1
|
Ramesh RPG, Yasmin H, Ponnachan P, Al-Ramadi B, Kishore U, Joseph AM. Phenotypic heterogeneity and tumor immune microenvironment directed therapeutic strategies in pancreatic ductal adenocarcinoma. Front Immunol 2025; 16:1573522. [PMID: 40230862 PMCID: PMC11994623 DOI: 10.3389/fimmu.2025.1573522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Pancreatic cancer is an aggressive tumor with high metastatic potential which leads to decreased survival rate and resistance to chemotherapy and immunotherapy. Nearly 90% of pancreatic cancer comprises pancreatic ductal adenocarcinoma (PDAC). About 80% of diagnoses takes place at the advanced metastatic stage when it is unresectable, which renders chemotherapy regimens ineffective. There is also a dearth of specific biomarkers for early-stage detection. Advances in next generation sequencing and single cell profiling have identified molecular alterations and signatures that play a role in PDAC progression and subtype plasticity. Most chemotherapy regimens have shown only modest survival benefits, and therefore, translational approaches for immunotherapies and combination therapies are urgently required. In this review, we have examined the immunosuppressive and dense stromal network of tumor immune microenvironment with various metabolic and transcriptional changes that underlie the pro-tumorigenic properties in PDAC in terms of phenotypic heterogeneity, plasticity and subtype co-existence. Moreover, the stromal heterogeneity as well as genetic and epigenetic changes that impact PDAC development is discussed. We also review the PDAC interaction with sequestered cellular and humoral components present in the tumor immune microenvironment that modify the outcome of chemotherapy and radiation therapy. Finally, we discuss different therapeutic interventions targeting the tumor immune microenvironment aimed at better prognosis and improved survival in PDAC.
Collapse
Affiliation(s)
- Remya P. G. Ramesh
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Pretty Ponnachan
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ann Mary Joseph
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Branton PA, Sobin L, Barcus M, Engel KB, Greytak SR, Guan P, Vaught J, Moore HM. Notable Histologic Findings in a "Normal" Cohort: The National Institutes of Health Genotype-Tissue Expression (GTEx) Project. Arch Pathol Lab Med 2025; 149:233-241. [PMID: 38670546 DOI: 10.5858/arpa.2023-0468-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
CONTEXT.— The National Institutes of Health (NIH) Genotype-Tissue Expression (GTEx) project was designed to evaluate how genetic variation and epigenetic effects influence gene expression in normal tissue. OBJECTIVE.— To ensure that the grossly normal-appearing tissues collected were free from disease, each specimen underwent histologic evaluation. DESIGN.— In total, nearly 30 000 tissue aliquots collected from almost 1000 postmortem donors underwent histologic review by project pathologists, and detailed observations of any abnormalities or lesions present were recorded. RESULTS.— Despite sampling of normal-appearing tissue, in-depth review revealed incidental findings among GTEx samples that included neoplastic, autoimmune, and genetic conditions; the incidence of some of these conditions among GTEx donors differed from those previously reported for other populations. A number of age-related abnormalities observed during histologic review of tissue specimens are also described. CONCLUSIONS.— Histologic findings from the GTEx project may serve to improve populational awareness of several conditions and present a unique opportunity for others to explore age- and sex-influenced conditions. Resources from the study, including histologic image and sequencing data, are publicly available for research.
Collapse
Affiliation(s)
- Philip A Branton
- From the Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland (Branton, Guan, Vaught, Moore)
| | - Leslie Sobin
- Leidos Biomedical Research Inc, Rockville, Maryland (Sobin, Barcus)
| | - Mary Barcus
- Leidos Biomedical Research Inc, Rockville, Maryland (Sobin, Barcus)
| | - Kelly B Engel
- Preferred Scientific Group, North Bethesda, Maryland (Engel)
| | | | - Ping Guan
- From the Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland (Branton, Guan, Vaught, Moore)
| | - Jim Vaught
- From the Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland (Branton, Guan, Vaught, Moore)
| | - Helen M Moore
- From the Biorepositories and Biospecimen Research Branch, Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland (Branton, Guan, Vaught, Moore)
| |
Collapse
|
3
|
Cocca S, Pontillo G, Lupo M, Lieto R, Marocchi M, Marsico M, Dell'Aquila E, Mangiafico S, Grande G, Conigliaro R, Bertani H. Pancreatic cancer: Future challenges and new perspectives for an early diagnosis. World J Clin Oncol 2025; 16:97248. [PMID: 39995556 PMCID: PMC11686566 DOI: 10.5306/wjco.v16.i2.97248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 12/11/2024] Open
Abstract
This editorial is a commentary on the case report by Furuya et al focusing on the challenging diagnosis of early pancreatic adenocarcinoma and new tools for an earlier diagnosis. Currently, pancreatic cancer still has a poor prognosis, mainly due to late diagnosis in an advanced stage. Two main precancerous routes have been identified as pathways to pancreatic adenocarcinoma: The first encompasses a large group of mucinous cystic lesions: intraductal papillary mucinous neoplasm and mucinous cystic neoplasm, and the second is pancreatic intraepithelial neoplasia. In the last decade the focus of research has been to identify high-risk patients, using advanced imaging techniques (magnetic resonance cholangiopancreatography or endoscopic ultrasonography) which could be helpful in finding "indirect signs" of early stage pancreatic lesions. Nevertheless, the survival rate still remains poor, and alternative screening methods are under investigation. Endoscopic retrograde cholangiopancreatography followed by serial pancreatic juice aspiration cytology could be a promising tool for identifying precursor lesions such as intraductal papillary mucinous neoplasm, but confirming data are still needed to validate its role. Probably a combination of cross-sectional imaging, endoscopic techniques (old and new ones) and genetic and biological biomarkers (also in pancreatic juice) could be the best solution to reach an early diagnosis. Biomarkers could help to predict and follow the progression of early pancreatic lesions. However, further studies are needed to validate their diagnostic reliability and to establish diagnostic algorithms to improve prognosis and survival in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Silvia Cocca
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Giuseppina Pontillo
- Gastroenterology and Endoscopy Unit, Presidio Ospedaliero San Giuseppe Moscati (Aversa, CE) – ASL Caserta, Caserta 81100, Italy
| | - Marinella Lupo
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Raffaele Lieto
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Campania, Italy
| | - Margherita Marocchi
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Maria Marsico
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Emanuela Dell'Aquila
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome 0144, Italy
| | - Santi Mangiafico
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico “G Rodolico – San Marco”, Catania 95123, Sicilia, Italy
| | - Giuseppe Grande
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Rita Conigliaro
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| | - Helga Bertani
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero Universitaria Policlinico di Modena, Modena 41121, Italy
| |
Collapse
|
4
|
Koo H, Park KC, Sohn HA, Kang M, Kim DJ, Park ZY, Park S, Min SH, Park SH, You YM, Han Y, Kim BK, Lee CH, Kim YS, Chung SJ, Yeom YI, Lee DC. Anti-proteolytic regulation of KRAS by USP9X/NDRG3 in KRAS-driven cancer development. Nat Commun 2025; 16:628. [PMID: 39819877 PMCID: PMC11739382 DOI: 10.1038/s41467-024-54476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/12/2024] [Indexed: 01/19/2025] Open
Abstract
Cancers with activating mutations of KRAS show a high prevalence but remain intractable, requiring innovative strategies to overcome the poor targetability of KRAS. Here, we report that KRAS expression is post-translationally up-regulated through deubiquitination when the scaffolding function of NDRG3 (N-Myc downstream-regulated gene 3) promotes specific interaction between KRAS and a deubiquitinating enzyme, USP9X. In KRAS-mutant cancer cells KRAS protein expression, downstream signaling, and cell growth are highly dependent on NDRG3. In conditional KrasG12D knock-in mouse models of pancreatic ductal adenocarcinoma, Ndrg3 depletion abolishes Kras protein expression and suppresses intraepithelial neoplasia formation in pancreas. Mechanistically, KRAS protein binds to the C-terminal serine/threonine-rich region of NDRG3, subsequently going through deubiquitination by USP9X recruited to the complex. This interaction can be disrupted in a dominant-negative manner by a C-terminal NDRG3 fragment that binds KRAS but is defective in USP9X binding, highly suppressing KRAS protein expression and KRAS-driven cell growth. In summary, KRAS-driven cancer development critically depends on the deubiquitination of KRAS protein mediated by USP9X/NDRG3, and KRAS-addicted cancers could be effectively targeted by inhibiting the KRAS-NDRG3 interaction.
Collapse
Affiliation(s)
- Han Koo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Kyung Chan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Hyun Ahm Sohn
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Minho Kang
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Korea
- MRCRC, Dankook University, Cheonan, Chungcheongnam-do, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sehoon Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sang Hyun Min
- Department of Innovative Pharmaceutical Sciences, Kyungpook National University, Deagu, Korea
| | - Seong-Hwan Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yeon-Mi You
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Yohan Han
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Bo-Kyung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Chul-Ho Lee
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Yeon-Soo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Young Il Yeom
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea.
