1
|
Qu J, Wu L, Mou L, Liu C. Polystyrene microplastics trigger testosterone decline via GPX1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174536. [PMID: 38977086 DOI: 10.1016/j.scitotenv.2024.174536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
As an emerging environmental endocrine disruptor, polystyrene microplastics (PS-MPs) are considered to have the anti-androgenic feature and impair male reproductive function. To explore the adverse effects of PS-MPs on testosterone synthesis and male reproduction and further elucidate underlying mechanisms, BALB/c mice and Leydig cells were employed in the present work. The results indicated that 50 μm PS-MPs accumulated in mouse testes and were internalized into the cytoplasm. This not only damaged the testicular histomorphology and ultrastructure, but also reduced the viability of Leydig cells and the serum level of GnRH, FSH, LH, and testosterone. After PS-MPs exposure, the ubiquitination degradation and miR-425-3p-targeted modulation synergistically contributed to the suppression of GPX1, which induced oxidative stress and subsequently activated the PERK-EIF2α-ATF4-CHOP pathway of endoplasmic reticulum (ER) stress. The transcription factor CHOP positively regulated the expression of SRD5A2 by directly binding to its promoter region, thereby accelerating testosterone metabolism and ultimately lowing testosterone levels. Besides, PS-MPs compromised testosterone homeostasis via interfering with the hypothalamic-pituitary-testis (HPT) axis. Taken together, PS-MPs possess an anti-androgenic characteristic and exert male reproductive damage effects. The antioxidant enzyme GPX1 plays a crucial role in the PS-MPs-mediated testosterone decline.
Collapse
Affiliation(s)
- Jiayuan Qu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Liling Wu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Li Mou
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China
| | - Changjiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing 401120, PR China.
| |
Collapse
|
2
|
Kura B, Pavelkova P, Kalocayova B, Pobijakova M, Slezak J. MicroRNAs as Regulators of Radiation-Induced Oxidative Stress. Curr Issues Mol Biol 2024; 46:7097-7113. [PMID: 39057064 PMCID: PMC11276491 DOI: 10.3390/cimb46070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various pathological conditions, including oxidative stress. miRNAs may regulate the expression of transcription factors (e.g., nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor suppressor protein p53) and other redox-sensitive genes (e.g., mitogen-activated protein kinase (MAPKs), sirtuins (SIRTs)), which trigger and modulate cellular redox signaling. During irradiation, miRNAs mainly act with reactive oxygen species (ROS) to regulate the cell fate. Depending on the pathway involved and the extent of oxidative stress, this may lead to cell survival or cell death. In the context of radiation-induced oxidative stress, miRNA-21 and miRNA-34a are among the best-studied miRNAs. miRNA-21 has been shown to directly target superoxide dismutase (SOD), or NF-κB, whereas miRNA-34a is a direct regulator of NADPH oxidase (NOX), SIRT1, or p53. Understanding the mechanisms underlying radiation-induced injury including the involvement of redox-responsive miRNAs may help to develop novel approaches for modulating the cellular response to radiation exposure.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| | - Patricia Pavelkova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| | - Barbora Kalocayova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia
| | - Margita Pobijakova
- Department of Radiation Oncology, Bory Hospital–Penta Hospitals, 841 03 Bratislava, Slovakia;
- Radiological Science, Faculty of Nursing and Medical Professional Studies, Slovak Medical University, 831 01 Bratislava, Slovakia
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska Cesta 9, 841 04 Bratislava, Slovakia; (P.P.); (B.K.); (J.S.)
| |
Collapse
|
3
|
Lv B, He S, Li P, Jiang S, Li D, Lin J, Feinberg MW. MicroRNA-181 in cardiovascular disease: Emerging biomarkers and therapeutic targets. FASEB J 2024; 38:e23635. [PMID: 38690685 PMCID: PMC11068116 DOI: 10.1096/fj.202400306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. MicroRNAs (MiRNAs) have attracted considerable attention for their roles in several cardiovascular disease states, including both the physiological and pathological processes. In this review, we will briefly describe microRNA-181 (miR-181) transcription and regulation and summarize recent findings on the roles of miR-181 family members as biomarkers or therapeutic targets in different cardiovascular-related conditions, including atherosclerosis, myocardial infarction, hypertension, and heart failure. Lessons learned from these studies may provide new theoretical foundations for CVD.
Collapse
Affiliation(s)
- Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaolin He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peixin Li
- Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijiu Jiang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, The First Affiliated Hospital, Shihezi University, Shihezi, 832000, China
| | - Dazhu Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jibin Lin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Iannone F, Crocco P, Dato S, Passarino G, Rose G. Circulating miR-181a as a novel potential plasma biomarker for multimorbidity burden in the older population. BMC Geriatr 2022; 22:772. [PMID: 36175844 PMCID: PMC9520903 DOI: 10.1186/s12877-022-03451-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Chronic low-level inflammation is thought to play a role in many age-related diseases and to contribute to multimorbidity and to the disability related to this condition. In this framework, inflamma-miRs, an important subset of miRNA able to regulate inflammation molecules, appear to be key players. This study aimed to evaluate plasma levels of the inflamma-miR-181a in relation to age, parameters of health status (clinical, physical, and cognitive) and indices of multimorbidity in a cohort of 244 subjects aged 65- 97. Methods MiR-181a was isolated from plasma according to standardized procedures and its expression levels measured by qPCR. Correlation tests and multivariate regression analyses were applied on gender-stratified groups. Results MiR-181a levels resulted increased in old men, and significantly correlated with worsened blood parameters of inflammation (such as low levels of albumin and bilirubin and high lymphocyte content), particularly in females. Furthermore, we found miR-181a positively correlated with the overall multimorbidity burden, measured by CIRS Comorbidity Score, in both genders. Conclusions These data support a role of miR-181a in age-related chronic inflammation and in the development of multimorbidity in older adults and indicate that the routes by which this miRNA influence health status are likely to be gender specific. Based on our results, we suggest that miR-181a is a promising biomarker of health status of the older population. Levels of the inflamma-miR-181a correlate with multimorbidity burden in older people. MiR-181a levels correlate with blood inflammation markers in a gender-specific manner. MiR-181a is positively correlated with age in males but not in females. The paths by which miR-181a can influence health status likely differ between genders.
Collapse
Affiliation(s)
- Francesca Iannone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036, Rende, CS, Italy.
| |
Collapse
|
5
|
Li QH, Ge ZW, Xiang Y, Tian D, Tang Y, Zhang YC. Upregulation of microRNA-34a enhances myocardial ischemia-reperfusion injury via the mitochondrial apoptotic pathway. Free Radic Res 2022; 56:229-244. [PMID: 35703738 DOI: 10.1080/10715762.2021.1953004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mitochondrial oxidative injury can result in many cardiovascular diseases including cardiac ischemia-reperfusion (I/R) injury. This study was designed to investigate whether microRNA-34a (miR-34a) influences cardiac I/R or hypoxia/reoxygenation (H/R) injury by regulating the mitochondrial apoptotic pathway from oxidative injury.In vivo, myocardial infarction size was examined by Evan blue/TTC staining. Apoptosis was assessed by TUNEL assay. Heart function was measured by echocardiography. Lactate dehydrogenase (LDH) and creatine kinase (CK) were evaluated. In vitro, H9c2 cardiomyocytes were exposed to H/R stimulation. Cell viability was assessed by the CCK-8 assay and apoptosis was detected by Annexin V/PI staining. Mitochondrial superoxide, mitochondrial membrane potential (MMP) and ATP production was evaluated by detection kits, and related proteins were detected by western blotting analysis. We observed that the level of miR-34a was significantly upregulated in I/R rats compared to the sham group. Injection of adenovirus inhibiting miR-34a into the left ventricular anterior wall improved heart function and decreased I/R injury. H9c2 cardiomyocytes exposed to H/R stimulation displayed an obvious increase in miR-34a expression. In addition, miR-34a inhibitor alleviated, whereas miR-34a mimic aggravated H/R-induced mitochondrial injury. Bcl-2 was identified as a target gene of miR-34a by dual-luciferase reporter gene detection. Knockdown of Bcl-2 abolished the cardioprotection of the miR-34a inhibitor in H9c2 cells. In summary,our study demonstrates that inhibition of miR-34a exhibits therapeutic potential in treatment of myocardial I/R injury by restraining mitochondrial apoptosis.
Collapse
Affiliation(s)
- Qian-Hui Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhuo-Wang Ge
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ding Tian
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ya-Chen Zhang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
De Novo Development of Mitochondria-Targeted Molecular Probes Targeting Pink1. Int J Mol Sci 2022; 23:ijms23116076. [PMID: 35682755 PMCID: PMC9181014 DOI: 10.3390/ijms23116076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria play central roles in maintaining cellular metabolic homeostasis, cell survival and cell death, and generate most of the cell’s energy. Mitochondria maintain their homeostasis by dynamic (fission and fusion) and quality control mechanisms, including mitophagy, the removal of damaged mitochondria that is mediated mainly by the Pink1/Parkin pathway. Pink1 is a serine/threonine kinase which regulates mitochondrial function, hitherto many molecular mechanisms underlying Pink1 activity in mitochondrial homeostasis and cell fate remain unknown. Peptides are vital biological mediators that demonstrate remarkable potency, selectivity, and low toxicity, yet they have two major limitations, low oral bioavailability and poor stability. Herein, we rationally designed a linear peptide that targets Pink1 and, using straightforward chemistry, we developed molecular probes with drug-like properties to further characterize Pink1. Initially, we conjugated a cell-penetrating peptide and a cross-linker to map Pink1’s 3D structure and its interaction sites. Next, we conjugated a fluorescent dye for cell-imaging. Finally, we developed cyclic peptides with improved stability and binding affinity. Overall, we present a facile approach to converting a non-permeable linear peptide into a research tool possessing important properties for therapeutics. This is a general approach using straightforward chemistry that can be tailored for various applications by numerous laboratories.
