedex 2, France; (L.M.-V.); (B.C.); (F.R.); (C.J.); (C.C.); (E.A.B.)
| | - Gilles Comte
- Ecologie Microbienne, Université Lyon 1, CNRS, INRA, UMR 5557, 69622 Villeurbanne, France; (R.P.); (G.C.); (C.L.); (I.K.)
| | - Céline Lavire
- Ecologie Microbienne, Université Lyon 1, CNRS, INRA, UMR 5557, 69622 Villeurbanne, France; (R.P.); (G.C.); (C.L.); (I.K.)
| | - Essaïd Ait Barka
- Unité de Recherche EA 4707 Résistance Induite et Bioprotection des Plantes (RIBP), Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 51687 Reims Cedex 2, France; (L.M.-V.); (B.C.); (F.R.); (C.J.); (C.C.); (E.A.B.)
| | - Isabelle Kerzaon
- Ecologie Microbienne, Université Lyon 1, CNRS, INRA, UMR 5557, 69622 Villeurbanne, France; (R.P.); (G.C.); (C.L.); (I.K.)
| | - Lisa Sanchez
- Unité de Recherche EA 4707 Résistance Induite et Bioprotection des Plantes (RIBP), Université de Reims Champagne-Ardenne, SFR Condorcet FR CNRS 3417, 51687 Reims Cedex 2, France; (L.M.-V.); (B.C.); (F.R.); (C.J.); (C.C.); (E.A.B.)
- Correspondence: ; Tel.: +33-326-913-436
| |
Collapse
|
30
|
The Synergistic Behavior of Antioxidant Phenolic Compounds Obtained from Winemaking Waste's Valorization, Increased the Efficacy of a Sunscreen System. Antioxidants (Basel) 2019; 8:antiox8110530. [PMID: 31703285 PMCID: PMC6912203 DOI: 10.3390/antiox8110530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023] Open
Abstract
Grape pomace retains polyphenols in the peels and in the seeds after winemaking, which is indicative of the high valorization potential of this industrial waste. There is strong evidence that phenolics are robust antioxidants and confer photoprotection; thus, it is rational to apply these active compounds from winemaking waste to sunscreens, in order to increase UV protection. Despite the importance of this class of cosmetics to public health, more efficacious strategies are still needed to overcome the problems caused by the photoinstability of some UV filters. The hydroethanolic extract of Vitis vinifera L. grapes was obtained by percolation and then lyophilized. Six formulations were developed: Type I—cosmetic base and UV filters; Type II—cosmetic base and extract; and Type III—cosmetic base, extract and UV filters. Each formulation was prepared in the pHs 5 and 7. The antioxidant activities of the samples were measured by DPPH• and expressed in Trolox® equivalents (TE), and their photostability and in vitro sun protection factor (SPF) were analyzed by diffuse reflectance spectrophotometry. The anti-radical efficiencies observed in the formulations with grape extract were: (II) 590.12 ± 0.01 μmol TE g−1 at pH 5 and 424.51 ± 0.32 μmol TE g−1 at pH 7; (III) 550.88 ± 0.00 μmol TE g−1 at pH 5 and 429.66 ± 0.10 μmol TE g−1, at pH 7, demonstrating that the UV filters, butylmethoxydibenzoyl methane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl 4-aminobenzoic acid had no influence on this effect. The photoprotective efficacy and the photostability of formulation III containing the extract and UV filters at pH 5 suggested that a synergism between the active molecules provided an 81% increase in SPF. Additionally, this was the only sample that maintained a broad spectrum of protection after irradiation. These results confirmed that the grape pomace extract has multifunctional potential for cosmetic use, mainly in sunscreens, granting them superior performance.
Collapse
|
31
|
Prakash O, Baskaran R, Kudachikar VB. Characterization, quantification of free, esterified and bound phenolics in Kainth (Pyrus pashia Buch.-Ham. Ex D.Don) fruit pulp by UPLC-ESI-HRMS/MS and evaluation of their antioxidant activity. Food Chem 2019; 299:125114. [PMID: 31326758 DOI: 10.1016/j.foodchem.2019.125114] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022]
Abstract
UPLC-ESI-HRMS/MS was used to identify the free, esterified and bound phenolic compounds in Kainth fruit extracts. In total, around 17, 15 and 18 free, esterified and bound phenolic compounds respectively were identified. Among these, Procyanidin B2, Epicatechin, Phloridzin, Hesperetin, etc. are being reported for the first time. The total phenolic content of free, esterified and bound fractions were 178.33 ± 6.90, 151.33 ± 7.73 and 707.16 ± 19.77 mg GAE/100 g of fruit. The major phenolic compounds quantified were chlorogenic acid (7.97 mg/100 g), arbutin (7.05 mg/100 g) and catechin (44.56 mg/100 g) in free, esterified and bound form respectively. Various antioxidant assays (DPPH, ABTS, TAC and FRAP) were performed for all the extracts. Among different extracts, the bound phenolics exhibited the highest antioxidant activity. Systematic identification and quantitative profiling of phenolics in Kainth fruit being presented for the first time would help in utilising this fruit for designing functional food formulations.
