1
|
Zandona A, Szecskó A, Žunec S, Jovanović IN, Bušić V, Sokač DG, Deli MA, Katalinić M, Veszelka S. Nicotinamide derivatives protect the blood-brain barrier against oxidative stress. Biomed Pharmacother 2025; 186:118018. [PMID: 40174541 DOI: 10.1016/j.biopha.2025.118018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025] Open
Abstract
Nicotinamides play a crucial role in energy metabolism and maintenance of the redox homeostasis counteracting oxidative stress and elevated reactive oxidative species (ROS) in human cells. The levels of nicotinamides decline with age and are associated with various pathologies, including ones linked with the blood-brain barrier disorder. Therefore, the investigation of the bioactivity of synthetic nicotinamide derivates (NAs) and evaluation of their potential to protect the blood-brain barrier (BBB) from oxidative stress is emerging as an important new strategy. In the current study, we tested different NAs as potential exogenous substitutes for such biological processes. All tested derivatives were non-toxic and attenuated elevation of ROS production in brain endothelial cells induced by tert-butyl hydroperoxide (tBHP), but one specifically was protective on the cell-cultured model of the BBB. The most promising NA was a derivative containing methoxy moiety (NA-4OCH3), which not only increased cell impedance, but had a protective effect on brain endothelial cells barrier against tBHP-induced oxidative stress on several levels: reducing the ROS level and restoring the activity of glutathione, mitochondrial membrane potential, superoxide dismutase enzymes activity to the basal level. In addition, NA-4OCH3 increased the integrity of both human and rat cell-based BBB model after tBHP-treatment seen by the elevated transendothelial electrical resistance, tight junction protein claudin-5 level as well as the decreased permeability of markers across the barrier. This study highlights novel approach to protect the BBB from oxidative stress-induced dysfunction, positioning NA-4OCH3 as potential neuroprotective agent for ROS-mediated disease interventions, with implications for neurodegeneration and BBB.
Collapse
Affiliation(s)
- Antonio Zandona
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia
| | - Anikó Szecskó
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged 6726, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Suzana Žunec
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia
| | - Ivana Novak Jovanović
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia
| | - Valentina Bušić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, Osijek HR-31000, Croatia
| | - Dajana Gašo Sokač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Kuhačeva 20, Osijek HR-31000, Croatia
| | - Mária A Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged 6726, Hungary
| | - Maja Katalinić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb HR-10001, Croatia.
| | - Szilvia Veszelka
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged 6726, Hungary.
| |
Collapse
|
2
|
Castro V, Teixeira A, Simões L, Chamorro F, Lourenço-Lopes C, Parreira C, Badenes SM, Costa L, Prieto MA, Oliveira R, Dias ACP. Chemical characterization and antioxidant potential of Arthrospira sp., Thalassiosira sp., and Raphidonema sp. Food Chem 2025; 469:142554. [PMID: 39721437 DOI: 10.1016/j.foodchem.2024.142554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Microalgae are emerging as valuable sources of bioactive compounds. This study evaluates hexane extracts from Thalassiosira sp. and Raphidonema sp., and Arthrospira sp., for their bioactive potential. Saturated fatty acids predominated in Arthrospira sp. and Thalassiosira sp. while Raphidonema was rich in polyunsaturated fatty acids. Carotenoids, such as carotenes and xanthophylls, were abundant in Arthrospira sp., while Thalassiosira sp. contained chlorophylls and fucoxanthin derivatives, and Raphidonema sp. showed high levels of chlorophylls and xanthophylls. Antioxidant assays revealed up to 70 % radical scavenging activity, 60 % iron chelation, and up to 67 (μM) ferric-reducing power. Dose-dependent protective effects were observed in Schizosaccharomyces pombe and HepG2 cells, with viability improvements up to 50 %, indicating their potential as antioxidant-rich ingredients for functional foods, promoting health and disease prevention. This study enhances our understanding of Thalassiosira sp. and Raphidonema sp. while underscoring the promising applications of microalgae extracts in functional foods.
Collapse
Affiliation(s)
- Vera Castro
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IBS, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Teixeira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luara Simões
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Franklin Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Celina Parreira
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Sara M Badenes
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Luís Costa
- A4F - Algae for Future, Campus do Lumiar, Estrada do Paço do Lumiar, Edif. E, R/C, 1649-038 Lisboa, Portugal
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Rui Oliveira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Alberto C P Dias
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus of Gualtar, University of Minho, 4710-057 Braga, Portugal; IBS, Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
Deng H, Zhao L, Ge H, Gao Y, Fu Y, Lin Y, Masoodi M, Losmanova T, Medová M, Ott J, Su M, Wang W, Peng RW, Dorn P, Marti TM. Ubiquinol-mediated suppression of mitochondria-associated ferroptosis is a targetable function of lactate dehydrogenase B in cancer. Nat Commun 2025; 16:2597. [PMID: 40090955 PMCID: PMC11911438 DOI: 10.1038/s41467-025-57906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Lactate dehydrogenase B (LDHB) fuels oxidative cancer cell metabolism by converting lactate to pyruvate. This study uncovers LDHB's role in countering mitochondria-associated ferroptosis independently of lactate's function as a carbon source. LDHB silencing alters mitochondrial morphology, causes lipid peroxidation, and reduces cancer cell viability, which is potentiated by the ferroptosis inducer RSL3. Unlike LDHA, LDHB acts in parallel with glutathione peroxidase 4 (GPX4) and dihydroorotate dehydrogenase (DHODH) to suppress mitochondria-associated ferroptosis by decreasing the ubiquinone (coenzyme Q, CoQ) to ubiquinol (CoQH2) ratio. Indeed, supplementation with mitoCoQH2 (mitochondria-targeted analogue of CoQH2) suppresses mitochondrial lipid peroxidation and cell death after combined LDHB silencing and RSL3 treatment, consistent with the presence of LDHB in the cell fraction containing the mitochondrial inner membrane. Addressing the underlying molecular mechanism, an in vitro NADH consumption assay with purified human LDHB reveals that LDHB catalyzes the transfer of reducing equivalents from NADH to CoQ and that the efficiency of this reaction increases by the addition of lactate. Finally, radiation therapy induces mitochondrial lipid peroxidation and reduces tumor growth, which is further enhanced when combined with LDHB silencing. Thus, LDHB-mediated lactate oxidation drives the CoQ-dependent suppression of mitochondria-associated ferroptosis, a promising target for combination therapies.
Collapse
Affiliation(s)
- Haibin Deng
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Liang Zhao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Yan Fu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yantang Lin
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Tereza Losmanova
- Institute of Tissue Medicine and Pathology, ITMP, University of Bern, Bern, Switzerland
| | - Michaela Medová
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Julien Ott
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Min Su
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenxiang Wang
- 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Iida M, Kagawa T, Yajima I, Harusato A, Tazaki A, Nishadhi DASM, Taguchi N, Kato M. Anti-Graying Effects of External and Internal Treatments with Luteolin on Hair in Model Mice. Antioxidants (Basel) 2024; 13:1549. [PMID: 39765877 PMCID: PMC11673595 DOI: 10.3390/antiox13121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Little is known about the anti-graying effects of antioxidants on hair. The anti-graying effects of three antioxidants (luteolin, hesperetin, and diosmetin) on hair were investigated according to the sequential processes of hair graying that were previously clarified in model mice [Ednrb(+/-);RET-mice]. External treatment with luteolin, but not that with hesperetin or diosmetin, alleviated hair graying in Ednrb(+/-);RET-mice. Internal treatment with luteolin also mitigated hair graying in the mice. Although both luteolin treatments had very limited effects on hair cycles, the treatments suppressed the increase in p16ink4a-positive cells in bulges [senescent keratinocyte stem cells (KSCs)]. Both of the treatments also suppressed decreases in the expression levels of endothelins in KSCs and their receptor (Ednrb) in melanocyte stem cells (MSCs) and alleviated hair graying in the mice. Luteolin is a special antioxidant with an anti-graying potency through improvement of age-related dysfunction in signaling between endothelins in KSCs and their receptor in MSCs. Luteolin for topical and oral use is commercially available to people in the form of supplements. Similar processes of hair graying in Ednrb(+/-);RET-mice and humans have been reported. These results are encouraging for the practical application of luteolin as a medicine with an anti-graying effect on hair in humans.
Collapse
Grants
- 19H01147 Ministry of Education, Culture, Sports, Science and Technology
- 23H03147 Ministry of Education, Culture, Sports, Science and Technology
- 23K27837 Ministry of Education, Culture, Sports, Science and Technology
- 22KK0145 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
| | - Takumi Kagawa
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
| | - Akihito Harusato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Activities of the Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | - Delgama A. S. M. Nishadhi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
| | - Nobuhiko Taguchi
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
- General Research and Development Institute, Hoyu Co., Ltd., 1-12 Rouboku, Nagakute-shi 480-1136, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.I.); (T.K.); (A.H.); (D.A.S.M.N.)
- Units of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai-shi 487-8501, Japan
- Activities of the Institute of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Ge H, Malsiu F, Gao Y, Losmanova T, Blank F, Ott J, Medová M, Peng RW, Deng H, Dorn P, Marti TM. Inhibition of LDHB suppresses the metastatic potential of lung cancer by reducing mitochondrial GSH catabolism. Cancer Lett 2024; 611:217353. [PMID: 39615645 DOI: 10.1016/j.canlet.2024.217353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Metastasis, the leading cause of cancer death, is closely linked to lactate metabolism. Our study aimed to investigate the role of lactate dehydrogenase B (LDHB), which mainly catalyzes the conversion of lactate to pyruvate, in the metastatic potential of lung cancer. We found that LDHB silencing reduced the invasion and migration ability of lung cancer cells in vitro. On the molecular level, LDHB silencing decreased the total intracellular levels of the antioxidant glutathione (GSH). Surprisingly, LDHB silencing did not increase cellular or mitochondrial reactive oxygen species (ROS) levels. Furthermore, supplementation with GSH monoethyl ester (GSH-mee), a cell-permeable derivative of GSH, partially restored the reduced in vitro colony formation capacity, the oxygen consumption rate, and the invasion and migration capacity of lung cancer cells after LDHB silencing. Using metabolic inhibitors, we showed that the rescue of colony formation after silencing LDHB by GSH-mee was due to enhanced GSH catabolism by γ-L-Glutamyl transpeptidase (GGT), which was mainly present in the mitochondrial fraction of lung cancer cells. Furthermore, we observed that high GGT expression was a prerequisite for the rescue of migratory capacity by GSH-mee after LDHB silencing. Finally, our in vivo experiments demonstrated that targeting LDHB reduced the metastasis of human and mouse lung cancer cells in immunodeficient and immunocompetent mouse models, respectively. In conclusion, LDHB silencing decreases GSH catabolism mediated by GGT, which is primarily located in the mitochondria of cancer cells. Therefore, targeting LDHB is a promising therapeutic approach for the prevention and treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Fatlind Malsiu
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tereza Losmanova
- Institute of Tissue Medicine and Pathology, ITMP, University of Bern, Bern, Switzerland
| | - Fabian Blank
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Julien Ott
- Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, University of Bern, Bern, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Sethi N, Khokhar M, Mathur M, Batra Y, Mohandas A, Tomo S, Rao M, Banerjee M. Therapeutic Potential of Nutraceuticals against Drug-Induced Liver Injury. Semin Liver Dis 2024; 44:430-456. [PMID: 39393795 DOI: 10.1055/s-0044-1791559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Drug-induced liver injury (DILI) continues to be a major concern in clinical practice, thus necessitating a need for novel therapeutic approaches to alleviate its impact on hepatic function. This review investigates the therapeutic potential of nutraceuticals against DILI, focusing on examining the underlying molecular mechanisms and cellular pathways. In preclinical and clinical studies, nutraceuticals, such as silymarin, curcumin, and N-acetylcysteine, have demonstrated remarkable efficacy in attenuating liver injury induced by diverse pharmaceutical agents. The molecular mechanisms underlying these hepatoprotective effects involve modulation of oxidative stress, inflammation, and apoptotic pathways. Furthermore, this review examines cellular routes affected by these nutritional components focusing on their influence on hepatocytes, Kupffer cells, and stellate cells. Key evidence highlights that autophagy modulation as well as unfolded protein response are essential cellular processes through which nutraceuticals exert their cytoprotective functions. In conclusion, nutraceuticals are emerging as promising therapeutic agents for mitigating DILI, by targeting different molecular pathways along with cell processes involved in it concurrently.