Collapse
|
7
|
Ginckels P, Holvoet P. Oxidative Stress and Inflammation in Cardiovascular Diseases and Cancer: Role of Non-coding RNAs. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:129-152. [PMID: 35370493 PMCID: PMC8961704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
High oxidative stress, Th1/Th17 immune response, M1 macrophage inflammation, and cell death are associated with cardiovascular diseases. Controlled oxidative stress, Th2/Treg anti-tumor immune response, M2 macrophage inflammation, and survival are associated with cancer. MiR-21 protects against cardiovascular diseases but may induce tumor growth by retaining the anti-inflammatory M2 macrophage and Treg phenotypes and inhibiting apoptosis. Down-regulation of let-7, miR-1, miR-9, miR-16, miR-20a, miR-22a, miR-23a, miR-24a, miR-26a, miR-29, miR-30a, miR-34a, miR-124, miR-128, miR-130a, miR-133, miR-140, miR-143-145, miR-150, miR-153, miR-181a, miR-378, and miR-383 may aid cancer cells to escape from stresses. Upregulation of miR-146 and miR-223 may reduce anti-tumor immune response together with miR-21 that also protects against apoptosis. MiR-155 and silencing of let-7e, miR-125, and miR-126 increase anti-tumor immune response. MiR expression depends on oxidative stress, cytokines, MYC, and TGF-β, and expression of silencing lncRNAs and circ-RNAs. However, one lncRNA or circ-RNA may have opposite effects by targeting several miRs. For example, PVT1 induces apoptosis by targeting miR-16a and miR-30a but inhibits apoptosis by silencing miR-17. In addition, levels of a non-coding RNA in a cell type depend not only on expression in that cell type but also on an exchange of microvesicles between cell types and tumors. Although we got more insight into the function of a growing number of individual non-coding RNAs, overall, we do not know enough how several of them interact in functional networks and how their expression changes at different stages of disease progression.
Collapse
Affiliation(s)
- Pieterjan Ginckels
- Department of Architecture, Brussels and Gent, KU Leuven, Leuven, Belgium
| | - Paul Holvoet
- Experimental Cardiology, KU Leuven, Leuven, Belgium,To whom all correspondence should be addressed: Paul Holvoet, Experimental
Cardiology, KU Leuven, Belgium; ; ORCID iD:
https://orcid.org/0000-0001-9201-0772
| |
Collapse
|
8
|
Ferraz RS, Santos LCB, da-Silva-Cruz RL, Braga-da-Silva CH, Magalhães L, Ribeiro-dos-Santos A, Vidal A, Vinasco-Sandoval T, Reis-das-Mercês L, Sena-dos-Santos C, Pereira AL, Silva LSD, de Melo FTC, de Souza ACCB, Leal VSG, de Figueiredo PBB, Neto JFA, de Moraes LV, de Lemos GN, de Queiroz NNM, Felício KM, Cavalcante GC, Ribeiro-dos-Santos Â, Felício JS. Global miRNA expression reveals novel nuclear and mitochondrial interactions in Type 1 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1033809. [PMID: 36506063 PMCID: PMC9731375 DOI: 10.3389/fendo.2022.1033809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Considering the potential role of miRNAs as biomarkers and their interaction with both nuclear and mitochondrial genes, we investigated the miRNA expression profile in type 1 diabetes (T1DM) patients, including the pathways in which they are involved considering both nuclear and mitochondrial functions. METHODS We analyzed samples of T1DM patients and control individuals (normal glucose tolerance) by high throughput miRNA sequencing (miRNome). Next, five miRNAs - hsa-miR-26b-5p, hsa-let-7i-5p, hsa-miR-143-3p, hsa-miR-501-3p and hsa-miR-100-5p - were validated by RT-qPCR. The identification of target genes was extracted from miRTarBase and mitoXplorer database. We also performed receiver operating characteristic (ROC) curves and miRNAs that had an AUC > 0.85 were considered potential biomarkers. RESULTS Overall, 41 miRNAs were differentially expressed in T1DM patients compared to control. Hsa-miR-21-5p had the highest number of predicted target genes and was associated with several pathways, including insulin signaling and apoptosis. 34.1% (14/41) of the differentially expressed miRNAs also targeted mitochondrial genes, and 80.5% (33/41) of them targeted nuclear genes involved in the mitochondrial metabolism. All five validated miRNAs were upregulated in T1DM. Among them, hsa-miR-26b-5p showed AUC>0.85, being suggested as potential biomarker to T1DM. CONCLUSION Our results demonstrated 41 DE miRNAs that had a great accuracy in discriminating T1DM and control group. Furthermore, we demonstrate the influence of these miRNAs on numerous metabolic pathways, including mitochondrial metabolism. Hsa-miR-26b-5p and hsa-miR-21-5p were highlighted in our results, possibly acting on nuclear and mitochondrial dysfunction and, subsequently, T1DM dysregulation.
Collapse
Affiliation(s)
- Rafaella Sousa Ferraz
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Lucas Cauê Bezerra Santos
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Rebecca Lais da-Silva-Cruz
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Cintia Helena Braga-da-Silva
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Arthur Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Amanda Vidal
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
- Instituto Tecnológico Vale Desenvolvimento Sustentável Vale, Institute of Technology, Belem, PA, Brazil
| | - Tatiana Vinasco-Sandoval
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, Evry, France
| | - Laís Reis-das-Mercês
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Camille Sena-dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | | | | | - Franciane T. Cunha de Melo
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | - Ana Carolina C. Braga de Souza
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | - Valéria S. Galvão Leal
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | | | - João F. Abrahão Neto
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | - Lorena Vilhena de Moraes
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | - Gabriela Nascimento de Lemos
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | | | - Karem Miléo Felício
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | - Giovanna C. Cavalcante
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Para, Belem, PA, Brazil
- Oncology Research Center, Graduate Program in Oncology and Medical Sciences, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
| | - João Soares Felício
- Endocrinology Research Center, Joao de Barros Barreto University Hospital, Federal University of Para, Belem, PA, Brazil
- *Correspondence: João Soares Felício,
| |
Collapse
|
9
|
Sayed-Pathan NI, Kumar P, Paknikar KM, Gajbhiye V. MicroRNAs: A Neoteric Approach to Understand Pathogenesis, Diagnose, and Treat Myocardial Infarction. J Cardiovasc Pharmacol 2021; 78:773-781. [PMID: 34882110 DOI: 10.1097/fjc.0000000000001141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myocardial infarction is a substantial contributor to ischemic heart diseases, affecting a large number of people leading to fatal conditions worldwide. MicroRNAs (miRNAs) are explicitly emerging as excellent modulators of pathways involved in maintaining cardiomyocyte survival, repair, and regeneration. Altered expression of genes in cardiomyocytes postinfarction can lead to the disordered state of the myocardium, such as cardiac hypertrophy, ischemia-reperfusion injury, left ventricular remodeling, and cardiac fibrosis. Therapeutic targeting of miRNAs in cardiomyocytes can potentially reverse the adverse effects in the heart postinfarction. This review aims to understand the role of several miRNAs involved in the regeneration and repair of cardiomyocytes postmyocardial infarction and presents comprehensive information on the subject.
Collapse
Affiliation(s)
- Nida Irfan Sayed-Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, India; and
- Savitribai Phule Pune University, Ganeshkhind, Pune, India
| |
Collapse
|
10
|
OncomiR miR-182-5p Enhances Radiosensitivity by Inhibiting the Radiation-Induced Antioxidant Effect through SESN2 in Head and Neck Cancer. Antioxidants (Basel) 2021; 10:antiox10111808. [PMID: 34829679 PMCID: PMC8614815 DOI: 10.3390/antiox10111808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023] Open
Abstract
Radiotherapy is routinely used for the treatment of head and neck squamous cell carcinoma (HNSCC). However, the therapeutic efficacy is usually reduced by acquired radioresistance and locoregional recurrence. In this study, The Cancer Genome Atlas (TCGA) analysis showed that radiotherapy upregulated the miR-182/96/183 cluster and that miR-182 was the most significantly upregulated. Overexpression of miR-182-5p enhanced the radiosensitivity of HNSCC cells by increasing intracellular reactive oxygen species (ROS) levels, suggesting that expression of the miR-182 family is beneficial for radiotherapy. By intersecting the gene targeting results from three microRNA target prediction databases, we noticed that sestrin2 (SESN2), a molecule resistant to oxidative stress, was involved in 91 genes predicted in all three databases to be directly recognized by miR-182-5p. Knockdown of SESN2 enhanced radiation-induced ROS and cytotoxicity in HNSCC cells. In addition, the radiation-induced expression of SESN2 was repressed by overexpression of miR-182-5p. Reciprocal expression of the miR-182-5p and SESN2 genes was also analyzed in the TCGA database, and a high expression of miR-182-5p combined with a low expression of SESN2 was associated with a better survival rate in patients receiving radiotherapy. Taken together, the current data suggest that miR-182-5p may regulate radiation-induced antioxidant effects and mediate the efficacy of radiotherapy.
