1
|
Helmi NR. Exploring the diversity and antimicrobial potential of actinomycetes isolated from different environments in Saudi Arabia: a systematic review. Front Microbiol 2025; 16:1568899. [PMID: 40207161 PMCID: PMC11979186 DOI: 10.3389/fmicb.2025.1568899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The increasing prevalence of antimicrobial resistance (AMR) presents a significant global health challenge, underscoring the urgent need for novel antimicrobial agents. Actinomycetes, particularly Streptomyces species, are well known for synthesizing bioactive compounds with antibacterial, antifungal, and antiviral properties. This review explores the diversity and antimicrobial potential of actinomycetes from Saudi Arabia's unique ecosystems, including terrestrial (soil, rhizosphere), aquatic (marine, freshwater), extreme (deserts, caves, hot springs, mountains, and mangroves), and other unique environments. The adaptation of these microorganisms to harsh environmental conditions has driven the evolution of unique strains with enhanced biosynthetic capacities. Several studies have demonstrated their antimicrobial efficacy against multidrug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, Pseudomonas aeruginosa, and Candida albicans. However, challenges in actinomycete research persist, including difficulties in culturing rare strains, limited genomic characterization, and high production costs. Recent advancements, such as genome mining, metagenomics, AI-driven bioinformatics, and CRISPR-based gene activation, offer promising avenues for unlocking novel antimicrobial compounds. Additionally, synthetic biology, advanced fermentation technologies, and nanotechnology-based drug delivery systems are enhancing the industrial scalability of actinomycete-derived antibiotics. Beyond antimicrobials, actinomycete-derived compounds show potential applications in oncology, immunotherapy, and agriculture. Alternative therapeutic strategies, including quorum sensing inhibitors, phage therapy, and combination therapies, are being explored to combat AMR. Cutting-edge analytical techniques, such as mass spectrometry, liquid chromatography, and nuclear magnetic resonance spectroscopy (NMR), are essential for structural elucidation and mechanism characterization of new bioactive compounds. To harness Saudi Arabia's microbial biodiversity effectively, interdisciplinary collaborations between microbiologists, biotechnologists, and pharmaceutical industries are crucial. Sustainable bioprospecting and advanced bioprocessing strategies will facilitate the translation of actinomycete-derived bioactive compounds into clinically viable therapeutics. Expanding research efforts into underexplored Saudi ecosystems can lead to groundbreaking discoveries in antibiotic development and beyond.
Collapse
Affiliation(s)
- Noof Refat Helmi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Jiang L, Zeng Z, Wang Z, Tang M, Jiang S, Ma Q, Wang Z, Peng D, Li S, Pu H. Genomic Investigation of a Rhizosphere Isolate, Streptomyces sp. JL1001, Associated with Polygonatum cyrtonema Hua. Curr Microbiol 2024; 81:368. [PMID: 39305346 DOI: 10.1007/s00284-024-03887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
In the present study, using genome mining, Streptomyces sp. JL1001, which possesses a leinamycin-type gene cluster, was identified from 14 strains of Streptomyces originating from the rhizosphere soil of Polygonatum cyrtonema Hua. The complete genome of Streptomyces sp. JL1001 was sequenced and analyzed. The genome of Streptomyces sp. JL1001 consists of a 7,943,495 bp chromosome with a 71.71% G+C content and 7315 protein-coding genes. We also identified 36 biosynthetic gene clusters (BGCs) for secondary metabolites in Streptomyces sp. JL1001. Twenty-seven BGCs had low (< 50%) or moderate (50-80%) similarity to other known secondary metabolite BGCs. In addition, a comparative analysis was conducted between the leinamycin-type gene cluster in Streptomyces sp. JL1001 and the biosynthetic gene clusters of leinamycin and largimycin. This study aims to provide a comprehensive analysis of the genomic features of rhizosphere Streptomyces sp. JL1001. It establishes the foundation for further investigation into experimental trials involving novel bioactive metabolites such as AT-less type I polyketides that have important potential applications in medicine and agriculture.
Collapse
Affiliation(s)
- Lin Jiang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Changsha Concord Herbs Cultivation Technology Co., Ltd., Changsha, 410221, China
| | - Zixian Zeng
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhi Wang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Min Tang
- Department of Pharmacy, Yiyang Medical College, Yiyang, 413000, China
| | - Sai Jiang
- Institute of Traditional Chinese Medicine for Innovation Drug Research, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Qingxian Ma
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Zhong Wang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, 410605, China.
| | - Shunxiang Li
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Changsha Concord Herbs Cultivation Technology Co., Ltd., Changsha, 410221, China.
| | - Hong Pu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, China.
| |
Collapse
|
3
|
Manikkam R, Murthy S, Palaniappan S, Kaari M, Sahu AK, Said M, Ganesan V, Kannan S, Ramasamy B, Thirugnanasambandan S, Dastager SG, Hanna LE, Kumar V. Antibacterial and Anti-HIV Metabolites from Marine Streptomyces albus MAB56 Isolated from Andaman and Nicobar Islands, India. Appl Biochem Biotechnol 2023; 195:7738-7754. [PMID: 37086378 DOI: 10.1007/s12010-023-04493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Marine-derived actinobacteria have tremendous potential to produce novel metabolites with diverse biological activities. The Andaman coast of India has a lot of microbial diversity, but it is still a relatively unknown ecology for isolating novel actinobacteria with beneficial bioactive compounds. We have isolated 568 actinobacterial strains from mangrove rhizosphere sediments and sponge samples. Crude extracts from 75 distinct strains were produced by agar surface fermentation and extracted using ethyl acetate. In the disc diffusion method, 25 actinobacterial strains showed antimicrobial activity; notably, the strain MAB56 demonstrated promising broad-spectrum activity. Strain MAB56 was identified as Streptomyces albus by cultural, microscopic, and molecular methods. Conditions for bioactive metabolites from MAB56 were optimized and produced in a lab-scale fermenter. Three active metabolites (C1, C2, and C3) that showed promising broad-spectrum antimicrobial activity were isolated through HPLC-based purification. Based on the UV, FT-IR, NMR, and LC-MS analysis, the chemical nature of the active compounds was confirmed as 12-methyltetradecanoic acid (C1), palmitic acid (C2), and tridecanoic acid (C3) with molecular formulae C14H28O2, C16H32O2, and C13H26O2, respectively. Interestingly, palmitic acid (C2) also exhibited anti-HIV activity with an IC50 value of < 1 µg/ml. Our findings reveal that the actinobacteria from the Andaman marine ecosystems are promising for isolating anti-infective metabolites.
Collapse
Affiliation(s)
- Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - Sangeetha Murthy
- Department of Microbiology, Periyar University, Salem, 636011, Tamil Nadu, India
| | | | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Amit Kumar Sahu
- Microbial Resource Centre, National Chemical Laboratory, Pune, India
| | - Madhukar Said
- Microbial Resource Centre, National Chemical Laboratory, Pune, India
| | - Vijayalakshmi Ganesan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - Sivakumar Kannan
- CAS in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India
| | | | | | - Syed G Dastager
- Microbial Resource Centre, National Chemical Laboratory, Pune, India
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis, Chennai, 600031, Tamil Nadu, India
| | - Vanaja Kumar
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| |
Collapse
|
4
|
Maryam H, Fazel P, Mostafa N. Isolation and Screening of Antibacterial Activity of Actinomycetota from the Medicinal Plant, Anthemis pseudocotula Boiss. ARCHIVES OF RAZI INSTITUTE 2023; 78:1638-1646. [PMID: 38590676 PMCID: PMC10998938 DOI: 10.22092/ari.2023.78.5.1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/11/2023] [Indexed: 04/10/2024]
Abstract
Antibiotic resistance is rising dramatically worldwide, and thus the production of new antibiotics is indispensable. Recent scientific initiatives have focused on the bioprospecting of microorganisms' secondary metabolites, with a particular focus on the look for natural products with antimicrobial properties derived from endophytes. All plant species, regardless of their type, are thought to anchor endophytic bacteria (EB). There are many potential uses for the natural therapeutic compounds made by EB in medicine, agriculture, and the pharmaceutical industry. To investigate antibacterial properties in this study, Actinomycetota (formerly, Actinobacteria) were isolated from Anthemis pseudocotula Boiss., identified, and underwent bioprospecting by morphological and molecular methods. Samples were collected from Ilam, Iran, and then divided into roots, leaves, stems, and flowers. After disinfection, they were cut into 2 mm pieces, cultured on casein agar culture medium, and incubated at 28ºC for up to four weeks. Actinomycetota was identified using the polymerase chain reaction method targeting the 16S rRNA gene. To evaluate the antibacterial properties of the isolated Actinomycetota, the agar diffusion method was used. In parallel, the frequencies of biosynthetic gene clusters, including polyketide synthase (PKS-I and PKS-II) and nonribosomal peptide synthetase (NRPS) genes, were determined in the isolated Actinomycetota. Ninety bacteria were isolated from different parts of Anthemis flowers. Thirty-eight (42.2%) of these bacteria belonged to the phylum Actinomycetota, and out of these 38, 15 isolates (39.5%) had antibacterial properties. Of these, 11 isolates (73.3%) exhibited antibacterial effects against Staphylococcus aureus, 2 (13.3%) against Pseudomonas aeruginosa, 3 (20%) against Escherichia coli, and two isolates (13.3%) against Salmonella enterica sub-species of enterica serovar Typhimurium. The results of the molecular analysis of PKS-I, PKS-II, and NRPS genes showed that out of 38 isolated Actinomycetota strains, 23 isolates (60.5%) carried PKS-I gene, 6 (15.8%) harbored PKS-II gene, and 20 isolates (52.6%) had NRPS gene. This study indicates that Anthemis pseudocotula Boiss. has a number of active Actinomycetota that produce secondary metabolites with antibacterial properties.
Collapse
Affiliation(s)
- Hajizadeh Maryam
- Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran
| | - Pourahmad Fazel
- Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran
| | - Nemati Mostafa
- Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran
| |
Collapse
|
5
|
Exploration of actinobacteria communities in seawater and sediments of mediterranean basin from Algerian coast displays hight diversity with new taxa and antibacterial potential. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
James G, Prasannan Geetha P, Thavarool Puthiyedathu S, Vattringal Jayadradhan RK. Applications of Actinobacteria in aquaculture: prospects and challenges. 3 Biotech 2023; 13:42. [PMID: 36643400 PMCID: PMC9834454 DOI: 10.1007/s13205-023-03465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Disease outbreaks due to improper culture management, poor water quality, and climate change are major concerns in aquaculture. Most of the aquatic pathogens are opportunistic and any imbalance in the host-pathogen-environment triad will result in a disease outbreak. The indiscriminate use of chemotherapeutics such as antibiotics to prevent diseases in aquaculture will lead to antimicrobial resistance in aquaculture. Hence, the demand for natural microbial strains which can be used as beneficial probiotics and bioaugmentors in fish farming systems has increased to ensure one health in aquaculture. Studies have proved the probiotic and bioremediation potential of several Actinobacterial species that can be applied in aquaculture. Actinobacteria, especially Streptomyces, can be applied in aquaculture for disease prevention, treatment, and bioremediation of organic and inorganic waste in the culture systems. The growth, immunity, and resistance towards aquatic pathogens in cultured organisms also get enhanced through their capability to release potent antimicrobial compounds, bioactive molecules, and novel enzymes. Their broad-spectrum antimicrobial and quorum quenching activity can be well exploited against quorum sensing biofilm forming aquatic pathogens. Even though they impart specific adverse effects like the production of off-flavour compounds, this could be controlled through proper management strategies. This review discusses the applications, challenges, and prospects of Actinobacteria in aquaculture. Research gaps are also highlighted, which may shed light on the existing complexities and should pave the way for their better understanding and utilisation in aquaculture.
