1
|
Vakili S, Jafarinia M. Advances in Mesenchymal Stem Cell Research Applications for Female Infertility-Mechanisms, Efficacy Parameters, Challenges and Future Roadmap. Galen Med J 2024; 13:e3632. [PMID: 39483858 PMCID: PMC11525105 DOI: 10.31661/gmj.v13i.3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 09/24/2024] [Indexed: 11/03/2024] Open
Abstract
Infertility affects approximately 15-20% of couples globally, with female factors contributing to nearly half of cases. Conditions such as polycystic ovary syndrome, endometriosis, tubal damage and premature ovarian failure are leading causes of female infertility. Current treatments like in vitro fertilization (IVF) have limitations and risks. Mesenchymal stem cells (MSCs) have shown therapeutic potential due to their ability to differentiate, secrete trophic factors, and exhibit immunomodulatory and anti-inflammatory properties. They have been demonstrated to repair and regenerate reproductive organs in various preclinical models of infertility related conditions. MSCs have reduced endometriotic lesions, regenerated lost follicles in premature ovarian failure (POF) models, and promoted tubal repair in damage models. Some clinical and preclinical studies have reported improved outcomes with MSC therapy in endometriosis and premature ovarian failure patients. This review discusses the properties and sources of MSCs, their mechanisms of action, preclinical evidence for applications in conditions like POF, polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia, and preliminary clinical data on MSC therapy for female infertility management.
Collapse
Affiliation(s)
- Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Jafarinia
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz,
Iran
| |
Collapse
|
2
|
Yahyavi Y, Kheradi N, Karimi A, Ebrahimi-Kalan A, Ramezani F, Yousefi S, Teymouri Nobari S, Sadrekarimi H, Nouri M, Edalati M. Novel Advances in Cell-Free Therapy for Premature Ovarian Failure (POF): A Comprehensive Review. Adv Pharm Bull 2024; 14:543-557. [PMID: 39494249 PMCID: PMC11530876 DOI: 10.34172/apb.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.
Collapse
Affiliation(s)
- Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Kheradi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Teymouri Nobari
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hourieh Sadrekarimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Cui J, Wang Y. Premature ovarian insufficiency: a review on the role of tobacco smoke, its clinical harm, and treatment. J Ovarian Res 2024; 17:8. [PMID: 38191456 PMCID: PMC10775475 DOI: 10.1186/s13048-023-01330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a condition in which the quantity of follicles and the quality of oocytes gradually decrease. This results in an estrogen secretion disorder and abnormal follicle development, which can lead to related diseases, early onset of menopause, sexual dysfunction, and an increased risk of cardiovascular issues, osteoporosis, and depression, among others. This disease significantly impacts the physical and mental health and overall quality of life of affected women. Factors such as genetic abnormalities, oophorectomy, radiotherapy for malignancy, idiopathic conditions, and an unhealthy lifestyle, including smoking, can accelerate the depletion of the follicular pool and the onset of menopause. Extensive research has been conducted on the detrimental effects of tobacco smoke on the ovaries. This article aims to review the advancements in understanding the impact of tobacco smoke on POI, both in vivo and in vitro. Furthermore, we explore the potential adverse effects of common toxicants found in tobacco smoke, such as polycyclic aromatic hydrocarbons (PAHs), heavy metals like cadmium, alkaloids like nicotine and its major metabolite cotinine, benzo[a]pyrene, and aromatic amines. In addition to discussing the toxicants, this article also reviews the complications associated with POI and the current state of research and application of treatment methods. These findings will contribute to the development of more precise treatments for POI, offering theoretical support for enhancing the long-term quality of life for women affected by this condition.
Collapse
Affiliation(s)
- Jinghan Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
Nejabati HR, Nikzad S, Roshangar L. Therapeutic Potential of Mesenchymal Stem Cells in PCOS. Curr Stem Cell Res Ther 2024; 19:134-144. [PMID: 37198984 DOI: 10.2174/1574888x18666230517123256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a major reproductive endocrine disorder affecting different facets of a woman's life, comprising reproduction, metabolism, and mental health. Recently, several research groups have brought attention to the therapeutic capacity of mesenchymal stem cells (MSCs) for the treatment of female reproductive disorders. It is highlighted that the treatment with bone marrow mesenchymal stem cells (BMMSCs) considerably diminishes the levels of some inflammatory markers as well as essential genes for ovarian production of androgens, which are considerably higher in theca cells of PCOS women than in those of healthy cases. In addition, studies show that BMMSCs improve in vitro maturation (IVM) of germinal vesicles (GVs) and the number of antral follicles while lessening the number of primary and preantral follicles in mice with PCOS compared to healthy controls. Regarding adipose- derived mesenchymal stem cells (AdMSCs), these cells restore the ovarian structure, enhance the number of oocytes and corpora luteum, and diminish the number of aberrant cystic follicles in PCOS rats. Some research also indicates that umbilical cord mesenchymal stem cells (UC-MSCs) alleviate the inflammation of granulosa cells in women with PCOS. Therefore, due to the limited research on MSC therapy in PCOS, in this review, we summarize the current knowledge on the therapeutic potential of three types of MSCs: BMMSCs, AdMSCs, UC-MSCs and their secretome in the treatment of PCOS.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadeneh Nikzad
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Erceg Ivkošić I, Fureš R, Ćosić V, Mikelin N, Bulić L, Dobranić D, Brlek P, Primorac D. Unlocking the Potential of Mesenchymal Stem Cells in Gynecology: Where Are We Now? J Pers Med 2023; 13:1253. [PMID: 37623503 PMCID: PMC10455325 DOI: 10.3390/jpm13081253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Stem cells, with their remarkable capacity for differentiation into diverse cell types, are vital for the development as well as maintenance of health and homeostasis. Two unique abilities set them apart from other cells: self-renewal and the capacity for differentiation. They play important roles in embryogenesis, development, regeneration, and various other processes. Over the last decade, there has been increased interest in their potential use in the treatment of numerous diseases and disorders across multiple fields of medicine in acute, chronic, innate, and acquired diseases. Stem cells are key to maintaining the body's homeostasis and regulating growth and tissue functions. There are several types of stem cells-embryonic, adult, and human-induced pluripotent cells. Currently, mesenchymal stem cells are of great interest due to their regenerative, immunomodulatory, analgesic, and antimicrobial (anti-inflammatory) effects. Recent studies have shown the potent regenerative effect of stem cell therapy in gynecologic diseases such as infertility, Asherman syndrome, lichen sclerosus, polycystic ovary syndrome, premature ovarian insufficiency, genitourinary syndrome of menopause, and rectovaginal fistulas. Moreover, the successful isolation of oogonial stem cells could lead to a revolution in the field of gynecology and the potential treatment of the conditions discussed. This review aims to provide a better understanding of the latest therapeutic options involving stem cells and raise awareness of this promising yet not widely known topic in gynecology and medicine in general.