Collapse
|
11
|
Mechanism of total glucosides of paeony in hypoxia/reoxygenation-induced cardiomyocyte pyroptosis. J Bioenerg Biomembr 2021; 53:643-653. [PMID: 34585325 DOI: 10.1007/s10863-021-09921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 01/19/2023]
Abstract
Inflammasome-mediated pyroptosis can aggravate myocardial ischemia/reperfusion injury. Total glucosides of paeony (TGP) is widely used in anti-inflammation. This study investigated the effect of TGP on pyroptosis of hypoxia/reoxygenation (H/R)-induced cardiomyocytes. HL-1 cells were subjected to H/R treatment. H/R-induced cardiomyocytes were treated with TGP at different concentrations (50, 100, and 200 mg/kg). The viability of H/R-induced cardiomyocytes was measured. The levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were determined. The activity of caspase-1, the expressions of NLRP3 and GSDMD-N, and the concentrations of IL-1β and IL-18 were examined. miR-181a-5p expression in H/R cardiomyocytes was determined. The targeting relationship between miR-181a-5p and adenylate cyclase 1 (ADCY1) was verified. Functional rescue experiments were performed to verify the effect of miR-181a-5p or ADCY1 on the pyroptosis of H/R cardiomyocytes. TGP enhanced H/R-induced cardiomyocyte viability in a dose-dependent manner, reduced LDH, MDA, and ROS levels, increased SOD level, decreased caspase-1 activity, reduced NLRP3 and GSDMD-N expressions, and inhibited IL-1β and IL-18 concentrations. TGP suppressed miR-181a-5p expression in H/R cardiomyocytes. miR-181a-5p targeted ADCY1. miR-181a-5p overexpression or ADCY1 inhibition reversed the inhibitory effect of TGP on the pyroptosis of H/R cardiomyocytes. Collectively, TGP alleviated the pyroptosis of H/R cardiomyocytes via the miR-181a-5p/ADCY1 axis.
Collapse
|
12
|
Carrella S, Massa F, Indrieri A. The Role of MicroRNAs in Mitochondria-Mediated Eye Diseases. Front Cell Dev Biol 2021; 9:653522. [PMID: 34222230 PMCID: PMC8249810 DOI: 10.3389/fcell.2021.653522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
The retina is among the most metabolically active tissues with high-energy demands. The peculiar distribution of mitochondria in cells of retinal layers is necessary to assure the appropriate energy supply for the transmission of the light signal. Photoreceptor cells (PRs), retinal pigment epithelium (RPE), and retinal ganglion cells (RGCs) present a great concentration of mitochondria, which makes them particularly sensitive to mitochondrial dysfunction. To date, visual loss has been extensively correlated to defective mitochondrial functions. Many mitochondrial diseases (MDs) show indeed neuro-ophthalmic manifestations, including retinal and optic nerve phenotypes. Moreover, abnormal mitochondrial functions are frequently found in the most common retinal pathologies, i.e., glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR), that share clinical similarities with the hereditary primary MDs. MicroRNAs (miRNAs) are established as key regulators of several developmental, physiological, and pathological processes. Dysregulated miRNA expression profiles in retinal degeneration models and in patients underline the potentiality of miRNA modulation as a possible gene/mutation-independent strategy in retinal diseases and highlight their promising role as disease predictive or prognostic biomarkers. In this review, we will summarize the current knowledge about the participation of miRNAs in both rare and common mitochondria-mediated eye diseases. Definitely, given the involvement of miRNAs in retina pathologies and therapy as well as their use as molecular biomarkers, they represent a determining target for clinical applications.
Collapse
Affiliation(s)
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, Naples, Italy.,Institute for Genetic and Biomedical Research, National Research Council (CNR), Milan, Italy
| |
Collapse
|
13
|
Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 2021; 22:6022. [PMID: 34199590 PMCID: PMC8199685 DOI: 10.3390/ijms22116022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | | - Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
14
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
15
|
Li M, Xue Y, Yu H, Mao D. Quercetin alleviated H 2 O 2 -induced apoptosis and steroidogenic impairment in goat luteinized granulosa cells. J Biochem Mol Toxicol 2020; 34:e22527. [PMID: 32410385 DOI: 10.1002/jbt.22527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 11/10/2022]
Abstract
Quercetin (Que) is a natural flavonoid in most plants. Luteinized granulosa cell (LGC) culture is necessary for the study of follicle growth/differentiation. In the present study, we analyzed the role of Que in steroid production and apoptosis in hydrogen peroxide (H2 O2 )-treated goat LGCs. The results showed that treatment with H2 O2 induced apoptosis in goat LGCs, and treatment with Que decreased LGC apoptosis induced by H2 O2 (P < .05), accompanied with the different expressions of BAX, BCL-2, Caspase 3, and Cleaved caspase 3. Meanwhile, the messenger RNA expressions of nuclear factor erythroid 2 like 2 (Nrf2) and its downstream genes were upregulated with H2 O2 +Que treatment, accompanied by the increased cellular viability (P < .05). Furthermore, Que alleviated H2 O2 -induced reduction in the secretion of progesterone (P4 ) (P < .05); however, it had no effect on the secretion of estrogen (E2 ). Simultaneously, the expressions of StAR and P450scc were increased when treated with Que +H2 O2 , compared with the group treated with only H2 O2 (P < .05). In conclusion, it is observed that Que could alleviate the H2 O2 -induced apoptosis and steroidogenic impairment in goat LGCs, which might be mediated by the Nrf2 pathway.
Collapse
Affiliation(s)
- Manman Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Xue
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Cai M, Xu Z, Bo W, Wu F, Qi W, Tian Z. Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:132-140. [PMID: 35782283 PMCID: PMC9219273 DOI: 10.1016/j.smhs.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Exercise training (ET) has been reported to reduce oxidative stress and endoplasmic reticulum (ER) stress in the heart following myocardial infarction (MI). Thioredoxin 1 (Trx1) plays a protective role in the infarcted heart. However, whether Trx1 regulates ER stress of the infarcted heart and participates in ET-induced cardiac protective effects are still not well known. In this work, H9c2 cells were treated with hydrogen peroxide (H2O2) and recombinant human Trx1 protein (TXN), meanwhile, adult male C57B6L mice were used to establish the MI model, and subjected to a six-week aerobic exercise training (AET) with or without the injection of Trx1 inhibitor, PX-12. Results showed that H2O2 significantly increased reactive oxygen species (ROS) level and the expression of TXNIP, CHOP and cleaved caspase12, induced cell apoptosis; TXN intervention reduced ROS level and the expression of CHOP and cleaved caspase12, and inhibited cell apoptosis in H2O2-treated H9c2 cells. Furthermore, AET up-regulated endogenous Trx1 protein expression and down-regulated TXNIP expression, restored ROS level and the expression of ER stress-related proteins, inhibited cell apoptosis as well as improved cardiac fibrosis and heart function in mice after MI. PX-12 partly inhibited the AET-induced beneficial effects in the infarcted heart. This study demonstrates that Trx1 attenuates ER stress-induced cell apoptosis, and AET reduces MI-induced ROS overproduction, ER stress and cell apoptosis partly through up-regulating of Trx1 expression in mice with MI.
Collapse
|
17
|
Qiu K, Li Z, Li C, Huang H, Zhu W. Protective effect of total glycosides from lily on H2O2-induced H9C2 cells mitochondrial damage and characterization of the chemical profiles by UHPLC-LTQ-Orbitrap-MSn. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol 2020; 36:101607. [PMID: 32593128 PMCID: PMC7322687 DOI: 10.1016/j.redox.2020.101607] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/31/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNAs that do not encode for proteins and play key roles in the regulation of gene expression. miRNAs are involved in a comprehensive range of biological processes such as cell cycle control, apoptosis, and several developmental and physiological processes. Oxidative stress can affect the expression levels of multiple miRNAs and, conversely, miRNAs may regulate the expression of redox sensors, alter critical components of the cellular antioxidants, interact with the proteasome, and affect DNA repair systems. The number of publications identifying redox-sensitive miRNAs has increased significantly over the last few years, and some miRNA targets such as Nrf2, SIRT1 and NF-κB have been identified. The complex interplay between miRNAs and ROS is discussed together with their role in myocardial ischemia-reperfusion injury and the potential use of circulating miRNAs as biomarkers of myocardial infarction. Detailed knowledge of redox-sensitive miRNAs is needed to be able to effectively use individual compounds or sets of miRNA-modulating compounds to improve the health-related outcomes associated with different diseases.
Collapse
Affiliation(s)
- Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Avda Diagonal 643, 08028, Barcelona, Spain.
| | - Aldrin V Gomes
- Department of Physiology and Membrane Biology, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA; Department of Physiology, Neurobiology and Behavior, University of California, Davis, 176 Briggs Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Glycyrrhetinic Acid-Induced MiR-663a Alleviates Hepatic Stellate Cell Activation by Attenuating the TGF- β/Smad Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3156267. [PMID: 32454854 PMCID: PMC7240796 DOI: 10.1155/2020/3156267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Glycyrrhetinic acid (GA), a hydrolysate of glycyrrhizic acid from licorice root extract, has been used to treat liver fibrotic diseases. However, the molecular mechanism involved in the antifibrotic effects of GA remains unclear. The involvement of miR-663a and its roles in TGF-β-1-induced hepatic stellate cell (HSC) activation remains unclear. In this study, we investigated the roles of miR-663a in the activation of HSCs and the antifibrosis mechanism of GA. MiR-663a expression was downregulated in TGF-β-treated HSCs. The overexpression of miR-663a inhibited HSC proliferation. TGF-β-1was confirmed as a direct target gene of miR-663a. MiR-663a alleviated HSC activation, concomitant with decreased expression of α-smooth muscle actin (α-SMA), human α2 (I) collagen (COL1A2), TGF-β1, TGF-βRI, Smad4, p-Smad2, and p-Smad3. GA upregulated miR-663a expression and inhibited the TGF-β/Smad pathway in HSCs. Further studies showed that miR-663a inhibitor treatment reversed GA-mediated downregulation of TGF-β1, TGF-βRI, Smad4, p-Smad2, p-Smad3, α-SMA, and CoL1A2 in TGF-β1-treated HSCs. These results show that miR-663a suppresses HSC proliferation and activation and the TGF-β/Smad signaling pathway, highlighting that miR-663a can be utilized as a therapeutic target for hepatic fibrosis. GA inhibits, at least in part, HSC proliferation and activation via targeting the miR-663a/TGF-β/Smad signaling pathway.