Collapse
Affiliation(s)
- Namya Sethi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mitali Mathur
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Yashi Batra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Amal Mohandas
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
7
|
Guo Z, Lin Y, Liu H, Guo J, Hou L, Zhang X, Xu J, Ruan Z, Li M, Sun K, Guo F. Deferoxamine alleviates chondrocyte senescence and osteoarthritis progression by maintaining iron homeostasis. Int Immunopharmacol 2024; 139:112619. [PMID: 39024748 DOI: 10.1016/j.intimp.2024.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent age-related disease characterized by the gradual deterioration of cartilage. The involvement of chondrocyte senescence is crucial in the pathogenesis of OA. Desferoxamine (DFO) is an iron chelator with therapeutic potential in various diseases. However, the relationship of chondrocyte senescence and iron homeostasis is largely unknown. METHODS Chondrocyte senescence was induced using tert-butyl hydroperoxide (TBHP), and the impact of DFO on chondrocyte senescence and iron metabolism was assessed through techniques such as western blotting, qRT-PCR, and β-Galactosidase staining. To assess the impact of DFO on chondrocyte senescence and the progression of osteoarthritis (OA), the surgical destabilization of the medial meniscus model was established. RESULTS In chondrocytes, TBHP administration resulted in elevated expression of P16, P21, and P53, as well as alterations in SA-β-gal staining. Nevertheless, DFO effectively mitigated chondrocyte senescence induced by TBHP, and reversed the decrease in collagen II expression and increase in MMP13 expression caused by TBHP. Mechanismly, TBHP induced NCOA4 expression and iron release in chondrocytes. Excessive iron could induce chondrocyte senescence, whereas, DFO could inhibit NCOA4 expression and restore ferritin level, and chelate excessive iron. Importantly, intra-articular injection of DFO enhanced collagen II expression and reduced expression of P16, P21, and MMP13 of cartilage in OA mice, and delayed cartilage degeneration. CONCLUSIONS Overall, this study provides evidence that DFO has the potential to alleviate chondrocyte senescence induced by TBHP and slow down the progression of osteoarthritis (OA) by effectively chelating excessive iron. These findings suggest that iron chelation could be a promising therapeutic strategy for treating OA.
Collapse
Affiliation(s)
- Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Yang Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Zhang T, Li Z, Qin M, Zhang J, Sun Y, Liu C. Visulization of peroxynitrite variation for accurate diagnosis and assessing treatment response of hepatic fibrosis using a Golgi-targetable ratiometric fluorescent probe. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112950. [PMID: 38851042 DOI: 10.1016/j.jphotobiol.2024.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Hepatic fibrosis (HF) is caused by persistent inflammation, which is closely associated with hepatic oxidative stress. Peroxynitrite (ONOO-) is significantly elevated in HF, which would be regarded as a potential biomarker for the diagnosis of HF. Research has shown that ONOO- in the Golgi apparatus can be overproduced in HF, and it can induce hepatocyte injury by triggering Golgi oxidative stress. Meanwhile, the ONOO- inhibitors could effectively relieve HF by inhibiting Golgi ONOO-, but as yet, no Golgi-targetable fluorescent probe available for diagnosis and assessing treatment response of HF through sensing Golgi ONOO-. To this end, we reported a ratiometric fluorescent probe, Golgi-PER, for diagnosis and assessing treatment response of HF through monitoring the Golgi ONOO-. Golgi-PER displayed satisfactory sensitivity, low detection limit, and exceptional selectivity to ONOO-. Combined with excellent biocompatibility and good Golgi-targeting ability, Golgi-PER was further used for ratiometric monitoring the Golgi ONOO- fluctuations and screening of ONOO- inhibitors from polyphenols in living cells. Meanwhile, using Golgi-PER as a probe, the overexpression of Golgi ONOO- in HF and the treatment response of HF to the screened rosmarinic acid were precisely visualized for the first time. Furthermore, the screened RosA has a remarkable therapeutic effect on HF, which may be a new strategy for HF treatment. These results demonstrated the practicability of Golgi-PER for monitoring the occurrence, development, and personalized treatment response of HF.
Collapse
Affiliation(s)
- Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Meichun Qin
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Junhuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Liu X, Wei X, Wu J, Xu Y, Hu J, Qin C, Chen C, Lin Y. CBLL1 promotes endometrial stromal cell senescence via inhibiting PTEN in recurrent spontaneous abortion. FASEB J 2024; 38:e23833. [PMID: 39012313 DOI: 10.1096/fj.202400972r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a common pregnancy-related disorder. Cbl proto-oncogene like 1 (CBLL1) is an E3 ubiquitin ligase, which has been reported to vary with the menstrual cycle in the endometrium. However, whether CBLL1 is involved in the occurrence and development of RSA remains unclear. This study aimed to investigate the effects of CBLL1 on RSA. We analyzed the expression of CBLL1 in the decidua of RSA patients, as well as its functional effects on cellular senescence, oxidative stress, and proliferation of human endometrial stromal cells (HESCs). RNA sequencing was employed to identify a key downstream target gene regulated by CBLL1. We found that CBLL1 was upregulated in the decidua of RSA patients. Additionally, overexpression of CBLL1 promoted HESC senescence, increased oxidative stress levels, and inhibited proliferation. Phosphatase and tensin homolog located on chromosome 10 (PTEN) was identified as one of the important downstream target genes of CBLL1. In vivo experiments demonstrated that CBLL1 overexpression in the endometrium caused higher embryo absorption rate in mice. Consequently, elevated CBLL1 expression is a potential cause of RSA, representing a novel therapeutic target for RSA.
Collapse
Affiliation(s)
- Xueqing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichi Xu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanmei Qin
- Department of Obstetrics and Gynecology, the Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cailian Chen
- Department of Automation, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Yi Lin
- Department of Obstetrics and Gynecology, the Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Ulagesan S, Krishnan S, Nam TJ, Choi YH. Crassostrea gigas peptide PEP-1 prevents tert-butyl hydroperoxide (t-BHP) induced oxidative stress in HepG2 cells. Food Sci Biotechnol 2024; 33:1245-1254. [PMID: 38440692 PMCID: PMC10908960 DOI: 10.1007/s10068-023-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 03/06/2024] Open
Abstract
Exposure to tert-butyl hydroperoxide (t-BHP) leads to cytotoxicity and oxidative stress in various organs and cell types. The bioactive peptides extracted from Oysters exhibit marked antioxidant activity. The impacts of Crassostrea gigas peptides on t-BHP-triggered oxidative stress remain largely unknown. The protective and antioxidant activity of a C.gigas peptide, PEP-1, on t-BHP-treated HepG2 cells, was investigated. PEP-1, this peptide is arginine kinase in oysters. This enzyme functions as a catalyst for the chemical reaction and serves as a phosphate transferase. Since it was the most expressed protein in the adductor muscle of oysters. Our determination showed the lowest level of a toxic concentration of t-BHP (200 µM) and the resting concentration of PEP-1 (0-1000 ng/ml). PEP-1 exerted a protective effect against t-BHP-induced apoptosis by modifying the expression of pro-and anti-apoptotic proteins. PEP-1 administration reduced nitric oxide and ROS levels while restoring levels of antioxidant proteins in t-BHP-induced cells. PEP-1 exhibited the capacity to enhance the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Therefore, the C. gigas peptide PEP-1 has demonstrated its ability to protect HepG2 cells against oxidative stress induced by t-BHP.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513 Republic of Korea
| | - Sathish Krishnan
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041 Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041 Republic of Korea
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513 Republic of Korea
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041 Republic of Korea
| |
Collapse
|
11
|
Vágvölgyi M, Laczkó D, Santa-Maria AR, Vigh JP, Walter FR, Berkecz R, Deli MA, Tóth G, Hunyadi A. 17-Oxime ethers of oxidized ecdysteroid derivatives modulate oxidative stress in human brain endothelial cells and dose-dependently might protect or damage the blood-brain barrier. PLoS One 2024; 19:e0290526. [PMID: 38386637 PMCID: PMC10883584 DOI: 10.1371/journal.pone.0290526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/07/2024] [Indexed: 02/24/2024] Open
Abstract
20-Hydroxyecdysone and several of its oxidized derivatives exert cytoprotective effect in mammals including humans. Inspired by this bioactivity of ecdysteroids, in the current study it was our aim to prepare a set of sidechain-modified derivatives and to evaluate their potential to protect the blood-brain barrier (BBB) from oxidative stress. Six novel ecdysteroids, including an oxime and five oxime ethers, were obtained through regioselective synthesis from a sidechain-cleaved calonysterone derivative 2 and fully characterized by comprehensive NMR techniques revealing their complete 1H and 13C signal assignments. Surprisingly, several compounds sensitized hCMEC/D3 brain microvascular endothelial cells to tert-butyl hydroperoxide (tBHP)-induced oxidative damage as recorded by impedance measurements. Compound 8, containing a benzyloxime ether moiety in its sidechain, was the only one that exerted a protective effect at a higher, 10 μM concentration, while at lower (10 nM- 1 μM) concentrations it promoted tBHP-induced cellular damage. Brain endothelial cells were protected from tBHP-induced barrier integrity decrease by treatment with 10 μM of compound 8, which also mitigated the intracellular reactive oxygen species production elevated by tBHP. Based on our results, 17-oxime ethers of oxidized ecdysteroids modulate oxidative stress of the BBB in a way that may point towards unexpected toxicity. Further studies are needed to evaluate any possible risk connected to dietary ecdysteroid consumption and CNS pathologies in which BBB damage plays an important role.
Collapse
Affiliation(s)
- Máté Vágvölgyi
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Dávid Laczkó
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
| | - Ana Raquel Santa-Maria
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States of America
| | - Judit P. Vigh
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Fruzsina R. Walter
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, Szeged, Hungary
| | - Mária A. Deli
- Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gábor Tóth
- NMR Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Szeged, Hungary
| |
Collapse
|
12
|
Maseko TE, Elkalaf M, Peterová E, Lotková H, Staňková P, Melek J, Dušek J, Žádníková P, Čížková D, Bezrouk A, Pávek P, Červinková Z, Kučera O. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non‑alcoholic fatty liver disease. Int J Mol Med 2024; 53:18. [PMID: 38186319 PMCID: PMC10781417 DOI: 10.3892/ijmm.2023.5342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non‑alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non‑alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA‑treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II‑driven respiration and β‑oxidation were linked to increased complex I and II activities in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA‑treated HepaRG cells than in FFA‑treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early‑stage NASH.