Collapse
Affiliation(s)
- Greeshma James
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
| | - Preena Prasannan Geetha
- Department of Marine Biosciences, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
| | | | - Rejish Kumar Vattringal Jayadradhan
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506 Kerala India
| |
Collapse
|
7
|
Ghashghaei S, Etemadifar Z, Tavassoli M, Mofid MR. Optimization of Degenerate PCR Conditions for Reducing Error Rates in Detection of PKS and NRPS Gene groups in Actinomycetes. Avicenna J Med Biotechnol 2023; 15:28-37. [PMID: 36789116 PMCID: PMC9895980 DOI: 10.18502/ajmb.v15i1.11422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/19/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The screen of Polyketide Synthase (PKS) and Nonribosomal Peptide Synthetase (NRPS) gene groups is a quick way to discover new therapeutic agents. However, errors in laboratory techniques cause a loss of touch with reality. This study aimed to evaluate the presence of PKS and NRPS gene groups in previously isolated strains by optimizing their specialized amplification by degenerate primers and indicating the evolutionary relationships with reference strains. METHODS PKS-I, II, and NRPS genes PCR amplification was performed using three degenerate primer sets for 22 actinomycete strains with antibacterial activity. Annealing temperature and the amount of template DNA and primers were optimized. PCR products of PKS-I, II, and NRPS from three strains were sequenced after TA cloning. Besides, strains with high antibacterial activity were identified by biochemical features and partial 16S rDNA sequencing and hypothetically classified by a phylogenetic tree. RESULTS High frequencies of PKS-I (86.4%), PKS-II (81.8%), and NRPS (95.4%) genes were found among the strains after optimization. Fourteen strains (64%) contained all of the genes, and 100% of strains had at least two genes. These numbers are pretty distinct in comparison with the previous researches. All of the sequenced strains were members of Streptomyces genus. CONCLUSION Our research showed that degenerate PCR strongly depends on the variation of annealing temperature and primer concentration, resulting in an unexpected shift in PCR outputs. The sequencing results confirmed the optimized conditions for specialized PCR of PKS-I, PKS-II, and NRPS gene groups.
Collapse
Affiliation(s)
- Sara Ghashghaei
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Manoochehr Tavassoli
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry, Isfahan Pharmaceutical Sciences Research Center and Bioinformatics Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Purification, HR-LC-ESI-MS-MS Identification, and Peptide Prediction of Bacteriocin-Like Inhibitory Substances Produced by Streptomyces sp. Isolated from Chanos chanos. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:8672643. [PMID: 35959223 PMCID: PMC9363233 DOI: 10.1155/2022/8672643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Consumption of fresh and minimally processed food is closely related to foodborne diseases. To minimize the adverse effects, bacteriocin-like inhibitory substance (BLIS) as a natural preservative can be used. One of the bacteriocins with promising activity was produced by Streptomyces sp. Using gel filtration chromatography, the bacteriocin purification process succeeded in obtaining semi-purified fractions with broad-spectrum inhibitory activity to foodborne pathogen bacteria. These fractions are also stable up to 100 °C and pH 2.0–7.0. High-Resolution Liquid Chromatography Electrospray Ionization-Tandem Mass Spectrometry analysis followed by orthogonal projection to latent structure showed that each fraction had eight peaks with the highest positive correlation to BLIS-specific activity. Peptide identification based on MS spectrum found 597 predictive peptides, of which 42 predictive peptides with antimicrobial peptide characteristics and the highest iAMPpred antimicrobial peptide probability (>0.5) were selected. The selected predictive peptides have molecular mass of 247.13-615.37 Da and consist of at least 20% hydrophobic amino acids with a hydrophobicity value of 14.72 Kcal mol−1. The results of this study indicate the effectiveness of BLIS purification by gel filtration chromatography and the promising potential of semi-purified BLIS as a natural preservative. Besides, the active peptides in semi-purified BLIS can also be identified quickly so that the isolation process to obtain purified-BLIS can be carried out more efficiently.
Collapse
|
9
|
Abdelaziz R, Tartor YH, Barakat AB, El-Didamony G, El-Samadony HA, Amer SA, Gado MM. Streptomyces coeruleorubidus as a potential biocontrol agent for Newcastle disease virus. BMC Vet Res 2022; 18:241. [PMID: 35751117 PMCID: PMC9229119 DOI: 10.1186/s12917-022-03349-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Newcastle disease virus (NDV) is a severe disease that affects domestic and wild birds. Controlled antibiotics derived from probiotics have been examined as prospective solutions for preserving seroconversion in NDV-vaccinated fowl. In this study, the secondary metabolite “telomycin” was extracted from Streptomyces coeruleorubidus (S. coeruleorubidus) isolated from Egypt's cultivated soil. The structure of telomycin was determined by the elucidation of spectroscopic analysis, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) spectra, and comparison with the literature. The antiviral activity of the secondary metabolite was tested by checking its effect on NDV hemagglutination activity (HA). Moreover, HA of NDV was tested after inoculation of NDV (control) and a combination of telomycin and NDV in 10- days- specific pathogen-free embryonated chicken eggs (SPF-ECE) daily candling. Histopathological examination was performed for chorioallantoic membranes and liver of SPF-ECE. Results S. coeruleorubidus secondary metabolite “telomycin” showed complete hemagglutination inhibition (HI) activity of NDV strain (MN635617) with log106 infectivity titers (EID50/mL). The HA of NDV strain was 8 log2 and 9 log2 with 0.5% and 0.75% of chicken RBCs, respectively. Preserved structures of chorioallantoic-membranes (CAM) with dilated capillary networks were observed in the treated group inoculated with telomycin and NDV. Histological changes in SPF-ECE liver were examined after inoculation in ova to further characterize the telomycin effect. Telomycin and NDV mixture inoculated group showed preserved cytoarchitecture of hepatocytes with the presence of perivascular foci of lymphocytes. The group that was inoculated with telomycin alone showed normal histology of hepatic acini, central veins, and portal triads. Conclusion S. coeruleorubidus telomycin is a promising bioactive agent that might be a biological weapon against a deadly chicken NDV that costs farmers a lot of money. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03349-7.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed B Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Gamal El-Didamony
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanaa A El-Samadony
- Department of Poultry, Dokki, Agriculture Research Center, Animal Health Research Institute, Giza, 44511, Egypt
| | - Shimaa A Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Marwa M Gado
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
10
|
Naligama KN, Weerasinghe KE, Halmillawewa AP. Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments, Sri Lanka. Pol J Microbiol 2022; 71:191-204. [PMID: 35676828 PMCID: PMC9252147 DOI: 10.33073/pjm-2022-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from ‘Kadolkele’ mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials. A total of six actinomycetes were isolated on modified-starch casein agar and characterized. The isolates were evaluated for their antibacterial activity against four selected bacterial strains and to produce extracellular enzymes: cellulase, amylase, protease, and lipase. Three out of the six isolates exhibited antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus cereus, but not against Listeria monocytogenes. Five strains could produce extracellular cellulase, while all six isolates exhibited amylase activity. Only three of the six isolates were positive for protease and lipase assays separately. Ac-1, Ac-2, and Ac-9, identified as Streptomyces spp. with the 16S rRNA gene sequencing, were used for pigment extraction using four different solvents. Acetone-extracted crude pigments of Ac-1 and Ac-2 were further used in well-diffusion assays, and growth inhibition of test bacteria was observed only with the crude pigment extract of Ac-2. Further, six different commercially available fabrics were dyed with crude pigments of Ac-1. The dyed fabrics retained the yellow color after acid, alkaline, and cold-water treatments suggesting the potential of the Ac-1 pigment to be used in biotechnological applications.
Collapse
Affiliation(s)
- Kishani N Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| | - Kavindi E Weerasinghe
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| | - Anupama P Halmillawewa
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| |
Collapse
|
11
|
Sivasankar P, Poongodi S, Sivakumar K, Al-Qahtani WH, Arokiyaraj S, Jothiramalingam R. Exogenous production of cold-active cellulase from polar Nocardiopsis sp. with increased cellulose hydrolysis efficiency. Arch Microbiol 2022; 204:218. [PMID: 35333982 DOI: 10.1007/s00203-022-02830-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022]
Abstract
The present work was designed to isolate and characterise the actinobacteria in the Polar Front region of the Southern Ocean waters and species of Nocardiopsis and Streptomyces were identified. Among those, the psychrophilic actinobacterium, Nocardiopsis dassonvillei PSY13 was found to have good cellulolytic activity and it was further studied for the production and characterisation of cold-active cellulase enzyme. The latter was found to have a specific activity of 6.36 U/mg and a molar mass of 48 kDa with a 22.9-fold purification and 5% recovery at an optimum pH of 7.5 and a temperature of 10 °C. Given the importance of psychrophilic actinobacteria, N. dassonvillei PSY13 can be further exploited for its benefits, meaning that the Southern Ocean harbours biotechnologically important microorganisms that can be further explored for versatile biotechnological and industrial applications.
Collapse
Affiliation(s)
- Palaniappan Sivasankar
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland. .,Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Subramaniam Poongodi
- Department of Microbiology, Shri Sakthikailassh Women's College, Salem, 636 003, Tamil Nadu, India
| | - Kannan Sivakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, South Korea
| | - R Jothiramalingam
- Department of Food Sciences & Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021; 11:biom11121860. [PMID: 34944505 PMCID: PMC8699383 DOI: 10.3390/biom11121860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Microorganisms including actinomycetes, archaea, bacteria, fungi, yeast, and microalgae are an auspicious source of vital bioactive compounds. In this review, the existing research regarding antimicrobial molecules from microorganisms is summarized. The potential antimicrobial compounds from actinomycetes, particularly Streptomyces spp.; archaea; fungi including endophytic, filamentous, and marine-derived fungi, mushroom; and microalgae are briefly described. Furthermore, this review briefly summarizes bacteriocins, halocins, sulfolobicin, etc., that target multiple-drug resistant pathogens and considers next-generation antibiotics. This review highlights the possibility of using microorganisms as an antimicrobial resource for biotechnological, nutraceutical, and pharmaceutical applications. However, more investigations are required to isolate, separate, purify, and characterize these bioactive compounds and transfer these primary drugs into clinically approved antibiotics.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda 151401, India; (A.R.); (K.C.S.)