Collapse
Affiliation(s)
- Om Prakash
- Academy of Scientific and Innovative Research, Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Revathy Baskaran
- Academy of Scientific and Innovative Research, Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| | - V B Kudachikar
- Academy of Scientific and Innovative Research, Fruit and Vegetable Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
32
|
Recovery of Oligomeric Proanthocyanidins and Other Phenolic Compounds with Established Bioactivity from Grape Seed By-Products. Molecules 2019; 24:molecules24040677. [PMID: 30769803 PMCID: PMC6413075 DOI: 10.3390/molecules24040677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Grape seeds are a copious part of the grape pomace produced by wine and juice industry and they represent an interesting source of phenolic compounds. Proanthocyanidins (PAs) are the main class of grape seed phenols and are important dietary supplements for their well-known beneficial properties. In this study enriched extracts obtained from Chardonnay and Pignoletto grape seeds were characterized for their proanthocyanidins and other minor phenolic compounds content and composition. Seed PAs were fractionated using Sephadex LH-20, using different ethanol aqueous solutions as mobile phase and analysed by normal phase HPLC-FLD-ESI-MS. Monomers, oligomers up to dodecamers and polymers were recorded in all samples. For both cultivars, the extracts showed a high content in PAs. The determination of other phenolic compounds was carried out using a HPLC-QqQ-ESI-MS and Chardonnay samples reported a greater content compared to Pignoletto samples. Contrary to PAs fraction, extracts obtained with ethanol/water 50/50 (v/v) presented a significant higher phenolic content than the others.
Collapse
|
33
|
Rivera-Mondragón A, Bijttebier S, Tuenter E, Custers D, Ortíz OO, Pieters L, Caballero-George C, Apers S, Foubert K. Phytochemical characterization and comparative studies of four Cecropia species collected in Panama using multivariate data analysis. Sci Rep 2019; 9:1763. [PMID: 30742130 PMCID: PMC6370824 DOI: 10.1038/s41598-018-38334-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/20/2018] [Indexed: 01/17/2023] Open
Abstract
Plant species of the genus Cecropia (Urticaceae) are used as traditional medicine in Latin-America, and are commercially available as food supplements. The aim of this study was to characterize and compare the phytochemical constituents of four Cecropia species collected in Panama. The structures of 11 compounds isolated from leaves of C. obtusifolia were elucidated based on high resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectroscopic analysis; the polyphenolic constituents of leaves of all four Cecropia species and commercial products were characterized using high performance liquid chromatography-diode array detection-quadrupole time of flight-tandem high resolution mass spectrometry (HPLC-DAD-QTOF). Forty-seven compounds were fully identified or tentatively characterized. Thirty-nine of these have not been previously reported for the species under investigation. Multivariate analysis revelead that C. obtusifolia and C. insignis are the most related species, while C. hispidissima is the most segregated one. Considering the importance of the description of novel chemical entities and the increasing interest and use of natural products, this study may be of great help for chemotaxonomic purposes, the interpretation of medicinal properties and for quality assessment of herbal supplements containing Cecropia leaves.
Collapse
Affiliation(s)
- Andrés Rivera-Mondragón
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Sebastiaan Bijttebier
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology (SCT), Mol, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Deborah Custers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Orlando O Ortíz
- Herbario PMA, Universidad de Panamá, Estafeta Universitaria, Panama City, Republic of Panama
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Catherina Caballero-George
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Building 208, City of Knowledge, Panama, Republic of Panama
| | - Sandra Apers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
34
|
Comparison of high pressure treatment with conventional red wine aging processes: impact on phenolic composition. Food Res Int 2019; 116:223-231. [DOI: 10.1016/j.foodres.2018.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 11/20/2022]
|
35
|
Kedrina-Okutan O, Novello V, Hoffmann T, Hadersdorfer J, Occhipinti A, Schwab W, Ferrandino A. Constitutive Polyphenols in Blades and Veins of Grapevine ( Vitis vinifera L.) Healthy Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10977-10990. [PMID: 30175914 DOI: 10.1021/acs.jafc.8b03418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the economic importance and the diffusion of grapevine cultivation worldwide, little is known about leaf chemical composition. We characterized the phenolic composition of Nebbiolo, Barbera, Pinot noir, Cabernet Sauvignon, Grenache, and Shiraz ( Vitis vinifera L.) healthy leaves (separating blades and veins) during the season. Quantitative and qualitative differences were found between leaf sectors and among genotypes. In healthy grapevine leaves, anthocyanins, dihydromyricetin-rhamnoside, hexosides of dihydroquercetin, and dihydrokaempferol exclusively accumulated in veins. Astilbin was the only flavanonol detected in blades and the prevalent flavanonol in veins. Barbera distinguished for the lowest proanthocyanidin and the highest hydroxycinnamate content, and Pinot noir for the absence of acylated-anthocyanins. Nebbiolo, and Cabernet Sauvignon displayed a high concentration of epigallocatechin gallate in veins. Nebbiolo leaves showed the highest concentrations of flavanonols and the widest profile differentiation. Knowledge derived from the present work is a contribution to find out leaf polyphenol potential as a part of grapevine defense mechanisms and to dissect genotype-related susceptibility to pathogens; moreover, it represents a starting point for future deepening about grapevine and vineyard byproducts as a source of bioactive phenolic compounds.