Collapse
Affiliation(s)
- Tumisang Edward Maseko
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Eva Peterová
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Halka Lotková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Pavla Staňková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Melek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Dušek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Petra Žádníková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Dana Čížková
- Department of Histology and Embryology Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
13
|
Wang Y, Hernández-Alvarez AJ, Goycoolea FM, Martínez-Villaluenga C. A comparative study of the digestion behavior and functionality of protein from chia ( Salvia hispanica L.) ingredients and protein fractions. Curr Res Food Sci 2024; 8:100684. [PMID: 38323027 PMCID: PMC10845256 DOI: 10.1016/j.crfs.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Protein derived from chia (Salvia hispanica L.), characterized by a balanced amino acid composition, represents a potentially healthier and environmentally friendly alternative poised for innovation within the plant-based food sector. It was hypothesized that the growing location of chia seeds and processing techniques used might influence protein digestion patterns, which in turn could affect the biological functions of the digestion products. To examine this hypothesis, we assessed the gastrointestinal fate of degummed-defatted flour (DDF), protein concentrate (PC), and isolated albumin (Alb) and globulin (Glo) fractions. Furthermore, we compared the antioxidant and anti-inflammatory activities of the resulting digesta by means of in vitro and cellular assays. Post-gastrointestinal digestion, the PC exhibited elevated levels of soluble protein (7.6 and 6.3 % for Mexican and British PC, respectively) and peptides (24.8 and 27.9 %, respectively) of larger molecular sizes compared to DDF, Alb, and Glo. This can be attributed to differences in the extraction/fractionation processes. Leucine was found to be the most prevalent amino acids in all chia digesta. Such variations in the digestive outcomes of chia protein components significantly influenced the bioactivity of the intestinal digestates. During gastrointestinal transit, British Glo exhibited the best reactive oxygen species (ROS) inhibition activity in oxidative-stressed RAW264.7 macrophages, while Mexican digesta outperformed British samples in terms of ROS inhibition within the oxidative-stressed Caco-2 cells. Additionally, both Mexican and British Alb showed effectively anti-inflammatory potential, with keratinocyte chemoattractant (KC) inhibition rate of 82 and 91 %, respectively. Additionally, Mexican PC and Alb generally demonstrated an enhanced capacity to mitigate oxidative stress and inflammatory conditions in vitro. These findings highlight the substantial potential of chia seeds as functional food ingredients, resonating with the shifting preferences of health-conscious consumers.
Collapse
Affiliation(s)
- Yan Wang
- School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040, Madrid, Spain
| |
Collapse
|
14
|
Shukla A, Khan MGM, Cayarga AA, Namvarpour M, Chowdhury MMH, Levesque D, Lucier JF, Boisvert FM, Ramanathan S, Ilangumaran S. The Tumor Suppressor SOCS1 Diminishes Tolerance to Oxidative Stress in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:292. [PMID: 38254783 PMCID: PMC10814246 DOI: 10.3390/cancers16020292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
SOCS1 is a tumor suppressor in hepatocellular carcinoma (HCC). Recently, we showed that a loss of SOCS1 in hepatocytes promotes NRF2 activation. Here, we investigated how SOCS1 expression in HCC cells affected oxidative stress response and modulated the cellular proteome. Murine Hepa1-6 cells expressing SOCS1 (Hepa-SOCS1) or control vector (Hepa-Vector) were treated with cisplatin or tert-butyl hydroperoxide (t-BHP). The induction of NRF2 and its target genes, oxidative stress, lipid peroxidation, cell survival and cellular proteome profiles were evaluated. NRF2 induction was significantly reduced in Hepa-SOCS1 cells. The gene and protein expression of NRF2 targets were differentially induced in Hepa-Vector cells but markedly suppressed in Hepa-SOCS1 cells. Hepa-SOCS1 cells displayed an increased induction of reactive oxygen species but reduced lipid peroxidation. Nonetheless, Hepa-SOCS1 cells treated with cisplatin or t-BHP showed reduced survival. GCLC, poorly induced in Hepa-SOCS1 cells, showed a strong positive correlation with NFE2L2 and an inverse correlation with SOCS1 in the TCGA-LIHC transcriptomic data. A proteomic analysis of Hepa-Vector and Hepa-SOCS1 cells revealed that SOCS1 differentially modulated many proteins involved in diverse molecular pathways, including mitochondrial ROS generation and ROS detoxification, through peroxiredoxin and thioredoxin systems. Our findings indicate that maintaining sensitivity to oxidative stress is an important tumor suppression mechanism of SOCS1 in HCC.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Md Gulam Musawwir Khan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mozhdeh Namvarpour
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Mohammad Mobarak H. Chowdhury
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Jean-François Lucier
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.G.M.K.); (A.A.C.); (M.N.); (M.M.H.C.); (D.L.); (F.-M.B.); (S.R.)
- Centre de Recherche, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
15
|
Basuthakur P, Roy A, Patra CR, Chakravarty S. Therapeutic potentials of terbium hydroxide nanorods for amelioration of hypoxia-reperfusion injury in cardiomyocytes. BIOMATERIALS ADVANCES 2023; 153:213531. [PMID: 37429046 DOI: 10.1016/j.bioadv.2023.213531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023]
Abstract
Myocardial hypoxia reperfusion (H/R) injury is the paradoxical exacerbation of myocardial damage, caused by the sudden restoration of blood flow to hypoxia affected myocardium. It is a critical contributor of acute myocardial infarction, which can lead to cardiac failure. Despite the current pharmacological advancements, clinical translation of cardioprotective therapies have proven challenging. As a result, researchers are looking for alternative approaches to counter the disease. In this regard, nanotechnology, with its versatile applications in biology and medicine, can confer broad prospects for treatment of myocardial H/R injury. Herein, we attempted to explore whether a well-established pro-angiogenic nanoparticle, terbium hydroxide nanorods (THNR) can ameliorate myocardial H/R injury. For this study, in vitro H/R-injury model was established in rat cardiomyocytes (H9c2 cells). Our investigations demonstrated that THNR enhance cardiomyocyte survival against H/R-induced cell death. This pro-survival effect of THNR is associated with reduction of oxidative stress, lipid peroxidation, calcium overload, restoration of cytoskeletal integrity and mitochondrial membrane potential as well as augmentation of cellular anti-oxidant enzymes such as glutathione-s-transferase (GST) and superoxide dismutase (SOD) to counter H/R injury. Molecular analysis revealed that the above observations are traceable to the predominant activation of PI3K-AKT-mTOR and ERK-MEK signalling pathways by THNR. Concurrently, THNR also exhibit apoptosis inhibitory effects mainly by suppression of pro-apoptotic proteins like Cytochrome C, Caspase 3, Bax and p53 with simultaneous restoration of anti-apoptotic protein, Bcl-2 and Survivin. Thus, considering the above attributes, we firmly believe that THNR have the potential to be developed as an alternative approach for amelioration of H/R injury in cardiomyocytes.
Collapse
Affiliation(s)
- Papia Basuthakur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Cañas S, Rebollo-Hernanz M, Martín-Trueba M, Braojos C, Gil-Ramírez A, Benítez V, Martín-Cabrejas MA, Aguilera Y. Exploring the potential of phenolic compounds from the coffee pulp in preventing cellular oxidative stress after in vitro digestion. Food Res Int 2023; 172:113116. [PMID: 37689881 DOI: 10.1016/j.foodres.2023.113116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The coffee pulp, a by-product of the coffee industry, contains a high concentration of phenolic compounds and caffeine. Simulated gastrointestinal digestion may influence these active compounds' bioaccessibility, bioavailability, and bioactivity. Understanding the impact of the digestive metabolism on the coffee pulp's phenolic composition and its effect on cellular oxidative stress biomarkers is essential. In this study, we evaluated the influence of in vitro gastrointestinal digestion of the coffee pulp flour (CPF) and extract (CPE) on their phenolic profile, radical scavenging capacity, cellular antioxidant activity, and cytoprotective properties in intestinal epithelial (IEC-6) and hepatic (HepG2) cells. The CPF and the CPE contained a high amount of caffeine and phenolic compounds, predominantly phenolic acids (3',4'-dihydroxycinnamoylquinic and 3,4-dihydroxybenzoic acids) and flavonoids (3,3',4',5,7-pentahydroxyflavone derivatives). Simulated digestion resulted in increased antioxidant capacity, and both the CPF and the CPE demonstrated free radical scavenging abilities even after in vitro digestion. The CPF and the CPE did not induce cytotoxicity in intestinal and hepatic cells, and both matrices exhibited the ability to scavenge intracellular reactive oxygen species. The coffee pulp treatments prevented the decrease of glutathione, thiol groups, and superoxide dismutase and catalase enzymatic activities evoked by tert-butyl hydroperoxide elicitation in IEC-6 and HepG2 cells. Our findings suggest that the coffee pulp could be used as a potent food ingredient for preventing cellular oxidative stress due to its high content of antioxidant compounds.
Collapse
Affiliation(s)
- Silvia Cañas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María Martín-Trueba
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cheyenne Braojos
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Institute of Food Science Research (CIAL, UAM-CSIC), C/Nicolás Cabrera, 9. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
17
|
Oda JM, den Hartigh AB, Jackson SM, Tronco AR, Fink SL. The unfolded protein response components IRE1α and XBP1 promote human coronavirus infection. mBio 2023; 14:e0054023. [PMID: 37306512 PMCID: PMC10470493 DOI: 10.1128/mbio.00540-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/20/2023] [Indexed: 06/13/2023] Open
Abstract
The cellular processes that support human coronavirus replication and contribute to the pathogenesis of severe disease remain incompletely understood. Many viruses, including coronaviruses, cause endoplasmic reticulum (ER) stress during infection. IRE1α is a component of the cellular response to ER stress that initiates non-conventional splicing of XBP1 mRNA. Spliced XBP1 encodes a transcription factor that induces the expression of ER-related targets. Activation of the IRE1α-XBP1 pathway occurs in association with risk factors for severe human coronavirus infection. In this study, we found that the human coronaviruses HCoV-OC43 (human coronavirus OC43) and SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) both robustly activate the IRE1α-XBP1 branch of the unfolded protein response in cultured cells. Using IRE1α nuclease inhibitors and genetic knockdown of IRE1α and XBP1, we found that these host factors are required for optimal replication of both viruses. Our data suggest that IRE1α supports infection downstream of initial viral attachment and entry. In addition, we found that ER stress-inducing conditions are sufficient to enhance human coronavirus replication. Furthermore, we found markedly increased XBP1 in circulation in human patients with severe coronavirus disease 2019 (COVID-19). Together, these results demonstrate the importance of IRE1α and XBP1 for human coronavirus infection. IMPORTANCE There is a critical need to understand the cellular processes co-opted during human coronavirus replication, with an emphasis on identifying mechanisms underlying severe disease and potential therapeutic targets. Here, we demonstrate that the host proteins IRE1α and XBP1 are required for robust infection by the human coronaviruses, SARS-CoV-2 and HCoV-OC43. IRE1α and XBP1 participate in the cellular response to ER stress and are activated during conditions that predispose to severe COVID-19. We found enhanced viral replication with exogenous IRE1α activation, and evidence that this pathway is activated in humans during severe COVID-19. Together, these results demonstrate the importance of IRE1α and XBP1 for human coronavirus infection.