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, India;
| | - Sanjeet Mehariya
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: (F.B.); (S.M.); (S.K.B.)
| | - Neeta Sharma
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department of Sustainability-CR Trisaia, SS Jonica 106, km 419 + 500, 75026 Rotondella, Italy;
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden;
| |
Collapse
|
13
|
Xie F, Pathom-aree W. Actinobacteria From Desert: Diversity and Biotechnological Applications. Front Microbiol 2021; 12:765531. [PMID: 34956128 PMCID: PMC8696123 DOI: 10.3389/fmicb.2021.765531] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Deserts, as an unexplored extreme ecosystem, are known to harbor diverse actinobacteria with biotechnological potential. Both multidrug-resistant (MDR) pathogens and environmental issues have sharply raised the emerging demand for functional actinobacteria. From 2000 to 2021, 129 new species have been continuously reported from 35 deserts worldwide. The two largest numbers are of the members of the genera Streptomyces and Geodermatophilus, followed by other functional extremophilic strains such as alkaliphiles, halotolerant species, thermophiles, and psychrotolerant species. Improved isolation strategies for the recovery of culturable and unculturable desert actinobacteria are crucial for the exploration of their diversity and offer a better understanding of their survival mechanisms under extreme environmental stresses. The main bioprospecting processes involve isolation of target actinobacteria on selective media and incubation and selection of representatives from isolation plates for further investigations. Bioactive compounds obtained from desert actinobacteria are being continuously explored for their biotechnological potential, especially in medicine. To date, there are more than 50 novel compounds discovered from these gifted actinobacteria with potential antimicrobial activities, including anti-MDR pathogens and anti-inflammatory, antivirus, antifungal, antiallergic, antibacterial, antitumor, and cytotoxic activities. A range of plant growth-promoting abilities of the desert actinobacteria inspired great interest in their agricultural potential. In addition, several degradative, oxidative, and other functional enzymes from desert strains can be applied in the industry and the environment. This review aims to provide a comprehensive overview of desert environments as a remarkable source of diverse actinobacteria while such rich diversity offers an underexplored resource for biotechnological exploitations.
Collapse
Affiliation(s)
- Feiyang Xie
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, under the CMU Presidential Scholarship, Chiang Mai, Thailand
| | - Wasu Pathom-aree
- Research Center of Microbial Diversity and Sustainable Utilization, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Effects of Lactobacillus reuteri and Streptomyces coelicolor on Growth Performance of Broiler Chickens. Microorganisms 2021; 9:microorganisms9061341. [PMID: 34205811 PMCID: PMC8233972 DOI: 10.3390/microorganisms9061341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
There are well documented complications associated with the continuous use of antibiotics in the poultry industry. Over the past few decades, probiotics have emerged as viable alternatives to antibiotics; however, most of these candidate probiotic microorganisms have not been fully evaluated for their effectiveness as potential probiotics for poultry. Recent evaluation of a metagenome of broiler chickens in our laboratory revealed a prevalence of Lactobacillus reuteri (L. reuteri) and Actinobacteria class of bacteria in their gastrointestinal tract. In this study Lactobacillus reuteri and Streptomyces coelicolor (S. coelicolor) were selected as probiotic bacteria, encapsulated, and added into broiler feed at a concentration of 100 mg/kg of feed. In an 8-week study, 240 one day-old chicks were randomly assigned to four dietary treatments. Three dietary treatments contained two probiotic bacteria in three different proportions (L. reuteri and S. coelicolor individually at 100 ppm, and mixture of L. reuteri and S. coelicolor at 50 ppm each). The fourth treatment had no probiotic bacteria and it functioned as the control diet. L. reuteri and S. coelicolor were added to the feed by using wheat middlings as a carrier at a concentration of 100 ppm (100 mg/kg). Chickens fed diets containing L. reuteri and S. coelicolor mixture showed 2% improvement in body weight gain, 7% decrease in feed consumption, and 6–7% decrease in feed conversion ratios. This research suggests that L. reuteri and S. coelicolor have the potential to constitute probiotics in chickens combined or separately, depending on the desired selection of performance index.
Collapse
|
15
|
Isolation, Characterization, and Efficacy of Actinobacteria Associated with Arbuscular Mycorrhizal Spores in Promoting Plant Growth of Chili ( Capsicum flutescens L.). Microorganisms 2021; 9:microorganisms9061274. [PMID: 34207987 PMCID: PMC8230694 DOI: 10.3390/microorganisms9061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
Nowadays, microorganisms that display plant growth promoting properties are significantly interesting for their potential role in reducing the use of chemical fertilizers. This research study proposed the isolation of the actinobacteria associated with arbuscular mycorrhizal fungi (AMF) spores and the investigation of their plant growth promoting properties in the in vitro assay. Three actinobacterial strains were obtained and identified to the genus Streptomyces (GETU-1 and GIG-1) and Amycolatopsis (GLM-2). The results indicated that all actinobacterial strains produced indole-3-acetic acid (IAA) and were positive in terms of siderophore, endoglucanase, and ammonia productions. In the in vitro assay, all strains were grown in the presence of water activity within a range of 0.897 to 0.998, pH values within a range of 5–11, and in the presence of 2.5% NaCl for the investigation of drought, pH, and salt tolerances, respectively. Additionally, all strains were able to tolerate commercial insecticides (propargite and methomyl) and fungicides (captan) at the recommended dosages for field applications. Only, Amycolatopsis sp. GLM-2 showed tolerance to benomyl at the recommended dose. All the obtained actinobacteria were characterized as plant growth promoting strains by improving the growth of chili plants (Capsicum flutescens L.). Moreover, the co-inoculation treatment of the obtained actinobacteria and AMF (Claroideoglomus etunicatum) spores could significantly increase plant growth, contribute to the chlorophyll index, and enhance fruit production in chili plants. Additionally, the highest value of AMF spore production and the greatest percentage of root colonization were observed in the treatment that had been co-inoculated with Streptomyces sp. GETU-1.
Collapse
|
16
|
Hui MLY, Tan LTH, Letchumanan V, He YW, Fang CM, Chan KG, Law JWF, Lee LH. The Extremophilic Actinobacteria: From Microbes to Medicine. Antibiotics (Basel) 2021; 10:682. [PMID: 34201133 PMCID: PMC8230038 DOI: 10.3390/antibiotics10060682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Actinobacteria constitute prolific sources of novel and vital bioactive metabolites for pharmaceutical utilization. In recent years, research has focused on exploring actinobacteria that thrive in extreme conditions to unearth their beneficial bioactive compounds for natural product drug discovery. Natural products have a significant role in resolving public health issues such as antibiotic resistance and cancer. The breakthrough of new technologies has overcome the difficulties in sampling and culturing extremophiles, leading to the outpouring of more studies on actinobacteria from extreme environments. This review focuses on the diversity and bioactive potentials/medically relevant biomolecules of extremophilic actinobacteria found from various unique and extreme niches. Actinobacteria possess an excellent capability to produce various enzymes and secondary metabolites to combat harsh conditions. In particular, a few strains have displayed substantial antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), shedding light on the development of MRSA-sensitive antibiotics. Several strains exhibited other prominent bioactivities such as antifungal, anti-HIV, anticancer, and anti-inflammation. By providing an overview of the recently found extremophilic actinobacteria and their important metabolites, we hope to enhance the understanding of their potential for the medical world.
Collapse
Affiliation(s)
- Martha Lok-Yung Hui
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 50600, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| |
Collapse
|
17
|
Complete genome sequence of Streptomyces sp. HSG2 from rhizosphere soil of mangrove in Qingmei Gang, Sanya. Arch Microbiol 2021; 203:3519-3524. [PMID: 33932153 DOI: 10.1007/s00203-021-02339-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
Streptomyces sp. HSG2 was isolated from rhizosphere soil of a mangrove forest sample at Qingmei Gang, Sanya. The complete genome sequence of the strain HSG2 was obtained using PacBio Sequel HGAP.4 and comprised of 5,282,528 base pairs with a 71.9 mol% G + C content, 4504 protein-coding genes, and 71 RNAs. An in-silico analysis confirmed that genes associated with polysaccharide hydrolyzation, hydrocarbon degradation, and aerobic denitrification were presented in the genome. We also identified 24 natural product biosynthetic gene clusters for secondary metabolites, including those for streptobactin and nystatin A1. The complete genome sequence indicated that Streptomyces sp. HSG2 will provide insight into the biosynthesis and regulatory mechanisms for its secondary metabolites, and propose a potential use in biotechnological and novel bioactive natural product biosynthetic applications.
Collapse
|
18
|
Attachment and survival of bacteria on apples with the creation of a kinetic mathematical model. Braz J Microbiol 2021; 52:837-846. [PMID: 33484470 DOI: 10.1007/s42770-021-00425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022] Open
Abstract
The estimation of growth or inactivation of bacterial population in fruits during preservation and storage provides useful information for the improvement of the safety of fresh-cut fruits and vegetables. This paper addressed the attachment to the surface and the growth in the flesh of apple fruits of four bacterial cultures (Escherichia coli, Bacillus cereus, Staphylococcus aureus and Pseudomonas aeruginosa). The growth of the bacterial cultures in apple flesh was monitored at particular time intervals, and Gompertz parameters, i.e. maximum number of bacteria (Pm), the maximum growth rate of bacteria rp,m, and lag time tl, were used to determine the growth kinetics. After the immersion, the highest number of P. aeruginosa and the lowest number of B. cereus adhered to the apples. After washing and swabbing, E. coli was reduced from the surface of apples to the highest extent (by 3.34 log cfu g-1), while the number of B. cereus was reduced to the lowest extent (1.66 log cfu g-1). Fitted curves of the Gompertz model corresponded quite well to the measured values of the number of microorganisms with R2 = 0.92-0.98. The values of the standard error (0.17-0.37) and extremely low p values of the Fischer test (p < 0.0001) indicated strict dependence between the model predicted and the maximum population density. The predicted values of the maximum number of microorganisms (Pm) correspond almost exactly to the actual values. A similar conclusion can be drawn for the maximum growth rate of microorganisms (rp,m), with the measured value being slightly higher than predicted values.
Collapse
|
19
|
Yun T, Zhang M, Zhou D, Jing T, Zang X, Qi D, Chen Y, Li K, Zhao Y, Tang W, Huang J, Wang W, Xie J. Anti-Foc RT4 Activity of a Newly Isolated Streptomyces sp. 5-10 From a Medicinal Plant ( Curculigo capitulata). Front Microbiol 2021; 11:610698. [PMID: 33552022 PMCID: PMC7862724 DOI: 10.3389/fmicb.2020.610698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023] Open
Abstract
Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc) is a disastrous soil-borne fungal disease. Foc tropical race 4 (Foc TR4) can infect almost all banana cultivars. Until now, there is a shortage of safety and effective control methods and commercial banana cultivars with a resistance against Foc TR4. Biocontrol using environmentally friendly microbes is a promising strategy for the management of Foc TR4. Here, a strain 5-10, newly isolated from a medicinal plant (Curculigo capitulata), exhibited a high antifungal activity against Foc TR4. Combing the morphological characteristics and molecular identification, strain 5-10 was classified as a Streptomyces genus. The sequenced genome revealed that more than 39 gene clusters were involved in the biosynthesis of secondary metabolites. Some multidrug resistance gene clusters were also identified such as mdtD, vatB, and vgaE. To improve the anti-Foc TR4 activity of the strain 5-10 extracts, an optimization method of fermentation broth was established. Antifungal activity increased by 72.13% under the fermentation system containing 2.86 g/L of NaCl and 11.57% of inoculation amount. After being treated with the strain 5-10 extracts, the Foc TR4 hyphae shrinked, deformed, and ruptured. The membrane integrity and cell ultrastructure incurred irreversible damage. Streptomyces sp. 5-10 extracts play a fungicidal role in Foc TR4. Hence, Streptomyces sp. 5-10 will be a potential biocontrol agent to manage fungal diseases by exploring the microbial fertilizer.
