1
|
Jomova K, Alomar SY, Valko R, Liska J, Nepovimova E, Kuca K, Valko M. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact 2025; 413:111489. [PMID: 40147618 DOI: 10.1016/j.cbi.2025.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/23/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Oxidative stress and chronic inflammation are important drivers in the pathogenesis and progression of many chronic diseases, such as cancers of the breast, kidney, lung, and others, autoimmune diseases (rheumatoid arthritis), cardiovascular diseases (hypertension, atherosclerosis, arrhythmia), neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease), mental disorders (depression, schizophrenia, bipolar disorder), gastrointestinal disorders (inflammatory bowel disease, colorectal cancer), and other disorders. With the increasing demand for less toxic and more tolerable therapies, flavonoids have the potential to effectively modulate the responsiveness to conventional therapy and radiotherapy. Flavonoids are polyphenolic compounds found in fruits, vegetables, grains, and plant-derived beverages. Six of the twelve structurally different flavonoid subgroups are of dietary significance and include anthocyanidins (e.g. pelargonidin, cyanidin), flavan-3-ols (e.g. epicatechin, epigallocatechin), flavonols (e.g. quercetin, kaempferol), flavones (e.g. luteolin, baicalein), flavanones (e.g. hesperetin, naringenin), and isoflavones (daidzein, genistein). The health benefits of flavonoids are related to their structural characteristics, such as the number and position of hydroxyl groups and the presence of C2C3 double bonds, which predetermine their ability to chelate metal ions, terminate ROS (e.g. hydroxyl radicals formed by the Fenton reaction), and interact with biological targets to trigger a biological response. Based on these structural characteristics, flavonoids can exert both antioxidant or prooxidant properties, modulate the activity of ROS-scavenging enzymes and the expression and activation of proinflammatory cytokines (e.g., interleukin-1beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), induce apoptosis and autophagy, and target key signaling pathways, such as the nuclear factor erythroid 2-related factor 2 (Nrf2) and Bcl-2 family of proteins. This review aims to briefly discuss the mutually interconnected aspects of oxidative and inflammatory mechanisms, such as lipid peroxidation, protein oxidation, DNA damage, and the mechanism and resolution of inflammation. The major part of this article discusses the role of flavonoids in alleviating oxidative stress and inflammation, two common components of many human diseases. The results of epidemiological studies on flavonoids are also presented.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Richard Valko
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Jan Liska
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, 811 08, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic; Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, Ostrava-Poruba, 708 00, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, 5005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Mamabolo MP, Tembeni B, Siwe Noundou X, Mncwangi NP. Selected Medicinal Plants Used in the Treatment and Management of Tuberculosis and Related Symptoms in South Africa. Pharmaceuticals (Basel) 2025; 18:513. [PMID: 40283948 PMCID: PMC12030471 DOI: 10.3390/ph18040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Medicinal plants are used around the globe to treat and/or manage various medical conditions, including respiratory diseases such as tuberculosis, which affect the lower respiratory tract, with its related symptoms being treated and/or managed using medicinal plants. This review collates the available literature pertaining to the medicinal uses and phytochemistry of Carpobrotus edulis, Drosera capensis, Pelargonium reniforme, and Tulbaghia violacea used for the treatment and management of tuberculosis in South Africa. The abovementioned plants were selected based on their long history of use, anecdotal evidence, and the scientific data available. Methods: Data to compile this review article were sourced and analyzed from Google Scholar, Pubmed, ScienceDirect, and textbooks published from 2000 to 2022. The search terms included the plant and genus names of each species, tuberculosis, and Mycobacterium tuberculosis. Results: The data obtained indicate that the plants do not only have an effect on Mycobacterium tuberculosis, but also on other conditions, including cough, colds, eczema, infections, and asthma, which are differential diagnoses in suspected tuberculosis cases. The literature indicates that extracts from the four plants under review have antimicrobial activity, with MICs ranging between 0.20 and 50.00 mg/mL. The major classes of phytochemicals identified from the four medicinal plants included flavonoids, naphthoquinone, terpenoids, and sulfur-containing compounds. Conclusions: The literature review on the plants reveals that they are also used to treat other lower-respiratory ailments, including cough and fever, which may be signs and symptoms of TB. The literature review reveals that medicinal plants contain valuable phytochemicals which may be strong drug leads to combat the tuberculosis epidemic.