Collapse
Affiliation(s)
- Jessica M. Oda
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andreas B. den Hartigh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Shoen M. Jackson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ana R. Tronco
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Susan L. Fink
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Lee W, Mun Y, Lee KY, Park JM, Chang TS, Choi YJ, Lee BH. Mefenamic Acid-Upregulated Nrf2/SQSTM1 Protects Hepatocytes against Oxidative Stress-Induced Cell Damage. TOXICS 2023; 11:735. [PMID: 37755745 PMCID: PMC10536671 DOI: 10.3390/toxics11090735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Mefenamic acid (MFA) is a commonly prescribed non-steroidal anti-inflammatory drug (NSAID) with anti-inflammatory and analgesic properties. MFA is known to have potent antioxidant properties and a neuroprotective effect against oxidative stress. However, its impact on the liver is unclear. This study aimed to elucidate the antioxidative effects of MFA and their underlying mechanisms. We observed that MFA treatment upregulated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Treatment with various anthranilic acid derivative-class NSAIDs, including MFA, increased the expression of sequestosome 1 (SQSTM1) in HepG2 cells. MFA disrupted the interaction between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2, activating the Nrf2 signaling pathway. SQTM1 knockdown experiments revealed that the effect of MFA on the Nrf2 pathway was masked in the absence of SQSTM1. To assess the cytoprotective effect of MFA, we employed tert-Butyl hydroperoxide (tBHP) as a ROS inducer. Notably, MFA exhibited a protective effect against tBHP-induced cytotoxicity in HepG2 cells. This cytoprotective effect was abolished when SQSTM1 was knocked down, suggesting the involvement of SQSTM1 in mediating the protective effect of MFA against tBHP-induced toxicity. In conclusion, this study demonstrated that MFA exhibits cytoprotective effects by upregulating SQSTM1 and activating the Nrf2 pathway. These findings improve our understanding of the pharmacological actions of MFA and highlight its potential as a therapeutic agent for oxidative stress-related conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (W.L.); (Y.M.); (K.-Y.L.); (J.-M.P.); (T.-S.C.)
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (W.L.); (Y.M.); (K.-Y.L.); (J.-M.P.); (T.-S.C.)
| |
Collapse
|
19
|
Cheng Y, Lin S, Ren T, Zhang J, Shi Y, Chen Y, Chen Y. New murine model of alcoholic hepatitis in obesity-induced metabolic-associated fatty liver disease. Exp Anim 2023; 72:389-401. [PMID: 37019681 PMCID: PMC10435355 DOI: 10.1538/expanim.22-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) and alcoholic hepatitis (AH) are among the most prevalent liver diseases worldwide, and their coexistence is common in clinical practice. However, currently established models of MAFLD-AH coexistence do not fully replicate their pathological characteristics and require sophisticated experimental techniques. Therefore, we aimed to develop an easily replicable model that mimics obesity-induced MAFLD-AH in patients. Our goal was to establish a murine model that replicates MAFLD and AH coexistence, resulting in significant liver injury and inflammation. To this end, we administered a single ethanol gavage dose to ob/ob mice on a chow diet. The administration of a single dose of ethanol led to elevated serum transaminase levels, increased liver steatosis, and apoptosis in ob/ob mice. Furthermore, ethanol binge caused a significant increase in oxidative stress in ob/ob mice, as measured via 4-hydroxynonenal. Importantly, the single dose of ethanol also markedly exacerbated liver neutrophil infiltration and upregulated the hepatic mRNA expression of several chemokines and neutrophil-related proteins, including Cxcl1, Cxcl2, and Lcn2. Whole-liver transcriptomic analysis revealed that ethanol-induced changes in gene expression profile shared similar features with AH and MAFLD. In ob/ob mice, a single dose of ethanol binge caused significant liver injury and neutrophil infiltration. This easy-to-replicate murine model successfully mimics the pathological and clinical features of patients with coexisting MAFLD and AH and closely resembles the transcriptional regulation seen in human disease.
Collapse
Affiliation(s)
- Yuqing Cheng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Shuangzhe Lin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
| | - Tianyi Ren
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Jianbin Zhang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
| | - Yingying Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, P.R. China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yuanwen Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai, 200040, P.R. China
- Department of Geriatrics, Huadong Hospital Affiliated to Fudan University, 221 West Yan’an Road, Shanghai, 200040, P.R. China
| |
Collapse
|
20
|
Tsuji M, Taira H, Udagawa T, Aoki T, Hirayama T, Nagasawa H. Synthesis and photochemical properties of caged peroxides for photocontrol of cellular oxidative stress. Chem Commun (Camb) 2023; 59:6706-6709. [PMID: 37190960 DOI: 10.1039/d3cc01192e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We developed a caged hydroperoxide, BhcTBHP, releasing prooxidant TBHP under blue light irradiation. MitoTBHP with triphenylphosphonium at position 7 triggered selective oxidative stress and membrane depolarization in mitochondria upon photoirradiation. This study presents a powerful tool for studying redox signaling and oxidative stress in living cells.
Collapse
Affiliation(s)
- Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| | - Haruno Taira
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tatsuya Aoki
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
21
|
Pinho SA, Anjo SI, Cunha-Oliveira T. Metabolic Priming as a Tool in Redox and Mitochondrial Theragnostics. Antioxidants (Basel) 2023; 12:1072. [PMID: 37237939 PMCID: PMC10215850 DOI: 10.3390/antiox12051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.
Collapse
Affiliation(s)
- Sónia A. Pinho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- PDBEB—PhD Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
22
|
Tóth G, Santa-Maria AR, Herke I, Gáti T, Galvis-Montes D, Walter FR, Deli MA, Hunyadi A. Highly Oxidized Ecdysteroids from a Commercial Cyanotis arachnoidea Root Extract as Potent Blood-Brain Barrier Protective Agents. JOURNAL OF NATURAL PRODUCTS 2023; 86:1074-1080. [PMID: 36825873 PMCID: PMC10152481 DOI: 10.1021/acs.jnatprod.2c00948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 05/04/2023]
Abstract
Ecdysteroid-containing herbal extracts, commonly prepared from the roots of Cyanotis arachnoidea, are marketed worldwide as a "green" anabolic food supplement. Herein are reported the isolation and complete 1H and 13C NMR signal assignments of three new minor ecdysteroids (compounds 2-4) from this extract. Compound 4 was identified as a possible artifact that gradually forms through the autoxidation of calonysterone. The compounds tested demonstrated a significant protective effect on the blood-brain barrier endothelial cells against oxidative stress or inflammation at a concentration of 1 μM. Based on these results, minor ecdysteroids present in food supplements may offer health benefits in various neurodegenerative disease states.
Collapse
Affiliation(s)
- Gábor Tóth
- Department
of Inorganic and Analytical Chemistry, NMR Group, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ana R. Santa-Maria
- Institute
of Biophysics, Biological Research Centre, Szeged H-6726, Hungary
- Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Ibolya Herke
- Department
of Inorganic and Analytical Chemistry, NMR Group, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Tamás Gáti
- Servier
Research Institute of Medicinal Chemistry (SRIMC), H-1031 Budapest, Hungary
| | | | - Fruzsina R. Walter
- Institute
of Biophysics, Biological Research Centre, Szeged H-6726, Hungary
| | - Mária A. Deli
- Institute
of Biophysics, Biological Research Centre, Szeged H-6726, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, and Interdisciplinary
Centre of Natural Products, University of
Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
23
|
Forde S, Vozza G, Brayden DJ, Byrne HJ, Frías JM, Ryan SM. Evaluation of Selenomethionine Entrapped in Nanoparticles for Oral Supplementation Using In Vitro, Ex Vivo and In Vivo Models. Molecules 2023; 28:molecules28072941. [PMID: 37049704 PMCID: PMC10095941 DOI: 10.3390/molecules28072941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Selenium methionine (SeMet) is an essential micronutrient required for normal body function and is associated with additional health benefits. However, oral administration of SeMet can be challenging due to its purported narrow therapeutic index, low oral bioavailability, and high susceptibility to oxidation. To address these issues, SeMet was entrapped in zein-coated nanoparticles made from chitosan using an ionic gelation formulation. The high stability of both the SeMet and selenomethionine nanoparticles (SeMet-NPs) was established using cultured human intestinal and liver epithelial cells, rat liver homogenates, and rat intestinal homogenates and lumen washes. Minimal cytotoxicity to Caco-2 and HepG2 cells was observed for SeMet and SeMet-NPs. Antioxidant properties of SeMet were revealed using a Reactive Oxygen Species (ROS) assay, based on the observation of a concentration-dependent reduction in the build-up of peroxides, hydroxides and hydroxyl radicals in Caco-2 cells exposed to SeMet (6.25–100 μM). The basal apparent permeability coefficient (Papp) of SeMet across isolated rat jejunal mucosae mounted in Ussing chambers was low, but the Papp was increased when presented in NP. SeMet had minimal effects on the electrogenic ion secretion of rat jejunal and colonic mucosae in Ussing chambers. Intra-jejunal injections of SeMet-NPs to rats yielded increased plasma levels of SeMet after 3 h for the SeMet-NPs compared to free SeMet. Overall, there is potential to further develop SeMet-NPs for oral supplementation due to the increased intestinal permeability, versus free SeMet, and the low potential for toxicity.
Collapse
Affiliation(s)
- Shane Forde
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Giulianna Vozza
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, D07 EWV4 Dublin, Ireland
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| | - David J. Brayden
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland
| | - Jesus M. Frías
- Environmental Science and Health Institute, Technological University Dublin, Grangegorman, D07 EWV4 Dublin, Ireland
| | - Sinéad M. Ryan
- UCD School of Veterinary Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-7166215
| |
Collapse
|
24
|
Scordino M, Frinchi M, Urone G, Nuzzo D, Mudò G, Di Liberto V. Manipulation of HSP70-SOD1 Expression Modulates SH-SY5Y Differentiation and Susceptibility to Oxidative Stress-Dependent Cell Damage: Involvement in Oxotremorine-M-Mediated Neuroprotective Effects. Antioxidants (Basel) 2023; 12:antiox12030687. [PMID: 36978935 PMCID: PMC10045076 DOI: 10.3390/antiox12030687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The differentiation of neural progenitors is a complex process that integrates different signals to drive transcriptional changes, which mediate metabolic, electrophysiological, and morphological cellular specializations. Understanding these adjustments is essential within the framework of stem cell and cancer research and therapy. Human neuroblastoma SH-SY5Y cells, widely used in neurobiology research, can be differentiated into neuronal-like cells through serum deprivation and retinoic acid (RA) supplementation. In our study, we observed that the differentiation process triggers the expression of Heat Shock Protein 70 (HSP70). Notably, inhibition of HSP70 expression by KNK437 causes a dramatic increase in cell death. While undifferentiated SH-SY5Y cells show a dose-dependent decrease in cell survival following exposure to hydrogen peroxide (H2O2), differentiated cells become resistant to H2O2-induced cell death. Interestingly, the differentiation process enhances the expression of SOD1 protein, and inhibition of HSP70 expression counteracts this effect and increases the susceptibility of differentiated cells to H2O2-induced cell death, suggesting that the cascade HSP70-SOD1 is involved in promoting survival against oxidative stress-dependent damage. Treatment of differentiated SH-SY5Y cells with Oxotremorine-M (Oxo), a muscarinic acetylcholine receptor agonist, enhances the expression of HSP70 and SOD1 and counteracts tert–Butyl hydroperoxide-induced cell death and reactive oxygen species (ROS) generation. It is worth noting that co-treatment with KNK437 reduces SOD1 expression and Oxo-induced protection against oxidative stress damage, suggesting the involvement of HSP70/SOD1 signaling in this beneficial effect. In conclusion, our findings demonstrate that manipulation of the HSP70 signal modulates SH-SY5Y differentiation and susceptibility to oxidative stress-dependent cell death and unravels novel mechanisms involved in Oxo neuroprotective functions. Altogether these data provide novel insights into the mechanisms underlying neuronal differentiation and preservation under stress conditions.