Collapse
|
20
|
Ciebiera M, Włodarczyk M, Zgliczyński S, Łoziński T, Walczak K, Czekierdowski A. The Role of miRNA and Related Pathways in Pathophysiology of Uterine Fibroids-From Bench to Bedside. Int J Mol Sci 2020; 21:ijms21083016. [PMID: 32344726 PMCID: PMC7216240 DOI: 10.3390/ijms21083016] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Uterine fibroids (UFs) are the most common benign tumors of the female genital tract. Their prevalence usually is estimated at 30-40%, but may reach up to 70-80% in predisposed groups of women. UFs may cause various clinical issues which might constitute the major reason of the overall deterioration of the quality of life. The mechanisms leading to UFs formation and growth still remain poorly understood. The transformation of smooth muscle cells of the uterus into abnormal, immortal cells, capable of clonal division, is thought to be a starting point of all pathways leading to UF formation. Micro-ribonucleic acids (miRNAs) are non-coding single-stranded RNAs about 22 nucleotides in length, that regulate gene expression. One of recent advances in this field is the comprehension of the role of miRNAs in tumorigenesis. Alterations in the levels of miRNAs are related to the formation and growth of several tumors which show a distinct miRNA signature. The aim of this review is to summarize the current data about the role of miRNAs in the pathophysiology of UFs. We also discuss future directions in the miRNA research area with an emphasis on novel diagnostic opportunities or patient-tailored therapies. In our opinion data concerning the regulation of miRNA and its gene targets in the UFs are still insufficient in comparison with gynecological malignancies. The potential translational use of miRNA and derived technologies in the clinical care is at the early phase and needs far more evidence. However, it is one of the main areas of interest for the future as the use of miRNAs in the diagnostics and treatment of UFs is a new and exciting opportunity.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland
- Correspondence: ; Tel.: +48-607-155-177
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Stanisław Zgliczyński
- Department of Internal Diseases and Endocrinology, Central Teaching Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszów, Poland;
| | - Klaudia Walczak
- Students’ Scientific Association at the Department of Endocrinology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
| | - Artur Czekierdowski
- Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
21
|
Qi M, He L, Ma X, Li Z. MiR-181a-5p is involved in the cardiomyocytes apoptosis induced by hypoxia-reoxygenation through regulating SIRT1. Biosci Biotechnol Biochem 2020; 84:1353-1361. [PMID: 32290769 DOI: 10.1080/09168451.2020.1750943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MiR-181a-5p's mechanism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes apoptosis has not been clarified. This study verified that SIRT1 was the target of miR-181a-5p. MiR-181a-5p expression was up-regulated or down-regulated in H/R-induced cardiomyocytes, and SIRT1 was transfected into cells alone or in combination with miR-181a-5p. Cell viability, apoptosis, levels of released lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the Bcl-2, Bax, and Caspase 3 levels in treated cells were tested. On the one hand, down-regulated miR-181a-5p promoted cell viability, reduced released LDH and MDA, and increased SOD level in H/R-induced cardiomyocytes. On the other hand, miR-181a-5p inhibited apoptosis and elevated Bcl-2 expression while decreasing the expressions of Bax and Caspase 3 in treated cells, but the effects of miR-181a-5p could be rescued by SIRT1. In conclusion, miR-181a-5p involved in H/R-induced cardiomyocytes apoptosis through regulating SIRT1, which might become a novel direction for related diseases.
Collapse
Affiliation(s)
- Mingxu Qi
- Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China , Hengyang, Hunan, China
| | - Li He
- Department of Psychiatry, Hengyang Second People's Hospital , Hengyang, Hunan, China
| | - Xiaofeng Ma
- Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China , Hengyang, Hunan, China
| | - Zili Li
- Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China , Hengyang, Hunan, China
| |
Collapse
|
22
|
Jusic A, Devaux Y. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020; 115:23. [PMID: 32140778 DOI: 10.1007/s00395-020-0783-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Mitochondrial function and integrity are vital for the maintenance of cellular homeostasis, particularly in high-energy demanding cells. Cardiomyocytes have a large number of mitochondria, which provide a continuous and bulk supply of the ATP necessary for cardiac mechanical function. More than 90% of the ATP consumed by the heart is derived from the mitochondrial oxidative metabolism. Decreased energy supply as the main consequence of mitochondrial dysfunction is closely linked to cardiovascular disease (CVD). The discovery of noncoding RNA (ncRNAs) in the mitochondrial compartment has changed the traditional view of molecular pathways involved in the regulatory network of CVD. Mitochondrial ncRNAs participate in controlling cardiovascular pathogenesis by regulating glycolysis, mitochondrial energy status, and the expression of genes involved in mitochondrial metabolism. Understanding the underlying mechanisms of the association between impaired mitochondrial function resulting from fluctuation in expression levels of ncRNAs and specific disease phenotype can aid in preventing and treating CVD. This review presents an overview of the role of mitochondrial ncRNAs in the complex regulatory network of the cardiovascular pathology. We will summarize and discuss (1) mitochondrial microRNAs (mitomiRs) and long noncoding RNAs (lncRNAs) encoded either by nuclear or mitochondrial genome which are involved in the regulation of mitochondrial metabolism; (2) the role of mitomiRs and lncRNAs in the pathogenesis of several CVD such as hypertension, cardiac hypertrophy, acute myocardial infarction and heart failure; (3) the biomarker and therapeutic potential of mitochondrial ncRNAs in CVD; (4) and the challenges inherent to their translation into clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg.
| | | |
Collapse
|
23
|
Helmy HS, Senousy MA, El-Sahar AE, Sayed RH, Saad MA, Elbaz EM. Aberrations of miR-126-3p, miR-181a and sirtuin1 network mediate Di-(2-ethylhexyl) phthalate-induced testicular damage in rats: The protective role of hesperidin. Toxicology 2020; 433-434:152406. [PMID: 32050098 DOI: 10.1016/j.tox.2020.152406] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/03/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
Recently, oxidative stress was implicated in the environmental contaminant Di-(2-ethylhexyl) phthalate (DEHP)-induced testicular toxicity, however the mechanism is unclear. We investigated the role of oxidative stress-responsive microRNAs in DEHP-induced aberrations and the protective effect of the citrus flavonoid, hesperidin (HSP). Male Wistar rats were randomly allocated into four groups as vehicle-treated control, DEHP-alone group (500 mg/kg/day) for 30 days, and HSP (25 or 50 mg/kg) for 60 days; testicular damage was triggered by oral administration of DEHP (500 mg/kg/day) after thirty days of oral administration of HSP (25 or 50 mg/kg). DEHP administration reduced testis weight coefficient, serum testosterone, testicular 3β-hydroxysteroid dehydrogenase and antioxidant enzyme activities, and elevated serum fatty acid-binding protein-9, testicular malondialdehyde, and Bax/Bcl2 ratio. Aberrant testicular miR-126-3p and miR-181a expression was observed, along with decreased expression of sirtuin1 (SIRT1) and its targets; nuclear factor-erythroid 2-related factor2, haeme oxygenase-1, and superoxide dismutase2. HSP administration significantly ameliorated these changes and restored testicular function in a dose-dependent manner. We highlight a novel role of oxidative stress-miR-126/miR-181a-SIRT1 network in mediating DEHP-induced changes which were reversed by the antioxidant HSP.
Collapse
Affiliation(s)
- Hebatullah S Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
24
|
Li Y, Fei L, Wang J, Niu Q. Inhibition of miR-217 Protects Against Myocardial Ischemia-Reperfusion Injury Through Inactivating NF-κB and MAPK Pathways. Cardiovasc Eng Technol 2020; 11:219-227. [PMID: 31916040 DOI: 10.1007/s13239-019-00452-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Recent studies have demonstrated that miRNAs play a vital role in regulating myocardial ischemia/reperfusion injury (MIRI). MiR-217 has been proven to be implicated in cardiac diseases such as chronic heart failure and cardiac myxoma. However, the role of miR-217 in MIRI is not clear. METHODS A mouse MIRI model was established and the myocardial infarct size was evaluated by TTC staining. The expression level of miR-217 in I/R group was determined by real-time polymerase chain reaction. Subsequently, MIRI mice and H9C2 cells were administrated with miR-217 inhibitor in vivo and in vitro, respectively. The levels of TNF-α and IL-6 were measured by commercially available ELISA kits. Blood and cell samples were collected for the measurement of lactate dehydrogenase (LDH) level and caspase-3 activity. Cell viability was assessed with the CCK-8 assay. We then explored the detailed molecular mechanisms by TargetScan 7.1 database and further studies were performed to prove the prediction by dual-luciferase reporter assay. RESULTS Larger stainless infarct areas were observed in the MIRI group, accompanied by inceased serum LDH activity, indicating the mouse MIRI model was successfully established. MiR-217 was up-regulated in MIRI mice and hypoxia/reoxygenation-treated H9C2 cells. MiR-217 knockdown alleviated the MIRI in MIRI mouse model, and also attenuated the myocardial hypoxia/reoxygenation injury in H9C2 cells. Moreover, dual specificity protein phosphatase 14 (DUSP14) was proved to be a target of miR-217. Besides, further study indicated that inhibition of miR-217 protected against MIRI through inactivating NF-κB and MAPK pathways via targeting DUSP14. CONCLUSIONS MiR-217 inhibition protected against MIRI through inactivating NF-κB and MAPK pathways by targeting DUSP14. This study may provide valuable diagnostic and factors and therapeutic agents for MIRI.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China.
| | - Liping Fei
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China
| | - Junli Wang
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China
| | - Qingying Niu
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China
| |
Collapse
|
25
|
Mitochondrial MiRNA in Cardiovascular Function and Disease. Cells 2019; 8:cells8121475. [PMID: 31766319 PMCID: PMC6952824 DOI: 10.3390/cells8121475] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs functioning as crucial post-transcriptional regulators of gene expression involved in cardiovascular development and health. Recently, mitochondrial miRNAs (mitomiRs) have been shown to modulate the translational activity of the mitochondrial genome and regulating mitochondrial protein expression and function. Although mitochondria have been verified to be essential for the development and as a therapeutic target for cardiovascular diseases, we are just beginning to understand the roles of mitomiRs in the regulation of crucial biological processes, including energy metabolism, oxidative stress, inflammation, and apoptosis. In this review, we summarize recent findings regarding how mitomiRs impact on mitochondrial gene expression and mitochondrial function, which may help us better understand the contribution of mitomiRs to both the regulation of cardiovascular function under physiological conditions and the pathogenesis of cardiovascular diseases.