Collapse
Affiliation(s)
- Makosha P. Mamabolo
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, P.O. Box 218, Ga-Rankuwa 0204, South Africa
| | - Babalwa Tembeni
- African Genome Center, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco;
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, P.O. Box 218, Ga-Rankuwa 0204, South Africa
| | - Nontobeko P. Mncwangi
- Department of Pharmacy Practice, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, P.O. Box 218, Ga-Rankuwa 0204, South Africa;
| |
Collapse
|
3
|
Tabassum T, Islam A, Andalib KMS, Sarker B, Mia M, Ahmed KS, Hossain H, Habib A. Antibacterial Activity of Ocimum tenuiflorum against Drug Resistant Bacteria Isolated from Raw Beef. J Microbiol Biotechnol 2025; 35:e2409028. [PMID: 40147923 PMCID: PMC11985415 DOI: 10.4014/jmb.2409.09028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 03/29/2025]
Abstract
Recent empirical evidence has acknowledged raw meat, particularly beef, as a significant reservoir for diverse foodborne pathogens and drug-resistant strains, posing severe threat to consumer health. This study aimed to isolate and identify drug-resistant bacteria from raw beef samples, obtained from different butcher shops in Khulna city, Bangladesh, as well as, to determine their susceptibility pattern against Ocimum tenuiflorum extracts. Raw beef samples were randomly collected from various butcher shops, followed by the initial isolation of thirty pure bacterial isolates. Later, 16S rRNA gene amplification and analysis identified twelve distinct bacterial species from those isolates. The antimicrobial susceptibility test results revealed ten of the isolates, including Klebsiella pneumoniae, Aeromonas veronii and Enterobacter hormaechei, to exhibit multidrug resistance pattern. Amoxicillin, nitrofurantoin, and flucloxacillin were found to be ineffective against most isolates. However, the ethanolic extracts of O. tenuiflorum were found effective in inhibiting the growth of eight species at three different concentrations. Subsequent HPLC analysis of O. tenuiflorum reported the presence of five secondary metabolites epicatechin, syringic acid, rutin hydrate, p-coumaric acid, and myricetin as potent contributors to the observed antimicrobial activity. Lastly, in silico binding interaction simulations of the secondary metabolites against five relevant targets predict syringic acid and myricetin to have effective antibacterial properties, primarily mediated by better binding affinity and molecular interactions. Thus, this study identified diverse drug-resistant bacteria in raw beef and provided novel insights into the antibacterial properties of O. tenuiflorum extracts.
Collapse
Affiliation(s)
| | - Anti Islam
- Institute for Integrated Studies on the Sundarbans and Coastal Ecosystems (IISSCE), Khulna University, Bangladesh
| | - K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Barnali Sarker
- Pathology and Translational Pathobiology Varsity, LSU Health Shreveport, USA
| | - Mijan Mia
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Khondoker Shahin Ahmed
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Hemayet Hossain
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
4
|
Deniz FSS, Orhan IE, Filipek PA, Ertas A, Gstir R, Jakschitz T, Bonn GK. Evaluation of the Anti-Aging Properties of Ethanolic Extracts from Selected Plant Species and Propolis by Enzyme Inhibition Assays and 2D/3D Cell Culture Methods. Pharmaceuticals (Basel) 2025; 18:439. [PMID: 40143215 PMCID: PMC11944460 DOI: 10.3390/ph18030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Skin aging is a complex biological process affected by internal and external factors that disrupt the skin structure, especially in sun-exposed areas. Elastin and collagen in the dermis layer, responsible for the skin's resistance and elasticity, have been the main subject of research. Since tyrosinase (TYR) is an enzyme found in different organisms and plays an essential role in melanogenesis, inhibitors of this enzyme have been the target mechanism for skin-bleaching product research. Methods: We selected the plant species Cotinus coggygria Scop., Garcinia mangostana L., Pistacia vera L., Vitis vinifera L., and propolis, which exhibited activity against a minimum of three