Collapse
Affiliation(s)
- Olga Kedrina-Okutan
- Department of Agricultural, Forestry, Food Sciences (DISAFA) , University of Turin , Largo P. Braccini, 2 , Grugliasco , Torino 10095 , Italy
| | - Vittorino Novello
- Department of Agricultural, Forestry, Food Sciences (DISAFA) , University of Turin , Largo P. Braccini, 2 , Grugliasco , Torino 10095 , Italy
| | - Thomas Hoffmann
- Biotechnology of Natural Products , Technical University Munich , Liesel-Beckmann-Strasse 1 , Freising 85354 , Germany
| | | | - Andrea Occhipinti
- Department of Life Sciences and Systems Biology , University of Turin, Innovation Centre , Via Quarello 15/A , Turin 10135 , Italy
| | - Wilfried Schwab
- Biotechnology of Natural Products , Technical University Munich , Liesel-Beckmann-Strasse 1 , Freising 85354 , Germany
| | - Alessandra Ferrandino
- Department of Agricultural, Forestry, Food Sciences (DISAFA) , University of Turin , Largo P. Braccini, 2 , Grugliasco , Torino 10095 , Italy
| |
Collapse
|
36
|
Peixoto CM, Dias MI, Alves MJ, Calhelha RC, Barros L, Pinho SP, Ferreira ICFR. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem 2018; 253:132-138. [PMID: 29502813 DOI: 10.1016/j.foodchem.2018.01.163] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/03/2018] [Accepted: 01/24/2018] [Indexed: 12/23/2022]
Abstract
The bio-residues resulting from the wine industry (grape pomace made up of skins, seeds and stems) are often undervalued but constitute a potential source of bioactive phenolic compounds that can be applied in several industries. In this context, the aim of the present study was to evaluate the phenolic profile of Vitis vinifera L. grape pomace (skins, seeds and their mixture), and correlate them with its antioxidant, cytotoxic and antibacterial activities. The seeds showed the highest amount of phenolic compounds and also the highest antioxidant, cytotoxic and antibacterial activities. The skins revealed the highest levels of anthocyanins and p-coumaric acid hexoside. Strong correlations were observed between the presence of phenolic compounds and all the bioactivities studied. These by-products are good sources of phenolic compounds with high antioxidant and antibacterial activity, and also presenting a moderate cytotoxicity activity. These added-value by-products have great applicability in food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Carla M Peixoto
- Centro de Investigação de Montanha (CIMO),Instituto Politécnico de Bragança,Campus de Santa Apolónia,5300-253 Bragança,Portugal; Associate Laboratory LSRE-LCM, Departamento de Tecnologia Química e Biológica, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO),Instituto Politécnico de Bragança,Campus de Santa Apolónia,5300-253 Bragança,Portugal
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO),Instituto Politécnico de Bragança,Campus de Santa Apolónia,5300-253 Bragança,Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO),Instituto Politécnico de Bragança,Campus de Santa Apolónia,5300-253 Bragança,Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO),Instituto Politécnico de Bragança,Campus de Santa Apolónia,5300-253 Bragança,Portugal
| | - Simão P Pinho
- Associate Laboratory LSRE-LCM, Departamento de Tecnologia Química e Biológica, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO),Instituto Politécnico de Bragança,Campus de Santa Apolónia,5300-253 Bragança,Portugal.