- College of Pharmacy, Chungnam National University, Daejeon, Korea.
| | - Dong Chul Lee
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
5
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
6
|
Park MA, Gumpper-Fedus K, Krishna SG, Genilo-Delgado MC, Brantley S, Hart PA, Dillhoff ME, Gomez MF, Basinski TL, Mok SR, Luthra AK, Fleming JB, Mohammadi A, Centeno BA, Jiang K, Karolak A, Jeong D, Chen DT, Stewart PA, Teer JK, Cruz-Monserrate Z, Permuth JB. Molecular Pathway and Immune Profile Analysis of IPMN-Derived Versus PanIN-Derived Pancreatic Ductal Adenocarcinomas. Int J Mol Sci 2024; 25:13164. [PMID: 39684873 PMCID: PMC11642437 DOI: 10.3390/ijms252313164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMN) are commonly detected pancreatic cysts that may transform into pancreatic ductal adenocarcinoma (PDAC). Predicting which IPMNs will progress to PDAC remains a clinical challenge. Moreover, identifying those clinically evident IPMNs for which a surveillance approach is best is a dire clinical need. Therefore, we aimed to identify molecular signatures that distinguished between PDAC with and without clinical evidence of an IPMN to identify novel molecular pathways related to IPMN-derived PDAC that could help guide biomarker development. Data from the Oncology Research Information Exchange Network (ORIEN) multi-institute sequencing project were utilized to analyze 66 PDAC cases from Moffitt Cancer Center and The Ohio State University Wexner Medical Center, for which tumor whole transcriptome sequencing datasets were generated. Cases were classified based on whether a tumor had originated from an IPMN (n = 16) or presumably through the pancreatic intraepithelial neoplasia (PanIN) pathway (n = 50). We then performed differential expression and pathway analysis using Gene-Set Enrichment Analysis (GSEA) and Pathway Analysis with Down-weighted Genes (PADOG) algorithms. We also analyzed immune profiles using the Tumor-Immune Microenvironment Deconvolution web portal for Bulk Transcriptomics (TIMEx). Both GSEA and TIMEx indicate that PanIN-derived PDAC tumors enrich inflammatory pathways (complement, hedgehog signaling, coagulation, inflammatory response, apical surface, IL-2/STAT5, IL-6/STAT3, EMT, KRAS signaling, apical junction, IFN-gamma, allograft rejection) and are comparatively richer in almost all immune cell types than those from IPMN-derived PDAC. IPMN-derived tumors were enriched for metabolic and energy-generating pathways (oxidative phosphorylation, unfolded protein response, pancreas beta cells, adipogenesis, fatty acid metabolism, protein secretion), and the most significantly upregulated genes (padj < 0.001) included mucin 2 (MUC2) and gastrokine-2 (GKN2). Further, the metabolic-linked gene signature enriched in the IPMN-derived samples is associated with a cluster of early-stage and long-survival (top 4th quartile) PDAC cases from The Cancer Genome Atlas (TCGA) expression database. Our data suggest that IPMN-derived and PanIN-derived PDACs differ in the expression of immune profiles and metabolic pathways. These initial findings warrant validation and follow-up to develop biomarker-based strategies for early PDAC detection and treatment.
Collapse
Affiliation(s)
- Margaret A. Park
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Maria C. Genilo-Delgado
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Stephen Brantley
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (S.B.); (B.A.C.); (K.J.)
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Mary E. Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Maria F. Gomez
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Toni L. Basinski
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Shaffer R. Mok
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Anjuli K. Luthra
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Jason B. Fleming
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Amir Mohammadi
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
| | - Barbara A. Centeno
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (S.B.); (B.A.C.); (K.J.)
| | - Kun Jiang
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA; (S.B.); (B.A.C.); (K.J.)
| | - Aleksandra Karolak
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Daniel Jeong
- Department of Radiology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Jamie K. Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612, USA; (D.-T.C.); (P.A.S.); (J.K.T.)
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (K.G.-F.); (S.G.K.); (P.A.H.)
| | - Jennifer B. Permuth
- Department of Gastrointestinal (GI) Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; (M.A.P.); (M.C.G.-D.); (M.F.G.); (T.L.B.); (S.R.M.); (A.K.L.); (A.M.)
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Lin HT, Krishna SG. Understanding the risk of recurrence after resection of intraductal papillary mucinous neoplasm-associated adenocarcinoma: insights from a large multicenter study. Hepatobiliary Surg Nutr 2024; 13:1041-1044. [PMID: 39669079 PMCID: PMC11634424 DOI: 10.21037/hbsn-24-583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 12/14/2024]
Affiliation(s)
- Hong T. Lin
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Somashekar G. Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
8
|
Al Harthi S, Al-Masqari M. Concurrent Invasive Ductal Carcinoma and Pancreatic Intraepithelial Neoplasia in Duodenal Heterotopic Pancreas: A Case Report. Oman Med J 2024; 39:e699. [PMID: 40225110 PMCID: PMC11994028 DOI: 10.5001/omj.2024.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 04/15/2025] Open
Abstract
Heterotopic pancreatic (HP) tissue is defined as the presence of pancreatic tissue outside of its usual site with no vascular or anatomic association with the normal pancreas. This is most commonly found in the stomach, duodenum, and proximal jejunum. Most HP findings are incidental. Yet, they can occasionally produce symptoms such as bleeding, abdominal pain, and gastrointestinal obstruction symptoms. HP tissues can also become malignant. The following report details a rare case of a 77-year-old man with concurrent invasive ductal carcinoma and low-grade pancreatic intraepithelial neoplasia involving an HP tissue located at the duodenum.
Collapse
Affiliation(s)
- Sara Al Harthi
- Anatomical Pathology Residency Training Program, Oman Medical Specialty Board, Muscat, Oman
| | | |
Collapse
|
9
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
10
|
Krishnan SN, Ji S, Elhossiny AM, Rao A, Frankel TL, Rao A. Proximogram-A multi-omics network-based framework to capture tissue heterogeneity integrating single-cell omics and spatial profiling. Comput Biol Med 2024; 182:109082. [PMID: 39255657 DOI: 10.1016/j.compbiomed.2024.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
The increasing availability of patient-derived multimodal biological data for various diseases has opened up avenues for finding the optimal methods for jointly leveraging the information extracted in a customizable and scalable manner. Here, we propose the Proximogram, a graph-based representation that provides a joint construct for embedding independently obtained omics and spatial data. To evaluate the representation, we generated proximograms from 2 distinct biological sources, namely, multiplexed immunofluorescence images and single-cell RNA-seq data obtained from patients across two pancreatic diseases that include normal and chronic Pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). The generated proximograms were used as inputs to 2 distinct graph deep-learning models. The improved classification results over simpler spatial-data-based input graphs point to the increased discriminatory power obtained by integrating structural information from single-cell ligand-receptor signaling data and the spatial architecture of cells in each disease class, which can help point to markers of high diagnostic significance.
Collapse
Affiliation(s)
- Santhoshi N Krishnan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Sunjong Ji
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Ahmed M Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Bell ATF, Mitchell JT, Kiemen AL, Lyman M, Fujikura K, Lee JW, Coyne E, Shin SM, Nagaraj S, Deshpande A, Wu PH, Sidiropoulos DN, Erbe R, Stern J, Chan R, Williams S, Chell JM, Ciotti L, Zimmerman JW, Wirtz D, Ho WJ, Zaidi N, Thompson E, Jaffee EM, Wood LD, Fertig EJ, Kagohara LT. PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration. Cell Syst 2024; 15:753-769.e5. [PMID: 39116880 PMCID: PMC11409191 DOI: 10.1016/j.cels.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/06/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis.
Collapse
Affiliation(s)
- Alexander T F Bell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob T Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley L Kiemen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Melissa Lyman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kohei Fujikura
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jae W Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Erin Coyne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah M Shin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sushma Nagaraj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rossin Erbe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Lauren Ciotti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W Zimmerman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elizabeth Thompson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA.
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Skip Viragh Center for Clinical and Translational Research, Baltimore, MD, USA.
| |
Collapse
|
12
|
Kohaar I, Hodges NA, Srivastava S. Biomarkers in Cancer Screening: Promises and Challenges in Cancer Early Detection. Hematol Oncol Clin North Am 2024; 38:869-888. [PMID: 38782647 PMCID: PMC11222039 DOI: 10.1016/j.hoc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cancer continues to be one the leading causes of death worldwide, primarily due to the late detection of the disease. Cancers detected at early stages may enable more effective intervention of the disease. However, most cancers lack well-established screening procedures except for cancers with an established early asymptomatic phase and clinically validated screening tests. There is a critical need to identify and develop assays/tools in conjunction with imaging approaches for precise screening and detection of the aggressive disease at an early stage. New developments in molecular cancer screening and early detection include germline testing, synthetic biomarkers, and liquid biopsy approaches.
Collapse
Affiliation(s)
- Indu Kohaar
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Nicholas A Hodges
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA.
| |
Collapse
|
13
|
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial Intelligence in Pancreatic Image Analysis: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4749. [PMID: 39066145 PMCID: PMC11280964 DOI: 10.3390/s24144749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs. Artificial intelligence (AI) offers a promising solution by relieving medical personnel's workload, improving clinical decision-making, and reducing patient costs. This study focuses on AI applications such as segmentation, classification, object detection, and prognosis prediction across five types of medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated pancreatic cancer diagnosis algorithms.
Collapse
Affiliation(s)
- Weixuan Liu
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Bairui Zhang
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Tao Liu
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Juntao Jiang
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Liu
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Randriamanantsoa SJ, Raich MK, Saur D, Reichert M, Bausch AR. Coexisting mechanisms of luminogenesis in pancreatic cancer-derived organoids. iScience 2024; 27:110299. [PMID: 39055943 PMCID: PMC11269295 DOI: 10.1016/j.isci.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Lumens are crucial features of the tissue architecture in both the healthy exocrine pancreas, where ducts shuttle enzymes from the acini to the intestine, and in the precancerous lesions of the highly lethal pancreatic ductal adenocarcinoma (PDAC), similarly displaying lumens that can further develop into cyst-like structures. Branched pancreatic-cancer derived organoids capture key architectural features of both the healthy and diseased pancreas, including lumens. However, their transition from a solid mass of cells to a hollow tissue remains insufficiently explored. Here, we show that organoids display two orthogonal but complementary lumen formation mechanisms: one relying on fluid intake for multiple microlumen nucleation, swelling and fusion, and the other involving the death of a central cell population, thereby hollowing out cavities. These results shed further light on the processes of luminogenesis, deepening our understanding of the early formation of PDAC precancerous lesions, including cystic neoplasia.