target enzymes-elastase, collagenase, and TYR-in our previous screening study to find the suitable raw material for a cosmetic product. In the current research, the extracts from these samples were tested through a cell-free enzyme assay using validated elastase, collagenase, and TYR inhibition kits. We also performed the safety and efficacy tests of the selected extracts with 2D/3D cell culture methods. Results: Our data revealed the propolis extract among the tested ones displayed remarkable anti-inflammatory activity in the 2D (NF-κB induction: 10.81%) and 3D assays. Cotinus coggygria leaf and Garcinia mangostana shell extracts exhibited anti-inflammatory activity in the 2D luciferase reporter assay via TNFα addition. C. coggygria leaf, V. vinifera (grape) seed, and propolis extracts were selected for testing in 3D cell culture methods based on the 2D cytotoxicity results with cell viability values of 54.75%, 93.19%, and 98.64% at 34.25 µg/mL, respectively. The general phytochemical profiles of these three extracts were examined in terms of 53 phenolic compounds with LC-MS/MS, revealing that quinic acid, epicatechin, and acacetin were the dominant phenolics among the tested ones. Conclusions: It is the first study conducted to evaluate the use of the extracts indicated above in cosmetics by employing procedures involving 3D cell culture.
Collapse
Affiliation(s)
- F. Sezer Senol Deniz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Lokman Hekim University, 06510 Ankara, Türkiye;
- Principal Member of Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, 06670 Ankara, Türkiye
| | - Przemyslaw Andrzej Filipek
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria; (P.A.F.); (R.G.); (T.J.); (G.K.B.)
| | - Abdulselam Ertas
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, 21280 Diyarbakır, Türkiye;
| | - Ronald Gstir
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria; (P.A.F.); (R.G.); (T.J.); (G.K.B.)
| | - Thomas Jakschitz
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria; (P.A.F.); (R.G.); (T.J.); (G.K.B.)
| | - Günther Karl Bonn
- ADSI-Austrian Drug Screening Institute GmbH, Innrain 66a, 6020 Innsbruck, Austria; (P.A.F.); (R.G.); (T.J.); (G.K.B.)
| |
Collapse
|
5
|
Mathews Paul B, Kannan G, Jegan Raj F, Velavan Sundararajan V, Annadurai Y, Piramanayagam S, Thangaraj P. GC-MS/HPLC Profiling and Sono-Maceration Mediated Extraction of Osbeckia Parvifolia Polyphenols: In Silico and In Vitro Analysis on Anti-Proliferative Activity in Ovarian Cancer Cell Lines. Chem Biodivers 2025; 22:e202402228. [PMID: 39417207 DOI: 10.1002/cbdv.202402228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Osbeckia parvifolia, an endemic edible plant of Western Ghats, was investigated in the present study for its polyphenolic compounds, including content, constituents, extraction through an ultrasonic-assisted maceration technique and therapeutic potential in biomedical applications. The methanolic extract (OPM) exhibited an IC50 value of 1.25 μg/mL against 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals. Furthermore, the ethyl acetate and methanolic extracts also strongly inhibited 5-lipoxygenase, especially OPM (84.93 %), which was comparable to standard curcumin. OPM also elicited cytotoxicity in SKOV3 ovarian cancer cells (93.80 %), surpassing paclitaxel. Bio-accessibility analysis demonstrated that the release of phenolic compounds and antioxidant potential were very high (above 100 %), revealing the possibility of synergistic efficacy of polyphenolic complexes in drug development. Gas Chromatography -Mass Spectrometry (GC-MS) analysis revealed 22 bioactive polyphenolic compounds in OPM, such as epicatechin, quercetin, and psoralidin. This was confirmed by High Performance Liquid Chromatography (HPLC) and High-Pressure Thin Layer Chromatography (HPTLC) analyses, which revealed a high quantity of catechin (37.45 mg/g). Molecular docking revealed the significant binding affinity of these proteins for the ovarian oncoproteins PI3K (-8.52 kcal/mol) and Casp-8 (-8.41 kcal/mol). Adsorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) profiling indicated the favorable pharmacokinetic properties of these compounds, supporting their candidacy in drug formulations against ovarian cancer.