Collapse
Affiliation(s)
- Tianyan Yun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Tao Jing
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoping Zang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Kai Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Yankun Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Wen Tang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jiaquan Huang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| |
Collapse
|
20
|
Law JWF, Law LNS, Letchumanan V, Tan LTH, Wong SH, Chan KG, Ab Mutalib NS, Lee LH. Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules 2020; 25:E5365. [PMID: 33212836 PMCID: PMC7698459 DOI: 10.3390/molecules25225365] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. This suggested the importance of the prompt detection, effective treatment, and prevention strategies. The genus Streptomyces has been documented as a prolific producer of biologically active secondary metabolites. Streptomycetes from mangrove environments attract researchers' attention due to their ability to synthesize diverse, interesting bioactive metabolites. The present review highlights research on mangrove-derived streptomycetes and the production of anticancer-related compounds from these microorganisms. Research studies conducted between 2008 and 2019, specifically mentioning the isolation of streptomycetes from mangrove areas and described the successful purification of compound(s) or generation of crude extracts with cytotoxic activity against human cancer cell lines, were compiled in this review. It is anticipated that there will be an increase in prospects for mangrove-derived streptomycetes as one of the natural resources for the isolation of chemotherapeutic agents.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| | - Lydia Ngiik-Shiew Law
- Monash Credentialed Pharmacy Clinical Educator, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia;
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| | - Sunny Hei Wong
- Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China;
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (J.W.-F.L.); (V.L.); (L.T.-H.T.)
| |
Collapse
|
21
|
Mangzira Kemung H, Tan LTH, Chan KG, Ser HL, Law JWF, Lee LH, Goh BH. Streptomyces sp. Strain MUSC 125 from Mangrove Soil in Malaysia with Anti-MRSA, Anti-Biofilm and Antioxidant Activities. Molecules 2020; 25:E3545. [PMID: 32756432 PMCID: PMC7435833 DOI: 10.3390/molecules25153545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.
Collapse
Affiliation(s)
- Hefa Mangzira Kemung
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (L.T.-H.T.); (H.-L.S.); (J.W.-F.L.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Subang Jaya, Malaysia
| |
Collapse
|
22
|
Shariati A, Dadashi M, Chegini Z, van Belkum A, Mirzaii M, Khoramrooz SS, Darban-Sarokhalil D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2020; 9:56. [PMID: 32321574 PMCID: PMC7178749 DOI: 10.1186/s13756-020-00714-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus (MRCoNS) are among the main causes of nosocomial infections, which have caused major problems in recent years due to continuously increasing spread of various antibiotic resistance features. Apparently, vancomycin is still an effective antibiotic for treatment of infections caused by these bacteria but in recent years, additional resistance phenotypes have led to the accelerated introduction of newer agents such as linezolid, tigecycline, daptomycin, and quinupristin/dalfopristin (Q/D). Due to limited data availability on the global rate of resistance to these antibiotics, in the present study, the resistance rates of S. aureus, Methicillin-resistant S. aureus (MRSA), and CoNS to these antibiotics were collected. METHOD Several databases including web of science, EMBASE, and Medline (via PubMed), were searched (September 2018) to identify those studies that address MRSA, and CONS resistance to linezolid, tigecycline, daptomycin, and Q/D around the world. RESULT Most studies that reported resistant staphylococci were from the United States, Canada, and the European continent, while African and Asian countries reported the least resistance to these antibiotics. Our results showed that linezolid had the best inhibitory effect on S. aureus. Although resistances to this antibiotic have been reported from different countries, however, due to the high volume of the samples and the low number of resistance, in terms of statistical analyzes, the resistance to this antibiotic is zero. Moreover, linezolid, daptomycin and tigecycline effectively (99.9%) inhibit MRSA. Studies have shown that CoNS with 0.3% show the lowest resistance to linezolid and daptomycin, while analyzes introduced tigecycline with 1.6% resistance as the least effective antibiotic for these bacteria. Finally, MRSA and CoNS had a greater resistance to Q/D with 0.7 and 0.6%, respectively and due to its significant side effects and drug-drug interactions; it appears that its use is subject to limitations. CONCLUSION The present study shows that resistance to new agents is low in staphylococci and these antibiotics can still be used for treatment of staphylococcal infections in the world.
Collapse
Affiliation(s)
- Aref Shariati
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Chegini
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, Route de Port Michaud, 38390, La Balme Les Grottes, France
| | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Sajjad Khoramrooz
- Cellular and Molecular Research Center and Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Musa Z, Ma J, Egamberdieva D, Abdelshafy Mohamad OA, Abaydulla G, Liu Y, Li WJ, Li L. Diversity and Antimicrobial Potential of Cultivable Endophytic Actinobacteria Associated With the Medicinal Plant Thymus roseus. Front Microbiol 2020; 11:191. [PMID: 32226412 PMCID: PMC7080825 DOI: 10.3389/fmicb.2020.00191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/27/2020] [Indexed: 11/30/2022] Open
Abstract
We report for the first time the isolation of endophytic actinobacteria associated with wild populations of the Chinese medicinal herb Thymus roseus Schipcz obtained from the arid land in Ili and Tacheng of the Xinjiang Province, China. Strains were isolated by special pretreatment of plant tissues and identified based on their 16S rRNA gene sequences, and their antimicrobial activities in vitro were evaluated. A total of 126 endophytic actinobacteria belonging to two classes, eight orders, 14 families, and 24 genera were isolated from different organs at the Ili and Tacheng sites. In addition, the diversity of culturable endophytic actinobacteria genera was higher at Tacheng site (n = 71, 56.35%) than the Ili site (n = 55, 43.65%). A neighbor-joining tree of 126 isolated actinobacteria showing the phylogenetic relationships based on 16S rRNA gene sequences and the genus Streptomyces was the most dominant isolate. The number of endophytic actinobacteria genera obtained from root tissues (n = 54, 42.86%) was higher compared to stem (n = 35, 27.78%) and leaf tissue (n = 37, 29.36%). Among 126 endophytic actinobacteria, 54 strains were antagonistic against at least one or more indicator organisms in vitro. Notably, most strains of Streptomyces proved antagonistic activities. For example, strain T4SB028, namely Streptomyces polyantibioticus, showed the highest inhibition ratio reached 67.06, 64.20, and 70.55% against Alternaria solani, Valsa malicola, and Valsa mali, respectively. The results demonstrate that about 30.95%, 23.01% of the tested endophytic actinobacteria were capable of producing siderophores and chitinase, respectively. Additionally, the results of the amplification of biosynthetic genes polyketide synthetase (PKS-I) and non-ribosomal peptide synthetase (NRPS) indicated that at least one antibiotic biosynthetic gene was detected in 27 (50%) of the tested strains. Our result emphasizes that the endophytic actinobacteria communities are different based on the plant tissues and the geographical environment of the sampled area. Thus, we conclude that T. roseus Schipcz. provided a rich source of endophytic actinobacteria that exhibited a broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Zulpiya Musa
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,Department of Medicine, College of Kashgar Vocational Technology, Kashgar, China
| | - Jinbiao Ma
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
| | - Dilfuza Egamberdieva
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Osama Abdalla Abdelshafy Mohamad
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| | - Gulsumay Abaydulla
- Xinjiang Laboratory of Resources Microbiology, College of Life Sciences and Technology, Xinjiang University, Ürümqi, China
| | - Yonghong Liu
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
| | - Wen-Jun Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
| |
Collapse
|
24
|
Antioxidant Activities of Streptomyces sp. strain MUSC 14 from Mangrove Forest Soil in Malaysia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6402607. [PMID: 32258133 PMCID: PMC7086420 DOI: 10.1155/2020/6402607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
The mangrove ecosystem of Malaysia remains yet to be fully explored for potential microbes that produce biologically active metabolites. In the present study, a mangrove-derived Streptomyces sp. strain MUSC 14 previously isolated from the state of Pahang, Malaysia Peninsula, was studied for its potential in producing antioxidant metabolites. The identity of Streptomyces sp. strain MUSC14 was consistent with the genotypic and phenotypic characteristics of the Streptomyces genus. The antioxidant potential of Streptomyces sp. strain MUSC 14 was determined through screening of its methanolic extract against sets of antioxidant assays. The results were indicative of Streptomyces sp. strain MUSC 14 displaying strong antioxidant activity against ABTS, DPPH free radicals and metal chelating activity of 62.71 ± 3.30%, 24.71 ± 2.22%, and 55.82 ± 2.35%, respectively. The result of ferric reducing activity measured in terms of dose was equivalent to 2.35–2.45 μg of positive control ascorbic acid. Furthermore, there was a high correlation between the total phenolic content and the antioxidant activities with r = 0.979, r = 0.858, and r = 0.983 representing ABTS, DPPH, and metal chelation, respectively. Overall, the present study suggests that Streptomyces sp. strain MUSC 14 from mangrove forest soil has potential to produce antioxidant metabolites that can be further exploited for therapeutic application.
Collapse
|
25
|
Kashfi R, Kelsey C, Gang DJ, Call DR, Gang DR. Metabolomic Diversity and Identification of Antibacterial Activities of Bacteria Isolated From Marine Sediments in Hawai'i and Puerto Rico. Front Mol Biosci 2020; 7:23. [PMID: 32158766 PMCID: PMC7052060 DOI: 10.3389/fmolb.2020.00023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance is a growing concern worldwide and consequently metabolomic tools are being applied increasingly in efforts aimed at identifying new antimicrobial compounds. Marine bacteria-derived compounds have shown great promise in this area. A metabolomics-based study was undertaken to study the diversity of secondary metabolites from marine sediment bacteria isolated from different locations of Hawai’i and Puerto Rico. This effort included characterizing the biodiversity in the sediment samples and searching for antibacterial activity and associated compounds. Bacterial strains were isolated using several different nutrient agars and culture conditions. DNA sequencing (16s rDNA) was used for phylogenetic characterization. Antibacterial activity was assessed against antibiotic-resistant strains of Escherichia coli, Salmonella enterica, Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus faecalis. Ethyl acetate extracted bacterial secondary metabolites were measured by ultra-performance liquid chromatography-mass spectrometry, processed in Progenesis QI and further analyzed by partial least squares-discriminant analysis using MetaboAnalyst 3. Among the strains (n = 143) that were isolated from these two geographical areas and tested for antibiotic activity, 19 exhibited antibacterial activity against at least one antibiotic-resistant human pathogen. One strain from Hawai’i possessed broad-spectrum activity against all five pathogens. Metabolite profiles were diverse and separated the strains into two clusters in PCA analysis that mirrored geographical origin of the isolated strains. A diversity of bacteria and potential antibacterial compounds were observed in this study. Marine environments represent an opportunity to discover a rich diversity of antibacterial compounds for which resistance mechanisms may be uncommon in human pathogens.