Collapse
Affiliation(s)
- Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Monica Frinchi
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Giulia Urone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), via U. La Malfa 153, 90146 Palermo, Italy
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
- Correspondence: (G.M.); (V.D.L.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
- Correspondence: (G.M.); (V.D.L.)
| |
Collapse
|
25
|
Wang L, Yu X, Zhang D, Wen Y, Zhang L, Xia Y, Chen J, Xie C, Zhu H, Tong J, Shen Y. Long-term blue light exposure impairs mitochondrial dynamics in the retina in light-induced retinal degeneration in vivo and in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 240:112654. [PMID: 36724628 DOI: 10.1016/j.jphotobiol.2023.112654] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Long-term light exposure, especially in the spectrum of blue light, frequently causes excessive oxidative stress in dry age-related macular degeneration (AMD). Here, to gain insight into the underlying mechanism, we focused on mitochondrial dynamics alterations under long-term exposure to blue light in mouse and retinal cells. Six-month-old C57BL/6 mice were exposed to blue light (450 nm, 800 lx) for 2 weeks. The phenotypic changes in the retina were assayed using haematoxylin-eosin staining and transmission electron microscopy. Long-term blue light exposure significantly thinned each retinal layer in mice, induced retinal apoptosis and impaired retinal mitochondria. A retinal pigment epithelial cell line (ARPE-19) was used to verify the phototoxicity of blue light. Flow cytometry, immunofluorescence and MitoSox Red probe experiments confirmed that more total and mitochondria-specific ROS were generated in the blue light group than in the control group. Mito-Tracker Green probe showed fragmented mitochondrial morphology. The western blotting results indicated a significant increase in DRP1, OMA1, and BAX and a decrease in OPA1 and Bcl-2. In conclusion, long-term exposure to blue light damaged the retinas of mice, especially the ONL and RPE cells. There was destruction and dysfunction of mitochondria in RPE cells in vivo and in vitro. Mitochondrial dynamics were disrupted with characteristics of fusion-related obstruction after blue-light irradiation.
Collapse
Affiliation(s)
- Liyin Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Xin Yu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Dongyan Zhang
- Department of Ophthalmology, Shaoxing Central Hospital, Shaoxing 312030, Zhejiang, China
| | - Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Yutong Xia
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Jinbo Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Hong Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China.
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 311003, China.
| |
Collapse
|
26
|
Charoensuksai P, Arunprasert K, Saenkham A, Opanasopit P, Suksamrarn S, Wongprayoon P. Gamma-mangostin Protects S16Y Schwann Cells Against tert-Butyl Hydroperoxide-induced Apoptotic Cell Death. Curr Pharm Des 2023; 29:3400-3407. [PMID: 38053351 DOI: 10.2174/0113816128270941231124102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Peripheral neuropathy is a common complication that affects individuals with diabetes. Its development involves an excessive presence of oxidative stress, which leads to cellular damage in various tissues. Schwann cells, which are vital for peripheral nerve conduction, are particularly susceptible to oxidative damage, resulting in cell death. MATERIALS AND METHODS Gamma-mangostin (γ-mangostin), a xanthone derived from Garcinia mangostana, possesses cytoprotective properties in various pathological conditions. In this study, we employed S16Y cells as a representative Schwann cell model to investigate the protective effects of γ-mangostin against the toxicity induced by tert-Butyl hydroperoxide (tBHP). Different concentrations of γ-mangostin and tBHP were used to determine non-toxic doses of γ-mangostin and toxic doses of tBHP for subsequent experiments. MTT cell viability assays, cell flow cytometry, and western blot analysis were used for evaluating the protective effects of γ-mangostin. RESULTS The results indicated that tBHP (50 μM) significantly reduced S16Y cell viability and induced apoptotic cell death by upregulating cleaved caspase-3 and cleaved PARP protein levels and reducing the Bcl- XL/Bax ratio. Notably, pretreatment with γ-mangostin (2.5 μM) significantly mitigated the decrease in cell viability caused by tBHP treatment. Furthermore, γ-mangostin effectively reduced cellular apoptosis induced by tBHP. Lastly, γ-mangostin significantly reverted tBHP-mediated caspase-3 and PARP cleavage and increased the Bcl-XL/Bax ratio. CONCLUSION Collectively, these findings highlight the ability of γ-mangostin to protect Schwann cells from apoptotic cell death induced by oxidative stress.
Collapse
Affiliation(s)
- Purin Charoensuksai
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kwanputtha Arunprasert
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Audchara Saenkham
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sunit Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Pawaris Wongprayoon
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
27
|
Wang W, Shi Y, Qiu T, Meng J, Ding J, Wang W, Wu D, Li K, Liu J, Wu Y. Modified rougan decoction alleviates lipopolysaccharide-enrofloxacin-induced hepatotoxicity via activating the Nrf2/ARE pathway in chicken. Poult Sci 2022; 102:102404. [PMID: 36584418 PMCID: PMC9827067 DOI: 10.1016/j.psj.2022.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Liver injury plays a heavy burden on the chicken industry. Although modified rougan decoction is a prescription for the treatment of liver disease based on the classical prescription of rougan decoction (containing peony and licorice). However, the effect and mechanism of modified rougan decoction on the liver remain unclear. In this study, the effects of the water extracts (MRGD) and the alcohol precipitates of water extracts (MRGDE) against lipopolysaccharide-enrofloxacin (LPS-ENR)-induced hepatotoxicity were discussed in vivo and in vitro. The isolated hepatocytes and 128 one-day-old Hyline chickens were considered research objects. The indices of liver injury and oxidative stress were evaluated by hematoxylin and eosin (H&E) stained and the assay kits, and the nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway was detected by the RT-PCR, western blot, and immunofluorescence tests. All data were analyzed using the IBM SPSS 20.0 software. In vivo, the structural integrity of the liver was maintained, AST, ALT, and MDA levels were decreased, and antioxidant enzymes were increased, confirming that the oxidative stress was reduced and liver injury was alleviated. Correspondingly, MRGD and MRGDE were observed to improve cell viability and decrease lactate dehydrogenase (LDH) in vitro, and the cell oxidative damage was reduced. In addition, the nuclear translocation of Nrf2 was improved significantly, and the mRNA and protein expression levels of the related genes were upregulated. In conclusion, MRGD and MRGDE can exert a protective effect against LPS-ENR-induced hepatotoxicity by activating the Nrf2/ARE pathway, which might be a potential therapeutic prescription for preventing or treating liver injury. Notably, no significant difference was found between the 2 extracts, suggesting that a depth extraction method did not always improve the efficacy of natural medicine. Our results provided new insights into finding effective hepatoprotective medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiaguo Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | |
Collapse
|
28
|
Reigado GR, Adriani PP, Dos Santos JF, Freitas BL, Fernandes MTP, Chambergo Alcalde FS, Leo P, Nunes VA. Delivery of superoxide dismutase by TAT and abalone peptides for the protection of skin cells against oxidative stress. Biotechnol Appl Biochem 2022; 69:2673-2685. [PMID: 35092091 DOI: 10.1002/bab.2314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022]
Abstract
Trichoderma reesei superoxide dismutase (TrSOD) is a well-characterized enzyme being stable between 30 and 90°C for 1 h with activity at pH between 2.6 and 9.0. This work aimed to clone, express, purify, and evaluate the protective effect antioxidant of this enzyme on skin cells when fused to transactivator of transcription (TAT) protein transduction domain of HIV-1 and abalone (Ab) peptides to allow cell penetration. TrSOD, TAT-TrSOD-Yfp (fused to yellow fluorescent protein), and Ab-TrSOD were expressed in E. coli and purified as soluble proteins. The cytotoxicity of the enzymes, at the concentrations of 1, 3, and 6 μmol/L, was evaluated for a period of 24 and 48 h of incubation, with no cytotoxic effect on 3T3 fibroblasts. The 3T3 cells were exposed to the oxidant agent tert-butyl hydroperoxide and evaluated for reactive oxygen species (ROS) generation, in the presence or not of the recombinant enzymes. TAT-TrSOD-Yfp was able to decrease the generation of ROS by 15% when used in the concentrations of 3 and 6 μmol/L in comparison to the control, but there was no difference in relation to the effect of TrSOD. Ab-TrSOD, when compared to TrSOD, promoted a decrease in the formation of ROS of 19% and 14% at the concentrations of 1 and 6 μmol/L, respectively, indicating that this recombinant form was more effective in reducing oxidative stress compared to SOD without the cell-penetrating peptide (CPP). Together, these results indicate that the fusion of SOD with these CPP increased the antioxidant capacity of fibroblasts, identified by the reduction in the generation of ROS. In addition, such molecules, in the concentrations initially used, were not toxic to the cells, opening perspectives for the development of products for antioxidant protection of the skin that may have therapeutic and cosmetic application.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patricia Leo
- Institute of Technological Research, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Viviane Abreu Nunes
- Department of Biotechnology, University of Sao Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
29
|
Soragni C, Rabussier G, Lanz HL, Bircsak KM, de Windt LJ, Trietsch SJ, Murdoch CE, Ng CP. A versatile multiplexed assay to quantify intracellular ROS and cell viability in 3D on-a-chip models. Redox Biol 2022; 57:102488. [PMID: 36201911 PMCID: PMC9535429 DOI: 10.1016/j.redox.2022.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Reactive oxygen species (ROS) have different properties and biological functions. They contribute to cell signaling and, in excessive amounts, to oxidative stress (OS). Although ROS is pivotal in a wide number of physiological systems and pathophysiological processes, direct quantification in vivo is quite challenging and mainly limited to in vitro studies. Even though advanced in vitro cell culture techniques, like on-a-chip culture, have overcome the lack of crucial in vivo-like physiological aspects in 2D culture, the majority of in vitro ROS quantification studies are generally performed in 2D. Here we report the development, application, and validation of a multiplexed assay to quantify ROS and cell viability in organ-on-a-chip models. The assay utilizes three dyes to stain live cells for ROS, dead cells, and DNA. Confocal images were analyzed to quantify ROS probes and determine the number of nuclei and dead cells. We found that, in contrast to what has been reported with 2D cell culture, on-a-chip models are more prone to scavenge ROS rather than accumulate them. The assay is sensitive enough to distinguish between different phenotypes of endothelial cells (ECs) based on the level of OS to detect higher level in tumor than normal cells. Our results indicate that the use of physiologically relevant models and this assay could help unravelling the mechanisms behind OS and ROS accumulation. A further step could be taken in data analysis by implementing AI in the pipeline to also analyze images for morphological changes to have an even broader view of OS mechanism.
Collapse
Affiliation(s)
- Camilla Soragni
- MIMETAS BV, Leiden, the Netherlands; Department of Cardiology, Maastricht University, Maastricht, the Netherlands.
| | - Gwenaëlle Rabussier
- MIMETAS BV, Leiden, the Netherlands; Department of Cardiology, Maastricht University, Maastricht, the Netherlands
| | | | | | - Leon J de Windt
- Department of Cardiology, Maastricht University, Maastricht, the Netherlands
| | | | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK
| | | |
Collapse
|
30
|
Morresi C, Vasarri M, Bellachioma L, Ferretti G, Degl′Innocenti D, Bacchetti T. Glucose Uptake and Oxidative Stress in Caco-2 Cells: Health Benefits from Posidonia oceanica (L.) Delile. Mar Drugs 2022; 20:md20070457. [PMID: 35877750 PMCID: PMC9319946 DOI: 10.3390/md20070457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
Posidonia oceanica (L.) Delile is an endemic Mediterranean marine plant of extreme ecological importance. Previous in vitro and in vivo studies have demonstrated the potential antidiabetic properties of P. oceanica leaf extract. Intestinal glucose transporters play a key role in glucose homeostasis and represent novel targets for the management of diabetes. In this study, the ability of a hydroalcoholic P. oceanica leaf extract (POE) to modulate intestinal glucose transporters was investigated using Caco-2 cells as a model of an intestinal barrier. The incubation of cells with POE significantly decreased glucose uptake by decreasing the GLUT2 glucose transporter levels. Moreover, POE had a positive effect on the barrier integrity by increasing the Zonulin-1 levels. A protective effect exerted by POE against oxidative stress induced by chronic exposure to high glucose concentrations or tert-butyl hydroperoxide was also demonstrated. This study highlights for the first time the effect of POE on glucose transport, intestinal barrier integrity, and its protective antioxidant effect in Caco-2 cells. These findings suggest that the P. oceanica phytocomplex may have a positive impact by preventing the intestinal cell dysfunction involved in the development of inflammation-related disease associated with oxidative stress.