Collapse
Affiliation(s)
- Samuel J. Randriamanantsoa
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Marion K. Raich
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| | - Dieter Saur
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
| | - Maximilian Reichert
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, 81675 Munich, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner site Munich, 69120 Heidelberg, Germany
- Technical University of Munich, Klinikum rechts der Isar, Medical Clinic and Polyclinic II, Translational Pancreatic Cancer Research Center, 81675 Munich, Germany
| | - Andreas R. Bausch
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Chair for Cellular Biophysics E27, 85748 Garching, Germany
- Technical University of Munich, Center for Functional Protein Assemblies (CPA), 85748 Garching, Germany
- Technical University of Munich, Center for Organoid Systems and Tissue Engineering (COS), 85748 Garching, Germany
| |
Collapse
|
15
|
Kiemen AL, Dequiedt L, Shen Y, Zhu Y, Matos-Romero V, Forjaz A, Campbell K, Dhana W, Cornish T, Braxton AM, Wu P, Fishman EK, Wood LD, Wirtz D, Hruban RH. PanIN or IPMN? Redefining Lesion Size in 3 Dimensions. Am J Surg Pathol 2024; 48:839-845. [PMID: 38764379 PMCID: PMC11189722 DOI: 10.1097/pas.0000000000002245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) develops from 2 known precursor lesions: a majority (∼85%) develops from pancreatic intraepithelial neoplasia (PanIN), and a minority develops from intraductal papillary mucinous neoplasms (IPMNs). Clinical classification of PanIN and IPMN relies on a combination of low-resolution, 3-dimensional (D) imaging (computed tomography, CT), and high-resolution, 2D imaging (histology). The definitions of PanIN and IPMN currently rely heavily on size. IPMNs are defined as macroscopic: generally >1.0 cm and visible in CT, and PanINs are defined as microscopic: generally <0.5 cm and not identifiable in CT. As 2D evaluation fails to take into account 3D structures, we hypothesized that this classification would fail in evaluation of high-resolution, 3D images. To characterize the size and prevalence of PanINs in 3D, 47 thick slabs of pancreas were harvested from grossly normal areas of pancreatic resections, excluding samples from individuals with a diagnosis of an IPMN. All patients but one underwent preoperative CT scans. Through construction of cellular resolution 3D maps, we identified >1400 ductal precursor lesions that met the 2D histologic size criteria of PanINs. We show that, when 3D space is considered, 25 of these lesions can be digitally sectioned to meet the 2D histologic size criterion of IPMN. Re-evaluation of the preoperative CT images of individuals found to possess these large precursor lesions showed that nearly half are visible on imaging. These findings demonstrate that the clinical classification of PanIN and IPMN fails in evaluation of high-resolution, 3D images, emphasizing the need for re-evaluation of classification guidelines that place significant weight on 2D assessment of 3D structures.
Collapse
Affiliation(s)
- Ashley L. Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Lucie Dequiedt
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yu Shen
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yutong Zhu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Valentina Matos-Romero
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - André Forjaz
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Kurtis Campbell
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Will Dhana
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Toby Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Alicia M. Braxton
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC
| | - PeiHsun Wu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Elliot K. Fishman
- Department of Radiology and Radiological Science, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Laura D. Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
Kazemi-Harikandei SZ, Karimi A, Tavangar SM. Clinical Perspectives on the Histomolecular Features of the Pancreatic Precursor Lesions: A Narrative Review. Middle East J Dig Dis 2024; 16:136-146. [PMID: 39386334 PMCID: PMC11459284 DOI: 10.34172/mejdd.2024.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/07/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic cancer (PC) is a lethal cancer with poor prognoses. Identifying and characterizing pancreatic cystic lesions (PCLs) in the early detection and follow-up plans is thought to help detect pancreatic malignancy. Besides, the molecular features of PCLs are thought to unravel potentials for targeted therapies. We present a narrative review of the existing literature on the role of PCLs in the early detection, risk stratification, and medical management of PC. High-grade intraductal papillary mucinous neoplasms (IPMN) and pancreatic intraepithelial neoplasia (PanIN) stage III are high-risk lesions for developing PC. These lesions often require thorough histomolecular characterization using endoscopic ultrasound (EUS), before a surgical decision is made. EUS is also useful in the risk assessment of PCLs with tentative plans-for instance, in branch-duct IPMNs (BD-IPMN)- where the final decision might change. Besides the operative decisions, recent improvements in the application of targeted therapies are expected to improve survival measures. Knowledge of molecular features has helped develop targeted therapies. In summary, the histomolecular characterization of PCLs is helpful in optimizing management plans in PC. Further improvements are still needed for the broad application of this knowledge in the clinical setting.
Collapse
Affiliation(s)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Tonelli C, Yordanov GN, Hao Y, Deschênes A, Hinds J, Belleau P, Klingbeil O, Brosnan E, Doshi A, Park Y, Hruban RH, Vakoc CR, Dobin A, Preall J, Tuveson DA. A mucus production programme promotes classical pancreatic ductal adenocarcinoma. Gut 2024; 73:941-954. [PMID: 38262672 PMCID: PMC11088527 DOI: 10.1136/gutjnl-2023-329839] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The optimal therapeutic response in cancer patients is highly dependent upon the differentiation state of their tumours. Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer that harbours distinct phenotypic subtypes with preferential sensitivities to standard therapies. This study aimed to investigate intratumour heterogeneity and plasticity of cancer cell states in PDA in order to reveal cell state-specific regulators. DESIGN We analysed single-cell expression profiling of mouse PDAs, revealing intratumour heterogeneity and cell plasticity and identified pathways activated in the different cell states. We performed comparative analysis of murine and human expression states and confirmed their phenotypic diversity in specimens by immunolabeling. We assessed the function of phenotypic regulators using mouse models of PDA, organoids, cell lines and orthotopically grafted tumour models. RESULTS Our expression analysis and immunolabeling analysis show that a mucus production programme regulated by the transcription factor SPDEF is highly active in precancerous lesions and the classical subtype of PDA - the most common differentiation state. SPDEF maintains the classical differentiation and supports PDA transformation in vivo. The SPDEF tumour-promoting function is mediated by its target genes AGR2 and ERN2/IRE1β that regulate mucus production, and inactivation of the SPDEF programme impairs tumour growth and facilitates subtype interconversion from classical towards basal-like differentiation. CONCLUSIONS Our findings expand our understanding of the transcriptional programmes active in precancerous lesions and PDAs of classical differentiation, determine the regulators of mucus production as specific vulnerabilities in these cell states and reveal phenotype switching as a response mechanism to inactivation of differentiation states determinants.
Collapse
Affiliation(s)
- Claudia Tonelli
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Astrid Deschênes
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Juliene Hinds
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Olaf Klingbeil
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Erin Brosnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Abhishek Doshi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Alexander Dobin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Jonathan Preall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York, USA
| |
Collapse
|
18
|
Kim MC, Kim JH, Jeon SK, Kang HJ. CT findings and clinical effects of high grade pancreatic intraepithelial neoplasia in patients with intraductal papillary mucinous neoplasms. PLoS One 2024; 19:e0298278. [PMID: 38683769 PMCID: PMC11057734 DOI: 10.1371/journal.pone.0298278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/18/2024] [Indexed: 05/02/2024] Open
Abstract
PURPOSE To investigate the common CT findings of high-grade (HG) PanIN and clinical effects in the remnant pancreas in patients with intraductal papillary mucinous neoplasm (IPMN) of the pancreas. MATERIALS AND METHODS Two hundred fifty-one patients with surgically confirmed IPMNs (118 malignant [invasive carcinoma/high-grade dysplasia] and 133 benign [low-grade dysplasia]) were retrospectively enrolled. The grade of PanIN (233 absent/low-grade and 18 high-grade) was recorded, and all patients underwent serial CT follow-up before and after surgery. Two radiologists analyzed CT findings of high-risk stigmata or worrisome features according to 2017 international consensus guidelines. They also analyzed tumor recurrence on serial follow-up CT after surgery. Statistical analyses were performed to identify significant predictors and clinical impact on postoperative outcomes of HG PanIN. RESULTS PanIN grade showed a significant association with IPMN grade (p = 0.012). Enhancing mural nodules ≥5 mm, abrupt main pancreatic duct (MPD) changes with distal pancreatic atrophy, increased mural nodule size and MPD diameter were common findings in HG PanIN (P<0.05). In multivariate analysis, abrupt MPD change with distal pancreatic atrophy (odds ratio (OR) 6.59, 95% CI: 2.32-18.72, <0.001) and mural nodule size (OR, 1.05; 95% CI, 1.02-1.08, 0.004) were important predictors for HG PanIN. During postoperative follow-up, HG PanIN (OR, 4.98; 95% CI, 1.22-20.33, 0.025) was significantly associated with cancer recurrence in the remnant pancreas. CONCLUSION CT can be useful for predicting HG PanIN using common features, such as abrupt MPD changes and mural nodules. In HG PanIN, extra caution is needed to monitor postoperative recurrence during follow-up.
Collapse
MESH Headings
- Humans
- Male
- Female
- Aged
- Middle Aged
- Tomography, X-Ray Computed
- Retrospective Studies
- Pancreatic Neoplasms/diagnostic imaging
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/surgery
- Neoplasm Grading
- Pancreatic Intraductal Neoplasms/diagnostic imaging
- Pancreatic Intraductal Neoplasms/pathology
- Pancreatic Intraductal Neoplasms/surgery
- Neoplasm Recurrence, Local/diagnostic imaging
- Neoplasm Recurrence, Local/pathology
- Adult
- Adenocarcinoma, Mucinous/diagnostic imaging
- Adenocarcinoma, Mucinous/pathology
- Adenocarcinoma, Mucinous/surgery
- Aged, 80 and over
- Carcinoma, Pancreatic Ductal/diagnostic imaging
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/surgery
- Carcinoma in Situ/pathology
- Carcinoma in Situ/diagnostic imaging
- Carcinoma in Situ/surgery
Collapse
Affiliation(s)
- Min Cheol Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
- Department of Radiology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Araki T, Miwa N. Selective epigenetic alterations in RNF43 in pancreatic exocrine cells from high-fat-diet-induced obese mice; implications for pancreatic cancer. BMC Res Notes 2024; 17:106. [PMID: 38622664 PMCID: PMC11020883 DOI: 10.1186/s13104-024-06757-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE Pancreatic cancer (PC) originates and progresses with genetic mutations in various oncogenes and suppressor genes, notably KRAS, CDKN2A, TP53, and SMAD4, prevalent across diverse PC cells. In addition to genetic mutations/deletions, persistent exposure to high-risk factors, including obesity, induces whole-genome scale epigenetic alterations contributing to malignancy. However, the impact of obesity on DNA methylation in the presymptomatic stage, particularly in genes prone to PC mutation, remains uncharacterized. RESULTS We analyzed the methylation levels of 197 loci in six genes (KRAS, CDKN2A, TP53, SMAD4, GNAS and RNF43) using Illumina Mouse Methylation BeadChip array (280 K) data from pancreatic exocrine cells obtained from high-fat-diet (HFD) induced obese mice. Results revealed no significant differences in methylation levels in loci between HFD- and normal-fat-diet (NFD)-fed mice, except for RNF43, a negative regulator of Wnt signaling, which showed hypermethylation in three loci. These findings indicate that, in mouse pancreatic exocrine cells, high-fat dietary obesity induced aberrant DNA methylation in RNF43 but not in other frequently mutated PC-related genes.