Collapse
|
26
|
Kalinina EV, Ivanova-Radkevich VI, Chernov NN. Role of MicroRNAs in the Regulation of Redox-Dependent Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:1233-1246. [DOI: 10.1134/s0006297919110026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
MicroRNA Mediate Visfatin and Resistin Induction of Oxidative Stress in Human Osteoarthritic Synovial Fibroblasts Via NF-κB Pathway. Int J Mol Sci 2019; 20:ijms20205200. [PMID: 31635187 PMCID: PMC6829533 DOI: 10.3390/ijms20205200] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/15/2023] Open
Abstract
Synovial membrane inflammation actively participate to structural damage during osteoarthritis (OA). Adipokines, miRNA, and oxidative stress contribute to synovitis and cartilage destruction in OA. We investigated the relationship between visfatin, resistin and miRNA in oxidative stress regulation, in human OA synovial fibroblasts. Cultured cells were treated with visfatin and resistin. After 24 h, we evaluated various pro-inflammatory cytokines, metalloproteinases (MMPs), type II collagen (Col2a1), miR-34a, miR-146a, miR-181a, antioxidant enzymes, and B-cell lymphoma (BCL)2 by qRT-PCR, apoptosis and mitochondrial superoxide production by cytometry, p50 nuclear factor (NF)-κB by immunofluorescence. Synoviocytes were transfected with miRNA inhibitors and oxidative stress evaluation after adipokines stimulus was performed. The implication of NF-κB pathway was assessed by the use of a NF-κB inhibitor (BAY-11-7082). Visfatin and resistin significantly up-regulated gene expression of interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor (TNF)-α,MMP-1, MMP-13 and reduced Col2a1. Furthermore, adipokines induced apoptosis and superoxide production, the transcriptional levels of BCL2, superoxide dismutase (SOD)-2, catalase (CAT), nuclear factor erythroid 2 like 2 (NRF2), miR-34a, miR-146a, and miR-181a. MiRNA inhibitors counteracted adipokines modulation of oxidative stress. Visfatin and resistin effects were suppressed by BAY-11-7082. Our data suggest that miRNA may represent possible mediators of oxidative stress induced by visfatin and resistin via NF-κB pathway in human OA synoviocytes.
Collapse
|
28
|
MicroRNA-34a and MicroRNA-181a Mediate Visfatin-Induced Apoptosis and Oxidative Stress via NF-κB Pathway in Human Osteoarthritic Chondrocytes. Cells 2019; 8:cells8080874. [PMID: 31405216 PMCID: PMC6721672 DOI: 10.3390/cells8080874] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 01/16/2023] Open
Abstract
Current evidence suggests a complex interaction between adipokines and microRNA (miRNA) in osteoarthritis (OA) pathogenesis. The present study explored the role of miR-34a and miR-181a in regulating apoptosis and oxidative stress induced by visfatin in human OA chondrocytes. Chondrocytes were transfected with miR-34a and miR-181a inhibitors and stimulated with visfatin for 24 h, in the presence of nuclear factor (NF)-κB inhibitor (BAY-11-7082, 2 h pre-incubation). Apoptosis and reactive oxygen species (ROS) production were detected by cytometry, miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2 and B-cell lymphoma (BCL)2 expressions by quantitative real time polymerase chain reaction (real time PCR) and western blot. P50 NF-κB subunit was measured by immunofluorescence. Visfatin significantly induced apoptosis and superoxide anion production, increased miR-34a, miR-181a, superoxide dismutase (SOD)-2, catalase (CAT), NRF2 and decreased BCL2 gene and protein expression in OA chondrocytes. All the visfatin-caused effects were suppressed by using miR-34a and miR-181a inhibitors. Pre-incubation with BAY-11-7082 counteracted visfatin-induced expression of miRNA, BCL2, SOD-2, CAT and NRF2. Inhibition of miR-34a and miR-181a significantly reduced the activation of p50 NF-κB. Visfatin confirms its ability to induce apoptosis and oxidative stress in human OA chondrocytes; these effects appeared mediated by miR-34a and miR-181a via NF-κB pathway. We highlight the relevance of visfatin as potential therapeutic target for OA treatment.
Collapse
|
29
|
Choi JY, An BC, Jung IJ, Kim JH, Lee SW. MiR-921 directly downregulates GPx3 in A549 lung cancer cells. Gene 2019; 700:163-167. [DOI: 10.1016/j.gene.2019.02.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
|
30
|
Suppression of miR-1197-3p attenuates H 2O 2-induced apoptosis of goat luteinized granulosa cells via targeting PPARGC1A. Theriogenology 2019; 132:72-82. [PMID: 31003067 DOI: 10.1016/j.theriogenology.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/06/2019] [Accepted: 04/06/2019] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A) acts as a powerful coactivator of many transcriptional factors that relate to granulosa cell (GC) apoptosis. In this study, the miRNAs mediating goat follicular atresia and luteinized granulosa cell (LGC) apoptosis induced by hydrogen peroxide (H2O2) via PPARGC1A were investigated. Our results showed that miR-1197-3p targeted PPARGC1A was predicted by bioinformatics algorithm and verified by luciferase reporter assay. In addition, miR-1197-3p promoted goat LGC apoptosis via PPARGC1A through mitochondrial-dependent apoptosis pathway, and these effects could be restored by PPARGC1A overexpression. Moreover, H2O2-induced LGC apoptosis significantly upregulated miR-1197-3p expression and downregulated PPARGC1A level. Pretreatment of miR-1197-3p inhibitor alleviated LGC apoptosis induced by 400 μM H2O2 for 12 h, and preserved the mitochondrial membrane potential by increasing PPARGC1A expression. In conclusion, miR-1197-3p might act as an essential regulator of goat LGC apoptosis potentially via the mitochondrial-dependent apoptosis pathway by targeting PPARGC1A.
Collapse
|
31
|
Liu B, Hu X, Li Y, Ke J, Dasgupta C, Huang X, Walayat A, Zhang L, Xiao D. Epigenetic down-regulation of BK Ca channel by miR-181a contributes to the fetal and neonatal nicotine-mediated exaggerated coronary vascular tone in adult life. Int J Cardiol 2019; 281:82-89. [PMID: 30738609 DOI: 10.1016/j.ijcard.2019.01.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fetal origin of adult cardiovascular disease is one of the most pressing public concerns and economic problem in modern life. Maternal cigarette smoking/nicotine abuse increases the risk of cardiovascular disease in offspring. However, the underlying mechanisms and theranostics remain unclear. We hypothesized that fetal and neonatal nicotine exposure enhances microRNA-181a (miR-181a) which targets large-conductance Ca2+-activated K+ (BKCa) channels, resulting in increased coronary vascular tone in adult offspring. METHODS Nicotine or saline was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. Experiments were conducted in adult (~6 month old) male offspring. RESULTS Nicotine enhanced pressure-induced coronary vascular tone, which was abrogated by BKCa channel blocker. Nicotine selectively attenuated coronary BKCa β1 but not α subunit expression. Functionally, nicotine suppressed BKCa current density and inhibited BKCa activator NS1619-induced coronary relaxations. Furthermore, activation of BKCa increased coronary flow and improved heart ischemia/reperfusion-induced infarction. Nicotine selectively enhanced miR-181a expression. MiR-181a mimic inhibited BKCa β1 expression/channel current and decreased NS1619-induced coronary relaxation. Antioxidant eliminated the difference of BKCa current density between the saline and nicotine-treated groups and partially restored NS1619-induced relaxation in nicotine group. MiR-181a antisense decreased vascular tone and eliminated the differences between nicotine exposed and control groups. CONCLUSION Fetal and neonatal nicotine exposure-mediated miR-181a overexpression plays an important role in nicotine-enhanced coronary vascular tone via epigenetic down-regulation of BKca channel mechanism, which provides a potentially novel therapeutic molecular target of miR-181a/BKca channels for the treatment of coronary heart ischemic disease.
Collapse
Affiliation(s)
- Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jun Ke
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xiaohui Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andrew Walayat
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
32
|
Malik SA, Khole S, Mittal SPK, Urmode T, Kusurkar R, Ghaskadbi SS. Differential response of antioxidant defense in HepG2 cells on exposure of Livotrit ®, in a concentration dependent manner. J Tradit Complement Med 2019; 9:38-44. [PMID: 30671364 PMCID: PMC6335567 DOI: 10.1016/j.jtcme.2017.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/20/2017] [Accepted: 08/10/2017] [Indexed: 01/24/2023] Open
Abstract
Livotrit®, a polyherbal formulation (Zandu, India) is commonly prescribed for liver health. The present study was undertaken to elucidate possible mechanism of antioxidant potential of Livotrit®. Livotrit® exhibited concentration dependent radical scavenging activity, inhibition of lipid peroxidation as well as activation and gene expression of antioxidant enzymes. Interestingly, lower concentration of Livotrit® (0.05%) significantly increased activities and gene expression of catalase, Glutathione reductase (GR) and Gluthathione peroxidase (GPx), while higher concentration of Livotrit® (0.5%) significantly increased antioxidant enzyme Heme-oxygenase 1(HO-1) and not catalase (CAT), GR and GPx. Transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2) required for expression of catalase, GR, GPx and HO-1 was efficiently translocated into the nucleus at both concentrations. Inspite of this, concentration dependent activation of these enzymes was found to be mediated through miRNAs involved in regulation of their gene expression.