Collapse
Affiliation(s)
- Camilla Morresi
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Luisa Bellachioma
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| | - Gianna Ferretti
- Department of Clinical Experimental Science and Odontostomatology-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (C.M.); (G.F.)
| | - Donatella Degl′Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
- Correspondence:
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences-Biochemistry, Università Politecnica delle Marche, 60100 Ancona, Italy; (L.B.); (T.B.)
| |
Collapse
|
31
|
Ryu BI, Kim KT. Antioxidant activity and protective effect of methyl gallate against t-BHP induced oxidative stress through inhibiting ROS production. Food Sci Biotechnol 2022; 31:1063-1072. [DOI: 10.1007/s10068-022-01120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022] Open
|
32
|
Phyllostachys nigra Variety Henosis, a Domestic Bamboo Species, Protects PC12 Cells from Oxidative Stress-mediated Cell Injury through Nrf2 Activation. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Ng KS, Tan SA, Bok CY, Loh KE, Ismail IS, Yue CS, Loke CF. Metabolomic Approach for Rapid Identification of Antioxidants in Clinacanthus nutans Leaves with Liver Protective Potential. Molecules 2022; 27:molecules27123650. [PMID: 35744776 PMCID: PMC9230150 DOI: 10.3390/molecules27123650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023] Open
Abstract
Antioxidants are currently utilized to prevent the occurrence of liver cancer in non-alcoholic fatty liver disease (NAFLD) patients. Clinacanthus nutans possesses anti-oxidative and anti-inflammatory properties that could be an ideal therapy for liver problems. The objective of this study is to determine the potential antioxidative compounds from the C. nutans leaves (CNL) and stems (CNS). Chemical- and cell-based antioxidative assays were utilized to evaluate the bioactivities of CNS and CNL. The NMR metabolomics approach assisted in the identification of contributing phytocompounds. Based on DPPH and ABTS radical scavenging activities, CNL demonstrated stronger radical scavenging potential as compared to CNS. The leaf extract also recorded slightly higher reducing power properties. A HepG2 cell model system was used to investigate the ROS reduction potential of these extracts. It was shown that cells treated with CNL and CNS reduced innate ROS levels as compared to untreated controls. Interestingly, cells pre-treated with both extracts were also able to decrease ROS levels in cells induced with oxidative stress. CNL was again the better antioxidant. According to multivariate data analysis of the 1H NMR results, the main metabolites postulated to contribute to the antioxidant and hepatoprotective abilities of leaves were clinacoside B, clinacoside C and isoschaftoside, which warrants further investigation.
Collapse
Affiliation(s)
- Kai Song Ng
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Sheri-Ann Tan
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Yin Bok
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Khye Er Loh
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Intan Safinar Ismail
- Natural Medicine and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Chen Son Yue
- Department of Physical Science, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| | - Chui Fung Loke
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Setapak, Kuala Lumpur 53300, Malaysia
| |
Collapse
|
34
|
Ding X, Cai C, Jia R, Bai S, Zeng Q, Mao X, Xu S, Zhang K, Wang J. Dietary resveratrol improved production performance, egg quality, and intestinal health of laying hens under oxidative stress. Poult Sci 2022; 101:101886. [PMID: 35526444 PMCID: PMC9092510 DOI: 10.1016/j.psj.2022.101886] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
Resveratrol (RV) is associated with protection against oxidative stress to improve health, however the effect of RV in layers under oxidative stress (OS) is limited. The objective of this experiment was to investigate the negative effect of OS and protective effects of RV against OS in laying hens. 40 Lohmann layers (25-wk-old; BW = 1.44±0.10 kg) were allocated to four treatments in a 2 × 2 factorial arrangement with either RV (0 or 600 mg/kg) or intraperitoneal injection of tert-butyl hydroperoxide (tBHP) (0 or 800 μmol/kg BW) for 31 days. The results shown that the hens challenged with tBHP presented lower egg-laying rate, feed intake, feed efficiency and higher defective egg rate (P(tBHP)<0.05). The RV were also observed to attenuated egg laying rate and feed intake reduction together with decreased broken egg rate under t-BHP challenge (P(Interaction)≤0.01). The tBHP challenged layer demonstrated lower intestinal morphology (villus height in duodenum and jejunum), lower antioxidant enzymes activities [total superoxidase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC)], and glutathione (GSH) levels and higher malondialdehyde (MDA) level] (P(tBHP)<0.05). Dietary RV increased jejunal SOD, GSH-Px and T-AOC activities, and reduced MDA concentration (P(RV) ≤0.05). Layers under tBHP challenge up-regulated mRNA expression of pro-inflammatory cytokine [interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)] and nuclear factor NF-κB (P(tBHP)<0.05) in jejunum. Dietary RV supplementation down-regulated mRNA gene expression of IL-1β, IL-6, TNF-α and NF-κB (P(RV) ≤0.05). Dietary RV up-regulated mRNA expression of jejunal barrier-related proteins (claudin-1, claudin-2, mucin-1, and occludin) and ovarian reproductive hormone receptor [steroidogenic acute regulatory protein (StAR), androgen receptor (AR), estrogen receptor 1 (ESR1), and activin a receptor type 1 (ACVR1)] (P(RV) ≤0.05). Overall, the results indicate that tBHP induced oxidative stress to result in reducing production performance, intestinal health and induced ovarian inflammation; whereas dietary RV was able to maintain intestinal health and mitigate the negative impact of tBHP challenge on production performance and ovarian function.
Collapse
Affiliation(s)
- Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunyan Cai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ru Jia
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
35
|
Liquid Crystal Nanoparticle Conjugates for Scavenging Reactive Oxygen Species in Live Cells. Pharmaceuticals (Basel) 2022; 15:ph15050604. [PMID: 35631430 PMCID: PMC9146318 DOI: 10.3390/ph15050604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
The elevated intracellular production of or extracellular exposure to reactive oxygen species (ROS) causes oxidative stress to cells, resulting in deleterious irreversible biomolecular reactions (e.g., lipid peroxidation) and disease progression. The use of low-molecular weight antioxidants, such as 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), as ROS scavengers fails to achieve the desired efficacy because of their poor or uncontrolled cellular uptake and off-target effects, such as dysfunction of essential redox homeostasis. In this study, we fabricated a liquid crystal nanoparticle (LCNP) conjugate system with the fluorescent dye perylene (PY) loaded in the interior and poly (ethylene glycol) (PEG) decorated on the surface along with multiple molecules of TEMPO (PY-LCNP-PEG/TEMPO). PY-LCNP-PEG/TEMPO exhibit enhanced cellular uptake, and efficient ROS-scavenging activity in live cells. On average, the 120 nm diameter PY-LCNPs were conjugated with >1800 molecules of TEMPO moieties on their surface. PY-LCNP-PEG/TEMPO showed significantly greater reduction in ROS activity and lipid peroxidation compared to free TEMPO when the cells were challenged with ROS generating agents, such as hydrogen peroxide (H2O2). We suggest that this is due to the increased local concentration of TEMPO molecules on the surface of the PY-LCNP-PEG/TEMPO NPs, which efficiently bind to the plasma membrane and enter cells. Overall, these results demonstrate the enhanced capability of TEMPO-conjugated LCNPs to protect live cells from oxidative stress by effectively scavenging ROS and reducing lipid peroxidation.
Collapse
|
36
|
Shrestha S, Choi JS, Zhang W, Smid SD. Neuroprotective activity of macroalgal fucofuroeckols against amyloid β peptide‐induced cell death and oxidative stress. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Srijan Shrestha
- Discipline of Pharmacology School of Biomedicine Faculty of Health Sciences The University of Adelaide Adelaide 5005 SA Australia
| | - Jae Sue Choi
- Institute of Fisheries Sciences Pukyong National University Busan 46041 Korea
| | - Wei Zhang
- Centre for Marine Bioproducts Development (CMBD) College of Medicine and Public Health Flinders University 5001 Adelaide SA Australia
- Department of Medical Biotechnology College of Medicine and Public Health Flinders University 5001 Adelaide SA Australia
| | - Scott D. Smid
- Discipline of Pharmacology School of Biomedicine Faculty of Health Sciences The University of Adelaide Adelaide 5005 SA Australia
| |
Collapse
|
37
|
Effect of glycated HDL on oxidative stress and cholesterol homeostasis in a human bladder cancer cell line, J82. Exp Mol Pathol 2022; 126:104777. [DOI: 10.1016/j.yexmp.2022.104777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
|
38
|
Surmacki JM, Quiros-Gonzalez I, Bohndiek SE. Evaluation of Label-Free Confocal Raman Microspectroscopy for Monitoring Oxidative Stress In Vitro in Live Human Cancer Cells. Antioxidants (Basel) 2022; 11:573. [PMID: 35326223 PMCID: PMC8945565 DOI: 10.3390/antiox11030573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the impact of free radicals and antioxidants in cell biology is vital; however, noninvasive nonperturbative imaging of oxidative stress remains a challenge. Here, we evaluated the ability of label-free Raman spectroscopy to monitor redox biochemical changes in antioxidant (N-acetyl-l-cysteine, NAC) and pro-oxidant (tert-butyl hydroperoxide, TBHP) environments. Cellular changes were compared to fluorescence microscopy using CellROX Orange as a marker of oxidative stress. We also investigated the influence of cell media with and without serum. Incubation of cells with NAC increased the Raman signal at 498 cm-1 from S-S disulphide stretching mode, one of the most important redox-related sensors. Exposure of cells to TBHP resulted in decreased Raman spectral signals from DNA/proteins and lipids (at 784, 1094, 1003, 1606, 1658 and 718, 1264, 1301, 1440, 1746 cm-1). Using partial least squares-discriminant analysis, we showed that Raman spectroscopy can achieve sensitivity up to 96.7%, 94.8% and 91.6% for control, NAC and TBHP conditions, respectively, with specificity of up to 93.5, 90.1% and 87.9%. Our results indicate that Raman spectroscopy can directly measure the effect of NAC antioxidants and accurately characterize the intracellular conditions associated with TBHP-induced oxidative stress, including lipid peroxidation and DNA damage.