| |
Collapse
|
37
|
Nikolantonaki M, Julien P, Coelho C, Roullier-Gall C, Ballester J, Schmitt-Kopplin P, Gougeon RD. Impact of Glutathione on Wines Oxidative Stability: A Combined Sensory and Metabolomic Study. Front Chem 2018; 6:182. [PMID: 29938203 PMCID: PMC6002495 DOI: 10.3389/fchem.2018.00182] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
This paper is a comprehensive study regarding the role of glutathione as a natural antioxidant on white wines aging potential. It includes sensory and ultrahigh resolution mass spectrometry (FTICR-MS) metabolomics of aged chardonnay wines from 2008 to 2009 vintages, made after glutathione spiking at alcoholic fermentation or bottling. The closure effect was also considered. The sensory analysis revealed a clear vintage, closure and glutathione effect on wines oxidative character after several years of bottle aging. Spearman rank correlation was applied to link the sensory analysis and the exact mass information from FT-ICR-MS. FTICR-MS along with multivariate statistical analyses put in evidence that glutathione efficiency against wines sensory oxidative stability is related to wines antioxidant metabolome consisting of N- and S- containing compounds like amino acids, aromatic compounds and peptides. The chemical composition and origin of wines antioxidant metabolome suggests that its management since the very beginning of the vinification process is a key factor to estimate wines aging potential.
Collapse
Affiliation(s)
- Maria Nikolantonaki
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| | - Perrine Julien
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 Centre National de la Recherche Scientifique, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Christian Coelho
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| | - Chloé Roullier-Gall
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France.,Research Unit Analytical Bio Geo Chemistry, Helmholtz Zentrum Muenchen, Neuherberg, Germany.,Technische Universität München, Analytical Food Chemistry, Freising, Germany
| | - Jordi Ballester
- Centre des Sciences du Goût et de l'Alimentation, UMR 6265 Centre National de la Recherche Scientifique, UMR 1324 INRA-Université de Bourgogne Franche Comté, Dijon, France
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Bio Geo Chemistry, Helmholtz Zentrum Muenchen, Neuherberg, Germany.,Technische Universität München, Analytical Food Chemistry, Freising, Germany
| | - Régis D Gougeon
- UMR PAM Université de Bourgogne/AgroSup Dijon, Institut Universitaire de la Vigne et du Vin - Jules Guyot, Dijon, France
| |
Collapse
|
38
|
Rusjan D, Mikulic-Petkovsek M. Double maturation raisonnée: the impact of on-vine berry dehydration on the berry and wine composition of Merlot (Vitis vinifera L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4835-4846. [PMID: 28382623 DOI: 10.1002/jsfa.8354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Double maturation raisonnée (DMR) is a potential canopy measure that affects grape and wine composition. The aim of this work was to study for the first time the DMR impact on the physical, biochemical and sensorial characteristics of the berries and wines of Merlot, one of the world's fastest-expanding grapevine varieties. RESULTS DMR significantly increased the content of soluble solids (1.2-fold), free amino nitrogen (1.8-fold) and acidity in berries but decreased the weight of 100 berries on harvest (approx. 28%). Irrespective of the vintage, DMR-treated grapes had a significantly higher content of non-astringent tannins (0.73-0.78 mg L-1 ) and anthocyanin extractability (34.7-36.4%) but a lower index of astringency (31.2-33.7) when compared to the control. Consequently, the DMR wines achieved higher alcohol, total acidity and extract, hydroxycinnamic acids, flavanol and flavonol contents, whereas the content of anthocyanins was similar to that of the control. Sensorial evaluation showed that DMR wines were not rated higher and would not be appreciated more than control wines. CONCLUSION Changes in berries during DMR altered the wine characteristics only in terms of primary metabolites. A reduced accumulation of phenolics, especially anthocyanin content, in the berry skin of DMR-treated grapes was not reflected in their presence in wines. To the best of our knowledge, this is the first paper that has reported an impact of DMR on the grape and wine composition of Merlot, as one of the most promising red varieties. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Denis Rusjan
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Mikulic-Petkovsek
- Biotechnical Faculty, Department of Agronomy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Di Donna L, Taverna D, Indelicato S, Napoli A, Sindona G, Mazzotti F. Rapid assay of resveratrol in red wine by paper spray tandem mass spectrometry and isotope dilution. Food Chem 2017; 229:354-357. [DOI: 10.1016/j.foodchem.2017.02.098] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 02/19/2017] [Indexed: 12/22/2022]
|
40
|
Lima MRM, Felgueiras ML, Cunha A, Chicau G, Ferreres F, Dias ACP. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:45-52. [PMID: 28039815 DOI: 10.1016/j.plaphy.2016.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 05/23/2023]
Abstract
Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data.