Collapse
Affiliation(s)
- S A Malik
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - S Khole
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - S P K Mittal
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - T Urmode
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - R Kusurkar
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| | - S S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
| |
Collapse
|
33
|
Khole S, Mittal S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, Ghaskadbi S. Andrographolide enhances redox status of liver cells by regulating microRNA expression. Free Radic Biol Med 2019; 130:397-407. [PMID: 30414976 DOI: 10.1016/j.freeradbiomed.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
Abstract
Andrographis paniculata Nees and its principal compound andrographolide are well known for exerting beneficial effects by modulating signaling pathways in different biological systems. Our earlier studies have demonstrated the ability of andrographolide as well as andrographolide enriched extracts to activate Nrf2/HO-1 pathway through adenosine A2a receptor. Present study investigated ability of andrographolide to regulate Nrf2 induced antioxidant defense systems by miRNAs using HepG2 cells. Andrographolide strongly induced Nrf2 which in turn modulated enzymes of glutathione and thioredoxin antioxidant systems. It also regulated crucial transcription factors viz. hepatocyte nuclear factor alpha (HNF4A) and tumor suppressor protein 53 (p53). Downregulation of HNF4A by andrographolide led to decrease in miRNAs regulating Heme oxygenase-1 (miR-377) and glutathione cysteine ligase (miR-433). Upregulation of p53 on the other hand led to increase in miRNAs regulating thioredoxin interacting protein (miR-17, miR-224) and glutathione peroxidase (miR-181a). Involvement of p53 and HNF4A in modulation of these miRNAs was confirmed by chromatin immunoprecipitation assay. Overall, the work reveals that andrographolide through modulation of p53 and HNF4A, regulates miRNAs leading to upregulation of HO-1, glutathione and thioredoxin systems. Andrographolide thus, can play a beneficial role in modulating antioxidant defense in oxidative stress induced diseases such as diabetes, ageing etc.
Collapse
Affiliation(s)
- Swati Khole
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India
| | - Smriti Mittal
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India; Department of Biotechnology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashatra, India
| | - Nidhi Jagadish
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Debjani Ghosh
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Vijay Gadgil
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Vilas Sinkar
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India.
| |
Collapse
|
34
|
The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 2019; 172:40-70. [DOI: 10.1016/j.pneurobio.2018.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022]
|
35
|
Yan X, Wu H, Ren J, Liu Y, Wang S, Yang J, Qin S, Wu D. Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:105-112. [PMID: 29746994 DOI: 10.1016/j.jep.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenfu decoction consists of the water extract from the dried root or rootstalk of Panax ginseng C. A. Mey (Asian ginseng) and the lateral root of Aconitum carmichaeli Debx (Fuzi, Heishunpian in Chinese). Shenfu Formula has been used as a folk Chinese medicine for thousands of years. Recent studies have shown that Shenfu injection can enhance cardiac function and regulate arrhythmia. AIM OF THE STUDY Shenfu Formula plays an important role in the treatment of heart failure. However, its microRNA-mediated mechanisms are still not fully understood. Thus, we established a heart failure model in rats to investigate the microRNA mechanism of Shenfu Formula in cardiac function and apoptosis. MATERIALS AND METHODS The heart failure animal model was established via left-anterior descending coronary artery ligation in rats. Seven days after surgery, Shenfu Formula was given to the heart failure rats, which were selected by echocardiography with an LVEF< 45%. After Shenfu Formula was given intragastrically for 30 days, blood samples were drawn, the heart was excised after echocardiography, and echocardiographic parameters and apoptosis-related proteins were further examined. Fas/Fas-L and Bcl-2/Bax proteins were analyzed by Western blot, and microRNAs were evaluated using Affymetrix GeneChip miRNA arrays. RESULTS Shenfu Formula increased the left ventricular ejection fraction, improved the hemodynamic index of heart failure rats, and decreased serum brain natriuretic peptide (BNP) levels. Shenfu Formula also decreased the positive rate of myocardial cells as detected by the TUNEL method and significantly suppressed caspase 3 expression. Moreover, we found that Shenfu Formula can regulate the initiative factors Fas/Fas-L in the intrinsic pathway and Bcl-2/Bax in the extrinsic apoptosis pathway to suppress apoptosis in heart failure rats. Finally, Shenfu Formula potentially alters the balance of microRNAs involved in activating and inhibiting apoptosis, ultimately suppressing apoptosis; this leads to changes in the gene expression profiles of microRNAs targets. CONCLUSION Shenfu Granule can effectively improve cardiac function in heart failure rats, and the anti-apoptosis effects of Shenfu Formula are potential mechanisms for inhibiting heart failure.
Collapse
Affiliation(s)
- Xu Yan
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, 29 Zhongguancun Dajie, Beijing, China; Department of Pathophysiology, Beijing Neurosurgical Institute/ Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Hongjin Wu
- Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, 29 Zhongguancun Dajie, Beijing, China.
| | - Jianxun Ren
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuna Liu
- Beijing Hospital of Integrated Chinese and Western Medicine, Beijing 100039, China.
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Jiyuan Yang
- Beijing Hospital of Integrated Chinese and Western Medicine, Beijing 100039, China.
| | - Shuyan Qin
- Beijing Hospital of Integrated Chinese and Western Medicine, Beijing 100039, China.
| | - Delin Wu
- Beijing Hospital of Integrated Chinese and Western Medicine, Beijing 100039, China.
| |
Collapse
|
36
|
Zhang L, Zeng H, Cheng WH. Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity. Free Radic Biol Med 2018; 127:3-13. [PMID: 29782991 DOI: 10.1016/j.freeradbiomed.2018.05.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/15/2022]
Abstract
Accumulation of genome and macromolecule damage is a hallmark of aging, age-associated degeneration, and genome instability syndromes. Although processes of aging are irreversible, they can be modulated by genome maintenance pathways and environmental factors such as diet. Selenium (Se) confers its physiological functions mainly through selenoproteins, but Se compounds and other proteins that incorporate Se nonspecifically also impact optimal health. Bruce Ames proposed that the aging process could be mitigated by a subset of low-hierarchy selenoproteins whose levels are preferentially reduced in response to Se deficiency. Consistent with this notion, results from two selenotranscriptomic studies collectively implicate three low-hierarchy selenoproteins in age or senescence. Experimental evidence generally supports beneficial roles of selenoproteins in the protection against damage accumulation and redox imbalance, but some selenoproteins have also been reported to unexpectedly display harmful functions under sporadic conditions. While longevity and healthspan are usually thought to be projected in parallel, emerging evidence suggests a trade-off between longevity promotion and healthspan deterioration with damage accumulation. We propose that longevity promotion under conditions of Se deficiency may be attributed to 1) stress-response hormesis, an advantageous event of resistance to toxic chemicals at low doses; 2) reduced expression of selenoproteins with paradoxical functions to a lesser extent. In particular, selenoprotein H is an evolutionally conserved nuclear selenoprotein postulated to confer Se functions in redox regulation, genome maintenance, and senescence. This review highlights the need to pinpoint roles of specific selenoproteins and Se compounds in healthspan and lifespan for a better understanding of Se contribution at nutritional levels of intake to healthy aging.
Collapse
Affiliation(s)
- Li Zhang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA
| | - Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Center, Grand Forks, ND 58202, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA.
| |
Collapse
|
37
|
Modulation of Oxidative Status by Normoxia and Hypoxia on Cultures of Human Dermal Fibroblasts: How Does It Affect Cell Aging? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5469159. [PMID: 30405877 PMCID: PMC6199889 DOI: 10.1155/2018/5469159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) production in the skin is among the highest compared to other organs, and a clear correlation exists between ROS production and skin aging. Many attempts are underway to reduce oxidative stress in the skin by topical treatment or supplementation with antioxidants/cosmeceuticals, and cultures of human dermal fibroblasts (HDF) are widely used for these studies. Here, we examined the influence of oxygen tension on cell aging in HDF and how this impacted ROS production, the enzymatic and nonenzymatic antioxidant response system, and the efficacy of this defense system in limiting DNA damage and in modulating gene expression of proteins involved in the extracellular matrix, linked to skin aging. We investigated a selection of parameters that represent and reflect the behavior of cellular responses to aging and oxygen tension. Serial passaging of HDF under normoxia (21%) and hypoxia (5%) leads to cell aging as confirmed by β-galactosidase activity, p16 expression, and proliferation rate. However, in HDF under 21% O2, markers of aging were significantly increased compared to those under 5% O2 at matched cell passages despite having lower levels of intracellular ROS and higher levels of CoQ10, total GSH, SOD1, SOD3, and mitochondrial superoxide anion. miRNA-181a, which is known to be upregulated in HDF senescence, was also analyzed, and indeed, its expression was significantly increased in old cells at 21% O2 compared to those at 5% O2. Upregulation of MMP1 and downregulation of COL1A1 along with increased DNA damage were also observed under 21% O2 vs 5% O2. The data highlight that chronic exposure to atmospheric 21% O2 is able to trigger hormetic adaptive responses in HDF that however fail, in the long term, to prevent cellular aging. This information could be useful in further investigating molecular mechanisms involved in adaptation of skin fibroblasts to oxidative stress and may provide useful hints in addressing antiaging strategies.
Collapse
|
38
|
Abstract
SIGNIFICANCE RNA is a heterogeneous class of molecules with the minority being protein coding. Noncoding RNAs (ncRNAs) are involved in translation and epigenetic control mechanisms of gene expression. Recent Advances: In recent years, the number of identified ncRNAs has dramatically increased and it is now clear that ncRNAs provide a complex layer of differential gene expression control. CRITICAL ISSUES NcRNAs exhibit interplay with redox regulation. Redox regulation alters the expression of ncRNAs; conversely, ncRNAs alter the expression of generator and effector systems of redox regulation in a complex manner, which will be the focus of this review article. FUTURE DIRECTIONS Understanding the role of ncRNA in redox control will lead to the development of new strategies to alter redox programs. Given that many ncRNAs (particularly microRNAs [miRNAs]) change large gene sets, these molecules are attractive drug candidates; already, now miRNAs can be targeted in patients. Therefore, the development of ncRNA therapies focusing on these molecules is an attractive future strategy. Antioxid. Redox Signal. 29, 793-812.