Collapse
Affiliation(s)
- Ivana Erceg Ivkošić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Vesna Ćosić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Poliklinika Ćosić, d.o.o., 35000 Slavonski Brod, Croatia
| | - Nika Mikelin
- Health Center of the Zagreb County, 10000 Zagreb, Croatia
| | - Luka Bulić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
| | | | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
6
|
Park HS, Chugh RM, Seok J, Cetin E, Mohammed H, Siblini H, Liakath Ali F, Ghasroldasht MM, Alkelani H, Elsharoud A, Ulin M, Esfandyari S, Al-Hendy A. Comparison of the therapeutic effects between stem cells and exosomes in primary ovarian insufficiency: as promising as cells but different persistency and dosage. Stem Cell Res Ther 2023; 14:165. [PMID: 37340468 DOI: 10.1186/s13287-023-03397-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) refers to the loss of ovarian function under the age of 40 and results in amenorrhea and infertility. Our previous studies have shown that transplantation of mesenchymal stem cells (MSCs) and MSC-derived exosomes in chemotherapy-induced POI mouse ovaries can reverse the POI and eventually achieve pregnancy. Based on our recent studies, MSC-derived exosomes have almost equal therapeutic potentials as transplanted MSCs. However, it is still unclear whether exosomes can completely replace MSCs in POI treatment. For the reliable application of cell-free treatment for POI patients using exosomes, there is a need to understand whether there is any outcome and effectiveness difference between MSC and MSC-derived exosome treatment. METHODS Comparing the therapeutic effect of intravenous injection using MSCs and equal amounts of exosomes in a POI mouse model will reveal the difference between the two therapeutic resources. In this study, we induced POI in C57/BL6 mice by chemotherapy (CXT) using a standard protocol. We then injected four different doses of MSCs or equal amounts of commercialized MSC-derived exosomes by retro-orbital injection post-CXT. RESULT After MSC/exosome treatment, tissue and serum samples were harvested to analyze molecular changes after treatment, while other mice in parallel experiments underwent breeding experiments to compare the restoration of fertility. Both the MSC- and exosome-treated groups had a restored estrous cycle and serum hormone levels compared to untreated POI mice. The pregnancy rate in the MSC-treated group was 60-100% after treatment, while the pregnancy rate in the exosome-treated group was 30-50% after treatment. Interestingly, in terms of long-term effects, MSC-treated mice still showed a 60-80% pregnancy rate in the second round of breeding, while the exosome-treated group became infertile again in the second round of breeding. CONCLUSIONS Although there were some differences in the efficacy between MSC treatment and exosome treatment, both treatments were able to achieve pregnancy in the POI mouse model. In conclusion, we report that MSC-derived exosomes are a promising therapeutic option to restore ovarian function in POI conditions similar to treatment with MSCs.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jin Seok
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Hanaa Mohammed
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | | | - Hiba Alkelani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Amro Elsharoud
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
7
|
Zheng K, Hong W, Ye H, Zhou Z, Ling S, Li Y, Dai Y, Zhong Z, Yang Z, Zheng Y. Chito-oligosaccharides and macrophages have synergistic effects on improving ovarian stem cells function by regulating inflammatory factors. J Ovarian Res 2023; 16:76. [PMID: 37060101 PMCID: PMC10103396 DOI: 10.1186/s13048-023-01143-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/19/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Chronic low-grade inflammation and ovarian germline stem cells (OGSCs) aging are important reasons for the decline of ovarian reserve function, resulting in ovarian aging and infertility. Regulation of chronic inflammation is expected to promote the proliferation and differentiation of OGSCs, which will become a key means for maintaining and remodeling ovarian function. Our previous study demonstrated that Chitosan Oligosaccharides (Cos) promoted the OGSCs proliferation and remodelled the ovarian function through improving the secretion of immune related factors,but the mechanism remains unclear, and the role of macrophages, the important source of various inflammatory mediators in the ovary needs to be further studied. In this study, we used the method of macrophages and OGSCs co-culture to observe the effect and mechanism of Cos on OGSCs, and explore what contribution macrophages give during this process. Our finding provides new drug treatment options and methods for the prevention and treatment of premature ovarian failure and infertility. METHODS We used the method of macrophages and OGSCs co-culture to observe the effect and mechanism of Cos on OGSCs, and explore the important contribution of macrophages in it. The immunohistochemical staining was used to locate the OGSCs in the mouse ovary. Immunofluorescent staining, RT-qPCR and ALP staining were used to identify the OGSCs. CCK-8 and western blot were used to evaluate the OGSCs proliferation. β-galactosidase(SA-β-Gal) staining and western blot were used to detect the changing of cyclin-dependent kinase inhibitor 1A(P21), P53, Recombinant Sirtuin 1(SIRT1) and Recombinant Sirtuin 3(SIRT3). The levels of immune factors IL-2, IL-10, TNF-α and TGF-β were explored by using Western blot and ELISA. RESULTS We found that Cos promoted OGSCs proliferation in a dose-and time-dependent manner, accompanied by IL-2, TNF-α increase and IL-10, TGF-β decrease. Mouse monocyte-macrophages Leukemia cells(RAW) can also produce the same effect as Cos. When combined with Cos, it can enhance the proliferative effect of Cos in OGSCs, and further increase IL-2, TNF-α and further decrease IL-10, TGF-β. The macrophages can enhance the proliferative effect of Cos in OGSCs is also associated with the further increase in IL-2, TNF-α and the further decrease in IL-10, TGF-β. In this study, we determined that the anti-aging genes SIRT-1 and SIRT-3 protein levels were increased by Cos and RAW respectively, whereas the senescence-associated SA-β-Gal and aging genes P21 and P53 were decreased. Cos and RAW had a protective effect on OGSCs delaying aging. Furthermore, RAW can further decrease the SA-β-Gal and aging genes P21 and P53 by Cos, and further increase SIRT1 and SIRT3 protein levels in OGSCs by Cos. CONCLUSION In conclusion, Cos and macrophages have synergistic effects on improving OGSCs function and delaying ovarian aging by regulating inflammatory factors.
Collapse
Affiliation(s)
- K Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Wenli Hong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
- Shenzhen University Health Science Center, Shenzhen, China
| | - Haifeng Ye
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, München, Germany
| | - Ziqiong Zhou
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Shuyi Ling
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yuan Li
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Yuqing Dai
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Zhisheng Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| | - Ziwei Yang
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China.
| | - Yuehui Zheng
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Shenzhen, China.
| |
Collapse
|
8
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
10
|
Hoang VT, Nguyen HP, Nguyen VN, Hoang DM, Nguyen TST, Nguyen Thanh L. “Adipose-derived mesenchymal stem cell therapy for the management of female sexual dysfunction: Literature reviews and study design of a clinical trial”. Front Cell Dev Biol 2022; 10:956274. [PMID: 36247008 PMCID: PMC9554747 DOI: 10.3389/fcell.2022.956274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Hormone imbalance and female sexual dysfunction immensely affect perimenopausal female health and quality of life. Hormone therapy can improve female hormone deficiency, but long-term use increases the risk of cardiovascular diseases and cancer. Therefore, it is necessary to develop a novel effective treatment to achieve long-term improvement in female general and sexual health. This study reviewed factors affecting syndromes of female sexual dysfunction and its current therapy options. Next, the authors introduced research data on mesenchymal stromal cell/mesenchymal stem cell (MSC) therapy to treat female reproductive diseases, including Asherman’s syndrome, premature ovarian failure/primary ovarian insufficiency, and vaginal atrophy. Among adult tissue-derived MSCs, adipose tissue-derived stem cells (ASCs) have emerged as the most potent therapeutic cell therapy due to their abundant presence in the stromal vascular fraction of fat, high proliferation capacity, superior immunomodulation, and strong secretion profile of regenerative factors. Potential mechanisms and side effects of ASCs for the treatment of female sexual dysfunction will be discussed. Our phase I clinical trial has demonstrated the safety of autologous ASC therapy for women and men with sexual hormone deficiency. We designed the first randomized controlled crossover phase II trial to investigate the safety and efficacy of autologous ASCs to treat female sexual dysfunction in perimenopausal women. Here, we introduce the rationale, trial design, and methodology of this clinical study. Because aging and metabolic diseases negatively impact the bioactivity of adult-derived MSCs, this study will use ASCs cultured in physiological oxygen tension (5%) to cope with these challenges. A total of 130 perimenopausal women with sexual dysfunction will receive two intravenous infusions of autologous ASCs in a crossover design. The aims of the proposed study are to evaluate 1) the safety of cell infusion based on the frequency and severity of adverse events/serious adverse events during infusion and follow-up and 2) improvements in female sexual function assessed by the Female Sexual Function Index (FSFI), the Utian Quality of Life Scale (UQOL), and the levels of follicle-stimulating hormone (FSH) and estradiol. In addition, cellular aging biomarkers, including plasminogen activator inhibitor-1 (PAI-1), p16 and p21 expression in T cells and the inflammatory cytokine profile, will also be characterized. Overall, this study will provide essential insights into the effects and potential mechanisms of ASC therapy for perimenopausal women with sexual dysfunction. It also suggests direction and design strategies for future research.
Collapse
Affiliation(s)
- Van T. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Viet Nhan Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
| | - Duc M. Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
| | - Tan-Sinh Thi Nguyen
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health Care System, Hanoi, Vietnam
- Vinmec International Hospital—Times City, Vinmec Health Care System, Hanoi, Vietnam
- College of Health Science, Vin University, Vinhomes Ocean Park, Hanoi, Vietnam
- *Correspondence: Liem Nguyen Thanh,
| |
Collapse
|
11
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Wang L, Mei Q, Xie Q, Li H, Su P, Zhang L, Li K, Ma D, Chen G, Li J, Xiang W. A comparative study of Mesenchymal Stem Cells transplantation approach to antagonize age-associated ovarian hypofunction with consideration of safety and efficiency. J Adv Res 2022; 38:245-259. [PMID: 35572405 PMCID: PMC9091735 DOI: 10.1016/j.jare.2021.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells transplantation (MSCs’) to the ovaries of POF patients could lead to effective clinical outcomes. Assessment of MSCs’ effect for single transplantation was performed using 3 transplantation methods. MSCs into ovaries by ovarian local injection was determined as the most effective route. This technique exerted marked effect on antagonizing age-associated ovarian hypofunction. Histopathological data showed that no neoplasms and obvious prosoplasia were found after MSCs transplantation.