Collapse
Affiliation(s)
- Ruhnaz Kashfi
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.,Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Charles Kelsey
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David Jorgen Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States.,Department of Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
26
|
Community Structure, Diversity and Potential of Endophytic Bacteria in the Primitive New Zealand Medicinal Plant Pseudowintera colorata. PLANTS 2020; 9:plants9020156. [PMID: 32012657 PMCID: PMC7076676 DOI: 10.3390/plants9020156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Although the importance of the plant microbiome in commercial plant health has been well established, there are limited studies in native medicinal plants. Pseudowintera colorata (horopito) is a native New Zealand medicinal plant recognized for its antimicrobial properties. Denaturing gradient gel electrophoresis (DGGE) and Illumina MiSeq analysis of P. colorata plants from ten sites across New Zealand showed that tissue type strongly influenced the diversity and richness of endophytic bacteria (PERMANOVA, P < 0.05). In addition, two OTUs belonging to the genus Pseudomonas (Greengenes ID: 646549 and 138914) were found to be present in >75% of all P. colorata leaf, stem and root samples and were identified as the members of the P. colorata “core endomicrobiome”. Culture-independent analysis was complemented by the recovery of 405 endophytic bacteria from the tissues of P. colorata. Some of these cultured endophytic bacteria (n = 10) showed high antagonism against four different phytopathogenic fungi tested. The influence of endophytic bacteria on plant growth was assessed by inoculating P. colorata seedlings. The mean shoot height of seedlings treated with Bacillus sp. TP1LA1B were longer (1.83×), had higher shoot dry weight (1.8×) and produced more internodes (1.8×) compared to the control.
Collapse
|
27
|
Pournejati R, Gust R, Kircher B, Karbalaei-Heidari HR. Microindoline 581, an Indole Derivative from Microbacterium Sp. RP581 as A Novel Selective Antineoplastic Agent to Combat Hepatic Cancer Cells: Production, Optimization and Structural Elucidation. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:290-305. [PMID: 33841543 PMCID: PMC8019894 DOI: 10.22037/ijpr.2020.111982.13469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Screening of bioactive compounds with potential binding affinity to DNA as one of the target molecules in fighting against cancer cells has gained the attention of many scientists. Finding such compounds in the cellular content of microorganisms, especially marine bacteria as valuable and rich natural resources, is of great importance. Microbacterium sp. RP581, as a member of Actinobacteria phylum, was isolated from the Persian Gulf coastal area and the production of the target compound was optimized using statistical methods in cheap culture ingredients. The purification of the target compound was performed by flash chromatography and preparative HPLC. Both molecular and structural analyses indicated that the compound was an indole derivate which was tentatively named as Microindoline 581. Interaction of Microindoline 581 with genomic and circular DNA revealed that this compound can cause double- strand breaks through binding to the DNA. The analysis of cellular growth and proliferation of various cancer cell lines suggested proper and specific effect of the Microindoline 581 towards HepG2 cells with an IC50 of 172.2 ± 1.7 µM. Additional studies on cell migration inhibition and cell-death induction indicated a concentration-dependent inhibitory effect on proliferation and induction of death of HepG2 cells. The selective action of Microindoline 581 which was isolated from the Microbacterium sp. RP581 in killing HepG2 cells might be due to its specific metabolism in those cells as a precursor.
Collapse
Affiliation(s)
- Roya Pournejati
- Molecular Biotechnology Laboratory, Department of Biology, Faculty of Science, Shiraz University, Iran.
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB–Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, CCB–Centrum for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria.
| | | |
Collapse
|
28
|
Insights into Antagonistic Interactions of Multidrug Resistant Bacteria in Mangrove Sediments from the South Indian State of Kerala. Microorganisms 2019; 7:microorganisms7120678. [PMID: 31835720 PMCID: PMC6956087 DOI: 10.3390/microorganisms7120678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/28/2023] Open
Abstract
Antibiotic resistance is a global issue which is magnified by interspecies horizontal gene transfer. Understanding antibiotic resistance in bacteria in a natural setting is crucial to check whether they are multidrug resistant (MDR) and possibly avoid outbreaks. In this study, we have isolated several antibiotic-resistant bacteria (ARB) (n = 128) from the mangroves in Kerala, India. ARBs were distributed based on antibiotics (p = 1.6 × 10-5). The 16S rRNA gene characterization revealed dominance by Bacillaceae (45%), Planococcaceae (22.5%), and Enterobacteriaceae (17.5%). A high proportion of the isolates were MDR (75%) with maximum resistance to methicillin (70%). Four isolates affiliated to plant-growth promoters, probiotics, food, and human pathogens were resistant to all antibiotics indicating the seriousness and prevalence of MDR. A significant correlation (R = 0.66; p = 2.5 × 10-6) was observed between MDR and biofilm formation. Antagonist activity was observed in 62.5% isolates. Gram-positive isolates were more susceptible to antagonism (75.86%) than gram-negative (36.36%) isolates. Antagonism interactions against gram-negative isolates were lower (9.42%) when compared to gram-positive isolates (89.85%). Such strong antagonist activity can be harnessed for inspection of novel antimicrobial mechanisms and drugs. Our study shows that MDR with strong biofilm formation is prevalent in natural habitat and if acquired by deadly pathogens may create havoc in public health.
Collapse
|
29
|
Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Sci Rep 2019; 9:15262. [PMID: 31792235 PMCID: PMC6888828 DOI: 10.1038/s41598-019-51622-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
Streptomycetes have been the center of attraction within scientific community owing to their capability to produce various bioactive compounds, for instance, with different antimicrobial, anticancer, and antioxidant properties. The search for novel Streptomyces spp. from underexplored area such as mangrove environment has been gaining attention since these microorganisms could produce pharmaceutically important metabolites. The aim of this study is to discover the diversity of Streptomyces spp. from mangrove in Sarawak and their bioactive potentials — in relation to antioxidant and cytotoxic activities. A total of 88 Streptomyces isolates were successfully recovered from the mangrove soil in Kuching, state of Sarawak, Malaysia. Phylogenetic analysis of all the isolates and their closely related type strains using 16S rRNA gene sequences resulted in 7 major clades in the phylogenetic tree reconstructed based on neighbour-joining algorithm. Of the 88 isolates, 18 isolates could be considered as potentially novel species according to the 16S rRNA gene sequence and phylogenetic analyses. Preliminary bioactivity screening conducted on the potential novel Streptomyces isolates revealed significant antioxidant activity and notable cytotoxic effect against tested colon cancer cell lines (HCT-116, HT-29, Caco-2, and SW480), with greater cytotoxicity towards SW480 and HT-29 cells. This study highlighted that the Sarawak mangrove environment is a rich reservoir containing streptomycetes that could produce novel secondary metabolites with antioxidant and cytotoxic activities.
Collapse
|
30
|
Lu QP, Ye JJ, Huang YM, Liu D, Liu LF, Dong K, Razumova EA, Osterman IA, Sergiev PV, Dontsova OA, Jia SH, Huang DL, Sun CH. Exploitation of Potentially New Antibiotics from Mangrove Actinobacteria in Maowei Sea by Combination of Multiple Discovery Strategies. Antibiotics (Basel) 2019; 8:E236. [PMID: 31783564 PMCID: PMC6963217 DOI: 10.3390/antibiotics8040236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/05/2022] Open
Abstract
Rediscovery of known antibiotics from actinobacteria, especially Streptomyces, has become a bottleneck issue. Nowadays, more specific identification and dereplication could be acquired by a combination of modern analytic techniques with various databases. In this study, 261 actinobacterial strains were isolated from 8 mangrove soil samples by culture-dependent method. A total of 83 strains were selected to evaluate antibacterial activities and mechanisms by disc diffusion method and a unique double fluorescent protein reporter system (pDualrep2), respectively. Thirty-two strains exhibited antagonistic activity against at least one of the "ESKAPE" pathogens. Four Streptomyces strains (B475, B486, B353, and B98) showed strong inhibitory activity against Gram-positive bacteria and induced DNA damage SOS response. One Micromonospora strain (B704) exhibited inhibitory activity against several pathogens and induced attenuation-based translational inhibitors reporter. Seven members of quinoxaline-type antibiotics including quinomycin A, quinomycin monosulfoxide, and other five putative new analogues were found from the culture broth of strain B475 by a combination of anti-MRSA guide, HPTLC, HPLC-UV, and UPLC-UV-HRESIMS/MS analysis, Chemspider searching, and MS/MS-based molecular networking analysis. In conclusion, this study not only demonstrated that mangrove is a rich source of actinobacteria with the potentially new antibiotics but showed rapid dereplication of known antibiotics in the early stage can improve efficiency for the discovery of new antibiotics.
Collapse
Affiliation(s)
- Qin-Pei Lu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Q.-P.L.); (L.-F.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing-Jing Ye
- College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China; (J.-J.Y.); (S.-H.J.)
| | - Yong-Mei Huang
- Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Di Liu
- College of Life Sciences, Jiamusi University, Jiamusi 154007, China;
| | - Li-Fang Liu
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Q.-P.L.); (L.-F.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Kun Dong
- College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China;
| | - Elizaveta A. Razumova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Petr V. Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Olga A. Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia; (E.A.R.); (I.A.O.); (P.V.S.); (O.A.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143025, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119992, Russia
| | - Shu-Han Jia
- College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China; (J.-J.Y.); (S.-H.J.)
| | - Da-Lin Huang
- College of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China; (J.-J.Y.); (S.-H.J.)
| | - Cheng-Hang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (Q.-P.L.); (L.-F.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Sivasankar P, Poongodi S, Seedevi P, Kalaimurugan D, Sivakumar M, Loganathan S. Nanoparticles from Actinobacteria: A Potential Target to Antimicrobial Therapy. Curr Pharm Des 2019; 25:2626-2636. [PMID: 31603056 DOI: 10.2174/1381612825666190709221710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Nanoparticles have gained significant importance in the past two decades, due to their multifaceted applications in the field of nanomedicine. As our ecosystems and habitats are changing due to global warming, many new diseases are emerging continuously. Treating these costs a lot of money and mostly ends up in failure. In addition, frequent use of antibiotics to control the emerging diseases has led the pathogens to develop resistance to antibiotics. Hence, the nanoparticles are targeted to treat such diseases instead of the costly antibiotics. In particular, the biosynthesized nanoparticles have received considerable attention due to their simple, eco-friendly and promising activity. To highlight, microbial mediated nanoparticles have been found to possess higher activity and thus have a promising role in antimicrobial therapy to fight against the emerging drug-resistant pathogens. In this context, this review article is aimed at highlight the role of nanoparticles in the field of nanomedicine and importance of actinobacteria in the nanoparticle synthesis and their need in antimicrobial therapy. This is a comprehensive review, focusing on the potential of actinobacteria-mediated nanoparticles in the field of nanomedicine.