Collapse
Affiliation(s)
- Tomoyuki Araki
- Department of Biochemistry, School of Medicine, Saitama Medical University, 38 Moro-hongo, Iruma-gun, 350-0495, Moroyama, Saitama, Japan.
| | - Naofumi Miwa
- Department of Physiology, School of Medicine, Saitama Medical University, 38 Moro-hongo, Iruma-gun, 350-0495, Moroyama, Saitama, Japan.
| |
Collapse
|
20
|
Li B, Kugeratski FG, Kalluri R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. eLife 2024; 12:RP90390. [PMID: 38529947 PMCID: PMC10965221 DOI: 10.7554/elife.90390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.
Collapse
Affiliation(s)
- Bingrui Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Fernanda G Kugeratski
- Department of Cancer Biology, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer CenterHoustonUnited States
- Department of Bioengineering, Rice UniversityHoustonUnited States
- Department of Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
21
|
Schiavoni G, Messina B, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Bon G, Maugeri-Saccà M. Role of Hippo pathway dysregulation from gastrointestinal premalignant lesions to cancer. J Transl Med 2024; 22:213. [PMID: 38424512 PMCID: PMC10903154 DOI: 10.1186/s12967-024-05027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/25/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND First identified in Drosophila melanogaster, the Hippo pathway is considered a major regulatory cascade controlling tissue homeostasis and organ development. Hippo signaling components include kinases whose activity regulates YAP and TAZ final effectors. In response to upstream stimuli, YAP and TAZ control transcriptional programs involved in cell proliferation, cytoskeletal reorganization and stemness. MAIN TEXT While fine tuning of Hippo cascade components is essential for maintaining the balance between proliferative and non-proliferative signals, pathway signaling is frequently dysregulated in gastrointestinal cancers. Also, YAP/TAZ aberrant activation has been described in conditions characterized by chronic inflammation that precede cancer development, suggesting a role of Hippo effectors in triggering carcinogenesis. In this review, we summarize the architecture of the Hippo pathway and discuss the involvement of signaling cascade unbalances in premalignant lesions of the gastrointestinal tract, providing a focus on the underlying molecular mechanisms. CONCLUSIONS The biology of premalignant Hippo signaling dysregulation needs further investigation in order to elucidate the evolutionary trajectories triggering cancer inititation and develop effective early therapeutic strategies targeting the Hippo/YAP pathway.
Collapse
Affiliation(s)
- Giulia Schiavoni
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Beatrice Messina
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorenzo Memeo
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
| | | | - Marzia Mare
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Marcello Maugeri-Saccà
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
22
|
Scianò F, Terrana F, Pecoraro C, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Exploring the therapeutic potential of focal adhesion kinase inhibition in overcoming chemoresistance in pancreatic ductal adenocarcinoma. Future Med Chem 2024; 16:271-289. [PMID: 38269431 DOI: 10.4155/fmc-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer-related deaths worldwide. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase often overexpressed in PDAC. FAK has been linked to cell migration, survival, proliferation, angiogenesis and adhesion. This review first highlights the chemoresistant nature of PDAC. Second, the role of FAK in PDAC cancer progression and resistance is carefully described. Additionally, it discusses recent developments of FAK inhibitors as valuable drugs in the treatment of PDAC, with a focus on diamine-substituted-2,4-pyrimidine-based compounds, which represent the most potent class of FAK inhibitors in clinical trials for the treatment of PDAC disease. To conclude, relevant computational studies performed on FAK inhibitors are reported to highlight the key structural features required for interaction with the protein, with the aim of optimizing this novel targeted therapy.
Collapse
Affiliation(s)
- Fabio Scianò
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Francesca Terrana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Barbara Parrino
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Patrizia Diana
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) De Boelelaan 1117, Amsterdam, 1081HV, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, San Giuliano Terme, Pisa, 56017, Italy
| | - Daniela Carbone
- Department of Biological, Chemical & Pharmaceutical Sciences & Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
23
|
Gill SS, Gill RK, Sobti RC. Point of Care Molecular Diagnostics in Cancer. HANDBOOK OF ONCOBIOLOGY: FROM BASIC TO CLINICAL SCIENCES 2024:259-296. [DOI: 10.1007/978-981-99-6263-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Tao D, Guan B, Li H, Zhou C. Expression patterns of claudins in cancer. Heliyon 2023; 9:e21338. [PMID: 37954388 PMCID: PMC10637965 DOI: 10.1016/j.heliyon.2023.e21338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Claudins are four-transmembrane proteins, which were found in tight junctions. They maintain cell barriers and regulate cell differentiation and proliferation. They are involved in maintaining cellular polarity and normal functions. Different claudins show different expression patterns. The expression level and localization of claudins are altered in various cancers. They promote or inhibit proliferation, invasion, and migration of cancer cells through multiple signaling pathways. Therefore, claudins may serve as diagnostic markers, novel therapeutic targets, and prognostic risk factors. The important roles of claudins in cancer aroused our great interest. In the present review, we provide a summary of insights into expression patterns of claudins in cancer, which is more comprehensive and provides new ideas for further research.
Collapse
Affiliation(s)
- Daoyu Tao
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
25
|
Evrard C, Ingrand P, Rochelle T, Martel M, Tachon G, Flores N, Randrian V, Ferru A, Haineaux PA, Goujon JM, Karayan-Tapon L, Tougeron D. Circulating tumor DNA in unresectable pancreatic cancer is a strong predictor of first-line treatment efficacy: The KRASCIPANC prospective study. Dig Liver Dis 2023; 55:1562-1572. [PMID: 37308396 DOI: 10.1016/j.dld.2023.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND There is no robust predictor of response to chemotherapy (CT) in unresectable pancreatic adenocarcinomas (UPA). The objective of the KRASCIPANC study was to analyze the kinetics of cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) as a predictor of response to CT in UPA. METHODS Blood samples were collected just before first CT and at day 28. The primary endpoint was the kinetics of KRAS-mutated ctDNA by digital droplet PCR between D0 and D28 as a predictor of progression-free survival (PFS). RESULTS We analyzed 65 patients with a KRAS-mutated tumor. A high level of cfDNA and KRAS-mutated ctDNA at D0, as well as the presence of KRAS-mutated ctDNA at D28, were strongly associated with lower centralized disease control rate (cDCR), shorter cPFS and OS in multivariate analysis. A score combining cfDNA level at diagnosis ≥ or <30 ng/mL and presence or not of KRAS-mutated ctDNA at D28 was an optimal predictor of cDCR (OR=30.7, IC95% 4.31-218 P=.001), PFS (HR=6.79, IC95% 2.76-16.7, P<.001) and OS (HR=9.98, IC95% 4.14-24.1, P<.001). CONCLUSION A combined score using cfDNA level at diagnosis and KRAS-mutated ctDNA at D28 is strongly associated with patient survival/response to chemotherapy in UPA. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04560270.
Collapse
Affiliation(s)
- Camille Evrard
- Medical Oncology Department, Poitiers University Hospital, Poitiers 86000, France; ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France.
| | - Pierre Ingrand
- Department of Statistics, Faculty of Medicine, University of Poitiers, Poitiers 86000, France
| | - Tristan Rochelle
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Marine Martel
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Gaëlle Tachon
- Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France; Cancer Biology Department, Centre Léon Bérard, Lyon 69000, France
| | - Nicolas Flores
- Department of Imaging, University Hospital of Poitiers, Poitiers 86000, France
| | - Violaine Randrian
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France
| | - Aurélie Ferru
- Medical Oncology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Paul-Arthur Haineaux
- Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Châtellerault Hospital, Poitiers 86106, France
| | - Jean-Michel Goujon
- Department of Pathology, Poitiers University Hospital, Poitiers 86000, France
| | - Lucie Karayan-Tapon
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Cancer Biology Department, Poitiers University Hospital, Poitiers 86000, France
| | - David Tougeron
- ProDicET, UR 24144, University of Poitiers, Poitiers 86000, France; Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers, France.
| |
Collapse
|
26
|
Izdebska WM, Daniluk J, Niklinski J. Microbiome and MicroRNA or Long Non-Coding RNA-Two Modern Approaches to Understanding Pancreatic Ductal Adenocarcinoma. J Clin Med 2023; 12:5643. [PMID: 37685710 PMCID: PMC10488817 DOI: 10.3390/jcm12175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of humans' most common and fatal neoplasms. Nowadays, a number of PDAC studies are being conducted in two different fields: non-coding RNA (especially microRNA and long non-coding RNA) and microbiota. It has been recently discovered that not only does miRNA affect particular bacteria in the gut microbiome that can promote carcinogenesis in the pancreas, but the microbiome also has a visible impact on the miRNA. This suggests that it is possible to use the combined impact of the microbiome and noncoding RNA to suppress the development of PDAC. Nevertheless, insufficient research has focused on bounding both approaches to the diagnosis, treatment, and prevention of pancreatic ductal adenocarcinoma. In this article, we summarize the recent literature on the molecular basis of carcinogenesis in the pancreas, the two-sided impact of particular types of non-coding RNA and the pancreatic cancer microbiome, and possible medical implications of the discovered phenomenon.