Collapse
Affiliation(s)
- Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Francis Jegan Raj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Vetri Velavan Sundararajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Yamuna Annadurai
- Computational Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
6
|
Johnson AL, Webster M. Dark Chocolate Elevates Resting Energy Expenditure in Postmenopausal Women. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2025; 18:316-328. [PMID: 40190744 PMCID: PMC11970407 DOI: 10.70252/qrgn7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Several recent reports have indicated positive health benefits of consuming (-)-epicatechin-rich cocoa products. Postmenopausal women are predisposed to reduced metabolism due to decreased levels and activity of the sex hormones estrogen, progesterone, and estradiol. The purpose of this study was to investigate the influence of dark chocolate consumption on resting and exercise metabolism in postmenopausal women. Using a randomized, double-blind design, 26 postmenopausal participants were assigned to a 30-day supplementation with 20-g per day of 72% dark chocolate (DC) or calorically matched white chocolate (WC). Before supplementation, participants underwent two control trials for assessments (PRE1, PRE2) of resting energy expenditure (REE) and exercise energy expenditure (EEE). Following the PRE2 assessment, participants were randomized and supplemented for 30 days, after which they repeated the assessments for REE and EEE. PRE1 and PRE2 REE and EEE were not significantly different within or between groups (REE: PRE1 DC 1215± 170, WC 1127 ± 174, p=0.662; PRE2 DC 1211 ± 174, WC 1145 ± 165 kcal/d, p=0.720; EEE: PRE1 DC 3.67 ± 0.72, WC 3.40 ± 0.81, p=0.665; PRE2 DC 3.41 ± 0.88, WC 3.39 ± 0.73kcal/min, p=0.373). Post-supplementation REE was significantly increased by 3.2% in the DC group (Pre-Post change: DC 38.6 ± 49, WC -15 ± 31.2 kcal per day, p =0.039, Cohen's d= 0.724 [95% CI: 0.078, 1.513]). These results indicate that DC supplementation in postmenopausal women was associated with a significant 3.2% increase in REE with no significant influence on EEE.
Collapse
Affiliation(s)
- Aubrey L Johnson
- Valdosta State University, College of Nursing and Health Sciences, Valdosta, GA, USA
- Virginia Polytechnic Institute and State University, Department of Agriculture and Life Sciences, Blacksburg, VA, USA
| | - Michael Webster
- Valdosta State University, College of Nursing and Health Sciences, Valdosta, GA, USA
| |
Collapse
|
7
|
Saunoriūtė S, Zymonė K, Marksa M, Raudonė L. Comparative Analysis of Phenolic Profiles and Antioxidant Activity in the Leaves of Invasive Amelanchier × spicata (Lam.) K. Koch in Lithuania. PLANTS (BASEL, SWITZERLAND) 2025; 14:221. [PMID: 39861574 PMCID: PMC11769043 DOI: 10.3390/plants14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
The environmental impact of invasive species necessitates creating a strategy for managing their spread by utilising them as a source of potentially high-value raw materials. Amelanchier × spicata (Lam.) K. Koch (dwarf serviceberry) is a shrub species in the Rosaceae Juss. family. The evaluation of different populations of plants that accumulate great amounts of biologically active compounds is requisite for the quality determination of plant materials and medicinal and nutritional products. The assessment of natural resources from a phytogeographic point of view is relevant. Phytochemical analysis of A. spicata leaf samples was carried out using spectrophotometric methods, HPLC-PDA, and HPLC-MS techniques, while antioxidant activity was determined using ABTS, FRAP, and CUPRAC assays. A significant diversification of phenolic compounds and antioxidant activity was determined in the A. spicata leaf samples collected in different habitats. Due to their characteristic chemical heterogeneity, natural habitats lead to the diversity of indicators characterising the quality of plant raw materials. Chlorogenic acid and neochlorogenic acid, as well as quercitrin, rutin, and hyperoside, were found to be predominant among the phenolic compounds. Thus, these compounds can be considered phytochemical markers, characteristic of the A. spicata leaf material from northern Europe.