Introduction The transplantation of mesenchymal stem cells (MSCs) in patients with premature ovarian failure (POF) could lead to clinical improvement. The transplantation to the ovaries among other transplantation methods have been reported in various animal models, however, there is little evidence regarding the optimal method, including the clinical safety and the efficiency for the treatment of age associated ovarian hypofunction. Objectives To establish the most effective transplantation route of MSCs, explore the resistance to therapy, its safety and role in the natural aging process of the ovaries. Methods Highly purified MSCs were injected intraperitoneally, directly into the ovaries or tail-intravenously in mice animal model. The ovarian function, quantity and quality of oocytes, cell viability/apoptosis, were evaluated, applying chemiluminescence analysis (CLIA), western blotting, immunofluorescence staining, transmission electron microscope (TEM), TdT mediated dUTP Nick End Labeling (TUNEL) assay and other techniques. The organ tumorigenicity was also evaluated by long-term observation and histopathological examination. The efficiency of MSCs was further verified in non-human primates by the most effective transplantation route. Results The 32nd week was ultimately determined as the time point of MSCs transplantation. Our results showed that the intra-ovarian injection was the best transplantation method with a more conspicuous effect. With deeper investigations, we found that the transplanted MSCs showed an effective influence on the follicular number, promoted follicle maturation and inhibited cell apoptosis, which was further verified in non-human primates. In addition, the long-term observation and the histopathological examinations ruled out neoplasms or obvious prosoplasia after MSCs transplantation. Conclusion MSCs transplantation by intra-ovarian injection could within a month exert the most conspicuous anti-age-associated ovarian hypofunction effects, which may improve the quantity and quality of oocytes by changing the mitochondrial structure, regulating mitochondrial function and attenuating cell apoptosis to increase the storage of the follicle pool without a remarkable potential of tumorigenicity.
Collapse
Affiliation(s)
- Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiying Li
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Su
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zhang
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors.
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Corresponding authors.
| | - Wenpei Xiang
- Institute of Reproductive Health, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Corresponding authors.
| |
Collapse
|
13
|
Mikłosz A, Nikitiuk BE, Chabowski A. Using adipose-derived mesenchymal stem cells to fight the metabolic complications of obesity: Where do we stand? Obes Rev 2022; 23:e13413. [PMID: 34985174 PMCID: PMC9285813 DOI: 10.1111/obr.13413] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a critical risk factor for the development of metabolic diseases, and its prevalence is increasing worldwide. Stem cell-based therapies have become a promising tool for therapeutic intervention. Among them are adipose-derived mesenchymal stem cells (ADMSCs), secreting numerous bioactive molecules, like growth factors, cytokines, and chemokines. Their unique features, including immunosuppressive and immunomodulatory properties, make them an ideal candidates for clinical applications. Numerous experimental studies have shown that ADMSCs can improve pancreatic islet cell viability and function, ameliorate hyperglycemia, improve insulin sensitivity, restore liver function, counteract dyslipidemia, lower pro-inflammatory cytokines, and reduce oxidative stress in the animal models. These results prompted scientists to use ADMSCs clinically. However, up to date, there have been few clinical studies or ongoing trails using ADMSCs to treat metabolic disorders such as type 2 diabetes mellitus (T2DM) or liver cirrhosis. Most human studies have implemented autologous ADMSCs with minimal risk of cellular rejection. Because the functionality of ADMSCs is significantly reduced in subjects with obesity and/or metabolic syndrome, their efficacy is questioned. ADMSCs transplantation may offer a potential therapeutic approach for the treatment of metabolic complications of obesity, but randomized controlled trials are required to establish their safety and efficacy in humans prior to routine clinical use.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Huang QY, Chen SR, Chen JM, Shi QY, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reprod Biol Endocrinol 2022; 20:28. [PMID: 35120535 PMCID: PMC8815154 DOI: 10.1186/s12958-022-00892-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a rare gynecological condition. This disease causes menstrual disturbances, infertility, and various health problems. Historically, hormone replacement therapy is the first-line treatment for this disorder. Women diagnosed with POI are left with limited therapeutic options. In order to remedy this situation, a new generation of therapeutic approaches, such as in vitro activation, mitochondrial activation technique, stem cell and exosomes therapy, biomaterials strategies, and platelet-rich plasma intra-ovarian infusion, is being developed. However, these emerging therapies are yet in the experimental stage and require precise design components to accelerate their conversion into clinical treatments. Thus, each medical practitioner bears responsibility for selecting suitable therapies for individual patients. In this article, we provide a timely analysis of the therapeutic strategies that are available for POI patients and discuss the prospects of POI therapy.
Collapse
Affiliation(s)
- Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
15
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
16
|
Lv X, Guan C, Li Y, Su X, Zhang L, Wang X, Xia HF, Ma X. Effects of single and multiple transplantations of human umbilical cord mesenchymal stem cells on the recovery of ovarian function in the treatment of premature ovarian failure in mice. J Ovarian Res 2021; 14:119. [PMID: 34526090 PMCID: PMC8442267 DOI: 10.1186/s13048-021-00871-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, there is no effective treatment for premature ovarian failure (POF), and stem cell therapy is considered the most promising treatment. Human umbilical cord blood mesenchymal stem cells (hUC-MSCs) have shown good regenerative ability in various diseases, including POF; however, their underlying mechanism and dosage for POF treatment remain unclear. This study aimed to compare the effect of single and multiple injections of hUC-MSCs on ovarian function repair in chemotherapy-induced POF. METHODS Female mice were intraperitoneally injected with 30 mg/kg busulfan and 120 mg/kg cyclophosphamide (CTX) to induce POF. In the single hUC-MSC injection group, hUC-MSCs were transplanted into mice D7 after CTX and busulfan administration, while in the multiple injection group, hUC-MSCs were transplanted on D7, D14, and D21 after CTX and busulfan administration. We evaluated the ovarian morphology, fertility, follicle-stimulating hormone and estradiol concentrations, follicle count, POF model, and cell transplantation results. In addition, real-time polymerase chain reaction, immunohistochemistry, and miRNA and mRNA chips were used to evaluate the effect of the cell therapy. RESULTS Ovary size, number of follicle at all developmental stages, and fertility were significantly reduced in the POF group compared with the control. Under hUC-MSC treatment, the ovarian morphology and follicle count were significantly restored, and fertility was significantly increased. By comparing the single and multiple hUC-MSC injection groups, we found that the anti-Müllerian hormone and Ki-67 levels were significantly increased in the multiple hUC-MSC group on D60 after chemotherapy. The expression of stimulating hormone receptors, inhibin α, and inhibin β was significantly restored, and the therapeutic effect was superior to that of the single hUC-MSC injection group. CONCLUSION These results indicate that hUC-MSCs can restore the structure of injured ovarian tissue and its function in chemotherapy-induced POF mice and ameliorate fertility. Multiple hUC-MSC transplantations have a better effect on the recovery of ovarian function than single hUC-MSC transplantation in POF.
Collapse
Affiliation(s)
- Xiaodan Lv
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Chunyi Guan
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Ying Li
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Xing Su
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Lu Zhang
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Xueqin Wang
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100730, China
| | - Hong-Fei Xia
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School, Peking Union Medical College, Beijing, 100730, China.
| | - Xu Ma
- Reproductive and Genetic Center of the National Research Institute for Family Planning, Beijing, 100081, China. .,Graduate School, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
17
|
Is It Possible to Treat Infertility with Stem Cells? Reprod Sci 2021; 28:1733-1745. [PMID: 33834375 DOI: 10.1007/s43032-021-00566-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Infertility is a major health problem, and despite improved treatments over the years, there are still some conditions that cannot be treated successfully using a conventional approach. Therefore, new options are being considered and one of them is cell therapy using stem cells. Stem cell treatments for infertility can be divided into two major groups, the first one being direct transplantation of stem cells or their paracrine factors into reproductive organs and the second one being in vitro differentiation into germ cells or gametes. In animal models, all of these approaches were able to improve the reproductive potential of tested animals, although in humans there is still too little evidence to suggest successful use. The reasons for lack of evidence are unavailability of proper material, the complexity of explored biological processes, and ethical considerations. Despite all of the above-mentioned hurdles, researchers were able to show that in women, it seems to be possible to improve some conditions, but in men, no similar clinically important improvement was achieved. To conclude, the data presented in this review suggest that the treatment of infertility with stem cells seems plausible, because some types of treatments have already been tested in humans, achieving live births, while others show great potential only in animal studies, for now.
Collapse
|
18
|
Rosario R, Anderson RA. Novel approaches to fertility restoration in women with premature ovarian insufficiency. Climacteric 2021; 24:491-497. [PMID: 33427510 DOI: 10.1080/13697137.2020.1856806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The diagnosis of premature ovarian insufficiency (POI) brings with it the loss of fertility, an immediate concern for many affected women, and a future one for many others. While there is a low natural conception rate, for most the choice is between oocyte donation and alternative methods of family building such as adoption. There is, however, a lot of research into novel methods for increasing or restoring the fertility of women with POI, which are discussed in this review. Many approaches involve the use of mesenchymal stem cells, from a variety of sources including bone marrow, placenta and umbilical cord, and menstrual blood. These seem to have efficacy in animal models of POI, although through unclear mechanisms. Activation of remaining primordial follicles is also being explored, through physical or chemical manipulation of key regulatory pathways, notably the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and Hippo pathways. Much of the clinical data are uncontrolled, and mostly in women with a reduced ovarian reserve rather than POI, as are the results thus far for administration of platelet-rich plasma. Clinical studies with appropriate controls are needed to substantiate the preliminary claims of effectiveness of these approaches.