Collapse
Affiliation(s)
- Wiktoria Maria Izdebska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jaroslaw Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
27
|
Giansante V, Stati G, Sancilio S, Guerra E, Alberti S, Di Pietro R. The Dual Role of Necroptosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:12633. [PMID: 37628814 PMCID: PMC10454309 DOI: 10.3390/ijms241612633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related death. PC incidence has continued to increase by about 1% each year in both men and women. Although the 5-year relative survival rate of PC has increased from 3% to 12%, it is still the lowest among cancers. Hence, novel therapeutic strategies are urgently needed. Challenges in PC-targeted therapeutic strategies stem from the high PC heterogeneity and from the poorly understood interplay between cancer cells and the surrounding microenvironment. Signaling pathways that drive PC cell growth have been the subject of intense scrutiny and interest has been attracted by necroptosis, a distinct type of programmed cell death. In this review, we provide a historical background on necroptosis and a detailed analysis of the ongoing debate on the role of necroptosis in PC malignant progression.
Collapse
Affiliation(s)
- Valentina Giansante
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
28
|
Pinkert-Leetsch D, Frohn J, Ströbel P, Alves F, Salditt T, Missbach-Guentner J. Three-dimensional analysis of human pancreatic cancer specimens by phase-contrast based X-ray tomography - the next dimension of diagnosis. Cancer Imaging 2023; 23:43. [PMID: 37131262 PMCID: PMC10152799 DOI: 10.1186/s40644-023-00559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The worldwide increase of pancreatic ductal adenocarcinoma (PDAC), which still has one of the lowest survival rates, requires novel imaging tools to improve early detection and to refine diagnosis. Therefore, the aim of this study was to assess the feasibility of propagation-based phase-contrast X-ray computed tomography of already paraffin-embedded and unlabeled human pancreatic tumor tissue to achieve a detailed three-dimensional (3D) view of the tumor sample in its entirety. METHODS Punch biopsies of areas of particular interest were taken from paraffin blocks after initial histological analysis of hematoxylin and eosin stained tumor sections. To cover the entire 3.5 mm diameter of the punch biopsy, nine individual tomograms with overlapping regions were acquired in a synchrotron parallel beam configuration and stitched together after data reconstruction. Due to the intrinsic contrast based on electron density differences of tissue components and a voxel size of 1.3 μm achieved PDAC and its precursors were clearly identified. RESULTS Characteristic tissue structures for PDAC and its precursors, such as dilated pancreatic ducts, altered ductal epithelium, diffuse immune cell infiltrations, increased occurrence of tumor stroma and perineural invasion were clearly identified. Certain structures of interest were visualized in three dimensions throughout the tissue punch. Pancreatic duct ectasia of different caliber and atypical shape as well as perineural infiltration could be contiguously traced by viewing serial tomographic slices and by applying semi-automatic segmentation. Histological validation of corresponding sections confirmed the former identified PDAC features. CONCLUSION In conclusion, virtual 3D histology via phase-contrast X-ray tomography visualizes diagnostically relevant tissue structures of PDAC in their entirety, preserving tissue integrity in label-free, paraffin embedded tissue biopsies. In the future, this will not only enable a more comprehensive diagnosis but also a possible identification of new 3D imaging tumor markers.
Collapse
Affiliation(s)
- Diana Pinkert-Leetsch
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany.
| | - Jasper Frohn
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center, Goettingen, Germany
| | - Frauke Alves
- Department of Diagnostic and Interventional Radiology, University Medical Center, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Goettingen, Germany
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Georg-August-University, Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany
| | | |
Collapse
|
29
|
Myo Min KK, Ffrench CB, Jessup CF, Shepherdson M, Barreto SG, Bonder CS. Overcoming the Fibrotic Fortress in Pancreatic Ductal Adenocarcinoma: Challenges and Opportunities. Cancers (Basel) 2023; 15:2354. [PMID: 37190281 PMCID: PMC10137060 DOI: 10.3390/cancers15082354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
An overabundance of desmoplasia in the tumour microenvironment (TME) is one of the defining features that influences pancreatic ductal adenocarcinoma (PDAC) development, progression, metastasis, and treatment resistance. Desmoplasia is characterised by the recruitment and activation of fibroblasts, heightened extracellular matrix deposition (ECM) and reduced blood supply, as well as increased inflammation through an influx of inflammatory cells and cytokines, creating an intrinsically immunosuppressive TME with low immunogenic potential. Herein, we review the development of PDAC, the drivers that initiate and/or sustain the progression of the disease and the complex and interwoven nature of the cellular and acellular components that come together to make PDAC one of the most aggressive and difficult to treat cancers. We review the challenges in delivering drugs into the fortress of PDAC tumours in concentrations that are therapeutic due to the presence of a highly fibrotic and immunosuppressive TME. Taken together, we present further support for continued/renewed efforts focusing on aspects of the extremely dense and complex TME of PDAC to improve the efficacy of therapy for better patient outcomes.
Collapse
Affiliation(s)
- Kay K. Myo Min
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Charlie B. Ffrench
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
| | - Claire F. Jessup
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Mia Shepherdson
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Savio George Barreto
- College of Medicine & Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Hepatopancreatobiliary & Liver Transplant Unit, Division of Surgery & Perioperative Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; (K.K.M.M.); (C.B.F.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
30
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
31
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
32
|
Waleleng BJ, Adiwinata R, Wenas NT, Haroen H, Rotty L, Gosal F, Rotty L, Winarta J, Waleleng A, Simadibrata M. Screening of pancreatic cancer: Target population, optimal timing and how? Ann Med Surg (Lond) 2022; 84:104814. [PMID: 36582884 PMCID: PMC9793126 DOI: 10.1016/j.amsu.2022.104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer patients usually present at a late stage due to subtle clinical manifestations. One of the most predictive prognostic factors in pancreatic cancer is the pancreatic cancer stage at diagnosis; therefore, early diagnosis is essential. Until now, pancreatic cancer screening has not become a standard practice for the general population due to the low incidence. In current circumstances, targeting individuals with a high risk of pancreatic cancer may be more rational. Several screening modalities for pancreatic cancer have also become debatable topics. Therefore, this article will review current evidence and recommendations regarding pancreatic screening cancer protocol in general and in high-risk populations.
Collapse
Affiliation(s)
- Bradley Jimmy Waleleng
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Randy Adiwinata
- Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Nelly Tendean Wenas
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Harlinda Haroen
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Linda Rotty
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Fandy Gosal
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Luciana Rotty
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Jeanne Winarta
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Andrew Waleleng
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Faculty of Medicine, Universitas Sam Ratulangi/Prof. dr. R. D. Kandou Hospital, Manado, Indonesia
| | - Marcellus Simadibrata
- Division of Gastroenterology, Pancreatobiliary and Digestive Endoscopy, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| |
Collapse
|
33
|
Lugo-Fagundo E, Weisberg EM, Fishman EK. Pancreatic cancer in patient with groove pancreatitis: Potential pitfalls in diagnosis. Radiol Case Rep 2022; 17:4632-4635. [PMID: 36204401 PMCID: PMC9530484 DOI: 10.1016/j.radcr.2022.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is among the leading causes of cancer death in the United States of America. Early detection and intervention are critical as a large majority of patients have either local or distant metastatic disease at the time of diagnosis. However, groove pancreatitis, a rare form of chronic pancreatitis, presents as a challenge for adequate and efficient differential diagnosis of pancreatic cancer as a result of similar clinical symptoms and imaging features. Furthermore, intraductal papillary mucinous neoplasms and pancreatic intraepithelial neoplasia are 2 of the precursor lesions that have been identified with pancreatic ductal adenocarcinoma. Intraductal papillary mucinous neoplasms are cystic tumors of the pancreas characterized by excessive mucin production in either the main pancreatic duct or its branches. Conversely, pancreatic intraepithelial neoplasia are microscopic lesions in the smaller pancreatic ducts. In this article, we report the case of a 46-year-old male with a diagnosis of groove pancreatitis, main duct intraductal papillary mucinous neoplasm, and pancreatic intraepithelial neoplasia whose tumor was excised by means of a Whipple procedure. We focus on optimizing diagnosis and treatment through the application of radiological modalities.