Collapse
Affiliation(s)
- Sandra Saunoriūtė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Botanical Garden, Vytautas Magnus University, Z. E. Zilibero Str. 4, LT-46324 Kaunas, Lithuania
| | - Kristina Zymonė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| | - Lina Raudonė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
8
|
Melo BP, Zacarias AC, Oliveira JCC, de Souza Cordeiro LM, Horta NAC, Poletini MO, Tonoli C, Dos Santos ML, Wanner SP, Meeusen R, Heyman E, Avelar GF, Soares DD. Enhancing metabolic and inflammatory status in insulin-resistant rats: Acute intervention with cocoa flavanols and submaximal aerobic exercise activates intracellular signaling pathways for glucose metabolism. Clin Nutr 2025; 44:166-177. [PMID: 39675158 DOI: 10.1016/j.clnu.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Type 2 diabetes, characterized by hyperglycemia, is closely linked to obesity and low-grade inflammation. Acute cocoa flavanols (CF) intake has demonstrated benefits in vasoreactivity, cognitive functions, and antioxidant enzyme activity. However, the physiological mechanisms of CF concerning glucose uptake, inflammatory mediators, and their interplay with aerobic exercise remain unclear in populations with metabolic diseases. OBJECTIVE This study aims to investigate the acute effects of CF, alone or combined with acute aerobic exercise on mechanisms involved in glucose uptake and inflammatory mediators in the liver, skeletal muscle, pancreas, and adipose tissue in insulin-resistant (IR) rats. METHODS Sixty-four Wistar rats (250 ± 10g; 15 weeks age) were subjected to a regular chow (CON) or an obesity-associated insulin-resistant (IR) state induced by a high-fat diet and fructose-rich beverage for 30 days. Seventy-two hours after an incremental maximal treadmill running test, rats received a placebo solution or CF supplementation (45 mg·kg-1 of body weight). One hour later, they either rested or ran on a treadmill at 60 % of peak oxygen uptake (VO2peak) for 30 min. Euthanasia occurred 30 min post-experimental sessions. Inflammatory and anti-inflammatory cytokines were assayed using ELISA in the liver, pancreas, gastrocnemius muscle, and epididymal adipose tissues. TRB3 and CPT1 mRNA were assessed by q-RTPCR in the liver and gastrocnemius muscle while Akt and AMPK phosphorylation were examined by immunohistochemistry. RESULTS CF attenuated hyperglycemia observed after submaximal aerobic exercise in IR rats (p < 0.001). In the liver, CF exhibited additive effects to aerobic exercise, enhancing Akt protein phosphorylation, potentially contributing to improved glucose uptake in IR rats. Submaximal aerobic exercise and CF increased AMPK protein phosphorylation in the liver (p < 0.001) and skeletal muscle (p < 0.001), reduced TRB3 gene expression (p < 0.01), elevated CPT-1a gene expression (p < 0.001), and ameliorated the inflammatory milieu in the pancreas, adipose tissue, liver, and gastrocnemius muscle. CONCLUSION Acute intake, of CF combined with submaximal aerobic exercise activates key proteins and genes involved in glucose uptake and lipid metabolism, improving the inflammatory milieu. This synergistic effect may contribute to mitigating metabolic complications associated with insulin resistance.
Collapse
Affiliation(s)
- B P Melo
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil.