Collapse
Affiliation(s)
- Jakub Maciej Surmacki
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Isabel Quiros-Gonzalez
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
- Animal Histopathology Core at IUOPA, University of Oviedo, 33006 Oviedo, Spain
- Redox Biology and Metabolism in Cancer, Instituto de Investigación Biosanitaria ISPA, 33006 Oviedo, Spain
| | - Sarah Elizabeth Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
39
|
Enhancing Antioxidant Activities and Anti-Aging Effect of Rice Stem Cell Extracts by Plasma Treatment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant-derived substances exhibit antioxidant and antibacterial activities and have been proven to have beneficial effects in wound healing and skin regeneration. Plant stem cells have recently received much attention as research materials in cosmetic development because they promote regeneration after damage. In this paper, we demonstrate for the first time that the plasma treatment of stem cells obtained from rice-seed embryos can be effective in enhancing antioxidant activity and in regenerating human skin. We investigated this potential utilizing micro-DBD (Dielectric Barrier Discharge) plasma as a pretreatment technique to enhance the vitality and functional activity of rice stem cells. The results of the cell culture experiments show that plasma-treated rice stem cell extracts (RSCE) have promising antioxidant and anti-skin aging activities. The results of quantitative real-time PCR (qRT-PCR) for major antioxidant enzymes and anti-aging genes confirm that the plasma technique used in the pretreatment of RSCE was able to enhance cell activities in skin regeneration, including cell survival, proliferation, and collagen enhancement for Human Fibroblast (HFB) degraded by oxidative stress. These results show that the relatively low energy of less than 300 W and an amount of NOx-based reactive nitrogen species (RNS) from plasma discharge of about 3 μL/L were the key factors and that RSCE, of which the antioxidant activity was enhanced by plasma treatment, appeared to be a major contributor to the protective effect of HFB against oxidative stress. Plasma-treated RSCE induced excellent anti-aging properties by stimulating HFB to promote collagen synthesis, thereby promoting skin regeneration. These properties can protect the skin from various oxidative stresses. This study demonstrates that plasma-treated extracts of stem cells derived from rice-seed embryos have an excellent regenerative effect on aging-treated HFB. Our results demonstrate the potential utility of plasma-treated RSCE as a skin anti-aging agent in cosmeceutical formulations for the first time.
Collapse
|
40
|
Pinto-Ribeiro L, Silva C, Andrade N, Martel F. α-tocopherol prevents oxidative stress-induced proliferative dysfunction in first-trimester human placental (HTR-8/SVneo) cells. Reprod Biol 2022; 22:100602. [PMID: 35016050 DOI: 10.1016/j.repbio.2022.100602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Extravillous trophoblasts (EVTs) are the main participants in the process of placentation, an early process critical for placental growth and function involving an adequate invasion and complete remodelling of the maternal spiral arteries during early pregnancy. An increase in oxidative stress during pregnancy is associated with the onset and progression of several pregnancy disorders, including preeclampsia and gestational diabetes mellitus and it also occurs due to exposure of pregnant women to some xenobiotics (eg. alcohol). This study aimed to investigate how oxidative stress affects EVTs, and the ability of several distinct antioxidant agents to prevent these changes. For this, we exposed HTR8/SVneo cells to tert-butylhydroperoxide (0.5 μM; 24 h), which was able to increase lipid peroxidation and protein carbonyl levels. Under these conditions, there was a decrease in proliferation rates, culture growth, migratory and angiogenic capacities and an increase in the apoptosis rates. The antiproliferative effect of TBH was supressed by simultaneous treatment of the cells with α-tocopherol, but other antioxidants (vitamin C, allopurinol, apocynin, N-acetylcysteine, quercetin and resveratrol) were ineffective. α-tocopherol was also able to abolish the effect of TBH on lipid peroxidation and protein carbonyl levels. Overall, our results show that oxidative stress interferes with EVT characteristics essential for the placentation process, which may contribute to the association between oxidative stress and pregnancy disorders. Our results also show that the nature of the in vitro model of oxidative stress-induction is an important determinant of the cellular consequences of oxidative stress and, therefore, of the efficacy of antioxidants.
Collapse
Affiliation(s)
- Lígia Pinto-Ribeiro
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Cláudia Silva
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Nelson Andrade
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.
| |
Collapse
|
41
|
Hajdu T, Szabó K, Jakab Á, Pócsi I, Dombrádi V, Nagy P. Biophysical experiments reveal a protective role of protein phosphatase Z1 against oxidative damage of the cell membrane in Candida albicans. Free Radic Biol Med 2021; 176:222-227. [PMID: 34582996 DOI: 10.1016/j.freeradbiomed.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Protein phosphatase Z1 (Ppz1) has been shown to take part in important physiological functions in fungi including a contribution to virulence of Candida albicans. Although its involvement in the oxidative stress response has also been documented, the exact mechanism of action of its protective effect against oxidative damage remains unknown. By developing a pipeline to analyze the biophysical properties of the cell membrane in fungi, we demonstrate that the plasma membrane of Ppz1-KO Candida albicans displays increased sensitivity to tert-butyl-hydroperoxide-induced oxidative damage. In particular, the response to the oxidizing agent, characterized by increased lipid peroxidation, reduced lipid order, and inhibited lateral mobility of plasma membrane components, is significantly more pronounced in the Ppz1-KO C. albicans strain than in the wild-type counterpart. Remarkably, membrane constituents became almost completely immobile in the phosphatase deletion mutant exposed to oxidative stress. Furthermore, moderately elevated membrane lipid peroxidation accompanied by the aforementioned changes in the biophysical characteristics of the plasma membrane are already detectable in untreated Ppz1-KO cells indicating latent membrane damage even in the absence of oxidative stress. In conclusion, the hypersensitivity of cells lacking Ppz1 to oxidative damage establishes that potential Ppz1 inhibitors may synergize with oxidizing agents in prospective anti-fungal combination therapies.
Collapse
Affiliation(s)
- Tímea Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Szabó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
42
|
Yudhani RD, Nugrahaningsih DAA, Sholikhah EN, Mustofa M. The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND: Insulin resistance (IR) is known as the root cause of type 2 diabetes; hence, it is a substantial therapeutic target. Nowadays, studies have shifted the focus to natural ingredients that have been utilized as a traditional diabetes treatment, including Swietenia macrophylla. Accumulating evidence supports the hypoglycemic activities of S. macrophylla seeds extract, although its molecular mechanisms have yet to be well-established.
AIM: This review focuses on the hypoglycemic molecular mechanisms of S. macrophylla seeds extract and its safety profiles.
METHODS: An extensive search of the latest literature was conducted from four main databases (PubMed, Scopus, Science Direct, and Google Scholar) using several keywords: “swietenia macrophylla, seeds, and diabetes;” “swietenia macrophylla, seeds, and oxidative stress;” “swietenia macrophylla, seeds, and inflammation;” “swietenia macrophylla, seeds, and GLUT4;” and “swietenia macrophylla, seeds, and toxicities.”
RESULTS: The hypoglycemic activities occur through modulating several pathways associated with IR and T2D pathogenesis. The seeds extract of S. macrophylla modulates oxidative stress by decreasing malondialdehyde (MDA), oxidized low-density lipoprotein, and thiobarbituric acid-reactive substances while increasing antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Another propose mechanism is the modulating of the inflammatory pathway by attenuating nuclear factor kappa β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2. Some studies have shown that the extract can also control phosphatidylinositol-3-kinase/ Akt (PI3K/Akt) pathway by inducing glucose transporter 4, while suppressing phosphoenolpyruvate carboxykinase. Moreover, in vitro cytotoxicity and in vivo toxicity studies supported the safety profile of S. macrophylla seeds extract with the LD50 higher than 2000 mg/kg.
CONCLUSION: The potential of S. macrophylla seeds as antidiabetic candidate is supported by many studies that have documented their non-toxic and hypoglycemic effects, which involve several molecular pathways.
Collapse
|
43
|
Behl T, Kumar S, Sehgal A, Singh S, Kumari S, Brisc MC, Munteanu MA, Brisc C, Buhas CL, Judea-Pusta C, Buhas CL, Judea-Pusta C, Nistor-Cseppento DC, Bungau S. Rice bran, an off-shoot to newer therapeutics in neurological disorders. Biomed Pharmacother 2021; 140:111796. [PMID: 34098194 DOI: 10.1016/j.biopha.2021.111796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Normal brain functioning involves the interaction of interconnected molecular and cellular activities, which appear to alter normal to abnormal brain functioning when worsened, contributing to the emergence of neurological disorders. There are currently millions of people who are living with brain disorders globally and this will rise if suitable prevention strategies are not explored. Nutraceutical intended to treat numerous health goals with little adverse effect possible together can be more beneficial than pharmaceutical monotherapy for fostering balanced brain functioning. Nutraceutical provides a specific composition of effective macronutrients and micronutrients that are difficult to synthesize in the laboratory. Numerous elements of rice fibers in rice bran are characterized as natural anti-oxidant and having potential anti-inflammatory activity. The rice bran captures interest among the researchers as it is widespread, affordable, and rich in nutrients including protein, fat, carbohydrates, bioactive components, and dietary fiber. This review covers the neuroprotective multiplicity of rice bran and its constituents to deter pathological conditions of the brain and to facilitate balanced brain functioning at the same time.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sachin Kumar
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Shilpa Kumari
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Camelia Liana Buhas
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Claudia Judea-Pusta
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Camelia Liana Buhas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Claudia Judea-Pusta
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Romania
| |
Collapse
|
44
|
Cho BO, Kim JH, Che DN, Kang HJ, Shin JY, Hao S, Park JH, Wang F, Lee YJ, Jang SI. Kushenol C Prevents Tert-Butyl Hydroperoxide and Acetaminophen-Induced Liver Injury. Molecules 2021; 26:molecules26061635. [PMID: 33804228 PMCID: PMC8001553 DOI: 10.3390/molecules26061635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Sophora flavescens, also known as Kushen, has traditionally been used as a herbal medicine. In the present study we evaluated the ameliorative effects of kushenol C (KC) from S. flavescens against tBHP (tert-Butyl hydroperoxide)-induced oxidative stress in hepatocellular carcinoma (HEPG2) cells and acetaminophen (APAP)-induced hepatotoxicity in mice. KC pretreatment protected the HEPG2 cells against oxidative stress by reducing cell death, apoptosis and reactive oxygen species (ROS) generation. KC pretreatment also upregulated pro-caspase 3 and GSH (glutathione) as well as expression of 8-Oxoguanine DNA Glycosylase (OGG1) in the HEPG2 cells. The mechanism of action was partly related by KC's activation of Akt (Protein kinase B (PKB)) and Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) in the HepG2 cells. In in vivo investigations, coadministration of mice with KC and APAP significantly attenuated APAP-induced hepatotoxicity and liver damage, as the serum enzymatic activity of aspartate aminotransferase and alanine aminotransferase, as well as liver lipid peroxidation and cleaved caspase 3 expression, were reduced in APAP-treated mice. Coadministration with KC also up-regulated antioxidant enzyme expression and prevented the production of proinflammatory mediators in APAP-treated mice. Taken together, these results showed that KC treatment has potential as a therapeutic agent against liver injury through the suppression of oxidative stress.
Collapse
Affiliation(s)
- Byoung Ok Cho
- Research Institute, Ato Q&A Co., LTD, Jeonju-si 55069, Korea; (H.J.K.); (J.Y.S.)
- Institute of Health Science, Jeonju University, Jeonju-si 55069, Korea;
- Correspondence: (B.O.C.); (S.I.J.); Tel.: +82-63-221-8005 (B.O.C.); +82-63-220-3124 (S.I.J.); Fax: +82-63-221-8035 (B.O.C.); +82-63-220-2054 (S.I.J.)
| | - Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung 27709, Korea; (J.H.K.); (Y.J.L.)
| | - Denis Nchang Che
- Institute of Health Science, Jeonju University, Jeonju-si 55069, Korea;
| | - Hyun Ju Kang
- Research Institute, Ato Q&A Co., LTD, Jeonju-si 55069, Korea; (H.J.K.); (J.Y.S.)
| | - Jae Young Shin
- Research Institute, Ato Q&A Co., LTD, Jeonju-si 55069, Korea; (H.J.K.); (J.Y.S.)
| | - Suping Hao
- Department of Health Management, Jeonju University, Jeonju-si 55069, Korea; (S.H.); (J.H.P.); (F.W.)
| | - Ji Hyeon Park
- Department of Health Management, Jeonju University, Jeonju-si 55069, Korea; (S.H.); (J.H.P.); (F.W.)
| | - Feng Wang
- Department of Health Management, Jeonju University, Jeonju-si 55069, Korea; (S.H.); (J.H.P.); (F.W.)
| | - Yun Ji Lee
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Eumsung 27709, Korea; (J.H.K.); (Y.J.L.)
| | - Seon Il Jang
- Research Institute, Ato Q&A Co., LTD, Jeonju-si 55069, Korea; (H.J.K.); (J.Y.S.)