Collapse
Affiliation(s)
- R Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - R A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Esfandyari S, Chugh RM, Park HS, Hobeika E, Ulin M, Al-Hendy A. Mesenchymal Stem Cells as a Bio Organ for Treatment of Female Infertility. Cells 2020; 9:E2253. [PMID: 33050021 PMCID: PMC7599919 DOI: 10.3390/cells9102253] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022] Open
Abstract
Female infertility is a global medical condition that can be caused by various disorders of the reproductive system, including premature ovarian failure (POF), polycystic ovary syndrome (PCOS), endometriosis, Asherman syndrome, and preeclampsia. It affects the quality of life of both patients and couples. Mesenchymal stem cells (MSCs) have received increasing attention as a potential cell-based therapy, with several advantages over other cell sources, including greater abundance, fewer ethical considerations, and high capacity for self-renewal and differentiation. Clinical researchers have examined the therapeutic use of MSCs in female infertility. In this review, we discuss recent studies on the use of MSCs in various reproductive disorders that lead to infertility. We also describe the role of microRNAs (miRNAs) and exosomal miRNAs in controlling MSC gene expression and driving MSC therapeutic outcomes. The clinical application of MSCs holds great promise for the treatment of infertility or ovarian insufficiency, and to improve reproductive health for a significant number of women worldwide.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Hang-soo Park
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Elie Hobeika
- Fertility Centers of Illinois, Glenview, IL 60026, USA;
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, 820 South Wood Street, Chicago, IL 60612, USA; (S.E.); (R.M.C.); (H.-s.P.); (M.U.)
- Department of Obstetrics and Gynecology, University of Chicago, 5841 South Maryland Ave, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Chen C, Li S, Hu C, Cao W, Fu Q, Li J, Zheng L, Huang J. Protective Effects of Puerarin on Premature Ovarian Failure via Regulation of Wnt/β-catenin Signaling Pathway and Oxidative Stress. Reprod Sci 2020; 28:982-990. [PMID: 32996063 DOI: 10.1007/s43032-020-00325-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
This study was designed to investigate the protective effects of puerarin (PUE), which work via the Wnt/β-catenin signaling pathway, and oxidative stress in the premature ovarian failure (POF) model. Two-month-old female mice were randomly divided into four groups. One group was used as the control, and the other three groups were injected with cyclophosphamide and busulfan to create POF models. Two POF treatment groups were gavaged with 100 or 200 mg/kg PUE for 28 days. Next, the ovaries were fixed, and the numbers of different stage follicles were measured, and the ovarian surface epithelium (OSE) was collected. Oct4 and Mvh expression, Wnt/β-catenin signaling pathway activity, the oxidative stress factors SOD2 and Nrf2, and the apoptosis-related proteins Bcl-2 and Bax were detected by IHC, RT-QPCR, and western blotting. We found that the number of follicles, Oct4 and Mvh expression, and Wnt/β-catenin-signaling activity were reduced in the POF groups (p < 0.05 or p < 0.001). After PUE treatment, the follicle number and the primordial follicle ratio increased (p < 0.01), while the atresia ratio decreased (p < 0.01). In addition, the expression levels of Oct4, Mvh, Wnt1, β-catenin, cyclin D1, SOD2, and Nrf2 showed obvious recovery compared with levels in the POF group (p < 0.01, p < 0.05, or p < 0.001). The Bcl-2/Bax ratio in the POF model had reduced by about 60% compared with the control group (p < 0.001) and improved by about 50% after PUE treatment (p < 0.001). In conclusion, PUE may improve the survival of female reproductive stem cells (FGSCs) and play a protective role against POF via a mechanism involving the Wnt/β-catenin signaling pathway, as well as relieving oxidative stress. Further investigations should focus on the culture of oocytes and FGSCs in vitro in a PUE environment with inhibitors or agonists of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Cheng Chen
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China
| | - Song Li
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China
| | - Cong Hu
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China
| | - Weiwei Cao
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China
| | - Qingfeng Fu
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China
| | - Jia Li
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China
- The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang University, Nanchang, 330031, Jiangxi Province, China
| | - Liping Zheng
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China
- The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang University, Nanchang, 330031, Jiangxi Province, China
| | - Jian Huang
- Jiangxi Medical College Nanchang University, Jiangxi Province, 330006, Nanchang, China.
- The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang University, Nanchang, 330031, Jiangxi Province, China.
| |
Collapse
|
21
|
Valente F, Franco N, Rosa M, Degregori E, Lhamas C, Andrades A, Vidor S, Santos A, Kommers G, Graça D, Müller D, Contesini E. Células-tronco mesenquimais de origem adiposa na fase de proliferação do processo de cicatrização de queimaduras frias. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-10855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
RESUMO A criocirurgia tem sido utilizada no tratamento de diferentes enfermidades de sistemas e órgãos. Contudo, são relatados efeitos adversos, como cicatrização lenta, cicatrizes extensas, disfunção estética e funcional. As lesões que ocorrem naturalmente pela exposição ao frio extremo, comumente, resultam em gangrena. O presente trabalho teve como objetivo avaliar a influência das células-tronco mesenquimais de origem adiposa (ADSCs) na fase de proliferação da cicatrização de feridas cutâneas. Por meio da aplicação do nitrogênio líquido pela técnica do spray aberto, realizou-se a indução de uma ferida, de aproximadamente 15mm de diâmetro, na região dorsal de cada rato. A ferida recebeu o tratamento de acordo com o grupo ao qual pertencia: 1) aplicação das ADSCs no 15º dia (grupo tratado); 2) aplicação da solução cloreto de sódio 0,9% no 15º dia (grupo sham); 3) nenhuma intervenção até o momento da eutanásia (grupo controle). O grupo tratado com as ADSCs apresentou as maiores taxas de contração média das feridas e obteve diferença estatisticamente significativa em relação ao grupo sham quanto à neovascularização. A terapia com as ADSCs proporcionou uma relevante evolução clínica das feridas, podendo ser constatada ao final do período de avaliação por cicatrizes mais estreitas e compridas.
Collapse
Affiliation(s)
| | - N. Franco
- Universidade Federal do Rio Grande do Sul, Brazil
| | - M.P. Rosa
- Universidade Federal do Rio Grande do Sul, Brazil
| | - E. Degregori
- Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | - A. Santos
- Universidade Federal de Santa Maria, Brazil
| | | | - D.L. Graça
- Universidade Federal de Santa Maria, Brazil
| | | | | |
Collapse
|
22
|
Terraciano PB, Garcez TA, Berger M, Durli I, Kuhl CP, Batista VDO, Schneider RDA, Festa J, Pilar E, Ferreira C, Passos EP, Lima EC. Ovarian tissue vitrification is more efficient than slow freezing to preserve ovarian stem cells in CF-1 mice. JBRA Assist Reprod 2020; 24:13-19. [PMID: 31689043 PMCID: PMC6993165 DOI: 10.5935/1518-0557.20190057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the efficacy of protocols for mice ovary cryopreservation to compare the differences in Mouse Vasa Homologue expression (a germline cell marker) and ovarian viability after vitrification or slow freezing. METHODS Female CF1 mice aged 40-45 days were randomly divided into three groups: Control, vitrification or slow freezing. Their ovaries were surgically removed, rinsed in saline solution and cryopreserved. For vitrification, we used a commercial protocol and for slow freeze, we used 1.5 M ethylene glycol (EG) as cryoprotectant. After that, the ovaries were processed for histological an immunohistochemical analysis, and counting of primordial, primary, pre-antral and antral follicles. RESULTS No significant difference was found in the proportion of high-quality primordial, primary and pre-antral follicles after thawing/warming in the slow freezing and vitrification groups. The immunohistochemistry for MVH antibody demonstrated that the slow freeze group had a higher number of unmarked cells (p=0.012), indicating a harmful effect on the MVH expression in the ovarian tissue, where the cell structure is complex. CONCLUSION Although both protocols indicated similar results in the histological analysis of follicular counts, the vitrification protocol was significantly better to preserve ovarian stem cells, an immature germ cell population. These cells are able to self-renew having regeneration potential, and may be effective for the treatment of ovarian failure and consequently infertility.