| | - A C Zacarias
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - J C C Oliveira
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - L M de Souza Cordeiro
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box 693 Rochester, NY 14642, Rochester, USA
| | - N A C Horta
- Federal University of Minas Gerais, Institute of Biological Sciences, Physiology and Biophysics Department, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - M O Poletini
- Federal University of Minas Gerais, Institute of Biological Sciences, Physiology and Biophysics Department, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - C Tonoli
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Universiteit Gent, Campus Heymans (UZ Gent), Building B3-De Pintelaan 185, 9000, Ghent, Belgium
| | - M L Dos Santos
- Federal University of Minas Gerais, Department of Morphology, Cellular Biology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - S P Wanner
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - R Meeusen
- Human Physiology Research Group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - E Heyman
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Institut Universitaire de France, Paris, France
| | - G F Avelar
- Federal University of Minas Gerais, Department of Morphology, Cellular Biology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil
| | - D D Soares
- Federal University of Minas Gerais, Department of Physical Education, Exercise Physiology Laboratory, Av. Pres. Antônio Carlos, 6627 Campus-Pampulha, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
da Silva Prade J, da Silva D'Ávila CM, da Silva TC, Viana AR, Schuch AP, Livinalli IC, Bertoncelli ACZ, Saccol FK, de Oliveira Mendes T, da Silva JLG, Leal DBR, Schuch NJ, de Mello GH, Ribeiro MF, Gomes P, Cadoná FC. Cocoa ( Theobroma cacao L.) photobiological effect on human fibroblast cells (HFF-1) exposed to ultraviolet B (UVB) radiation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-15. [PMID: 39674999 DOI: 10.1080/15287394.2024.2439535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
This study aimed to investigate the in vitro photobiological action of cocoa solution on a human fibroblast cell line (HFF-1) exposed to ultraviolet B (UVB) radiation. Three experimental models were utilized, where fibroblast cells were treated with different concentrations of cocoa as follows: 50; 100; 250; 500; 750; 1000 or 1500 µg/ml and concomitantly exposed to UVB 7 kJ/m2 for 10 min. The following parameters were examined 1) analysis of the pre-treatment action of cocoa; 2) investigation of the co-treatment activity of cocoa at the time of exposure; and 3) study the effect of cocoa in the post-treatment of the damage initiated by UVB. Cocoa exhibited biological action only in the post-treatment model at almost all tested concentrations compared to cells exposed to UVB alone. Further, fibroblast cells treated only with cocoa displayed higher levels of proliferation as evidenced by a decrease in the levels of basal reactive oxygen species (ROS) and nitric oxide (NO). In addition, cocoa also modulated the cell cycle of cells in the absence of UVB exposure by increasing the G2/M phase, although this did not generate significant changes in cells exposed concomitantly to cocoa and UVB. Therefore, data demonstrated that exposure to cocoa improved fibroblast cell-based control rates and exhibited an important reparative activity against damage initiated by UVB in human fibroblasts. Cocoa may thus be considered as a potential beneficial agent to be utilized in UVB-damaged skin cells.
Collapse
Affiliation(s)
- Josiéle da Silva Prade
- Post-graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| | | | | | - Altevir Rossato Viana
- Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - André Passaglia Schuch
- Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | | | - Jean Lucas Gutknecht da Silva
- Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniela Bitencourt Rosa Leal
- Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natielen Jacques Schuch
- Post-graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| | - Gabriela Hass de Mello
- Post-graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| | | | - Patrícia Gomes
- Post-graduate Program in Nanoscience, Franciscan University, Santa Maria, Brazil
| | - Francine Carla Cadoná
- Post-graduate Program in Health and Life Sciences, Franciscan University, Santa Maria, Brazil
| |
Collapse
|
10
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
11
|
Singh S, Singh S, Joshi D, Mohanty C, Singh R. In Silico Prediction of Potential Inhibitors for Targeting RNA CAG Repeats via Molecular Docking and Dynamics Simulation: A Drug Discovery Approach. J Cell Biochem 2024; 125:e30611. [PMID: 38884365 DOI: 10.1002/jcb.30611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
Spinocerebellar ataxia (SCA) is a rare neurological illness inherited dominantly that causes severe impairment and premature mortality. While each rare disease may affect individuals infrequently, collectively they pose a significant healthcare challenge. It is mainly carried out due to the expansion of RNA triplet (CAG) repeats, although missense or point mutations can also be induced. Unfortunately, there is no cure; only symptomatic treatments are available. To date, SCA has about 48 subtypes, the most common of these being SCA 1, 2, 3, 6, 7, 12, and 17 having CAG repeats. Using molecular docking and molecular dynamics (MD) simulation, this study seeks to investigate effective natural herbal neuroprotective compounds against CAG repeats, which are therapeutically significant in treating SCA. Initially, virtual screening followed by molecular docking was used to estimate the binding affinity of neuroprotective natural compounds toward CAG repeats. The compound with the highest binding affinity, somniferine, was then chosen for MD simulation. The structural stability, interaction mechanism, and conformational dynamics of CAG repeats and somniferine were investigated via MD simulation. The MD study revealed that during the simulation period, the interaction between CAG repeats and somniferine stabilizes and results in fewer conformational variations. This in silico study suggests that Somniferine can be used as a therapeutic medication against RNA CAG repeats in SCA.