Collapse
|
34
|
Kfoury S, Michl P, Roth L. Modeling Obesity-Driven Pancreatic Carcinogenesis-A Review of Current In Vivo and In Vitro Models of Obesity and Pancreatic Carcinogenesis. Cells 2022; 11:3170. [PMID: 36231132 PMCID: PMC9563584 DOI: 10.3390/cells11193170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy with a 5-year survival rate below 10%, thereby exhibiting the worst prognosis of all solid tumors. Increasing incidence together with a continued lack of targeted treatment options will cause PDAC to be the second leading cause of cancer-related deaths in the western world by 2030. Obesity belongs to the predominant risk factors for pancreatic cancer. To improve our understanding of the impact of obesity on pancreatic cancer development and progression, novel laboratory techniques have been developed. In this review, we summarize current in vitro and in vivo models of PDAC and obesity as well as an overview of a variety of models to investigate obesity-driven pancreatic carcinogenesis. We start by giving an overview on different methods to cultivate adipocytes in vitro as well as various in vivo mouse models of obesity. Moreover, established murine and human PDAC cell lines as well as organoids are summarized and the genetically engineered models of PCAC compared to xenograft models are introduced. Finally, we review published in vitro and in vivo models studying the impact of obesity on PDAC, enabling us to decipher the molecular basis of obesity-driven pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sally Kfoury
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Medicine, Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120 Heidelberg, Germany
| | - Laura Roth
- Department of Internal Medicine I, Martin-Luther University Halle/Wittenberg, Ernst-Grube-Strasse 40, D-06120 Halle (Saale), Germany
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Legrand T, Salleron J, Conroy T, Marchal F, Thomas J, Monard L, Biagi JJ, Lambert A. Preneoplastic Lesions in Surgical Specimens Do Not Worsen the Prognosis of Patients Who Underwent Surgery for Pancreatic Adenocarcinoma: Post-Hoc Analysis of the PRODIGE 24-CCTG PA 6 Trial. Cancers (Basel) 2022; 14:cancers14163945. [PMID: 36010938 PMCID: PMC9406034 DOI: 10.3390/cancers14163945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic cancer patients who undergo curative surgery are still likely to recur. We therefore analyzed the data of the 493 patients from the PRODIGE 24-CCTG PA 6 trial, which validated the benefit of adjuvant mFOLFIRINOX regimen over gemcitabine after pancreatic adenocarcinoma resection. We investigated whether the presence of dysplasia (noninvasive intraductal papillary mucinous neoplasm, mucinous cystic neoplasm or pancreatic intraepithelial neoplasia) might decrease in disease-free survival. A preneoplastic lesion was identified in 226 patients (45.8%). In a multivariate analysis, the presence of dysplasia is not an independent predictor of diminished disease-free survival. This finding should be useful for future prospective trials and for surgeons’ decision making, as the pre-existence of a preneoplastic lesion should not preclude a plan for curative surgery. Abstract Objective: The prognosis of pancreatic cancer after curative surgery is burdened by frequent recurrence. The aim of this study was to evaluate the impact of dysplasia in the surgical specimen on disease-free survival (DFS). Methods: A post-hoc analysis of the phase III PRODIGE 24-CCTG PA 6 trial was performed. From April 2012 to October 2016, 493 patients were included in the primary study. Assessment for dysplasia in the surgical specimens was secondarily performed. Dysplasia was defined based on presence and grade of three most common pre-malignant lesions (intraductal papillary mucinous neoplasm (IPMN), mucinous cystic neoplasm (MCN) and pancreatic intraepithelial neoplasia (PanIN). The primary endpoint was DFS validated through multivariate analysis. Results: Two hundred twenty-six patients (45.9%) had a preneoplastic lesion. PanIN lesions were found in 193 patients (39.2%), including 100 high-grade lesions (20.6%); 43 patients had IPMN lesions (8.7%), including high-grade lesions in 32 (6.5%). Three MCN were described (0.6%). In bivariate analysis, the presence of dysplasia was not associated with poorer DFS (HR = 0.82, 95% CI [0.66; 1.03]). In multivariate analysis, risk factors for poorer DFS were poorly differentiated/undifferentiated tumor, N1 status, R1 surgical margins and perineural invasion. Conclusions: The presence of dysplasia in the surgical specimen after pancreatic cancer surgery does not worsen DFS.
Collapse
Affiliation(s)
- Théo Legrand
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Julia Salleron
- Biostatistic Unit, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Thierry Conroy
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Frédéric Marchal
- Department of Surgical Oncology, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jacques Thomas
- Department of Biopathology, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | | | - James Jim Biagi
- Department of Oncology, Queen’s University, Kingston, ON K7L 5P9, Canada
| | - Aurélien Lambert
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
- Correspondence: ; Tel.: +33-(0)-3-83-59-85-64
| |
Collapse
|
36
|
Alausa A, Lawal KA, Babatunde OA, Obiwulu ENO, Oladokun OC, Fadahunsi OS, Celestine UO, Moses EU, Akaniro IR, Adegbola PI. Overcoming immunotherapeutic resistance in PDAC: SIRPα-CD47 blockade. Pharmacol Res 2022; 181:106264. [PMID: 35597384 DOI: 10.1016/j.phrs.2022.106264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022]
Abstract
A daily increase in the number of new cases of pancreatic ductal adenocarcinoma remains an issue of contention in cancer research. The data revealed that a global cumulated case of about 500, 000 have been reported. This has made PDAC the fourteenth most occurring tumor case in cancer research. Furthermore, PDAC is responsible for about 466,003 deaths annually, representing the seventh prevalent type of cancer mortality. PDAC has no salient symptoms in its early stages. This has exasperated several attempts to produce a perfect therapeutic agent against PDAC. Recently, immunotherapeutic research has shifted focus to the blockade of checkpoint proteins in the management and of some cancers. Investigations have centrally focused on developing therapeutic agents that could at least to a significant extent block the SIRPα-CD47 signaling cascade (a cascade which prevent phagocytosis of tumors by dendritic cells, via the deactivation of innate immunity and subsequently resulting in tumor regression) with minimal side effects. The concept on the blockade of this interaction as a possible mechanism for inhibiting the progression of PDAC is currently being debated. This review examined the structure--function activity of SIRPα-CD47 interaction while discussing in detail the mechanism of tumor resistance in PDAC. Further, this review details how the blockade of SIRPα-CD47 interaction serve as a therapeutic option in the management of PDAC.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria.
| | - Khadijat Ayodeji Lawal
- Heamtalogy and Blood Transfusion Unit, Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - E N O Obiwulu
- Department of Chemical Science, University of Delta, Agbor, Delta State, Nigeria
| | | | - Olumide Samuel Fadahunsi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria
| | - Ugwu Obiora Celestine
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Enugu State University of Science and Technology, Nigeria
| | | | | | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo state, Nigeria.
| |
Collapse
|
37
|
Lin AA, Nimgaonkar V, Issadore D, Carpenter EL. Extracellular Vesicle-Based Multianalyte Liquid Biopsy as a Diagnostic for Cancer. Annu Rev Biomed Data Sci 2022; 5:269-292. [PMID: 35562850 DOI: 10.1146/annurev-biodatasci-122120-113218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid biopsy is the analysis of materials shed by tumors into circulation, such as circulating tumor cells, nucleic acids, and extracellular vesicles (EVs), for the diagnosis and management of cancer. These assays have rapidly evolved with recent FDA approvals of single biomarkers in patients with advanced metastatic disease. However, they have lacked sensitivity or specificity as a diagnostic in early-stage cancer, primarily due to low concentrations in circulating plasma. EVs, membrane-enclosed nanoscale vesicles shed by tumor and other cells into circulation, are a promising liquid biopsy analyte owing to their protein and nucleic acid cargoes carried from their mother cells, their surface proteins specific to their cells of origin, and their higher concentrations over other noninvasive biomarkers across disease stages. Recently, the combination of EVs with non-EV biomarkers has driven improvements in sensitivity and accuracy; this has been fueled by the use of machine learning (ML) to algorithmically identify and combine multiple biomarkers into a composite biomarker for clinical prediction. This review presents an analysis of EV isolation methods, surveys approaches for and issues with using ML in multianalyte EV datasets, and describes best practices for bringing multianalyte liquid biopsy to clinical implementation. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrew A Lin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; .,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vivek Nimgaonkar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica L Carpenter
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
38
|
Steiner S, Seleznik GM, Reding T, Stopic M, Lenggenhager D, Ten Buren E, Eshmuminov D, Endhardt K, Hagedorn C, Heidenblut AM, Bratus-Neuenschwander A, Grossmann J, Trachsel C, Jabbar KS, Hahn SA, Berg JV, Graf R, Gupta A. De novo expression of gastrokines in pancreatic precursor lesions impede the development of pancreatic cancer. Oncogene 2022; 41:1507-1517. [PMID: 35082384 PMCID: PMC8897191 DOI: 10.1038/s41388-022-02182-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
Molecular events occurring in stepwise progression from pre-malignant lesions (pancreatic intraepithelial neoplasia; PanIN) to the development of pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Thus, characterization of early PanIN lesions may reveal markers that can help in diagnosing PDAC at an early stage and allow understanding the pathology of the disease. We performed the molecular and histological assessment of patient-derived PanINs, tumor tissues and pancreas from mouse models with PDAC (KC mice that harbor K-RAS mutation in pancreatic tissue), where we noted marked upregulation of gastrokine (GKN) proteins. To further understand the role of gastrokine proteins in PDAC development, GKN-deficient KC mice were developed by intercrossing gastrokine-deficient mice with KC mice. Panc-02 (pancreatic cancer cells of mouse origin) were genetically modified to express GKN1 for further in vitro and in vivo analysis. Our results show that gastrokine proteins were absent in healthy pancreas and invasive cancer, while its expression was prominent in low-grade PanINs. We could detect these proteins in pancreatic juice and serum of KC mice. Furthermore, accelerated PanIN and tumor development were noted in gastrokine deficient KC mice. Loss of gastrokine 1 protein delayed apoptosis during carcinogenesis leading to the development of desmoplastic stroma while loss of gastrokine 2 increased the proliferation rate in precursor lesions. In summary, we identified gastrokine proteins in early pancreatic precursor lesions, where gastrokine proteins delay pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Sabrina Steiner
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Gitta M Seleznik
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Theresia Reding
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Matea Stopic
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Daniela Lenggenhager
- Department of Pathology and Molecular Pathology, University Hospital Zürich and University of Zürich, 8091, Zürich, Switzerland
| | - Emiel Ten Buren
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Dilmurodjon Eshmuminov
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Katharina Endhardt
- Department of Pathology and Molecular Pathology, University Hospital Zürich and University of Zürich, 8091, Zürich, Switzerland
| | - Catherine Hagedorn
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Anna M Heidenblut
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University of Bochum, 44780, Bochum, Germany
| | | | - Jonas Grossmann
- Functional Genomics Center Zurich, University of Zurich, ETH, 8093, Zurich, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zurich, University of Zurich, ETH, 8093, Zurich, Switzerland
| | - Karolina S Jabbar
- Department of Medical Biochemistry, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Stephan A Hahn
- Faculty of Medicine, Department of Molecular GI Oncology, Ruhr University of Bochum, 44780, Bochum, Germany
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952, Schlieren, Switzerland
| | - Rolf Graf
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland.