Collapse
Affiliation(s)
- Palaniappan Sivasankar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Subramaniam Poongodi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Palaniappan Seedevi
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Dharman Kalaimurugan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Murugesan Sivakumar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Sivakumar Loganathan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| |
Collapse
|
32
|
Bioprospecting actinobacterial diversity antagonistic to multidrug-resistant bacteria from untapped soil resources of Kotdiji, Pakistan. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00315-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Tan LTH, Mahendra CK, Yow YY, Chan KG, Khan TM, Lee LH, Goh BH. Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants. Microbiologyopen 2019; 8:e859. [PMID: 31199601 PMCID: PMC6813444 DOI: 10.1002/mbo3.859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/30/2023] Open
Abstract
Microbial natural products serve as a good source for antioxidants. The mangrove‐derived Streptomyces bacteria have been evidenced to produce antioxidative compounds. This study reports the isolation of Streptomyces sp. MUM273b from mangrove soil that may serve as a promising source of antioxidants and UV‐protective agents. Identification and characterization methods determine that strain MUM273b belongs to the genus Streptomyces. The MUM273b extract exhibits antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging activities and also metal‐chelating activity. The MUM273b extract was also shown to inhibit the production of malondialdehyde in metal‐induced lipid peroxidation. Strong correlation between the antioxidant activities and the total phenolic content of MUM273b extract was shown. In addition, MUM273b extract exhibited cytoprotective effect on the UVB‐induced cell death in HaCaT keratinocytes. Gas chromatography–mass spectrometry analysis detected phenolics, pyrrole, pyrazine, ester, and cyclic dipeptides in MUM273b extract. In summary, Streptomyces MUM273b extract portrays an exciting avenue for future antioxidative drugs and cosmeceuticals development.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway Selangor Darul Ehsan, Malaysia.,Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, PR China
| | - Camille Keisha Mahendra
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway Selangor Darul Ehsan, Malaysia.,The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
34
|
Gosse JT, Ghosh S, Sproule A, Overy D, Cheeptham N, Boddy CN. Whole Genome Sequencing and Metabolomic Study of Cave Streptomyces Isolates ICC1 and ICC4. Front Microbiol 2019; 10:1020. [PMID: 31134037 PMCID: PMC6524458 DOI: 10.3389/fmicb.2019.01020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
The terrestrial subsurface microbiome has gained considerable amount of interests in the recent years because of its rich potential resource for biomining novel genes coding for metabolites possessing antimicrobial activities. In our previous study, we identified two Streptomyces isolates, designated as ICC1 and ICC4, from the Iron Curtain Cave, Chilliwack, Canada that exhibited antagonistic activities against the multidrug resistant strains of Escherichia coli. In this study, the genomes of these two isolates were sequenced by Illumina MiSeq, assembled and annotated. The genes associated with secondary metabolite production were identified and annotated using the bioinformatics platforms antiSMASH and BAGEL. ICC1 and ICC4 were then cultivated and ICC1 metabolome characterized by UHPLC-ESI-HRMS. The Global Natural Products Social Molecular Networking was used to identify metabolites based on the MS/MS spectral data. ICC1 and ICC4 showed a high level of sequence identity with the terrestrial bacteria Streptomyces lavendulae; however, they possess a greater secondary metabolite potential as estimated by the total number of identified biosynthetic gene clusters (BGCs). In particular, ICC1 and ICC4 had a greater number of polyketide and non-ribosomal peptide BGCs. The most frequently detected BGCs were those predicted to generate terpenes, small and low complexity dipeptides and lipids. Spectral analysis clearly identified a number of diketopiperazine products through matched reference spectra for cyclo (Leu-Pro), cyclo (Pro-Val) and cyclo [(4-hydroxyPro)-Leu]. One of the terpenes gene clusters predicted by antiSMASH possesses a seven-gene pathway consistent with diazepinomicin biosynthesis. This molecule contains a very rare core structure and its BGC, to date, has only been identified from a single bacterial genome. The tetrapeptide siderophore coelichelin BGC was unambiguously identified in the genome, however, the metabolite could not be identified from the culture extracts. Two type III polyketides, 2′, 5′ – dimethoxyflavone and nordentatin, were identified from the UHPLC-HRMS data of the aqueous and n-butanolic fractions of Streptomyces sp. ICC1, respectively. A BGC likely encoding these metabolites was predicted in both genomes. The predicted similarities in molecule production and genome shared by these two strains could be an indicative of a cooperative mode of living in extreme habitats instead of a competitive one. This secondary metabolite potential may contribute to the fitness of ICC1 and ICC4 in the Iron Curtain Cave.
Collapse
Affiliation(s)
- Jessica Thandara Gosse
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - David Overy
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
35
|
Effect of stock density on the microbial community in biofloc water and Pacific white shrimp (Litopenaeus vannamei) gut microbiota. Appl Microbiol Biotechnol 2019; 103:4241-4252. [DOI: 10.1007/s00253-019-09773-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 01/22/2023]
|
36
|
Law JWF, Ser HL, Ab Mutalib NS, Saokaew S, Duangjai A, Khan TM, Chan KG, Goh BH, Lee LH. Streptomyces monashensis sp. nov., a novel mangrove soil actinobacterium from East Malaysia with antioxidative potential. Sci Rep 2019; 9:3056. [PMID: 30816228 PMCID: PMC6395624 DOI: 10.1038/s41598-019-39592-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/21/2019] [Indexed: 11/18/2022] Open
Abstract
A new Streptomyces species discovered from Sarawak mangrove soil is described, with the proposed name - Streptomyces monashensis sp. nov. (strain MUSC 1JT). Taxonomy status of MUSC 1JT was determined via polyphasic approach. Phylogenetic and chemotaxonomic properties of strain MUSC 1JT were in accordance with those known for genus Streptomyces. Based on phylogenetic analyses, the strains closely related to MUSC 1JT were Streptomyces corchorusii DSM 40340T (98.7%), Streptomyces olivaceoviridis NBRC 13066T (98.7%), Streptomyces canarius NBRC 13431T (98.6%) and Streptomyces coacervatus AS-0823T (98.4%). Outcomes of DNA-DNA relatedness between strain MUSC 1JT and its closely related type strains covered from 19.7 ± 2.8% to 49.1 ± 4.3%. Strain MUSC 1JT has genome size of 10,254,857 bp with DNA G + C content of 71 mol%. MUSC 1JT extract exhibited strong antioxidative activity up to 83.80 ± 4.80% in the SOD assay, with significant cytotoxic effect against colon cancer cell lines HCT-116 and SW480. Streptomyces monashensis MUSC 1JT (=DSM 103626T = MCCC 1K03221T) could potentially be a producer of novel bioactive metabolites; hence discovery of this new species may be highly significant to the biopharmaceutical industry as it could lead to development of new and useful chemo-preventive drugs.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Pharmaceutical Outcomes Research Center (CPOR), Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Acharaporn Duangjai
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Tahir Mehmood Khan
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- The Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
37
|
Tan LTH, Chan KG, Pusparajah P, Yin WF, Khan TM, Lee LH, Goh BH. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol 2019; 19:38. [PMID: 30760201 PMCID: PMC6375222 DOI: 10.1186/s12866-019-1409-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/31/2019] [Indexed: 01/11/2023] Open
Abstract
Background Colon cancer is the third most commonly diagnosed cancer worldwide, with a commensurately high mortality rate. The search for novel antioxidants and specific anticancer agents which may inhibit, delay or reverse the development of colon cancer is thus an area of great interest; Streptomyces bacteria have been demonstrated to be a source of such agents. Results The extract from Streptomyces sp. MUM265— a strain which was isolated and identified from Kuala Selangor mangrove forest, Selangor, Malaysia— was analyzed and found to exhibit antioxidant properties as demonstrated via metal-chelating ability as well as superoxide anion, DPPH and ABTS radical scavenging activities. This study also showed that MUM265 extract demonstrated cytotoxicity against colon cancer cells as evidenced by the reduced cell viability of Caco-2 cell line. Treatment with MUM265 extract induced depolarization of mitochondrial membrane potential and accumulation of subG1 cells in cell cycle analysis, suggesting that MUM265 exerted apoptosis-inducing effects on Caco-2 cells. Conclusion These findings indicate that mangrove derived Streptomyces sp. MUM265 represents a valuable bioresource of bioactive compounds for the future development of chemopreventive agents, with particular promise suggested for treatment of colon cancer. Electronic supplementary material The online version of this article (10.1186/s12866-019-1409-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.,Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China. .,Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.,Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan. .,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan. .,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.
| |
Collapse
|
38
|
Kemung HM, Tan LTH, Khan TM, Chan KG, Pusparajah P, Goh BH, Lee LH. Streptomyces as a Prominent Resource of Future Anti-MRSA Drugs. Front Microbiol 2018; 9:2221. [PMID: 30319563 PMCID: PMC6165876 DOI: 10.3389/fmicb.2018.02221] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as they tend to cause severe infections in vulnerable populations and are difficult to treat due to a limited range of effective antibiotics and also their ability to form biofilm. These organisms were once limited to hospital acquired infections but are now widely present in the community and even in animals. Furthermore, these organisms are constantly evolving to develop resistance to more antibiotics. This results in a need for new clinically useful antibiotics and one potential source are the Streptomyces which have already been the source of several anti-MRSA drugs including vancomycin. There remain large numbers of Streptomyces potentially undiscovered in underexplored regions such as mangrove, deserts, marine, and freshwater environments as well as endophytes. Organisms from these regions also face significant challenges to survival which often result in the production of novel bioactive compounds, several of which have already shown promise in drug development. We review the various mechanisms of antibiotic resistance in MRSA and all the known compounds isolated from Streptomyces with anti-MRSA activity with a focus on those from underexplored regions. The isolation of the full array of compounds Streptomyces are potentially capable of producing in the laboratory has proven a challenge, we also review techniques that have been used to overcome this obstacle including genetic cluster analysis. Additionally, we review the in vivo work done thus far with promising compounds of Streptomyces origin as well as the animal models that could be used for this work.
Collapse
Affiliation(s)
- Hefa Mangzira Kemung
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,The Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, Biomedicine Research Advancement Centre, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Mueang Phayao, Thailand
| |
Collapse
|
39
|
Chen C, Ye Y, Wang R, Zhang Y, Wu C, Debnath SC, Ma Z, Wang J, Wu M. Streptomyces nigra sp. nov. Is a Novel Actinobacterium Isolated From Mangrove Soil and Exerts a Potent Antitumor Activity in Vitro. Front Microbiol 2018; 9:1587. [PMID: 30072967 PMCID: PMC6058180 DOI: 10.3389/fmicb.2018.01587] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022] Open
Abstract
A new bacterial strain, designated 452T, was isolated from the rhizosphere soil of the mangrove Avicennia marina in China. As determined, its cell wall peptidoglycan contained LL-diaminopimelic acid; MK-9(H8) and MK-9(H6) were the major isoprenoid quinones; and iso-C16:0 (31.3%), anteiso-C15:0 (16.9%), and iso-C15:0 (12.5%) were the major cellular fatty acids (>10.0%). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain 452T formed a distinct lineage in the clade of the genus Streptomyces, and was closely related to S. coerulescens DSM 40146T (99.6% sequence identity), S. bellus DSM 40185T (99.5%), and S. coeruleorubidus DSM 41172T (99.3%). The DNA-DNA relatedness between strain 452T and these type strains ranged between 29.3 and 42.3%. Based on the phenotypic, chemotaxonomic, and phylogenetic features, the strain 452T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces nigra sp. nov. is proposed. The type strain is 452T (=KCTC 39960T = MCCC 1K03346T). Further, strain 452T extracts exhibited a pronounced antitumor activity against human cancer cell lines A549, HCT-116, and HepG2, but not against normal human colon cells CCD-18Co. Active substances in the fermentation broth of strain 452T were isolated by bioassay-guided analysis, and then purified using a macroporous resin, silica gel, sephadex LX-20 column, and semi-preparative high-performance liquid chromatography (HPLC). Eight proline-containing diketopiperazines, namely, cyclo(Pro-Ala), cyclo(Pro-Gly), cyclo(Pro-Phe), cyclo(Pro-Met), cyclo(Pro-Val), cyclo(Pro-Leu), cyclo(Pro-Tyr), and cyclo(L-Leu-trans-4-hydroxy-L-Pro), were identified by electrospray ionization mass spectrometry (MS) and nuclear magnetic resonance (NMR). The compounds displayed different levels of cytotoxicity. The highest cytotoxicity was exhibited by cyclo(Pro-Ala) and cyclo(Pro-Met) against A549 cells, and cyclo(Phe-Pro) and cyclo(Pro-Ala) against HCT-116 cells, with average IC50 values equal to 18.5, 27.3, 32.3, and 47.6 μg/mL, respectively. The diversity of diketopiperazines and other chemicals produced by 452T was further investigated using gas chromatography (GC)-MS and liquid chromatography (LC)-MS. The analysis revealed 16 types of metabolites with antitumor activity and 16 other types of diketopiperazines. Hence, extracts of the newly identified strain may be used a starting material for the development of antitumor agents.