Collapse
Affiliation(s)
- Surbhi Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Suchitra Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chhandamayee Mohanty
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Shete V, Mahajan NM, Shivhare R, Akkewar A, Gupta A, Gurav S. Genistein: A promising phytoconstituent with reference to its bioactivities. Phytother Res 2024. [PMID: 38831683 DOI: 10.1002/ptr.8256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
Genistein, a potent phytoconstituent, has garnered significant attention for its diverse bioactivities, making it a subject of extensive research and exploration. This review delves into the multifaceted properties of genistein, encompassing its antioxidant and anticancer potential. Its ability to modulate various cellular pathways and interact with diverse molecular targets has positioned it as a promising candidate in the prevention and treatment of various diseases. This review provides a comprehensive examination of Genistein, covering its chemical properties, methods of isolation, synthesis, therapeutic attributes with regard to cancer management, and the proposed mechanisms of action as put forth by researchers.
Collapse
Affiliation(s)
- Vaishnavi Shete
- Department of Pharmaceutics, Datta Meghe College of Pharmacy, Wardha, Maharashtra, India
| | - Nilesh M Mahajan
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ruchi Shivhare
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Ashish Akkewar
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Amisha Gupta
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Panaji, Goa, India
| |
Collapse
|
13
|
Kour N, Bhagat G, Singh S, Bhatti SS, Arora S, Singh B, Bhatia A. Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review. J Diabetes Metab Disord 2024; 23:73-99. [PMID: 38932901 PMCID: PMC11196529 DOI: 10.1007/s40200-023-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Background Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes. Objective This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols. Methods Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria. Results This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications. Conclusion Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.
Collapse
Affiliation(s)
- Navdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Gulshan Bhagat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Simran Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sandip Singh Bhatti
- Department of Chemistry, Lovely Professional University, Phagwara, 144001 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
14
|
Luo X, Shi Y, Ma Y, Liu Y, Jing P, Cao X, Wang J, Hu Z, Cai H. Exploring the mechanism of ShenGui capsule in treating heart failure based on network pharmacology and molecular docking: A review. Medicine (Baltimore) 2024; 103:e37512. [PMID: 38579077 PMCID: PMC10994518 DOI: 10.1097/md.0000000000037512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 04/07/2024] Open
Abstract
ShenGui capsule (SGC), as a herbal compound, has significant effects on the treatment of heart failure (HF), but its mechanism of action is unclear. In this study, we aimed to explore the potential pharmacological targets and mechanisms of SGC in the treatment of HF using network pharmacology and molecular docking approaches. Potential active ingredients of SGC were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform database and screened by pharmacokinetic parameters. Target genes of HF were identified by comparing the toxicogenomics database, GeneCards, and DisGeNET databases. Protein interaction networks and gene-disorder-target networks were constructed using Cytoscape for visual analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were also performed to identify protein functional annotations and potential target signaling pathways through the DAVID database. CB-DOCK was used for molecular docking to explore the role of IL-1β with SGC compounds. Sixteen active ingredients in SGC were screened from the traditional Chinese medicine systems pharmacology database and analysis platform, of which 36 target genes intersected with HF target genes. Protein-protein interactions suggested that each target gene was closely related, and interleukin-1β (IL-1β) was identified as Hub gene. The network pharmacology analysis suggested that these active ingredients were well correlated with HF. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that target genes were highly enriched in pathways such as inflammation. Molecular docking results showed that IL-1β binds tightly to SGC active components. This experiment provides an important research basis for the mechanism of action of SGC in the treatment of HF. In this study, the active compounds of SGC were found to bind IL-1β for the treatment of heart failure.