| | - Anurag Gupta
- Visceral & Transplantation Surgery, University Hospital Zürich, 8091, Zürich, Switzerland.
| |
Collapse
|
39
|
Zhang J, Zhang Z, Holst S, Blöchl C, Madunic K, Wuhrer M, Ten Dijke P, Zhang T. Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells. J Biol Chem 2022; 298:101717. [PMID: 35151689 PMCID: PMC8914387 DOI: 10.1016/j.jbc.2022.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4–dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zejian Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands; Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Katarina Madunic
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
40
|
Lester C, Walsh L, Hartz KM, Mathew A, Levenick JM, Headlee BD, Heisey HD, Birkholz JH, Dixon M, Maranki JL, Gusani NJ, Dye CE, Moyer MT. The Durability of EUS-Guided Chemoablation of Mucinous Pancreatic Cysts: A Long-Term Follow-Up of the CHARM trial. Clin Gastroenterol Hepatol 2022; 20:e326-e329. [PMID: 33813070 PMCID: PMC8530455 DOI: 10.1016/j.cgh.2021.03.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 01/28/2023]
Abstract
Pancreatic cancer has known precursor lesions with potential to develop into malignancy over time. At least 20% of pancreatic cancer evolves from mucinous cystic neoplasms and intraductal papillary mucinous neoplasms, which are often discovered incidentally.1,2 Current guidelines for the management of mucinous cystic neoplasms and intraductal papillary mucinous neoplasms include long-term surveillance, which is expensive and nontherapeutic, or surgical resection, which is associated with major risk and may not be an option for patients with significant concomitant illness.3.
Collapse
Affiliation(s)
- Courtney Lester
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Leonard Walsh
- Division of General Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Kayla M. Hartz
- Division of General Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Abraham Mathew
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - John M. Levenick
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Brandy D. Headlee
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Heather D. Heisey
- Penn State Investigational Drug Services Pharmacy, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - James H. Birkholz
- Department of Radiology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Matthew Dixon
- Division of Surgical Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Jennifer L. Maranki
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Niraj J. Gusani
- Division of Surgical Oncology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Charles E. Dye
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Matthew T. Moyer
- Division of Gastroenterology and Hepatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
41
|
Rajpurohit T, Bhattacharya S. Moving Towards Dawn: KRas Signaling and Treatment in Pancreatic Ductal Adenocarcinoma. Curr Mol Pharmacol 2022; 15:904-928. [PMID: 35088684 DOI: 10.2174/1874467215666220128161647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
"Pancreatic ductal adenocarcinoma (PDAC)" is robust, nearly clueless, and all-around deadly among all tumors. Below 10 %, the general 5-year endurance period has remained adamantly unaltered in the last 30 years, regardless of enormous clinical and therapeutic endeavors. The yearly number of deaths is more than the number of recently analyzed cases. Not a classic one, but "Carbohydrate Antigen CA19- 9" remains the prevailing tool for diagnosis. MicroRNAs and non-invasive techniques are now incorporated for the effective prognosis of PDAC than just CA19-9. Mutated "Rat sarcoma virus Ras" conformation "V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog KRas" is 95 % accountable for PDAC, and its active (GTP-bound) formation activates signaling cascade comprising "Rapidly accelerated fibrosarcoma Raf"/"Mitogen-activated protein kinase MEK"/ "Extracellular signal-regulated kinase ERK" with "Phosphoinositide 3-kinase PI3K"/ "protein kinase B Akt"/ "mammalian target of rapamycin mTOR" pathways. KRas has acquired the label of 'undruggable' since the crosstalk in the nexus of pathways compensates for Raf and PI3K signaling cascade blocking. It is arduous to totally regulate KRascoordinated PDAC with traditional medicaments like "gemcitabine GEM" plus nabpaclitaxel/ FOLFIRINOX. For long-haul accomplishments aiming at KRas, future endeavors should be directed to combinatorial methodologies to adequately block KRas pathways at different standpoints. Currently they are contributing to healing PDAC. In this review article, we outline the function of KRas in carcinogenesis in PDAC, its signaling cascade, former techniques utilized in hindering Kras, current and future possibilities for targeting Kras.
Collapse
Affiliation(s)
- Tarun Rajpurohit
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
42
|
Yan TB, Huang JQ, Huang SY, Ahir BK, Li LM, Mo ZN, Zhong JH. Advances in the Detection of Pancreatic Cancer Through Liquid Biopsy. Front Oncol 2021; 11:801173. [PMID: 34993149 PMCID: PMC8726483 DOI: 10.3389/fonc.2021.801173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer refers to the development of malignant tumors in the pancreas: it is associated with high mortality rates and mostly goes undetected in its early stages for lack of symptoms. Currently, surgical treatment is the only effective way to improve the survival of pancreatic cancer patients. Therefore, it is crucial to diagnose the disease as early as possible in order to improve the survival rate of patients with pancreatic cancer. Liquid biopsy is a unique in vitro diagnostic technique offering the advantage of earlier detection of tumors. Although liquid biopsies have shown promise for screening for certain cancers, whether they are effective for early diagnosis of pancreatic cancer is unclear. Therefore, we reviewed relevant literature indexed in PubMed and collated updates and information on advances in the field of liquid biopsy with respect to the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Bao Yan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jia-Qi Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Shi-Yun Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Bhavesh K. Ahir
- Section of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Long-Man Li
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zeng-Nan Mo
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
43
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
44
|
Nimmakayala RK, Rauth S, Venkata RC, Marimuthu S, Nallasamy P, Vengoji R, Lele SM, Rachagani S, Mallya K, Malafa MP, Ponnusamy MP, Batra SK. PGC1α-Mediated Metabolic Reprogramming Drives the Stemness of Pancreatic Precursor Lesions. Clin Cancer Res 2021; 27:5415-5429. [PMID: 34172498 PMCID: PMC8709878 DOI: 10.1158/1078-0432.ccr-20-5020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Metabolic reprogramming and cancer stem cells drive the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). However, the metabolic and stemness programs of pancreatic precursor lesions (PPL), considered early PDAC development events, have not been thoroughly explored. EXPERIMENTAL DESIGN Meta-analyses using gene expression profile data from NCBI Gene Expression Omnibus and IHC on tissue microarrays (TMA) were performed. The following animal and cellular models were used: cerulean-induced KrasG12D; Pdx1 Cre (KC) acinar-to-ductal metaplasia (ADM) mice, KrasG12D; Smad4Loss; Pdx-1 Cre (KCSmad4-) intraductal papillary mucinous neoplasm (IPMN) mice, LGKC1 cell line derived from the doxycycline-inducible Gnas IPMN model, and human IPMN organoids. Flow cytometry, Seahorse extracellular flux analyzer, qRT-PCR, and sphere assay were used to analyze metabolic and stemness features. SR18292 was used to inhibit PGC1α, and short hairpin RNA was used to knockdown (KD) PGC1α. RESULTS The meta-analysis revealed a significant upregulation of specific stemness genes in ADM-mediated pancreatic intraepithelial neoplasms (PanIN) and IPMN. Meta- and TMA analyses followed by in vitro and in vivo validation revealed that ADM/PanIN exhibit increased PGC1α and oxidative phosphorylation (OXPhos) but reduced CPT1A. IPMN showed elevated PGC1α, fatty acid β-oxidation (FAO) gene expression, and FAO-OXPhos. PGC1α was co-overexpressed with its coactivator NRF1 in ADM/PanINs and with PPARγ in IPMN. PGC1α KD or SR18292 inhibited the specific metabolic and stemness features of PPLs and repressed IPMN organoid growth. CONCLUSIONS ADM/PanINs and IPMNs show specific stemness signatures with unique metabolisms. Inhibition of PGC1α using SR18292 diminishes the specific stemness by targeting FAO-independent and FAO-dependent OXPhos of ADM/PanINs and IPMNs, respectively.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Ramakanth Chirravuri Venkata
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Subodh M. Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
45
|
Baranwal M, Krishnan S, Oneka M, Frankel T, Rao A. CGAT: Cell Graph ATtention Network for Grading of Pancreatic Disease Histology Images. Front Immunol 2021; 12:727610. [PMID: 34671349 PMCID: PMC8522581 DOI: 10.3389/fimmu.2021.727610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Early detection of Pancreatic Ductal Adenocarcinoma (PDAC), one of the most aggressive malignancies of the pancreas, is crucial to avoid metastatic spread to other body regions. Detection of pancreatic cancer is typically carried out by assessing the distribution and arrangement of tumor and immune cells in histology images. This is further complicated due to morphological similarities with chronic pancreatitis (CP), and the co-occurrence of precursor lesions in the same tissue. Most of the current automated methods for grading pancreatic cancers rely on extensive feature engineering involving accurate identification of cell features or utilising single number spatially informed indices for grading purposes. Moreover, sophisticated methods involving black-box approaches, such as neural networks, do not offer insights into the model's ability to accurately identify the correct disease grade. In this paper, we develop a novel cell-graph based Cell-Graph Attention (CGAT) network for the precise classification of pancreatic cancer and its precursors from multiplexed immunofluorescence histology images into the six different types of pancreatic diseases. The issue of class imbalance is addressed through bootstrapping multiple CGAT-nets, while the self-attention mechanism facilitates visualization of cell-cell features that are likely responsible for the predictive capabilities of the model. It is also shown that the model significantly outperforms the decision tree classifiers built using spatially informed metric, such as the Morisita-Horn (MH) indices.