Collapse
Affiliation(s)
- Marta R M Lima
- Universidade do Minho, Departamento de Biologia, CITAB - Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Mafalda L Felgueiras
- Universidade do Minho, Departamento de Biologia, CITAB - Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Universidade do Minho, Departamento de Biologia, CITAB - Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Gisela Chicau
- Divisão de Protecção e Controlo Fitossanitário, Laboratório de Protecção das Culturas, Estrada Exterior da Circunvalação nº11846, 4460-281 Senhora da Hora, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS (CSIC), Campus Universitario de Espinardo. Murcia. E-30100, Spain
| | - Alberto C P Dias
- Universidade do Minho, Departamento de Biologia, CITAB - Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
41
|
Pereira B, Brazón J, Rincón M, Vonasek E. Browplasminin, a condensed tannin with anti-plasmin activity isolated from an aqueous extract of Brownea grandiceps Jacq. flowers. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:282-290. [PMID: 28089737 DOI: 10.1016/j.jep.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Following Venezuelan traditional medicine, females with heavy menstrual blood loss (menorrhagia) drink Brownea grandiceps Jacq. flowers (BG) decoctions to reduce the bleeding. In a previous study, we demonstrated that BG aqueous extract (E) possesses a potent anti-fibrinolytic activity capable of inhibiting plasmin, the main serine-protease that degrades fibrin. It is widely known that plasmin inhibitors are often used as anti-fibrinolytics to reduce bleeding during surgeries with high risk of blood loss such as cardiac, liver, vascular, tooth extraction and large orthopedic procedures, as well as for menorrhagia treatments. The aim of this work was to isolate and characterize from BGE the compound responsible for the reported anti-fibrinolytic activity. MATERIALS AND METHODS A decoction of BG was prepared; then it was homogenized, centrifuged and lyophilized to obtain BGE. Subsequently the extract was fractionated by gel filtration and reverse phase using HPLC and the active compound was characterized by MALDI-ToF MS. The kinetic parameters of anti-plasmin activity were evaluated by an amidolytic assay using a chromogenic substrate; also the anti-plasmin activity was estimated by fibrin plate method. Data were analyzed by nonparametric statistics. RESULTS The active compound was a condensed tannin denominated Browplasminin, which is capable of inhibiting the plasmin activity in a dose-dependent manner when measured in fibrin plates or by the amidolytic activity method; it also has a minor effect on the FXa activity. However, it does not affect the activity of other serine-proteases such as trypsin, t-PA or u-PA. Browplasminin consists predominately of heteroflavan-3-ols of catechin with B-type linkages, and extents up to heptadecamers (~ 5000Da), with hexose residues attached to the polymer that presents a high degree of galloylation. Its IC50 for plasmin was 47.80μg/mL and for FXa was 237.08μg/mL, while the Ki were 0.76 and 61.61μg/mL for plasmin and FXa, respectively. CONCLUSIONS The overall outcome of this study suggests that Browplasminin could be responsible for reducing heavy menstrual bleeding in women because its kinetic parameters showed that is a good plasmin inhibitor.
Collapse
Affiliation(s)
- Betzabeth Pereira
- Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela
| | - Josmary Brazón
- Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela.
| | - Mónica Rincón
- Unidad de Proteómica, Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela
| | - Eva Vonasek
- Unidad de Proteómica, Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela
| |
Collapse
|
42
|
Cocoa and Grape Seed Byproducts as a Source of Antioxidant and Anti-Inflammatory Proanthocyanidins. Int J Mol Sci 2017; 18:ijms18020376. [PMID: 28208630 PMCID: PMC5343911 DOI: 10.3390/ijms18020376] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
Phenolic compounds, which are secondary plant metabolites, are considered an integral part of the human diet. Physiological properties of dietary polyphenols have come to the attention in recent years. Especially, proanthocyanidins (ranging from dimers to decamers) have demonstrated potential interactions with biological systems, such as antiviral, antibacterial, molluscicidal, enzyme-inhibiting, antioxidant, and radical-scavenging properties. Agroindustry produces a considerable amount of phenolic-rich sources, and the ability of polyphenolic structures to interacts with other molecules in living organisms confers their beneficial properties. Cocoa wastes and grape seeds and skin byproducts are a source of several phenolic compounds, particularly mono-, oligo-, and polymeric proanthocyanidins. The aim of this work is to compare the phenolic composition of Theobroma cacao and Vitis vinifera grape seed extracts by high pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and equipped with an electrospray ionization interface (HPLC-ESI-QTOF-MS) and its phenolic quantitation in order to evaluate the proanthocyanidin profile. The antioxidant capacity was measured by different methods, including electron transfer and hydrogen atom transfer-based mechanisms, and total phenolic and flavan-3-ol contents were carried out by Folin–Ciocalteu and Vanillin assays. In addition, to assess the anti-inflammatory capacity, the expression of MCP-1 in human umbilical vein endothelial cells was measured.