Collapse
Affiliation(s)
- Paula Barros Terraciano
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Tuane Alves Garcez
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil
| | - Markus Berger
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Isabel Durli
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Cristiana Palma Kuhl
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Vitória de Oliveira Batista
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil
| | - Raquel de Almeida Schneider
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Jaquelline Festa
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil
| | - Emily Pilar
- Centro de Pesquisa Experimental, Unidade de Patologia Experimental, Hospital de Clínicas de Porto Alegre, Brasil
| | - Charles Ferreira
- Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Eduardo Pandolfi Passos
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil
| | - Elizabeth Cirne Lima
- Centro de Pesquisa Experimental, Laboratório de Embriologia e Diferenciação Celular, Hospital de Clínicas de Porto Alegre, Brasil.,Programa de Pós Graduação em Ciências da Saúde: Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul, Brasil.,Departamento de Patologia Clínica, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Brasil
| |
Collapse
|
23
|
Using Mesenchymal Stem Cells to Treat Female Infertility: An Update on Female Reproductive Diseases. Stem Cells Int 2019; 2019:9071720. [PMID: 31885630 PMCID: PMC6925937 DOI: 10.1155/2019/9071720] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Female infertility impacts the quality of life and well-being of affected individuals and couples. Female reproductive diseases, such as primary ovarian insufficiency, polycystic ovary syndrome, endometriosis, fallopian tube obstruction, and Asherman syndrome, can induce infertility. In recent years, translational medicine has developed rapidly, and clinical researchers are focusing on the treatment of female infertility using novel approaches. Owing to the advantages of convenient samples, abundant sources, and avoidable ethical issues, mesenchymal stem cells (MSCs) can be applied widely in the clinic. This paper reviews recent advances in using four types of MSCs, bone marrow stromal cells, adipose-derived stem cells, menstrual blood mesenchymal stem cells, and umbilical cord mesenchymal stem cells. Each of these have been used for the treatment of ovarian and uterine diseases, and provide new approaches for the treatment of female infertility.
Collapse
|
24
|
Ghahremani-Nasab M, Ghanbari E, Jahanbani Y, Mehdizadeh A, Yousefi M. Premature ovarian failure and tissue engineering. J Cell Physiol 2019; 235:4217-4226. [PMID: 31663142 DOI: 10.1002/jcp.29376] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
Premature ovarian failure (POF) usually happens former to the age of 40 and affects the female physiological state premenopausal period. In this condition, ovaries stop working long before the expected menopausal time. Of diagnostic symptoms of the disease, one can mention amenorrhea and hypoestrogenism. The cause of POF in most cases is idiopathic; however, cancer therapy may also cause POF. Commonly utilized therapies such as hormone therapy, in-vitro activation, and regenerative medicine are the most well-known treatments for POF. Hence, these therapies may be associated with some complications. The aim of the present study is to discuss the beneficial effects of tissue engineering for fertility rehabilitation in patients with POF as a newly emerging therapy.
Collapse
Affiliation(s)
- Maryam Ghahremani-Nasab
- Department of Tissue Engineering, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghanbari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Jahanbani
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Comprehensive Health Lab, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Said RS, Mantawy EM, El-Demerdash E. Mechanistic perspective of protective effects of resveratrol against cisplatin-induced ovarian injury in rats: emphasis on anti-inflammatory and anti-apoptotic effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:1225-1238. [PMID: 31129703 DOI: 10.1007/s00210-019-01662-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
Chemotherapeutic platinum-containing drugs are widely used to treat a variety of cancer types; however, they cause ovarian failure and infertility. The aim of this study is to investigate the molecular mechanism underlying the potential protective effect of resveratrol against cisplatin-induced ovarian damage in a rat model. Female rats were given either cisplatin (6 mg/kg, i.p., once per week for two consecutive weeks) and/or resveratrol (10 mg/kg, orally for 17 days). Follicular development, ovarian function markers, as well as apoptotic and inflammatory markers were assessed 24 h after the last resveratrol dose. Resveratrol ameliorated the marked follicular loss and the significant reduction in anti-Müllerian hormone (AMH) level triggered by cisplatin. Mechanistically, cisplatin elicited a potent inflammatory response in ovarian tissue as evidenced by the elevated expression of tumor necrosis factor, nuclear factor kappa-B, and proinflammatory enzymes. Co-treatment with resveratrol inhibited the elevation in inflammatory mediators induced by cisplatin. Further, cisplatin switched on the apoptotic machinery in ovarian tissues via increasing the expression of both cytochrome c and caspase-3 which was reversed upon resveratrol co-treatment. Resveratrol also counteracts the upregulating poly(ADP-ribose) polymerase expression which could attribute to the inflammatory and apoptotic effects of cisplatin. Resveratrol protects the ovary from cisplatin-induced toxicity through preventing the loss of the AMH-secreting granulosa cells, diminishing PARP-1 expression, and downregulating the inflammatory and apoptotic events implicated in cisplatin toxicity.
Collapse
Affiliation(s)
- Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt.
| |
Collapse
|
26
|
Tri-ortho-cresyl phosphate (TOCP) induced ovarian failure in mice is related to the Hippo signaling pathway disruption. Reprod Toxicol 2019; 83:21-27. [DOI: 10.1016/j.reprotox.2018.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 01/25/2023]
|
27
|
Lee EH, Han SE, Park MJ, Kim HJ, Kim HG, Kim CW, Joo BS, Lee KS. Establishment of Effective Mouse Model of Premature Ovarian Failure Considering Treatment Duration of Anticancer Drugs and Natural Recovery Time. J Menopausal Med 2018; 24:196-203. [PMID: 30671413 PMCID: PMC6336561 DOI: 10.6118/jmm.2018.24.3.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/11/2018] [Accepted: 09/23/2018] [Indexed: 11/30/2022] Open
Abstract
Objectives This study was aimed to establish the most effective premature ovarian failure (POF) mouse model using Cyclophosphamide (CTX), busulfan (Bu), and cisplatin considering treatment duration of anticancer drugs and natural recovery time. Methods POF was induced by intraperitoneally injecting CTX (120 mg/kg)/Bu (12 mg/kg) for 1 to 4 weeks or cisplatin (2 mg/kg) for 3 to 14 days to C57BL/6 female mice aged 6 to 8 weeks. Controls were injected with equal volume of saline for the same periods. Body weight was measured every week, and ovarian and uterine weights were measured after the last injection of anticancer drug. To assess ovarian function, POF-induced mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin, and then mated with male. After 18 hours, zygotes were retrieved and cultured for 4 days. Finally, the mice were left untreated for a period of times after the final injection of anticancer drug, and the time for natural recovery of ovarian function was evaluated. Results After 2 weeks of CTX/Bu injection, ovarian and uterine weights, and ovarian function were decreased sharply. Cisplatin treatment for 10 days resulted in a significant decrease in ovarian and uterine weight, and ovarian function. When POF was induced for at least 2 weeks for CTX/Bu and for at least 10 days for cisplatin, ovarian function did not recover naturally for 2 weeks and 1 week, respectively. Conclusions These results suggest that CTX/Bu should be treated for at least 2 weeks and cisplatin for at least 10 days to establish the most effective primary ovarian insufficiency mouse model.
Collapse
Affiliation(s)
- Eun Hee Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Si Eun Han
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Korea
| | | | - Hwi Gon Kim
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Chang Woon Kim
- Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Korea.,Infertility Institute, Pohang Women's Hospital, Pohang, Korea
| | - Kyu Sup Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
28
|
Ding L, Yan G, Wang B, Xu L, Gu Y, Ru T, Cui X, Lei L, Liu J, Sheng X, Wang B, Zhang C, Yang Y, Jiang R, Zhou J, Kong N, Lu F, Zhou H, Zhao Y, Chen B, Hu Y, Dai J, Sun H. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. SCIENCE CHINA. LIFE SCIENCES 2018; 61:1554-1565. [PMID: 29546669 DOI: 10.1007/s11427-017-9272-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023]
Abstract
Premature ovarian failure (POF) is a refractory disease for clinical treatment with the goal of restoring fertility. In this study, umbilical cord mesenchymal stem cells on a collagen scaffold (collagen/UC-MSCs) can activate primordial follicles in vitro via phosphorylation of FOXO3a and FOXO1. Transplantation of collagen/UC-MSCs to the ovaries of POF patients rescued overall ovarian function, evidenced by elevated estradiol concentrations, improved follicular development, and increased number of antral follicles. Successful clinical pregnancy was achieved in women with POF after transplantation of collagen/UC-MSCs or UC-MSCs. In summary, collagen/UC-MSC transplantation may provide an effective treatment for POF.
Collapse
Affiliation(s)
- Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bin Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yan Gu
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tong Ru
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoying Cui
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lei Lei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingyu Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bin Wang
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chunxue Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yanjun Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jianjun Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Na Kong
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Feifei Lu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huaijun Zhou
- Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bing Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
29
|
Zika Virus Infection of Human Mesenchymal Stem Cells Promotes Differential Expression of Proteins Linked to Several Neurological Diseases. Mol Neurobiol 2018; 56:4708-4717. [PMID: 30377986 DOI: 10.1007/s12035-018-1417-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022]
Abstract
The recent microcephaly outbreak in Brazil has been associated with Zika virus (ZIKV) infection. The current understanding of damage caused by ZIKV infection is still unclear, since it has been implicated in other neurodegenerative and developmental complications. Here, the differential proteome analysis of human mesenchymal stem cells (hMSC) infected with a Brazilian strain of ZIKV was identified by shotgun proteomics (MudPIT). Our results indicate that ZIKV induces a potential reprogramming of the metabolic machinery in nucleotide metabolism, changes in the energy production via glycolysis and other metabolic pathways, and potentially inhibits autophagy, neurogenesis, and immune response by downregulation of signaling pathways. In addition, proteins previously described in several brain pathologies, such as Alzheimer's disease, autism spectrum disorder, amyotrophic lateral sclerosis, and Parkinson's disease, were found with altered expression due to ZIKV infection in hMSC. This potential link between ZIKV and several neuropathologies beyond microcephaly is being described here for the first time and can be used to guide specific follow-up studies concerning these specific diseases and ZIKV infection.