Collapse
Affiliation(s)
- Mayank Baranwal
- Division of Data & Decision Sciences, Tata Consultancy Services Research, Mumbai, India
- Department of Systems and Control Engineering, Indian Institute of Technology, Bombay, India
| | - Santhoshi Krishnan
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Morgan Oneka
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Timothy Frankel
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Arvind Rao
- Department of Electrical & Computer Engineering, Rice University, Houston, TX, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Wu Y, Zhou Q, Guo F, Chen M, Tao X, Dong D. S100 Proteins in Pancreatic Cancer: Current Knowledge and Future Perspectives. Front Oncol 2021; 11:711180. [PMID: 34527585 PMCID: PMC8435722 DOI: 10.3389/fonc.2021.711180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system. Currently, there is a lack of specific and effective interventions for PC; thus, further exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein family, a collection of calcium-binding proteins expressed only in vertebrates, comprises 25 members with high sequence and structural similarity. Dysregulated expression of S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these proteins are associated with the regulation of multiple cellular processes, including proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion, Ca2+ homeostasis, and energy metabolism. This review highlights the significance of the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell metastasis, invasion and proliferation. A further understanding of S100 proteins will provide potential therapeutic targets for preventing or treating PC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mingming Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
47
|
Yip-Schneider MT, Wu H, Allison HR, Easler JJ, Sherman S, Al-Haddad MA, Dewitt JM, Schmidt CM. Biomarker Risk Score Algorithm and Preoperative Stratification of Patients with Pancreatic Cystic Lesions. J Am Coll Surg 2021; 233:426-434.e4. [PMID: 34166836 PMCID: PMC8403144 DOI: 10.1016/j.jamcollsurg.2021.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pancreatic cysts are incidentally detected in up to 13% of patients undergoing radiographic imaging. Of the most frequently encountered types, mucin-producing (mucinous) pancreatic cystic lesions may develop into pancreatic cancer, while nonmucinous ones have little or no malignant potential. Accurate preoperative diagnosis is critical for optimal management, but has been difficult to achieve, resulting in unnecessary major surgery. Here, we aim to develop an algorithm based on biomarker risk scores to improve risk stratification. STUDY DESIGN Patients undergoing surgery and/or surveillance for a pancreatic cystic lesion, with diagnostic imaging and banked pancreatic cyst fluid, were enrolled in the study after informed consent (n = 163 surgical, 67 surveillance). Cyst fluid biomarkers with high specificity for distinguishing nonmucinous from mucinous pancreatic cysts (vascular endothelial growth factor [VEGF], glucose, carcinoembryonic antigen [CEA], amylase, cytology, and DNA mutation) were selected. Biomarker risk scores were used to design an algorithm to predict preoperative diagnosis. Performance was tested using surgical (retrospective) and surveillance (prospective) cohorts. RESULTS In the surgical cohort, the biomarker algorithm outperformed the preoperative clinical diagnosis in correctly predicting the final pathologic diagnosis (91% vs 73%; p < 0.000001). Specifically, nonmucinous serous cystic neoplasms (SCN) and mucinous cystic neoplasms (MCN) were correctly classified more frequently by the algorithm than clinical diagnosis (96% vs 30%; p < 0.000008 and 92% vs 69%; p = 0.04, respectively). In the surveillance cohort, the algorithm predicted a preoperative diagnosis with high confidence based on a high biomarker score and/or consistency with imaging from ≥1 follow-up visits. CONCLUSIONS A biomarker risk score-based algorithm was able to correctly classify pancreatic cysts preoperatively. Importantly, this tool may improve initial and dynamic risk stratification, reducing overdiagnosis and underdiagnosis.
Collapse
Affiliation(s)
- Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN; Walther Oncology Center, Indianapolis, IN; Indiana University Simon Cancer Center, Indianapolis, IN; Indiana University Health Pancreatic Cyst and Cancer Early Detection Center, Indianapolis, IN
| | - Huangbing Wu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN; Indiana University Health Pancreatic Cyst and Cancer Early Detection Center, Indianapolis, IN
| | | | - Jeffrey J Easler
- Department of Medicine, Division of Gastroenterology, Indianapolis, IN
| | - Stuart Sherman
- Department of Medicine, Division of Gastroenterology, Indianapolis, IN
| | - Mohammad A Al-Haddad
- Department of Medicine, Division of Gastroenterology, Indianapolis, IN; Indiana University Health Pancreatic Cyst and Cancer Early Detection Center, Indianapolis, IN
| | - John M Dewitt
- Department of Medicine, Division of Gastroenterology, Indianapolis, IN
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN; Biochemistry/Molecular Biology, Indianapolis, IN; Walther Oncology Center, Indianapolis, IN; Indiana University Simon Cancer Center, Indianapolis, IN; Indiana University Health Pancreatic Cyst and Cancer Early Detection Center, Indianapolis, IN.
| |
Collapse
|
48
|
Zhang H, Corredor ALG, Messina-Pacheco J, Li Q, Zogopoulos G, Kaddour N, Wang Y, Shi BY, Gregorieff A, Liu JL, Gao ZH. REG3A/REG3B promotes acinar to ductal metaplasia through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Commun Biol 2021; 4:688. [PMID: 34099862 PMCID: PMC8184755 DOI: 10.1038/s42003-021-02193-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
Persistent acinar to ductal metaplasia (ADM) is a recently recognized precursor of pancreatic ductal adenocarcinoma (PDAC). Here we show that the ADM area of human pancreas tissue adjacent to PDAC expresses significantly higher levels of regenerating protein 3A (REG3A). Exogenous REG3A and its mouse homolog REG3B induce ADM in the 3D culture of primary human and murine acinar cells, respectively. Both Reg3b transgenic mice and REG3B-treated mice with caerulein-induced pancreatitis develop and sustain ADM. Two out of five Reg3b transgenic mice with caerulein-induced pancreatitis show progression from ADM to pancreatic intraepithelial neoplasia (PanIN). Both in vitro and in vivo ADM models demonstrate activation of the RAS-RAF-MEK-ERK signaling pathway. Exostosin-like glycosyltransferase 3 (EXTL3) functions as the receptor for REG3B and mediates the activation of downstream signaling proteins. Our data indicates that REG3A/REG3B promotes persistent ADM through binding to EXTL3 and activating the RAS-RAF-MEK-ERK signaling pathway. Targeting REG3A/REG3B, its receptor EXTL3, or other downstream molecules could interrupt the ADM process and prevent early PDAC carcinogenesis.
Collapse
Affiliation(s)
- Huairong Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Andrea Liliam Gomez Corredor
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Julia Messina-Pacheco
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - George Zogopoulos
- Department of Surgery, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Nancy Kaddour
- Department of Medicine, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Yifan Wang
- Department of Surgery, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Bing-Yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Alex Gregorieff
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Jun-Li Liu
- Department of Medicine, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| | - Zu-Hua Gao
- Department of Pathology, McGill University and the Research Institute of McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
49
|
Okasha HH, Awad A, El-meligui A, Ezzat R, Aboubakr A, AbouElenin S, El-Husseiny R, Alzamzamy A. Cystic pancreatic lesions, the endless dilemma. World J Gastroenterol 2021; 27:2664-2680. [PMID: 34135548 PMCID: PMC8173383 DOI: 10.3748/wjg.v27.i21.2664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cystic pancreatic lesions involve a wide variety of pathological entities that include neoplastic and non-neoplastic lesions. The proper diagnosis, differentiation, and staging of these cystic lesions are considered a crucial issue in planning further management. There are great challenges for their diagnostic models. In our time, new emerging methods for this diagnosis have been discovered. Endoscopic ultrasonography-guided fine-needle aspiration cytology with chemical and molecular analysis of cyst fluid and EUS-guided fine needle-based confocal laser endomicroscopy, through the needle microforceps biopsy, and single-operator cholangioscopy/pancreatoscopy are promising methods that have been used in the diagnosis of cystic pancreatic lesions. Hereby we discuss the diagnosis of cystic pancreatic lesions and the benefits of various diagnostic models.
Collapse
Affiliation(s)
- Hussein Hassan Okasha
- Department of Internal Medicine and Gastroenterology, Hepatology Unit, Kasr Al-Aini Hospitals, Cairo University, Cairo 11562, Egypt
| | - Abeer Awad
- Department of Internal Medicine and Gastroenterology, Hepatology Unit, Kasr Al-Aini Hospitals, Cairo University, Cairo 11562, Egypt
| | - Ahmed El-meligui
- Department of Internal Medicine and Gastroenterology, Hepatology Unit, Kasr Al-Aini Hospitals, Cairo University, Cairo 11562, Egypt
| | - Reem Ezzat
- Department of Internal Medicine and Gastroenterology, Hepatology Unit, Assuit University, Assuit 71515, Egypt
| | - Ashraf Aboubakr
- Department of Gastroenterology and Hepatology, Maadi Armed Forces Medical Complex, Military Medical Academy, Cairo 11441, Egypt
| | - Sameh AbouElenin
- Department of Gastroenterology and Hepatology, Military Medical Academy, Cairo 11441, Egypt
| | - Ramy El-Husseiny
- Department of Hepatology and Tropical Medicine, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Cairo 11441, Egypt
| | - Ahmed Alzamzamy
- Department of Gastroenterology and Hepatology, Maadi Armed Forces Medical Complex, Military Medical Academy, Cairo 11441, Egypt
| |
Collapse
|
50
|
Store-Operated Calcium Entry: Shaping the Transcriptional and Epigenetic Landscape in Pancreatic Cancer. Cells 2021; 10:cells10050966. [PMID: 33919156 PMCID: PMC8143176 DOI: 10.3390/cells10050966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) displays a particularly poor prognosis and low survival rate, mainly due to late diagnosis and high incidence of chemotherapy resistance. Genomic aberrations, together with changes in the epigenomic profile, elicit a shift in cellular signaling response and a transcriptional reprograming in pancreatic tumors. This endows them with malignant attributes that enable them to not only overcome chemotherapeutic challenges, but to also attain diverse oncogenic properties. In fact, certain genetic amplifications elicit a rewiring of calcium signaling, which can confer ER stress resistance to tumors while also aberrantly activating known drivers of oncogenic programs such as NFAT. While calcium is a well-known second messenger, the transcriptional programs driven by aberrant calcium signaling remain largely undescribed in pancreatic cancer. In this review, we focus on calcium-dependent signaling and its role in epigenetic programs and transcriptional regulation. We also briefly discuss genetic aberration events, exemplifying how genetic alterations can rewire cellular signaling cascades, including calcium-dependent ones.
Collapse
|