Collapse
|
43
|
Koyama K, Kamigakiuchi H, Iwashita K, Mochioka R, Goto-Yamamoto N. Polyphenolic diversity and characterization in the red-purple berries of East Asian wild Vitis species. PHYTOCHEMISTRY 2017; 134:78-86. [PMID: 27887737 DOI: 10.1016/j.phytochem.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 09/10/2016] [Accepted: 10/11/2016] [Indexed: 05/20/2023]
Abstract
Grapes (Vitis spp.) produce diverse polyphenolic compounds, which are phytochemicals that contribute to human health. In this study, the polyphenolic profiles of the red-purple berries of two wild grape species native to Japan, Vitis ficifolia and V. coignetiae, and their interspecific hybrid cultivars were investigated and compared with the profiles of V. vinifera and V. × labruscana cultivars. Proanthocyanidins (PAs) were present at lower concentrations in both skins and seeds of wild grape species and their hybrid cultivars than those in V. vinifera cultivars. They also differed in their composition, consisting mainly of epicatechin in wild grape species, but containing considerable amounts of both epigallocatechin in the skins and epicatechin gallate in the seeds of V. vinifera. In contrast, V. ficifolia varieties and their hybrid cultivars accumulated high concentrations of diverse anthocyanins, and whose compositions of anthocyanins and flavonols differed between species in their degree of modification by glucosylation, acylation, methylation and B-ring hydroxylation. Principal component analysis (PCA) indicated that the polyphenolic constituents clearly separate V. vinifera and V. × labruscana cultivars from the wild grape species as well as between wild grape species, V. coignetiae and V. ficifolia. Intermediate compositions were also observed in the hybrid cultivars between these wild grape species and V. vinifera.
Collapse
Affiliation(s)
- Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Hiroshi Kamigakiuchi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiro Iwashita
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Ryosuke Mochioka
- University Farm, Faculty of Agriculture, Kagawa University, Showa, Sanuki, Kagawa, 769-2304, Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
44
|
Hellión-Ibarrola MC, Montalbetti Y, Heinichen OY, Kennedy ML, Campuzano MA, Alvarenga N, Ibarrola DA. Antidepressant-like effect of Kyllinga brevifolia rhizomes in male mice and chemical characterization of the components of the active ethyl acetate fraction. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:1005-1011. [PMID: 27816658 DOI: 10.1016/j.jep.2016.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/22/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Kyllinga brevifolia rhizomes (Cyperaceae) are used in Paraguayan traditional medicine as a refreshing beverage, and is claimed to own digestive, diuretic, sedative, tonic, antispasmodic and sudorific properties. We have previously reported that its hydro- ethanolic rhizome extract possess sedative, anxiolytic and anti-aggressive-like effects in mice. However, information on its potential for treatment of syndromes associated with mood disorders is scarce. AIM OF THE STUDY The purpose of this study is to characterize the putative antidepressant-like effects of the hydro-ethanolic extract (CEKb) and the ethyl acetate fraction (KbF-ethyl-ac) obtained from the rhizome of K. brevifolia (Rottb) on male mice exposed to forced swimming test. Also, chemical characterization of the components of the active ethyl acetate fraction was described. MATERIALS AND METHODS The antidepressant-like effects of CEKb and KbF-ethyl-ac were measured using the forced swimming test (FST) performance of male mice in single (acute), short-term and chronic modalities. Treatments in all modalities were made 1h before swimming test. The KbF-ethyl-ac was analyzed by LC-DAD-ESI-MS and LC-ESI-MS/MS in order to identify the active components. RESULTS A single doses (1.0, 10.0 and 100.0mg/kg, p.o; p<0.05) of CEKb, in male mice provoked a significant reduction of the immobility time. Such effect was also observed with oral short-term treatment (7 days) with doses of 10.0 and 100.0mg/kg/day (p<0.05) of CEKb. Moreover, in the treatments during 14 days with doses of 1.0 (p<0.05), 10.0 (p<0.05), and 100.0 (p<0.001) mg/kg, p.o, of CEKb, a statistically significant reduction of the immobility time were induced. Additionally, in a different set of experiments acute dose of 1.0 (p<0.05) and 10.0 (p<0.01) mg/kg, p.o, of KbF-ethyl-ac in male mice, a significant reduction of the immobility time were provoked. Likewise, short-term treatment (7 days) with 1.0, and 10.0mg/kg (p<0.05); and after 14 days of treatment with 0.01 (p<0.01) 0.1 (p<0.001), 1.0 (p<0.001), and 10.0 (p<0.05) mg/kg of KbF-ethyl-ac in male mice, a statistically significant reduction of the immobility time, were observed. Imipramine 32mg/kg/days, i.p, induced a statistically significant reduction of immobility time and was used as positive control to validate the method employed. Moreover, it was noted important differences in the onset of the antidepressant-like effect in the FST, depending on the modality of treatment with CEKb or KbF-ethyl-ac (acute, short-term or chronic). Both, efficacy and potency were higher when repeated administration of CEKb was used, and surprisingly the efficacy of 1.0mg/kg of KbF-ethyl-ac (14 days) was similar to imipramine. The main constituents of the KbF-ethyl-ac were identified as catechins and their dimers by LC-DAD-ESI-MS and LC-ESI-MS/MS, according to their UV and MS spectra, as compared with the literature data. These results indicate an important antidepressant-like profile of action for the CEKb and KbF-ethyl-ac; and meanwhile, this effect may partially reside on catechins and their dimers isolated from the KbF-ethyl-ac. CONCLUSION These findings indicate that K. brevifolia exerts antidepressant -like effects in mice and suggest its potential usefulness for the treatment of depression in humans and encourage us to pursue the isolation of the molecules associated to the effect observed in CEKb and KbF-ethyl-ac, and to determine the mechanism of antidepressant-like effect of Kyllinga brevifolia using adequate complementary test.