Collapse
Affiliation(s)
- Matthias S Leisegang
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Katrin Schröder
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- 1 Institute for Cardiovascular Physiology, Goethe-University , Frankfurt, Germany .,2 German Center of Cardiovascular Research (DZHK) , Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
39
|
Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. J Mol Med (Berl) 2018; 96:1095-1106. [PMID: 30097674 DOI: 10.1007/s00109-018-1682-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 02/08/2023]
Abstract
Uterine leiomyomas (ULM) grow under high oxidative stress due to a hypoxic microenvironment and defects in redox metabolism. AKT is one major pathway activated by reactive oxygen species (ROS) that maintains ULM growth and survival. We previously reported that AKT inactivated by AKT inhibitors can significantly induce cellular senescence in ULM cells. Since some miRNAs are induced by AKT inhibitors in an ROS-dependent manner, we proposed that these miRNAs may modulate AKT function and cellular senescence in ULM. We therefore established ex vivo models of a three-dimensional ULM spheroid culture system to study the role of miRNAs in cellular senescence. Four miRNAs, miR-29b, miR-181a, miR-182, and miR-200c, were found to induce cellular senescence in primary ULM and myometrium spheroid cultures when stably overexpressed. miR-181a and miR-182 were found to repress AKT3 and CCND2, respectively. Correspondingly, RNAi of AKT3 or CCND2 also induced cellular senescence and G0/G1 arrest. Thus, miR-181a and miR-182 may drive cellular senescence in ULM by repressing AKT3 and CCND2 activity, respectively. We further demonstrated that senescent ULM cells can be effectively removed by BH3 mimetic ABT263, which provides a new therapeutic venue for the treatment of ULM. Our findings suggest that miRNAs are potent modulators in regulating the ROS-AKT-cell cycle axis in uterine leiomyoma. KEY MESSAGES A subset of oxidative stress-induced miRNAs is involved in AKT signaling in uterine leiomyoma. Overexpression of miR-181a and miR-182 resulted in cellular senescence in leiomyoma through repression of AKT3 and CCND2, respectively. Silencing of AKT3 and CCND2 drives leiomyoma cell into senescence and cycle arrest. Application of our newly developed 3D leiomyoma spheroids can provide a quick and reliable ex vivo model for cytopathologic and functional analysis. BH3 mimetics can effectively reduce the viability of miRNA-mediated senescent cells in leiomyoma.
Collapse
|
40
|
Oyama Y, Bartman CM, Gile J, Eckle T. Circadian MicroRNAs in Cardioprotection. Curr Pharm Des 2018; 23:3723-3730. [PMID: 28699517 DOI: 10.2174/1381612823666170707165319] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
The most dramatic feature of life on Earth is our adaptation to the cycle of day and night. Throughout evolutionary time, almost all living organisms developed a molecular clock linked to the light-dark cycles of the sun. In present time, we know that this molecular clock is crucial to maintain metabolic and physiological homeostasis. Indeed, a dysregulated molecular clockwork is a major contributing factor to many metabolic diseases. In fact, the time of onset of acute myocardial infarction exhibits a circadian periodicity and recent studies have found that the light regulated circadian rhythm protein Period 2 (PER2) elicits endogenous cardioprotection from ischemia. Manipulating the molecular clockwork may prove beneficial during myocardial ischemia in humans. MicroRNAs are small non-coding RNA molecules capable of silencing messenger RNA (mRNA) targets. MicroRNA dysregulation has been linked to cancer development, cardiovascular and neurological diseases, lipid metabolism, and impaired immunity. Therefore, microRNAs are gaining interest as putative novel disease biomarkers and therapeutic targets. To identify circadian microRNA-based cardioprotective pathways, a recent study evaluated transcriptional changes of PER2 dependent microRNAs during myocardial ischemia. Out of 352 most abundantly expressed microRNAs, miR-21 was amongst the top PER2 dependent microRNAs and was shown to mediate PER2 elicited cardioprotection. Further analysis suggested circadian entrainment via intense light therapy to be a potential strategy to enhance miR-21 activity in humans. In this review, we will focus on circadian microRNAs in the context of cardioprotection and will highlight new discoveries, which could lead to novel therapeutic concepts to treat myocardial ischemia.
Collapse
Affiliation(s)
- Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045. United States
| | - Colleen Marie Bartman
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045. United States
| | - Jennifer Gile
- Department of Anesthesiology, University of Colorado Denver School of Medicine, Aurora, CO 80045. United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado Denver, 12700 E 19th Avenue, Mailstop B112, RC 2, Room 7121, Aurora, CO 80045. United States
| |
Collapse
|
41
|
The orphan nuclear receptor NR4A1 attenuates oxidative stress-induced β cells apoptosis via up-regulation of glutathione peroxidase 1. Life Sci 2018; 203:225-232. [DOI: 10.1016/j.lfs.2018.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/07/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022]
|
42
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
43
|
Propofol Protects Rat Cardiomyocytes from Anthracycline-Induced Apoptosis by Regulating MicroRNA-181a In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2109216. [PMID: 29849870 PMCID: PMC5932430 DOI: 10.1155/2018/2109216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/11/2018] [Indexed: 01/30/2023]
Abstract
We aimed to evaluate the cardioprotective effect and mechanism of propofol in anthracycline-induced cardiomyocyte apoptosis. We selected the rat myocardial cell line, H9c2, and primary cardiomyocytes for in vitro study. The cardiomyocytes were treated with vehicle, Adriamycin® (ADM), propofol, or a combination of ADM and propofol. The proportion of apoptotic cells and the expression of miR-181a were detected by flow cytometry and real-time PCR, respectively. Luciferase assays were performed to explore the direct target gene of miR-181a. In vivo assay, rats were randomly divided into different treatment groups. The apoptosis index was determined by TUNEL staining, and the expression of miR-181a and STAT3 in heart tissue was detected. The antiproliferative effect of ADM alone was significantly greater than that of ADM plus propofol. A significantly greater decrease in the proportion of apoptotic cells and in miR-181a expression was observed in the combination treatment group compared with that in the ADM groups in vitro and in vivo. The loss-of-function of miR-181a in H9c2 of ADM treatment resulted in increased Bcl-2 and decreased Bax. MiR-181a suppressed Bcl-2 expression through direct targeting of the Bcl-2 transcript. Propofol reduced anthracycline-induced apoptosis in cardiomyocytes via targeting miR-181a/Bcl-2, and a negative correlation between miR-181a and Bcl-2 was observed.
Collapse
|
44
|
Matoušková P, Hanousková B, Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int J Mol Sci 2018; 19:ijms19041199. [PMID: 29662007 PMCID: PMC5979329 DOI: 10.3390/ijms19041199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3′untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins’ expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Collapse
Affiliation(s)
- Petra Matoušková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Barbora Hanousková
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| | - Lenka Skálová
- Faculty of Pharmacy, Department of Biochemical Sciences, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
45
|
Shi Z, Su Y, Wang F, Liu P. Downregulation of microRNA-181a attenuates hydrogen peroxide-induced human lens epithelial cell apoptosis in vitro. Mol Med Rep 2018; 17:6009-6015. [PMID: 29484431 DOI: 10.3892/mmr.2018.8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 07/07/2017] [Indexed: 11/05/2022] Open
Abstract
Apoptosis of human lens epithelial (HLE) cells is a process closely associated with cataract formation. The aim of the present study was to explore the effects of microRNA (miR)‑181a against hydrogen peroxide (H2O2)-induced apoptosis in HLE cells in vitro. The recombinant lentiviral plasmid pLKO. 1‑puro‑miR‑181a was constructed and used to transfect human HLE‑B3 cells with the short hairpin (sh)RNA to silence the expression of miR‑181a. The apoptotic rate of both HLE‑B3 cells in which miR‑181a expression was stably silenced and in untransfected HLE‑B3 cells was assessed in the presence of H2O2 using flow cytometry. The mRNA expression levels of the apoptosis‑related genes caspase-3 (CASP3) and B‑cell lymphoma‑2‑associated X protein (BAX), and of the potential target genes for miR‑181a, c‑MET, cyclooxygenase 2 (COX‑2) and snail family transcriptional repressor 2 (SNAI2) were measured using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were assessed using ELISA. RT‑qPCR analysis revealed that miR‑181a expression was downregulated in HLE‑B3 cells following transfection with miR‑181a‑shRNA. Treatment with H2O2 significantly reduced the viability of HLE‑B3 cells, whereas miR‑181a knockdown was revealed to attenuate the effects on cell viability following H2O2 treatment. In addition, the downregulation of miR‑181a expression significantly decreased H2O2‑induced cell apoptosis, which was accompanied by a downregulation in CASP3 and BAX and COX‑2 expression. Furthermore, the levels of MDA were decreased, whereas the levels of SOD and CAT were increased following miR‑181a silencing. The present findings suggested that miR‑181a knockdown may protect HLE‑B3 cells against H2O2‑induced apoptosis in vitro. The molecular mechanisms involved in the protective effects of miR‑181a silencing may involve the suppression of CASP3, BAX and COX‑2 expression, and the inhibition of MDA generation.