Collapse
|
30
|
Yaneselli KM, Kuhl CP, Terraciano PB, de Oliveira FS, Pizzato SB, Pazza K, Magrisso AB, Torman V, Rial A, Moreno M, Llambí S, Cirne-Lima E, Maisonnave J. Comparison of the characteristics of canine adipose tissue-derived mesenchymal stem cells extracted from different sites and at different passage numbers. J Vet Sci 2018; 19:13-20. [PMID: 28693305 PMCID: PMC5799390 DOI: 10.4142/jvs.2018.19.1.13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have desirable characteristics for use in therapy in animal models and veterinary medicine, due to their capacity of inducing tissue regeneration and immunomodulation. The objective of this study was to evaluate the differences between canine adipose tissue-derived MSCs (AD-MSCs) extracted from subcutaneous (Sc) and visceral (Vs) sites. Surface antigenic markers, in vitro differentiation, and mineralized matrix quantification of AD-MSCs at different passages (P4, P6, and P8) were studied. Immunophenotypic analysis showed that AD-MSCs from both sites were CD44+, CD90+, and CD45-. Moreover, they were able, in vitro, to differentiate into fat, cartilage, and bone. Sc-AD-MSCs preserve in vitro multipotentiality up to P8, but Vs-AD-MSCs only tri-differentiated up to P4. In addition, compared to Vs-AD-MSCs, Sc-AD-MSCs had greater capacity for in vitro mineralized matrix synthesis. In conclusion, Sc-AD-MSCs have advantages over Vs-AD-MSCs, as Sc AD-MSCs preserve multipotentiality during a greater number of passages, have more osteogenic potential, and require less invasive extraction.
Collapse
Affiliation(s)
- Kevin M Yaneselli
- Laboratory of Immunology, Department of Microbiological Science, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| | - Cristiana P Kuhl
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Paula B Terraciano
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Fernanda S de Oliveira
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Sabrina B Pizzato
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Kamila Pazza
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Alessandra B Magrisso
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Vanessa Torman
- Biostatistics, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Analía Rial
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| | - María Moreno
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Faculty of Medicine, Universidad de la República, Montevideo 11600, Uruguay
| | - Silvia Llambí
- Laboratory of Genetics, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| | - Elizabeth Cirne-Lima
- Laboratory of Embryology and Cellular Differentiation, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil
| | - Jacqueline Maisonnave
- Laboratory of Immunology, Department of Microbiological Science, Faculty of Veterinary, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
31
|
Vidor SB, Terraciano PB, Valente FS, Rolim VM, Kuhl CP, Ayres LS, Garcez TNA, Lemos NE, Kipper CE, Pizzato SB, Driemeier D, Cirne-Lima EO, Contesini EA. Adipose-derived stem cells improve full-thickness skin grafts in a rat model. Res Vet Sci 2018; 118:336-344. [PMID: 29621642 DOI: 10.1016/j.rvsc.2018.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 03/08/2018] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
To investigate the effects of heterologous adipose-derived stem cells (ADSCs) on autologous full-thickness skin grafts, we designed a first-intention healing model using Wistar rats. We harvested and sutured two full-thickness skin grafts in the dorsal recipient beds of 15 rats, randomized into three groups. In the treatment group, 1 × 106 ADSCs resuspended in saline solution (200 μL) were administered subcutaneously to the skin graft. The control group received only saline solution subcutaneously, whereas the negative control group did not receive any treatment. Compressive dressings were maintained until postoperative day 5. The grafts were assessed by two observers, who checked for the presence of epidermolysis on day 14. Planimetry showed the relative areas of normal skin, redness, ulceration, and contraction. Graft samples were obtained on day 14 and stained with hematoxylin and eosin and Masson's trichrome. Epidermal analysis evaluated thickening, keratosis, acanthosis, hydropic degeneration, and inflammatory infiltrate. Dermal evaluation investigated the absence of hair follicles, granulation tissue formation, presence of inflammatory infiltrate, and collagen deposition. Immunohistochemistry was performed for dermal anti-VEGF and epidermal anti-Ki-67 staining. The ADSC group presented better macroscopic aspects, lower incidence of epidermolysis, and less loss of hair follicles. In addition, the ADSC group presented the lowest frequency of histopathological changes in the dermis and epidermis, as well as the largest subcutaneous and granulation tissue VEGF averages and the weakest Ki-67 staining of the epidermal basal layer. Subcutaneous administration of ADSCs may improve the integration of skin grafts, reducing the deleterious effects of ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Silvana Bellini Vidor
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Paula Barros Terraciano
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Soldatelli Valente
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Verônica Machado Rolim
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiana Palma Kuhl
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Laura Silveira Ayres
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tuane Nerissa Alves Garcez
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natália Emerim Lemos
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Sabrina Beal Pizzato
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - David Driemeier
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Laboratory of Embryology and Cell Differentiation, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Emerson Antonio Contesini
- Graduate Program in Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Evaluation of vitrification protocol of mouse ovarian tissue by effect of DNA methyltransferase-1 and paternal imprinted growth factor receptor-binding protein 10 on signaling pathways. Cryobiology 2017; 80:89-95. [PMID: 29180273 DOI: 10.1016/j.cryobiol.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Transplantation of cryopreserved ovarian tissue has been considered as a promising way of fertility preservation for women. however, this cryopreservation method is prone to post-resuscitation follicle proliferation and oocyte development stagnation, affecting late transplant survival. To evaluate current vitrification works, we investigated the critical pathway alternations in vitrified-warmed juvenile 10-day-old mouse ovary. We showed a significant decrease of protein kinase B (Akt) and Mitogen-activated protein kinase (Mapk) phosphorylation, during which serine/threonine kinases play central roles in coordinating follicle and oocyte development and stress response. Inhibition of Akt and Mapk activity were associated with one of the imprinted insulin pathway negative regulatory genes, Growth factor receptor-binding protein 10 (Grb10) which remarkably increased in vitrified-warmed juvenile mouse ovary than that of fresh group (p < 0.05). RNAi-induced Grb10 down-regulation reversed the decrease in Akt and Mapk phosphorylation. The increase of Grb10 expression was partially caused by the hyper-methylation of the promoter region, associated with the decrease of follicular DNA methyltransferase (Dnmt) 1 protein in different stages of vitrified-warmed group, compared to fresh group (p < 0.05). The mRNA and protein expression of Dnmt1 in ovary of vitrified-warmed juvenile mouse were remarkably lower than those in fresh group (p < 0.05). Dnmt1 overexpression dramatically reversed Grb10 up-regulation and Akt and Mapk phosphorylation reduction. Taken together, our findings suggest that Grb10 expression might be helpful in evaluation of effectiveness of vitrification, and considered as a potential target for further vitrification protocols improvement in the future.
Collapse
|
33
|
Yazdekhasti H, Hosseini MA, Rajabi Z, Parvari S, Salehnia M, Koruji M, Izadyar F, Aliakbari F, Abbasi M. Improved Isolation, Proliferation, and Differentiation Capacity of Mouse Ovarian Putative Stem Cells. Cell Reprogram 2017; 19:132-144. [PMID: 28375748 DOI: 10.1089/cell.2016.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The recent discovery of ovarian stem cells in postnatal mammalian ovaries, also referred to as putative stem cells (PSCs), and their roles in mammalian fertility has challenged the long-existing theory that women are endowed with a certain number of germ cells. The rare amount of PSCs is the major limitation for utilizing them through different applications. Therefore, this study was conducted in six phases to find a way to increase the number of Fragilis- and mouse vasa homolog (MVH)-positive sorted cells from 14-day-old NMRI strain mice. Results showed that there is a population of Fragilis- and MVH-positive cells with pluripotent stem cell characteristics, which can be isolated and expanded for months in vitro. PSCs increase their proliferation capacity under the influence of some mitogenic agents, and our results showed that different doses of stem cell factor (SCF) induce PSC proliferation with the maximum increase observed at 50 ng/mL. SCF was also able to increase the number of Fragilis- and MVH-positive cells after sorting by magnetic-activated cell sorting and enhance colony formation efficiency in sorted cells. Differentiation capacity assay indicated that there is a basic level of spontaneous differentiation toward oocyte-like cells during 3 days of culture. However, relative gene expression was significantly higher in the follicle-stimulating hormone-treated groups, especially in the Fragilis- sorted PSCs. We suggest that higher number of PSCs provides us either a greater source of energy that can be injected into energy-impaired oocytes in women with a history of repeat IVF failure or a good source for research.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Marzieh Agha Hosseini
- 2 Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Rajabi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Soraya Parvari
- 3 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences , Karaj, Iran
| | - Mojdeh Salehnia
- 4 Department of Anatomy, School of Medical Sciences, Tarbiat Modarres University , Tehran, Iran
| | - Morteza Koruji
- 5 Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | | | - Fereshte Aliakbari
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Abbasi
- 1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
34
|
Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells 2017; 9:107-117. [PMID: 28928907 PMCID: PMC5583529 DOI: 10.4252/wjsc.v9.i8.107] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/30/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
The application of appropriate cell origin for utilizing in regenerative medicine is the major issue. Various kinds of stem cells have been used for the tissue engineering and regenerative medicine. Such as, several stromal cells have been employed as treat option for regenerative medicine. For example, human bone marrow-derived stromal cells and adipose-derived stromal cells (ADSCs) are used in cell-based therapy. Data relating to the stem cell therapy and processes associated with ADSC has developed remarkably in the past 10 years. As medical options, both the stromal vascular and ADSC suggests good opportunity as marvelous cell-based therapeutics. The some biological features are the main factors that impact the regenerative activity of ADSCs, including the modulation of the cellular immune system properties and secretion of bioactive proteins such as cytokines, chemokines and growth factors, as well as their intrinsic anti-ulcer and anti-inflammatory potential. A variety of diseases have been treated by ADSCs, and it is not surprising that there has been great interest in the possibility that ADSCs might be used as therapeutic strategy to improve a wider range of diseases. This is especially important when it is remembered that routine therapeutic methods are not completely effective in treat of diseases. Here, it was discuss about applications of ADSC to colitis, liver failure, diabetes mellitus, multiple sclerosis, orthopaedic disorders, hair loss, fertility problems, and salivary gland damage.