Collapse
Affiliation(s)
- Can Chen
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Yanghui Ye
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Ruijun Wang
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Yinglao Zhang
- Biomedical Research Program, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chen Wu
- Institute of Hydraulic and Marine Engineering, School of Hydraulic and Environmental Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| | - Sanjit C Debnath
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Zhongjun Ma
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| | - Jidong Wang
- Department of New Drug Screening, Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou, China
| | - Min Wu
- Laboratory of Marine Microbial Resources Utilization, Ocean College, Institute of Marine Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Das R, Romi W, Das R, Sharma HK, Thakur D. Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol 2018; 18:71. [PMID: 29996765 PMCID: PMC6042205 DOI: 10.1186/s12866-018-1215-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Actinobacteria are often known to be great producers of antibiotics. The rapid increase in the global burden of antibiotic-resistance with the concurrent decline in the discovery of new antimicrobial molecules necessitates the search for novel and effective antimicrobial metabolites from unexplored ecological niches. The present study investigated the antimicrobial producing actinobacterial strains isolated from the soils of two microbiologically unexplored forest ecosystems, viz. Nameri National Park (NNP) and Panidehing Wildlife Sanctuary (PWS), located in the Eastern Himalayan Biodiversity hotspot region. RESULTS A total of 172 putative isolates of actinobacteria were isolated, of which 24 isolates showed strong antimicrobial bioactivity. Evaluation of the ethyl acetate extracts of culture supernatants against test microbial strains revealed that isolates PWS22, PWS41, PWS12, PWS52, PWS11, NNPR15, NNPR38, and NNPR69 were the potent producers of antimicrobial metabolites. The antimicrobial isolates dominantly belonged to Streptomyces, followed by Nocardia and Streptosporangium. Some of these isolates could be putative novel taxa. Analysis of the antimicrobial biosynthetic genes (type II polyketide synthase and nonribosomal peptide synthetase genes) showed that the antimicrobial metabolites were associated with pigment production and belonged to known families of bioactive secondary metabolites. Characterization of the antimicrobial metabolites of Streptomyces sp. PWS52, which showed lowest taxonomic identity among the studied potent antimicrobial metabolite producers, and their interaction with the test strains using GC-MS, UHPLC-MS, and scanning electron microscopy revealed that the potential bioactivity of PWS52 was due to the production of active antifungal and antibacterial metabolites like 2,5-bis(1,1-dimethylethyl) phenol, benzeneacetic acid and nalidixic acid. CONCLUSIONS Our findings suggest that the unexplored soil habitats of NNP and PWS forest ecosystems of Northeast India harbor previously undescribed actinobacteria with the capability to produce diverse antimicrobial metabolites that may be explored to overcome the rapidly rising global concern about antibiotic-resistance.
Collapse
Affiliation(s)
- Ranjita Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| | - Wahengbam Romi
- Molecular Biology and Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam India
| | - Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| | | | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati, Assam 781035 India
| |
Collapse
|
41
|
Lee LH, Chan KG, Stach J, Wellington EMH, Goh BH. Editorial: The Search for Biological Active Agent(s) From Actinobacteria. Front Microbiol 2018; 9:824. [PMID: 29780365 PMCID: PMC5946001 DOI: 10.3389/fmicb.2018.00824] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Jem Stach
- School of Natural & Environment Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
42
|
Bundale S, Singh J, Begde D, Nashikkar N, Upadhyay A. Culturable rare actinomycetes from Indian forest soils: Molecular and physicochemical screening for biosynthetic genes. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:132-142. [PMID: 29997754 PMCID: PMC6039449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Rare actinomycetes are a promising source of novel metabolites of pharmaceutical importance. The current study focussed on selective isolation of specific genera of rare actinomycetes and screening the isolates for biosynthetic genes particularly polyketide synthases (PKS) and non ribosomal peptide synthetases (NRPS). MATERIALS AND METHODS The soil samples were subjected to various pre-treatments like 1.5% phenol treatment, 0.3% chloramine T treatment, benzethonium chloride treatment, etc. and plated on selective media supplemented with specific antibiotics targeting rare genera of actinomycetes. The putative rare actinomycete isolates were screened for bioactivity using agar cross streak method and agar well diffusion method. The ability of the isolates to produce anti-quorum sensing compounds was tested against Serratia marcescens. The isolates were also screened for the presence of biosynthetic gene clusters associated with PKS-I, PKS-II and NRPS pathways using the degenerate primer sets K1F-M6R, KSα/KSβ and A3FA7R, respectively. The expression of these gene clusters was tracked by physicochemical screening of the extracts of isolates using spectroscopic and chromatographic techniques. RESULTS In this study, 1.5% phenol treatment was found to be the most promising followed by heat treatment and chloramine treatment. Our studies showed that ISP5 agar was the best for isolation of rare genera followed by ISP7, Starch Caesin agar and ISP2 supplemented with antibiotics like gentamicin, nalidixic acid and streptomycin. Micromonospora was the most abundant genus followed by Dactylosporangium. Actinomadura, Nocardiopsis and Actinoplanes were almost equal in number. Primary screening showed that 92% of the isolates were active against one of the test organisms. Thirty seven isolates were found to produce anti-quorum sensing (QS) compounds. NRPS sequences were detected in thirty nine isolates (42.8%), whereas PKS-I and PKS-II sequences were detected in seventeen and twenty eight strains (18.6% and 30.7%), respectively. CONCLUSION Nine type I and type II polyketide-producing isolates as well as six peptide-producing isolates were found. The peptide extract of isolate KCR3 and a polyketide extract of isolate NCD10 were found to possess anti-tumor activity exhibiting an IC50 value of 3 μg/ml and 2.5 μg/ml against HeLa cells.
Collapse
Affiliation(s)
- Sunita Bundale
- Hislop School of Biotechnology, Hislop College, Nagpur, Maharashtra, India,Corresponding author: Sunita Bundale, Ph.D, Hislop School of Biotechnology, Hislop College, Nagpur, Maharashtra 440001, India. Tel: +91-9423617008, Fax: +91-712-2527760,
| | - Jaya Singh
- Hislop School of Biotechnology, Hislop College, Nagpur, Maharashtra, India
| | - Deovrat Begde
- Department of Biochemistry, Dr. Ambedkar College, Deeksha bhoomi, Nagpur, Maharashtra, India
| | - Nandita Nashikkar
- Hislop School of Biotechnology, Hislop College, Nagpur, Maharashtra, India
| | - Avinash Upadhyay
- Hislop School of Biotechnology, Hislop College, Nagpur, Maharashtra, India
| |
Collapse
|
43
|
Antioxidative Potential of a Streptomyces sp. MUM292 Isolated from Mangrove Soil. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4823126. [PMID: 29805975 PMCID: PMC5899857 DOI: 10.1155/2018/4823126] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/27/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022]
Abstract
Mangrove derived microorganisms constitute a rich bioresource for bioprospecting of bioactive natural products. This study explored the antioxidant potentials of Streptomyces bacteria derived from mangrove soil. Based on 16S rRNA phylogenetic analysis, strain MUM292 was identified as the genus Streptomyces. Strain MUM292 showed the highest 16S rRNA gene sequence similarity of 99.54% with S. griseoruber NBRC12873T. Furthermore, strain MUM292 was also characterized and showed phenotypic characteristics consistent with Streptomyces bacteria. Fermentation and extraction were performed to obtain the MUM292 extract containing the secondary metabolites of strain MUM292. The extract displayed promising antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging and also metal-chelating activities. The process of lipid peroxidation in lipid-rich product was also retarded by MUM292 extract and resulted in reduced MDA production. The potential bioactive constituents of MUM292 extract were investigated using GC-MS and preliminary detection showed the presence of pyrazine, pyrrole, cyclic dipeptides, and phenolic compound in MUM292 extract. This work demonstrates that Streptomyces MUM292 can be a potential antioxidant resource for food and pharmaceutical industries.
Collapse
|
44
|
Ser HL, Tan WS, Mutalib NSA, Yin WF, Chan KG, Goh BH, Lee LH. Genome sequence of Streptomyces gilvigriseus MUSC 26 T isolated from mangrove forest. Braz J Microbiol 2018; 49:207-209. [PMID: 29428207 PMCID: PMC5913758 DOI: 10.1016/j.bjm.2017.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/22/2017] [Accepted: 04/03/2017] [Indexed: 11/07/2022] Open
Abstract
Streptomycetes remain as one of the important sources for bioactive products. Isolated from the mangrove forest, Streptomyces gilvigriseus MUSC 26T was previously characterised as a novel streptomycete. The high quality draft genome of MUSC 26T contained 5,213,277 bp with G + C content of 73.0%. Through genome mining, several gene clusters associated with secondary metabolites production were revealed in the genome of MUSC 26T. These findings call for further investigations into the potential exploitation of the strain for production of pharmaceutically important compounds.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Monash University Malaysia, School of Pharmacy, Novel Bacteria and Drug Discovery Research Group (NBDD), Selangor Darul Ehsan, Malaysia; Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Biomedical Research Laboratory, Selangor Darul Ehsan, Malaysia; Monash University Malaysia, School of Pharmacy, Biofunctional Molecule Exploratory Research Group (BMEX), Bandar Sunway, Malaysia
| | - Wen-Si Tan
- University of Malaya, Faculty of Science, Institute of Biological Sciences, Division of Genetics and Molecular Biology, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Universiti Kebangsaan Malaysia, UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- University of Malaya, Faculty of Science, Institute of Biological Sciences, Division of Genetics and Molecular Biology, Malaysia
| | - Kok-Gan Chan
- University of Malaya, Faculty of Science, Institute of Biological Sciences, Division of Genetics and Molecular Biology, Malaysia; Vice Chancellor Office, Jiangsu University, Zhenjiang 212013, PR China
| | - Bey-Hing Goh
- Monash University Malaysia, School of Pharmacy, Novel Bacteria and Drug Discovery Research Group (NBDD), Selangor Darul Ehsan, Malaysia; Monash University Malaysia, School of Pharmacy, Biofunctional Molecule Exploratory Research Group (BMEX), Bandar Sunway, Malaysia; University of Phayao, School of Pharmaceutical Sciences, Center of Health Outcomes Research and Therapeutic Safety (Cohorts), Phayao, Thailand; Monash University Malaysia, Global Asia in the 21st Century (GA21) Platform, Health and Well-being Cluster, Implementation and Clinical Outcomes (PICO), Asian Centre for Evidence Synthesis in Population, Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Monash University Malaysia, School of Pharmacy, Novel Bacteria and Drug Discovery Research Group (NBDD), Selangor Darul Ehsan, Malaysia; Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Biomedical Research Laboratory, Selangor Darul Ehsan, Malaysia; Monash University Malaysia, School of Pharmacy, Biofunctional Molecule Exploratory Research Group (BMEX), Bandar Sunway, Malaysia; University of Phayao, School of Pharmaceutical Sciences, Center of Health Outcomes Research and Therapeutic Safety (Cohorts), Phayao, Thailand; Monash University Malaysia, Global Asia in the 21st Century (GA21) Platform, Health and Well-being Cluster, Implementation and Clinical Outcomes (PICO), Asian Centre for Evidence Synthesis in Population, Bandar Sunway, Malaysia.