Collapse
Affiliation(s)
- M C Hellión-Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 1055, San Lorenzo, Paraguay.
| | - Y Montalbetti
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 1055, San Lorenzo, Paraguay
| | - O Y Heinichen
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 1055, San Lorenzo, Paraguay
| | - M L Kennedy
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 1055, San Lorenzo, Paraguay
| | - M A Campuzano
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 1055, San Lorenzo, Paraguay
| | - N Alvarenga
- Departamento de Fitoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Asunción, Campus UNA, 1055, San Lorenzo, Paraguay
| | - D A Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 1055, San Lorenzo, Paraguay
| |
Collapse
|
45
|
Khymenets O, Andres-Lacueva C, Urpi-Sarda M, Vazquez-Fresno R, Mart MM, Reglero G, Torres M, Llorach R. Metabolic fingerprint after acute and under sustained consumption of a functional beverage based on grape skin extract in healthy human subjects. Food Funct 2016; 6:1288-98. [PMID: 25761658 DOI: 10.1039/c4fo00684d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Grape-derived polyphenols are considered to be one of the most promising ingredients for functional foods due to their health-promoting activities. We applied a HPLC-MS-based untargeted metabolomic approach in order to evaluate the impact of a functional food based on grape skin polyphenols on the urinary metabolome of healthy subjects. Thirty-one volunteers participated in two dietary crossover randomized intervention studies: with a single-dose intake (187 mL) and with a 15-day sustained consumption (twice per day, 187 mL per day in total) of a functional beverage (FB). Postprandial (4-hour) and 24-hour urine samples collected after acute consumption and on the last day of sustained FB consumption, respectively, were analysed using an untargeted HPLC-qTOF-MS approach. Multivariate modelling with subsequent application of an S-plot revealed differential mass features related to acute and prolonged consumption of FB. More than half of the mass features were shared between the two types of samples, among which several phase II metabolites of grape-derived polyphenols were identified at confidence level II. Prolonged consumption of FB was specifically reflected in urine metabolome by the presence of first-stage microbial metabolites of flavanols: hydroxyvaleric acid and hydroxyvalerolactone derivatives. Overall, several epicatechin and phenolic acid metabolites both of tissular and microbiota origin were the most representative markers of FB consumption. To our knowledge, this is one of the first studies where an untargeted LC-MS metabolomic approach has been applied in nutrition research on a grape-derived FB.
Collapse
Affiliation(s)
- Olha Khymenets
- Biomarkers and Nutrimetabolomic Lab., Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Pharmacy School, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dal Santo S, Fasoli M, Negri S, D'Incà E, Vicenzi N, Guzzo F, Tornielli GB, Pezzotti M, Zenoni S. Plasticity of the Berry Ripening Program in a White Grape Variety. FRONTIERS IN PLANT SCIENCE 2016; 7:970. [PMID: 27462320 PMCID: PMC4940403 DOI: 10.3389/fpls.2016.00970] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/20/2016] [Indexed: 05/21/2023]
Abstract
Grapevine (Vitis vinifera L.) is considered one of the most environmentally sensitive crops and is characterized by broad phenotypic plasticity, offering important advantages such as the large range of different wines that can be produced from the same cultivar, and the adaptation of existing cultivars to diverse growing regions. The uniqueness of berry quality traits reflects complex interactions between the grapevine plant and the combination of natural factors and human cultural practices which leads to the expression of wine typicity. Despite the scientific and commercial importance of genotype interactions with growing conditions, few studies have characterized the genes and metabolites directly involved in this phenomenon. Here, we used two large-scale analytical approaches to explore the metabolomic and transcriptomic basis of the broad phenotypic plasticity of Garganega, a white berry variety grown at four sites characterized by different pedoclimatic conditions (altitudes, soil texture, and composition). These conditions determine berry ripening dynamics in terms of sugar accumulation and the abundance of phenolic compounds. Multivariate analysis unraveled a highly plastic metabolomic response to different environments, especially the accumulation of hydroxycinnamic and hydroxybenzoic acids and flavonols. Principal component analysis (PCA) revealed that the four sites strongly affected the berry transcriptome allowing the identification of environmentally-modulated genes and the plasticity of commonly-modulated transcripts at different sites. Many genes that control transcription, translation, transport, and carbohydrate metabolism showed different expression depending on the environmental conditions, indicating a key role in the observed transcriptomic plasticity of Garganega berries. Interestingly, genes representing the phenylpropanoid/flavonoid pathway showed plastic responses to the environment mirroring the accumulation of the corresponding metabolites. The comparison of Garganega and Corvina berries showed that the metabolism of phenolic compounds is more plastic in ripening Garganega berries under different pedoclimatic conditions.