- Department of Health Management, Jeonju University, Jeonju-si 55069, Korea; (S.H.); (J.H.P.); (F.W.)
- Correspondence: (B.O.C.); (S.I.J.); Tel.: +82-63-221-8005 (B.O.C.); +82-63-220-3124 (S.I.J.); Fax: +82-63-221-8035 (B.O.C.); +82-63-220-2054 (S.I.J.)
| |
Collapse
|
45
|
Yang M, Sun J, Stowe DF, Tajkhorshid E, Kwok WM, Camara AKS. Knockout of VDAC1 in H9c2 Cells Promotes Oxidative Stress-Induced Cell Apoptosis through Decreased Mitochondrial Hexokinase II Binding and Enhanced Glycolytic Stress. Cell Physiol Biochem 2021; 54:853-874. [PMID: 32901466 PMCID: PMC7898235 DOI: 10.33594/000000274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background/Aims: The role of VDAC1, the most abundant mitochondrial outer membrane protein, in cell death depends on cell types and stimuli. Both silencing and upregulation of VDAC1 in various type of cancer cell lines can stimulate apoptosis. In contrast, in mouse embryonic stem (MES) cells and mouse embryonic fibroblasts (MEFs), the roles of VDAC1 knockout (VDAC1−/−) in apoptotic cell death are contradictory. The contribution and underlying mechanism of VDAC1−/− in oxidative stress-induced cell death in cardiac cells has not been established. We hypothesized that VDAC1 is an essential regulator of oxidative stress-induced cell death in H9c2 cells. Methods: We knocked out VDAC1 in this rat cardiomyoblast cell line with CRISPR-Cas9 genome editing technique to produce VDAC1−/− H9c2 cells, and determined if VDAC1 is critical in promoting cell death via oxidative stress induced by tert-butylhydroper-oxide (tBHP), an organic peroxide, or rotenone (ROT), an inhibitor of mitochondrial complex I by measuring cell viability with MTT assay, cell death with TUNEL stain and LDH release. The mitochondrial and glycolytic stress were examined by measuring O2 consumption rate (OCR) and extracellular acidification rate (ECAR) with a Seahorse XFp analyzer. Results: We found that under control conditions, VDAC1−/− did not affect H9c2 cell proliferation or mitochondrial respiration. However, compared to the wildtype (WT) cells, exposure to either tBHP or ROT enhanced the production of ROS, ECAR, and the proton (H+) production rate (PPR) from glycolysis, as well as promoted apoptotic cell death in VDAC1−/− H9c2 cells. VDAC1−/− H9c2 cells also exhibited markedly reduced mitochondria-bound hexokinase II (HKII) and Bax. Restoration of VDAC1 in VDAC1−/− H9c2 cells reinstated mitochondria-bound HKII and concomitantly decreased tBHP and ROT-induced ROS production and cell death. Interestingly, mitochondrial respiration remained the same after tBHP treatment in VDAC1−/− and WT H9c2 cells. Conclusion: Our results suggest that VDAC1−/− in H9c2 cells enhances oxidative stress-mediated cell apoptosis that is directly linked to the reduction of mitochondria-bound HKII and concomitantly associated with enhanced ROS production, ECAR, and PPR.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Sun
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Clinical Medicine Research, Department of Gastroenterology and Hepatology, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA.,Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA, .,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
46
|
Salnikov DS, Makarov SV, Koifman OI. The radical versus ionic mechanisms of reduced cobalamin inactivation by tert-butyl hydroperoxide and hydrogen peroxide in aqueous solution. NEW J CHEM 2021. [DOI: 10.1039/d0nj04231e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It was demonstrated that antioxidants cannot protect reduced cobalamin against its modification by hydrogen peroxide.
Collapse
Affiliation(s)
| | | | - Oscar I. Koifman
- Ivanovo State University of Chemistry and Technology
- Ivanovo
- Russia
| |
Collapse
|
47
|
tert-Butyl Hydroperoxide (tBHP)-Induced Lipid Peroxidation and Embryonic Defects Resemble Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency in C. elegans. Int J Mol Sci 2020; 21:ijms21228688. [PMID: 33217954 PMCID: PMC7698637 DOI: 10.3390/ijms21228688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
G6PD is required for embryonic development in animals, as severe G6PD deficiency is lethal to mice, zebrafish and nematode. Lipid peroxidation is linked to membrane-associated embryonic defects in Caenorhabditis elegans (C. elegans). However, the direct link between lipid peroxidation and embryonic lethality has not been established. The aim of this study was to delineate the role of lipid peroxidation in gspd-1-knockdown (ortholog of g6pd) C. elegans during reproduction. tert-butyl hydroperoxide (tBHP) was used as an exogenous inducer. Short-term tBHP administration reduced brood size and enhanced germ cell death in C. elegans. The altered phenotypes caused by tBHP resembled GSPD-1 deficiency in C. elegans. Mechanistically, tBHP-induced malondialdehyde (MDA) production and stimulated calcium-independent phospholipase A2 (iPLA) activity, leading to disturbed oogenesis and embryogenesis. The current study provides strong evidence to support the notion that enhanced lipid peroxidation in G6PD deficiency promotes death of germ cells and impairs embryogenesis in C. elegans.
Collapse
|
48
|
Wedel S, Martic I, Hrapovic N, Fabre S, Madreiter-Sokolowski CT, Haller T, Pierer G, Ploner C, Jansen-Dürr P, Cavinato M. tBHP treatment as a model for cellular senescence and pollution-induced skin aging. Mech Ageing Dev 2020; 190:111318. [PMID: 32710895 DOI: 10.1016/j.mad.2020.111318] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022]
Abstract
Accumulation of senescent cells promotes the development of age-related pathologies and deterioration. In human skin, senescent cells potentially impair structure and function by secreting a mixture of signaling molecules and proteases that influence neighboring cells and degrade extracellular matrix components, such as elastin and collagen. One of the key underlying mechanisms of senescence and extrinsic skin aging is the increase of intracellular reactive oxygen species and resulting oxidative stress. Tert-butyl hydroperoxide (tBHP) is a known inducer of oxidative stress and cellular damage, acting at least in part by depleting the antioxidant glutathione. Here, we provide a detailed characterization of tBHP-induced senescence in human dermal fibroblasts in monolayer culture. In addition, results obtained with more physiological experimental models revealed that tBHP treated 3D reconstructed skin and ex vivo skin developed signs of chronic tissue damage, displaying reduced epidermal thickness and collagen fiber thinning. We, therefore, propose that tBHP treatment can be used as a model to study the effects of extrinsic skin aging, focusing mainly on the influence of environmental pollution.
Collapse
Affiliation(s)
- Sophia Wedel
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria.
| | - Ines Martic
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Nina Hrapovic
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Susanne Fabre
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | | | - Thomas Haller
- Department of Physiology and Medical Physics, Division of Physiology, Medical University of Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Austria
| | - Christian Ploner
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, University of Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| |
Collapse
|
49
|
Xing H, Fu R, Cheng C, Cai Y, Wang X, Deng D, Gong X, Chen J. Hyperoside Protected Against Oxidative Stress-Induced Liver Injury via the PHLPP2-AKT-GSK-3β Signaling Pathway In Vivo and In Vitro. Front Pharmacol 2020; 11:1065. [PMID: 32765271 PMCID: PMC7379337 DOI: 10.3389/fphar.2020.01065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hyperoside, isolated from Drosera rotundifolia L., seeds of Cuscuta chinensis Lam., or Hypericum perforatum L., originally showed to possess an antifungal and antibacterial activity, while recently showed the protective effects against oxidative stress-induced liver injury. This study investigated such a protective effect of hyperoside and the underlying molecular mechanisms in vitro and in carbon tetrachloride (CCl4)-injured rat livers. The data showed that hyperoside was able to prevent the oxidative stress-induced liver morphological changes and CCl4-induced rat liver injury. Hyperoside reversed the decrease of superoxidase dismutase (SOD) level and the increase of malondialdehyde (MDA) level in vivo. Moreover, hyperoside regulated the pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase 2 (PHLPP2)-protein kinase B (AKT)-glycogen synthase kinase 3β (GSK-3β) signaling pathway in tert-butylhydroquinone (t-BHP)-treated liver cells, e.g., Hyperoside reduced PHLPP2 expression to activate AKT phosphorylation, induce GSK-3β phosphorylation, and then increased nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation, reduced nuclear translocation of phosphorylated Fyn, and promoted heme oxygenase-1 (HO-1) expression in vivo and in vitro. In contrast, siRNA-mediated knockdown of PHLPP2 expression enhanced hyperoside-mediated activation of the AKT-GSK-3β kinase pathway in liver cells. In conclusion, the present study demonstrated that hyperoside could protect against oxidative stress-induced liver injury by regulating the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyi Cheng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianfeng Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongmei Deng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
50
|
Loch-Caruso R, Korte CS, Hogan KA, Liao S, Harris C. Tert-Butyl Hydroperoxide Stimulated Apoptosis Independent of Prostaglandin E 2 and IL-6 in the HTR-8/SVneo Human Placental Cell Line. Reprod Sci 2020; 27:2104-2114. [PMID: 32542535 DOI: 10.1007/s43032-020-00231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Significant gaps exist in our knowledge of how cellular redox status, sometimes referred to as oxidative stress, impacts placental trophoblasts. The present study used tert-butyl hydroperoxide (TBHP) as a known generator of reactive oxygen species (ROS) in the extravillous trophoblast cell line HTR-8/SVneo to examine the role of cellular redox disruption of prostaglandin E2 (PGE2) and the cytokine IL-6 in cell death. Cells were exposed to 0, 12.5, 25, or 50 μM TBHP for 4, 8, and 24 h to ascertain effects on cell viability, caspase 3/7 activity, PGE2 release, PTGS2 mRNA expression, and IL-6 release. Experiments with inhibitors included the cyclooxygenase inhibitor indomethacin, mitogen-activated protein kinase inhibitors (PD169316, U0126, or SP600125), or treatments to counter expected consequences of TBHP-stimulated generation of ROS (deferoxamine [DFO], butylated hydroxyanisole [BHA], and N,N'-diphenyl-1,4-phenylenediamine [DPPD]) using 24-h exposure to 50 μM TBHP. Cell viability, measured by ATP content, decreased 24% relative to controls with a 24-h exposure to 50 μM TBHP, but not at lower TBHP concentrations nor at earlier time points. Exposure to 50 μM TBHP increased caspase 3/7 activity, an indicator of apoptosis, after 8 and 24 h. Antioxidant treatment markedly reduced TBHP-stimulated caspase 3/7 activity, PGE2 release, and IL-6 release. TBHP-stimulated IL-6 release was blocked by PD169316 but unaltered by indomethacin. These data suggest that TBHP-stimulated IL-6 release and caspase 3/7 activation were independent of PGE2 yet were interrupted by treatments with known antioxidant properties, providing new insight into relationships between PGE2, IL-6, and apoptosis under conditions of chemically induced cellular oxidation.
Collapse
Affiliation(s)
- Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.
| | - Cassandra S Korte
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,College of Arts and Sciences, Lynn University, Boca Raton, FL, 33431, USA
| | - Kelly A Hogan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,Mayo Clinic, Rochester, MN, 55905, USA
| | - Sarah Liao
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA.,Ardent Mills LCC, Denver, CO, 80202, USA
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|