Collapse
Affiliation(s)
- Reza Tabatabaei Qomi
- Department of Stem Cell, the Academic Center for Education, Culture and Research, PO Box QOM-3713189934, Qom, Iran
| | - Mohsen Sheykhhasan
- Department of Stem Cell, the Academic Center for Education, Culture and Research, PO Box QOM-3713189934, Qom, Iran
| |
Collapse
|
35
|
Ye H, Li X, Zheng T, Hu C, Pan Z, Huang J, Li J, Li W, Zheng Y. The Hippo Signaling Pathway Regulates Ovarian Function via the Proliferation of Ovarian Germline Stem Cells. Cell Physiol Biochem 2017; 41:1051-1062. [PMID: 28245464 DOI: 10.1159/000464113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To improve the separation, identification and cultivation of ovarian germline stem cells (OGSCs), to clarify the relationship between the Hippo signaling pathway effector YAP1 and the proliferation and differentiation of OGSCs in vitro and to identify the major contribution of Hippo signaling to ovarian function. METHODS Two-step enzymatic separation processes and magnetic separation were used to isolate and identify OGSCs by determining the expression of Mvh, Oct4, Nanog, Fragilis and Stella markers. Then, YAP1, as the main effector molecule in the Hippo signaling pathway, was chosen as the target gene of the study. Lentivirus containing overexpressed YAP1 or a YAP1-targeted shRNA was transduced into OGSCs. The effects of modulating the Hippo signaling pathway on the proliferation, differentiation, reproduction and endocrine function of ovaries were observed by microinjecting the lentiviral vectors with overexpressed YAP1 or YAP1 shRNA into infertile mouse models or natural mice of reproductive age. RESULTS (1) The specific expression of Mvh, Oct4, Nanog, Fragilis and Stella markers was observed in isolated stem cells. Thus, the isolated cells were preliminarily identified as OGSCs. (2) The co-expression of LATS2, MST1, YAP1 and MVH was observed in isolated OGSCs. Mvh and Oct4 expression levels were significantly increased in OGSCs overexpressing YAP1 compared to GFP controls. Consistently, Mvh and Oct4 levels were significantly decreased in cells expressing YAP1-targeted shRNA. (3) After 14-75 days of YAP1 overexpression in infertile mouse models, we detected follicle regeneration in ovaries, the activation of primordial follicles and increased birth rate, accompanied by increasing levels of E2 and FSH. (4) However, we detected decreasing follicles in ovaries, lower birth rate, and decreasing E2 and FSH in serum from healthy mice of reproductive age following YAP1 shRNA expression. CONCLUSION Methods for the isolation, identification and culture of OGSCs were successfully established. Further results indicate that isolated OGSCs can specifically recognize Hippo signaling molecules and that manipulation of YAP1 expression can be used to regulate the proliferation and differentiation of OGSCs, as well as ovarian function in mice. This study suggests that the Hippo signaling pathway may represent a new molecular target for the regulation of mouse ovarian functional remodeling.
Collapse
|
36
|
Zhang J, Fang L, Shi L, Lai Z, Lu Z, Xiong J, Wu M, Luo A, Wang S. Protective effects and mechanisms investigation of Kuntai capsule on the ovarian function of a novel model with accelerated aging ovaries. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:173-181. [PMID: 27845267 DOI: 10.1016/j.jep.2016.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/18/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kuntai capsule, a traditional Chinese medicine, has been widely used for the clinical treatment of menopausal syndrome. However, its mechanisms remain poorly understood. Considering that aging ovaries are the primary cause of menopause, this study was designed to investigate the effects and mechanisms of Kuntai capsule on ovarian function in a novel mice model with accelerated aging ovaries. MATERIALS AND METHODS Seventy-five female C57BL/6 mice were chosen for this study. Fifteen of the mice were separated into the normal control group (NC). The remaining sixty were used to establish the novel accelerated aging ovary model by superovulation and oxidative stress and then by randomly dividing the mice into four equal groups. One group was considered the model group (Mod). The other three groups were treated with low (0.4g/kg), middle (0.8g/kg) and high (1.6g/kg) doses of Kuntai capsule intragastrically every day for 4 weeks. During the treatment, the body weight and fur condition of all mice were recorded. All the mice were forced to swim to record their exhaustive swimming time (EST), which measures their strength. Mice were then sacrificed for sampling. Ovarian reserve was evaluated using follicle counts and AMH expression. Ovarian function was evaluated using estrous cycle, sex hormone level and litter experiments. Ovarian follicles were categorized and counted to estimate ovarian reserve, and ovarian histologic sections were stained for terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) to detect apoptotic cells. The ultrastructure of ovarian cells was observed using transmission electron microscopy. Western blotting was used to measure expression of Bax, Bcl2, AMH and SOD2 protein. RESULTS Compared with the NC GROUP, the Mod group clearly displayed worse fur condition and ovarian function. These situations showed some improvement after Kuntai capsule treatment. Specifically, the fur condition and the EST of the Kuntai capsule groups were superior to the fur condition and EST of the Mod group. In cases of damaged ovarian function, Kuntai capsule can regulate the estrous cycles, increase hormone secretion and fertility and significantly decrease atretic follicles. The transmission electron microscopy results revealed that Kuntai capsule rescued the ovarian ultrastructure of mice. TUNEL staining confirmed that the apoptotic cells were reduced after Kuntai capsule treatment. Western blotting revealed that Kuntai capsule can increase AMH, SOD2, and Bcl2 protein expression and decrease Bax expression. CONCLUSIONS Kuntai capsule may improve damaged ovarian function, which may be related to its antioxidant and anti-apoptosis effects.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Li Fang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Liangyan Shi
- Department of Obstetrics and Gynecology, Hubei Province, Maternity and Child Health Care Hospital, Wuhan, Hubei 430030, PR China.
| | - Zhiwen Lai
- Maternal and Child Health Hospital of Zigong, Sichuan 643000, China.