| |
Collapse
|
45
|
Biosynthetic and antimicrobial potential of actinobacteria isolated from bulrush rhizospheres habitat in Zhalong Wetland, China. Arch Microbiol 2018; 200:695-705. [PMID: 29368168 DOI: 10.1007/s00203-018-1474-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 11/06/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
The wetland ecosystem is known to possess unique vegetation and serves multiple functions within the environment. In this study, bacterial bioprospecting of bulrush rhizospheres in the Zhalong Wetland, China, was performed using comprehensive methods, including strain isolation and phylogenetic analysis, PCR detection of biosynthetic gene clusters, assessment of antimicrobial activity, metabolite profiling and genome analysis. A total of 27 actinobacterial strains were isolated, and their biosynthetic gene clusters (NRPS, PKS-I and PKS-II) were investigated; all of the tested strains had at least one of the three aforementioned biosynthetic gene clusters. Furthermore, fermentation broth extracts produced by these strains showed antimicrobial activities against certain pathogens, and ten of the extracts exhibited broad-spectrum antimicrobial activity. Liquid chromatography-mass spectrometry (LC-MS) analysis indicated chemical diversity of secondary metabolites from these extracts. Among these strains, ZLSD-24 generated the largest amounts and types of secondary metabolites. Subsequent genome analysis showed that 41 secondary metabolite biosynthetic gene clusters were present in the strain ZLSD-24, which was in accordance with the LC-MS data. Taken together, the results of this study reveal that bulrush rhizosphere habitat in the Zhalong wetland is a promising source of novel natural products.
Collapse
|
46
|
Ser HL, Tan LTH, Law JWF, Chan KG, Duangjai A, Saokaew S, Pusparajah P, Ab Mutalib NS, Khan TM, Goh BH, Lee LH. Focused Review: Cytotoxic and Antioxidant Potentials of Mangrove-Derived Streptomyces. Front Microbiol 2017; 8:2065. [PMID: 29163380 PMCID: PMC5672783 DOI: 10.3389/fmicb.2017.02065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Human life expectancy is rapidly increasing with an associated increasing burden of chronic diseases, such as neurodegenerative diseases and cancer. However, there is limited progress in finding effective treatment for these conditions. For this reason, members of the genus Streptomyces have been explored extensively over the past decades as these filamentous bacteria are highly efficient in producing bioactive compounds with human health benefits. Being ubiquitous in nature, streptomycetes can be found in both terrestrial and marine environments. Previously, two Streptomyces strains (MUSC 137T and MUM 256) isolated from mangrove sediments in Peninsular Malaysia demonstrated potent antioxidant and cytotoxic activities against several human cancer cell lines on bioactivity screening. These results illustrate the importance of streptomycetes from underexplored regions aside from the terrestrial ecosystem. Here we provide the insights and significance of Streptomyces species in the search of anticancer and/or chemopreventive agents and highlight the impact of next generation sequencing on drug discovery from the Streptomyces arsenal.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- Vice Chancellor Office, Jiangsu University, Zhenjiang, China
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Department of Pharmacy, Absyn University Peshawar, Peshawar, Pakistan
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes, Health and Well-Being Cluster, Global Asia in the 21st Century Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
47
|
Ser HL, Tan WS, Ab Mutalib NS, Yin WF, Chan KG, Goh BH, Lee LH. Genome sequence of Streptomyces mangrovisoli MUSC 149 T isolated from intertidal sediments. Braz J Microbiol 2017; 49:13-15. [PMID: 28927873 PMCID: PMC5790589 DOI: 10.1016/j.bjm.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 11/16/2022] Open
Abstract
As the largest genus in Actinobacteria family, Streptomyces species have the ability to synthesize numerous compounds of diverse structures with bioactivities. Streptomyces mangrovisoli MUSC 149T was previously isolated as a novel streptomycete from mangrove forest in east coast of Peninsular Malaysia. The high quality draft genome of MUSC 149T comprises 9,165,825bp with G+C content of 72.5%. Through bioinformatics analysis, 21 gene clusters identified in the genome were associated with the production of bioactive secondary metabolites. The presence of these biosynthetic gene clusters in MUSC 149T suggests the potential exploitation of the strain for production of medically important compounds.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Monash University Malaysia, School of Pharmacy, Novel Bacteria and Drug Discovery (NBDD) Research Group, Selangor Darul Ehsan, Malaysia; Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Biomedical Research Laboratory, Selangor Darul Ehsan, Malaysia
| | - Wen-Si Tan
- University of Malaya, Institute of Biological Sciences, Division of Genetics and Molecular Biology, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- University Kebangsaan Malaysia, UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- University of Malaya, Institute of Biological Sciences, Division of Genetics and Molecular Biology, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- University of Malaya, Institute of Biological Sciences, Division of Genetics and Molecular Biology, Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Monash University Malaysia, School of Pharmacy, Novel Bacteria and Drug Discovery (NBDD) Research Group, Selangor Darul Ehsan, Malaysia; University Kebangsaan Malaysia, UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia; University of Phayao, School of Pharmaceutical Sciences, Center of Health Outcomes Research and Therapeutic Safety (Cohorts), Phayao, Thailand
| | - Learn-Han Lee
- Monash University Malaysia, School of Pharmacy, Novel Bacteria and Drug Discovery (NBDD) Research Group, Selangor Darul Ehsan, Malaysia; University Kebangsaan Malaysia, UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia; University of Phayao, School of Pharmaceutical Sciences, Center of Health Outcomes Research and Therapeutic Safety (Cohorts), Phayao, Thailand.
| |
Collapse
|
48
|
Mohamed H, Miloud B, Zohra F, García-Arenzana JM, Veloso A, Rodríguez-Couto S. Isolation and Characterization of Actinobacteria from Algerian Sahara Soils with Antimicrobial Activities. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2017; 6:109-120. [PMID: 28890887 PMCID: PMC5581552 DOI: 10.22088/acadpub.bums.6.2.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 11/03/2022]
Abstract
Extreme ecosystems can be a source of untapped microorganisms to produce novel bioactive compounds of industrial interest. Consequently, in this work, 32 actinomycetes were isolated from 6 soil samples collected from Algerian Sahara in searching for untapped producers of novel antimicrobial compounds. All the isolates were further subjected to antimicrobial screening against pathogenic bacteria, yeast and fungi. The obtained results indicated that three of the isolates (named C, MS1 and 10) showed antimicrobial activities against most of the tested pathogenic microorganisms. Therefore, these three promising isolates, previously identified as Streptomyces by morphological, biochemical and physiological methods, were selected for their subsequent identification by the whole cell matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) analysis. Thus, the isolates C, MS1 and 10 were identified as Streptomyces violaceoruber B263 UFL, Streptomyces albus B262 UFL and Streptomyces badius B192 UFL, respectively. These results pointed out actinomycetes from Sahara soils as potential sources of novel antimicrobial compounds. Also, MALDI-TOF MS showed to be a robust technique for bacteria identification.
Collapse
Affiliation(s)
- Harir Mohamed
- Biology of Microorganisms and Biotechnology Laboratory, University of Oran 1 Ahmed Ben Bella, Oran, Algeria.
- Institut of Sciences, Faculty of Sciences, Natural and Life Sciences Department, University Center of Ain Temouchent, Temouchent, Algeria.
| | - Bellahcene Miloud
- Faculty of Sciences, Natural and Life Sciences Department, Mohamed Boudiaf University, M’sila, Algeria.
| | - Fortas Zohra
- Biology of Microorganisms and Biotechnology Laboratory, University of Oran 1 Ahmed Ben Bella, Oran, Algeria.
| | | | - Antonio Veloso
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain.
| | - Susana Rodríguez-Couto
- Ceit-IK4, Water & Health Division, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
49
|
Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils. Indian J Microbiol 2017; 57:177-187. [PMID: 28611495 PMCID: PMC5446825 DOI: 10.1007/s12088-016-0627-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022] Open
Abstract
Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115T and M. flava MUSC 78T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Chee-Mun Fang
- School of Pharmacy, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
50
|
Tan LTH, Chan KG, Khan TM, Bukhari SI, Saokaew S, Duangjai A, Pusparajah P, Lee LH, Goh BH. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties. Front Pharmacol 2017; 8:276. [PMID: 28567016 PMCID: PMC5434116 DOI: 10.3389/fphar.2017.00276] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species and other radicals potentially cause oxidative damage to proteins, lipids, and DNA which may ultimately lead to various complications including mutations, carcinogenesis, neurodegeneration, cardiovascular disease, aging, and inflammatory disease. Recent reports demonstrate that Streptomyces bacteria produce metabolites with potent antioxidant activity that may be developed into therapeutic drugs to combat oxidative stress. This study shows that Streptomyces sp. MUM212 which was isolated from mangrove soil in Kuala Selangor, Malaysia, could be a potential source of antioxidants. Strain MUM212 was characterized and determined as belonging to the genus Streptomyces using 16S rRNA gene phylogenetic analysis. The MUM212 extract demonstrated significant antioxidant activity through DPPH, ABTS and superoxide radical scavenging assays and also metal-chelating activity of 22.03 ± 3.01%, 61.52 ± 3.13%, 37.47 ± 1.79%, and 41.98 ± 0.73% at 4 mg/mL, respectively. Moreover, MUM212 extract was demonstrated to inhibit lipid peroxidation up to 16.72 ± 2.64% at 4 mg/mL and restore survival of Vero cells from H2O2-induced oxidative damages. The antioxidant activities from the MUM212 extract correlated well with its total phenolic contents; and this in turn was in keeping with the gas chromatography-mass spectrometry analysis which revealed the presence of phenolic compounds that could be responsible for the antioxidant properties of the extract. Other chemical constituents detected included hydrocarbons, alcohols and cyclic dipeptides which may have contributed to the overall antioxidant capacity of MUM212 extract. As a whole, strain MUM212 seems to have potential as a promising source of novel molecules for future development of antioxidative therapeutic agents against oxidative stress-related diseases.
Collapse
Affiliation(s)
- Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Department of Pharmacy, Abasyn UniversityPeshawar, Pakistan
| | - Sarah Ibrahim Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud UniversityRiyadh, Saudi Arabia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan UniversityPhitsanulok, Thailand.,Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand.,Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|