Collapse
Affiliation(s)
- Zhan Shi
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
46
|
Xu J, Tang Y, Bei Y, Ding S, Che L, Yao J, Wang H, Lv D, Xiao J. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget 2017; 7:10870-8. [PMID: 26918829 PMCID: PMC4905445 DOI: 10.18632/oncotarget.7678] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia-reperfusion (I-R) injury lacks effective treatments. The miR-17-92 cluster plays important roles in regulating proliferation, apoptosis, cell cycle and other pivotal processes. However, their roles in myocardial I-R injury are largely unknown. In this study, we found that miR-19b was the only member of the miR-17-92 cluster that was downregulated in infarct area of heart samples from a murine model of I-R injury. Meanwhile, downregulation of miR-19b was also detected in H2O2-treated H9C2 cells in vitro mimicking oxidative stress occurring during myocardial I-R injury. Using flow cytometry and Western blot analysis, we found that overexpression of miR-19b decreased H2O2-induced apoptosis and improved cell survival, while downregulation of that had inverse effects. Furthermore, PTEN was negatively regulated by miR-19b at the protein level while silencing PTEN could completely block the aggravated impact of miR-19b inhibitor on H2O2-induced apoptosis in H9C2 cardiomyocytes, indicating PTEN as a downstream target of miR-19b controlling H2O2-induced apoptosis. These data indicate that miR-19b overexpression might be a novel therapy for myocardial I-R injury.
Collapse
Affiliation(s)
- Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Tang
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Laboratory, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of NanTong University, Nantong, China
| | - Lin Che
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbao Wang
- Department of Cardiology, Shanghai Yangpu District Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongchao Lv
- Regeneration and Ageing Laboratory, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Junjie Xiao
- Regeneration and Ageing Laboratory, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
| |
Collapse
|
47
|
Zhang L, Zhou XJ, Zhan LY, Wu XJ, Li WL, Zhao B, Meng QT, Xia ZY. [Dexmedetomidine preconditioning protects against lipopolysaccharides-induced injury in the human alveolar epithelial cells]. Rev Bras Anestesiol 2017; 67:600-606. [PMID: 28818492 DOI: 10.1016/j.bjan.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 11/28/2016] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Dexmedetomidine (DEX) has demonstrated the preconditioning effect and shown protective effects against organize injury. In this study, using A549 (human alveolar epithelial cell) cell lines, we investigated whether DEX preconditioning protected against acute lung injury (ALI) in vitro. METHODS A549 were randomly divided into four groups (n=5): control group, DEX group, lipopolysaccharides (LPS) group, and D-LPS (DEX+LPS) group. Phosphate buffer saline (PBS) or DEX were administered. After 2h preconditioning, the medium was refreshed and the cells were challenged with LPS for 24h on the LPS and D-LPS group. Then the malondialdehyde (MDA), superoxide dismutase (SOD), Bcl-2, Bax, caspase-3 and the cytochrome c in the A549 were tested. The apoptosis was also evaluated in the cells. RESULTS Compare with LPS group, DEX preconditioning reduced the apoptosis (26.43%±1.05% vs. 33.58%±1.16%, p<0.05) in the A549, which is correlated with decreased MDA (12.84±1.05 vs. 19.16±1.89nmol.mg-1 protein, p<0.05) and increased SOD activity (30.28±2.38 vs. 20.86±2.19U.mg-1 protein, p<0.05). DEX preconditioning also increased the Bcl-2 level (0.53±0.03 vs. 0.32±0.04, p<0.05) and decreased the level of Bax (0.49±0.04 vs. 0.65±0.04, p<0.05), caspase-3 (0.54±0.04 vs. 0.76±0.04, p<0.05) and cytochrome c. CONCLUSION DEX preconditioning has a protective effect against ALI in vitro. The potential mechanisms involved are the inhibition of cell death and improvement of antioxidation.
Collapse
Affiliation(s)
- Lei Zhang
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Xian-Jin Zhou
- Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China; Tongji University, First Maternity and Infant Hospital, Department of Anesthesiology, Shanghai, China
| | - Li-Ying Zhan
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Xiao-Jing Wu
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Wen-Lan Li
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Bo Zhao
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Qing-Tao Meng
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China
| | - Zhong-Yuan Xia
- Wuhan University, Renmin Hospital, Department of Anesthesiology, Wuhan, Hubei, China; Wuhan University, Renmin Hospital, Laboratory of Anesthesiology and Critical Care Medicine, Wuhan, Hubei, China.
| |
Collapse
|
48
|
Wu YH, Lin HR, Lee YH, Huang PH, Wei HC, Stern A, Chiu DTY. A novel fine tuning scheme of miR-200c in modulating lung cell redox homeostasis. Free Radic Res 2017; 51:591-603. [PMID: 28675952 DOI: 10.1080/10715762.2017.1339871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress induces miR-200c, the predominant microRNA (miRNA) in lung tissues; however, the antioxidant role and biochemistry of such induction have not been clearly defined. Therefore, a lung adenocarcinoma cell line (A549) and a normal lung fibroblast (MRC-5) were used as models to determine the effects of miR-200c expression on lung antioxidant response. Hydrogen peroxide (H2O2) upregulated miR-200c, whose overexpression exacerbated the decrease in cell proliferation, retarded the progression of cells in the G2/M-phase, and increased oxidative stress upon H2O2 stimulation. The expression of three antioxidant proteins, superoxide dismutase (SOD)-2, haem oxygenase (HO)-1, and sirtuin (SIRT) 1, was reduced upon H2O2 stimulation in miR-200c-overexpressed A549 cells. This phenomenon of increased oxidative stress and antioxidant protein downregulation also occurs simultaneously in miR-200c overexpressed MRC-5 cells. Molecular analysis revealed that miR-200c inhibited the gene expression of HO-1 by directly targeting its 3'-untranslated region. The downregulation of SOD2 and SIRT1 by miR-200c was mediated through zinc finger E-box-binding homeobox 2 (ZEB2) and extracellular signal-regulated kinase 5 (ERK5) pathways, respectively, where knockdown of ZEB2 or ERK5 decreased the expression of SOD2 or SIRT1 in A549 cells. LNA anti-miR-200c transfection in A549 cells inhibited the endogenous miR-200c expression, resulting in increased expressions of antioxidant proteins, reduced oxidative stress and recovered cell proliferation upon H2O2 stimulation. These findings indicate that miR-200c fine-tuned the antioxidant response of the lung cells to oxidative stress through several pathways, and thus this study provides novel information concerning the role of miR-200c in modulating redox homeostasis of lung.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Hsin-Ru Lin
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Ying-Hsuan Lee
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Pin-Hao Huang
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Huei-Chung Wei
- b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Arnold Stern
- d New York University School of Medicine , New York , NY , USA
| | - Daniel Tsun-Yee Chiu
- a Research Center for Chinese Herbal Medicine, College of Human Ecology , Chang Gung University of Science and Technology , Taoyuan , Taiwan.,b Department of Medical Biotechnology and Laboratory Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,e Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,f Department of Pediatric Hematology/Oncology , Linkou Chang Gung Memorial Hospital , Taoyuan , Taiwan
| |
Collapse
|
49
|
Peng Q, Wang X, Wu K, Liu K, Wang S, Chen X. Irisin attenuates H 2O 2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7707-7717. [PMID: 31966617 PMCID: PMC6965300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/20/2017] [Indexed: 06/10/2023]
Abstract
Irisin, a novel muscle-secreted peptide, has been proposed to play a potential role in improving myocardial remodeling that leads to impaired myocardial function and heart failure. It has been reported that controlling reactive oxygen species (ROS) exposure could increase cardiomyocyte survival and prevent pathological remodeling of the myocardium. Therefore, we aimed to determine the potential protective effects of Irisin pretreatment against ROS in cardiomyocytes and explored the potential mechanisms. H9c2 cells that were subjected to H2O2 in vitro were used to mimic myocardial remodeling. Then, the effects of Irisin on myocardial cell proliferation, apoptosis and cellular ROS levels were evaluated during this process by using MTT assay, flow cytometry analysis and 2'7'-Dichloro fluoresc in diacetate (DCFH-DA). In order to determine whether Irisin could regulate any microRNA (miRNA) during this process, six miRNAs that are known to be involved in apoptosis of cardiomyocytes were assessed by qRT-PCR. The protective effects of Irisin on cardiomyocytes mediated by miR-19b were evaluated by detecting cell proliferation and apoptosis. In addition, the potential target of miR-19b was predicted with bioinformatics tools and verified using dual-luciferase reporter assay. Finally, the protein levels of members of the phosphatidylinositol 3-kinase (PI3K)/Akt/signaling pathway were also examined by Western Blot. Our study showed that Irisin treatment improved H2O2-induced cell viability and attenuated the levels of intracellular ROS and the apoptosis of cardiomyocytes in a dose-dependent manner. We also demonstrated that Irisin promoted cell viability and inhibited cell apoptosis via upregulating miR-19b expression. In addition, PTEN was identified as a functional target gene of miR-19b that was responsible for its anti-apoptotic effects in cardiomyocytes. Further study demonstrated that Irisin-regulated miR-19b could reactivate the AKT/mTOR signaling pathway blocked by H2O2 in H9c2 cells. We demonstrated that Irisin strongly enhances cellular proliferation and preventsapoptosis of cardiomyocytes as well as attenuates the levels of intracellular ROS induced by H2O2. These effects might be mediated through the miR-19b/AKT/mTOR signaling pathway, which provide a new insight into the mechanism by which Irisin may have beneficial effect on myocardial remodeling.
Collapse
Affiliation(s)
- Qing Peng
- Department of Cardiology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Xiaojie Wang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Kai Wu
- Department of Cardiology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan UniversityChengdu 610041, Sichuan, China
| |
Collapse
|
50
|
Zhao Y, Ponnusamy M, Dong Y, Zhang L, Wang K, Li P. Effects of miRNAs on myocardial apoptosis by modulating mitochondria related proteins. Clin Exp Pharmacol Physiol 2017; 44:431-440. [DOI: 10.1111/1440-1681.12720] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanfang Zhao
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Murugavel Ponnusamy
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Yanhan Dong
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Lei Zhang
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Kun Wang
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| | - Peifeng Li
- Centre for Developmental Cardiology; Institute for Translational Medicine; Qingdao University; Qingdao China
| |
Collapse
|