| | - Zhiyong Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
37
|
Su J, Ding L, Cheng J, Yang J, Li X, Yan G, Sun H, Dai J, Hu Y. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Hum Reprod 2016; 31:1075-1086. [PMID: 26965432 DOI: 10.1093/humrep/dew041] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 01/25/2016] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Does the transplantation of adipose-derived stem cells (ADSCs) on soluble collagen scaffolds (collagen/ADSCs) have better therapeutic effect than transplantation of ADSCs alone, to treat premature ovarian insufficiency (POI) in a rat model induced by Tripterygium Glycosides (TG)? SUMMARY ANSWER The transplantation of collagen/ADSCs increased the short-term retention of ADSCs in ovaries and contributed to long-term restoration of ovarian function, as well as the fertility of rats with TG-induced ovarian damage. WHAT IS KNOWN ALREADY About 50% of young women in China, who have been treated with TG, have subsequently developed ovarian insufficiency. Rats exhibit similar symptoms to these patients when given an equivalent dose of TG. Transplantation of ADSCs improves ovarian function impaired by chemotherapy in rodent models. STUDY DESIGN, SIZE, DURATION After the administration of TG, 54 POI model rats were randomly assigned to 4 groups: phosphate buffered saline (PBS) ( ITALIC! n = 14), collagen ( ITALIC! n = 11), ADSCs ( ITALIC! n = 16) and collagen/ADSCs ( ITALIC! n = 13). Seventeen normal rats were assigned as control group. The retention of ADSCs in ovaries was confirmed immediately or at 3, 7, 14 and 28 days after transplantation ( ITALIC! n = 9). Four weeks after transplantation, ovarian function was evaluated from estrous cycle, estradiol level, the follicle number, granulosa cell proliferation and a fertility test. PARTICIPANTS/MATERIALS, SETTING, METHODS To establish the POI model, rats were administered 60 mg TG/kg/day intragastrically for 50 days. The estrous cycles were assessed by vaginal smear. The concentration of plasma estradiol in diestrus stage was measured using a radioimmunoassay kit. Disordered estrous cycles and low serum estradiol levels indicated the successful establishment of the POI model. Four types of suspensions (PBS, collagen, ADSCs and collagen/ADSCs) were transplanted directly into the core of the ovaries. The short-term retention of ADSCs in ovaries was evaluated by small-animal positron emission tomography images immediately after transplantation of (18)F-Fluorodeoxyglucose ((18)F-FDG) labeled ADSCs. The long-term retention of ADSCs in ovaries was observed by immunohistochemistry after transplantation of green fluorescent protein (GFP)-labeled ADSCs. Serial sections of ovaries were prepared for histological analysis, follicle counting, and immunohistochemistry for Ki67 and Cleaved-Caspase-3. For the assessment of fertility, rats were mated with proven fertile male rats for 10 days. MAIN RESULTS AND THE ROLE OF CHANCE The (18)F-FDG signal decreased more slowly in ovaries injected with collagen/ADSCs than in ovaries with injected with ADSCs alone. Significantly more GFP-positive cells were observed in ovaries injected with collagen/GFP-ADSCs than in ovaries injected with GFP-ADSCs alone up to 14 days after the injection. However, in both groups very few GFP-positive cells were present at 4 weeks after transplantation. The collagen/ADSCs and ADSCs groups both showed better estrous cycle recovery than the PBS and collagen groups. The estradiol (E2) level in the collagen/ADSCs group was significantly increased compared with that of the PBS group ( ITALIC! P < 0.05). The number of antral follicles in the collagen/ADSCs group and the ADSCs group significantly increased compared with the PBS group ( ITALIC! P < 0.05). The granulosa cell proliferation in the collagen/ADSCs group was better than in the PBS group ( ITALIC! P < 0.01). The mating rates of the collagen/ADSCs group (88.9%) and the ADSCs group (90.9%) were higher than that of PBS group (60%, ITALIC! P < 0.05). The pregnancy rates of the collagen/ADSCs group (77.8%) and the ADSCs group (72.7%) were higher than the PBS group (50%, ITALIC! P < 0.05). LIMITATIONS, REASONS FOR CAUTION We chose ADSCs for their accessibility, convenience and safety. We did not use other cells or materials for POI treatments to show that the collagen/ADSCs are the most promising materials. WIDER IMPLICATIONS OF THE FINDINGS Soluble collagen scaffolds may be useful in stem cells transplantation therapy for POI. STUDY FUNDING/COMPETING INTERESTS This work is supported by grants from the 'Strategic Priority Research Program' of the Chinese Academy of Sciences (XDA01030000); Maternal-Fetal Medicine from Jiangsu Province Health Department of China (XK2011027); Clinical Center of Obstetric, Gynecologic and Genetic Diseases, Nanjing Health Department of Jiangsu Province, China; Fundamental Research Funds for the Central Universities (20620140652). The authors declare no competing financial interests. TRIAL REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Jing Su
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Lijun Ding
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Jie Cheng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Jun Yang
- Department of Pathology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Xin'an Li
- Department of Obstetrics and Gynecology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China Department of Obstetrics and Gynecology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| |
Collapse
|
38
|
Navaroli DM, Tilly JL, Woods DC. Isolation of Mammalian Oogonial Stem Cells by Antibody-Based Fluorescence-Activated Cell Sorting. Methods Mol Biol 2016; 1457:253-268. [PMID: 27557587 PMCID: PMC8802829 DOI: 10.1007/978-1-4939-3795-0_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability to isolate and subsequently culture mitotically active female germ cells from adult ovaries, referred to as either oogonial stem cells (OSCs) or adult female germline stem cells (aFGSCs), has provided a robust system to study female germ cell development under multiple experimental conditions, and in many species. Flow cytometry or fluorescence-activated cell sorting (FACS) is an integral part of many isolation and characterization protocols. Here, we provide methodological details for antibody-based flow cytometric isolation of OSCs using antibodies specific for external epitopes of the proteins Ddx4 or Ifitm3, alone or in combination with the use of fluorescent reporter mice. Beginning with sample preparation, we provide point-by-point instructions to guide researchers on how to isolate OSCs using flow cytometry.
Collapse
Affiliation(s)
- Deanna M Navaroli
- Laboratory of Aging and Infertility Research, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals. Stem Cells Int 2015; 2016:1728278. [PMID: 26788065 PMCID: PMC4693009 DOI: 10.1155/2016/1728278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022] Open
Abstract
The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years.
Collapse
|
40
|
Bhartiya D, Anand S, Parte S. VSELs may obviate cryobanking of gonadal tissue in cancer patients for fertility preservation. J Ovarian Res 2015; 8:75. [PMID: 26576728 PMCID: PMC4650843 DOI: 10.1186/s13048-015-0199-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 01/17/2023] Open
Abstract
Background Infertility is an undesirable side effect and gonadal tissue banking is advocated in young cancer patients who are unable to preserve embryos or gametes prior to oncotherapy to achieve biological parenthood later on. Banking gonadal tissue is challenging and protocols to mature gametes in vitro are not yet clinically established. Transplanting ovarian cortical tissue at hetero-or orthotopic sites in women and bone marrow transplantation (BMT) in both men and women has resulted in spontaneous recovery of fertility, pregnancy and live births. Various studies in humans and mice suggest that genetic origin of offspring after BMT is similar to transplanted patient and not the donor. Thus the source of oocytes/sperm which result in spontaneous pregnancies still remains contentious. Findings Very small embryonic-like stem cells (VSELs) have been reported in adult human testis and ovary, in azoospermic testicular biopsies from survivors of childhood cancer and also in women with premature ovarian failure and menopause. VSELs survive chemotherapy because of their quiescent nature and can be detected in chemoablated mice gonads at protein and mRNA level and also by flow cytometry. Surviving VSELs spontaneously differentiate into oocyte-like structures and sperm when inhibitory factors are overcome in vitro. Transplantation of mesenchymal cells (isolated from different sources) has led to regeneration of chemoablated mouse gonads and also live births. Spermatogenesis is also restored from endogenous stem cells on inter-tubular transplantation of Sertoli cells in chemoablated mouse testis. Conclusions Endogenous VSELs (which survive oncotherapy) can possibly regenerate non-functional gonads in cancer survivors when exposed to a healthy niche in vitro or in vivo (by way of transplanting mesenchymal cells which secrete trophic factors required for endogenous VSELs to differentiate into gametes). Presence of VSELs can also explain spontaneous pregnancies after BMT and cortical tissue transplantation (at heterotopic or orthotopic sites). This understanding once verified and accepted by the scientific community could obviate the need to remove whole ovary or testicular biopsy for cryopreservation prior to oncotherapy.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400 012, India.
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400 012, India.
| |
Collapse
|
41
|
Improvement in Isolation and Identification of Mouse Oogonial Stem Cells. Stem Cells Int 2015; 2016:2749461. [PMID: 26635882 PMCID: PMC4655301 DOI: 10.1155/2016/2749461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 01/16/2023] Open
Abstract
Female germline stem cells (FGSCs) or oogonial stem cells (OSCs) have the capacity to generate newborn oocytes and thus open a new door to fight ovarian aging and female infertility. However, the production and identification of OSCs are difficult for investigators. Rare amount of these cells in the ovary results in the failure of the acquisition of OSCs. Furthermore, the oocyte formation by OSCs in vivo was usually confirmed using tissue sections by immunofluorescence or immunohistochemistry in previous studies. STO or MEF feeder cells are derived from mouse, not human. In our study, we modified the protocol. The cells were digested from ovaries and cultured for 2-3 days and then were purified by magnetic-activated cell sorting (MACS). The ovaries and fetus of mice injected with EGFP-positive OSCs were prepared and put on the slides to directly visualize oocyte and progeny formation under microscope. Additionally, the human umbilical cord mesenchymal stem cells (hUC-MSCs) were also used as feeder cells to support the proliferation of OSCs. The results showed that all the modified procedures can significantly improve and facilitate the generation and characterization of OSCs, and hUC-MSCs as feeder will be useful for isolation and proliferation of human OSCs avoiding contamination from mouse.
Collapse
|
42
|
Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries. PLoS One 2015; 10:e0139824. [PMID: 26431320 PMCID: PMC4592213 DOI: 10.1371/journal.pone.0139824] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022] Open
Abstract
Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.
Collapse
|