Collapse
Affiliation(s)
| | - Marianna Fasoli
- Department of Biotechnology, University of VeronaVerona, Italy
- E & J Gallo WineryModesto, CA, USA
| | - Stefano Negri
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Erica D'Incà
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Flavia Guzzo
- Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Mario Pezzotti
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
- *Correspondence: Sara Zenoni
| |
Collapse
|
47
|
Masullo M, Montoro P, Mari A, Pizza C, Piacente S. Medicinal plants in the treatment of women's disorders: Analytical strategies to assure quality, safety and efficacy. J Pharm Biomed Anal 2015; 113:189-211. [DOI: 10.1016/j.jpba.2015.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/25/2022]
|
48
|
Engström MT, Pälijärvi M, Salminen JP. Rapid Fingerprint Analysis of Plant Extracts for Ellagitannins, Gallic Acid, and Quinic Acid Derivatives and Quercetin-, Kaempferol- and Myricetin-Based Flavonol Glycosides by UPLC-QqQ-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4068-79. [PMID: 25853372 DOI: 10.1021/acs.jafc.5b00595] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper describes the development of a rapid method with ultraperformance liquid chromatography-triple-quadrupole mass spectrometry that can specifically measure group-specific fingerprints from plant extracts for the following polyphenol groups: (1) ellagitannins, (2) gallic acid derivatives, (3) quinic acid derivatives, (4) quercetin-based flavonol glycosides, (5) kaempferol-based flavonol glycosides, and (6) myricetin-based flavonol glycosides. In addition, the method records simultaneously diode array and full scan mass spectrometry data that can be used to later characterize and quantify the main individual polyphenols if necessary. All of this is achieved within the 10 min period of analysis, which makes the presented method a significant addition to the chemistry tools currently available for the rapid analysis of complex polyphenol mixtures from plant extracts.
Collapse
Affiliation(s)
- Marica T Engström
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Maija Pälijärvi
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Juha-Pekka Salminen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
49
|
Rizzuti A, Aguilera-Sáez LM, Gallo V, Cafagna I, Mastrorilli P, Latronico M, Pacifico A, Matarrese AMS, Ferrara G. On the use of Ethephon as abscising agent in cv. Crimson Seedless table grape production: Combination of Fruit Detachment Force, Fruit Drop and metabolomics. Food Chem 2015; 171:341-50. [DOI: 10.1016/j.foodchem.2014.08.132] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/30/2022]
|
50
|
Flamini R, De Rosso M, Bavaresco L. Study of Grape Polyphenols by Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC/QTOF) and Suspect Screening Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:350259. [PMID: 25734021 PMCID: PMC4334975 DOI: 10.1155/2015/350259] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/07/2015] [Indexed: 05/04/2023]
Abstract
Suspect screening analysis is a targeted metabolomics method in which the identification of compounds relies on specific available information, such as their molecular formula and isotopic pattern. This method, coupled to liquid chromatography-high-resolution mass spectrometry, is effective in the study of grape metabolomics, in particular for characterization of flavonols, stilbene derivatives, and anthocyanins. For identification of compounds expected in the samples, a new database of putative compounds was expressly constructed by using the molecular information on potential metabolites of grape and wine from the literature and other electronic databases. Currently, this database contains around 1,100 compounds. The method allows identification of several hundred grape metabolites with two analyses (positive and negative ionization modes), and performing of data reprocessing using "untargeted" algorithms also provided the identification of some flavonols and resveratrol trimers and tetramers in grape for the first time. This approach can be potentially used in the study of metabolomics of varieties of other plant species.
Collapse
Affiliation(s)
- Riccardo Flamini
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Laboratorio Chimico, Viale XXVIII Aprile 26, 31015 Conegliano, Italy
- *Riccardo Flamini:
| | - Mirko De Rosso
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Viticoltura (CRA-VIT), Laboratorio Chimico, Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Luigi Bavaresco
- Istituto di Frutti-Viticoltura, Università Cattolica S.C., Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|