Collapse
Affiliation(s)
- Xiang Luo
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixi Liu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pan Jing
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jincheng Wang
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Gamal Sherif S, Tarek M, Gamal Sabry Y, Hassan Abou Ghalia A. Effect of apigenin on dynamin-related protein 1 in type 1 diabetic rats with cardiovascular complications. Gene 2024; 898:148107. [PMID: 38141690 DOI: 10.1016/j.gene.2023.148107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Cardiovascular complications cause increased mortality rates among diabetics. The molecular mechanisms of aberrant mitochondrial dynamics in diabetes mellitus (DM) are not fully understood. Dynamin-related protein 1 (Drp1) is thought to be a major regulator of mitochondrial fission. There is lack of studies that examined the relationship between apigenin and Drp1 expression in DM. Thus, the current study aimed to explore the expression of Drp1 in diabetic rats with cardiovascular complications, as well as to appraise the role of apigenin in modulating this expression. METHODS Twenty-eight adult male albino Wister rats were randomly and equally allocated into four groups: naive, streptozotocin-induced type 1 diabetic control and two apigenin-injected diabetic groups (early and late). Body weight, heart weight, blood pressure and ECG were recorded. Evaluation of blood glucose level, lipid profile and cardiac functions were measured. Determination of Drp1 mRNA expression, and histological examination of cardiac tissues from the four groups were performed. RESULTS Diabetic control rats developed decrease of body weight, increase of blood pressure, deterioration of the normal ECG pattern and upregulation of Drp1 mRNA expression in cardiac tissues. There was a significant correlation between the relative expression of Drp1 and all examined parameters. Apigenin-injection improved fasting blood glucose, lipid profile and cardiac function indicators (i.e., ECG parameters, CK-MB and troponin) as well as the cardiac histological structure. The decrease of Drp1 expression was more evident with early than with late apigenin-injection, however, without statistical significance. CONCLUSIONS Increased level of Drp1 expression in diabetic rats may be involved in the pathogenesis of diabetic cardiovascular complications. The changes that occurred in response to apigenin injection highlight its potential ameliorative effect on the diabetic cardiovascular complications and pave the route for further investigations.
Collapse
Affiliation(s)
- Sara Gamal Sherif
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Egypt.
| | - Marwa Tarek
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Egypt.
| | | | - Azza Hassan Abou Ghalia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Egypt.
| |
Collapse
|
16
|
Pillai U J, Cherian L, Taunk K, Iype E, Dutta M. Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (M pro). Int J Biol Macromol 2024; 261:129655. [PMID: 38266830 DOI: 10.1016/j.ijbiomac.2024.129655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Cranberry phytochemicals are known to possess antiviral activities. In the current study, we explored the therapeutic potential of cranberry against SARS-CoV-2 by targeting its main protease (Mpro) enzyme. Firstly, phytochemicals of cranberry origin were identified from three independent databases. Subsequently, virtual screening, using molecular docking and molecular dynamics simulation approaches, led to the identification of three lead phytochemicals namely, cyanidin 3-O-galactoside, β-carotene and epicatechin. Furthermore, in vitro enzymatic assays revealed that cyanidin 3-O-galactoside had the highest inhibitory potential with IC50 of 9.98 μM compared to the other two phytochemicals. Cyanidin 3-O-galactoside belongs to the class of anthocyanins. Anthocyanins extracted from frozen cranberry also exhibited the highest inhibitory potential with IC50 of 23.58 μg/ml compared to the extracts of carotenoids and flavanols, the class for β-carotene and epicatechin, respectively. Finally, we confirm the presence of the phytochemicals in the cranberry extracts using targeted LC-MS/MS analysis. Our results, therefore, indicate that the identified cranberry-derived bioactive compounds as well as cranberry could be used for therapeutic interventions against SARS-CoV-2.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates
| | - Lucy Cherian
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates
| | - Khushman Taunk
- Proteomics Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Eldhose Iype
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mainak Dutta
- Department of Biotechnology, Birla Institute of Technology and Science (BITS) Pilani-Dubai Campus, Academic City, Dubai, United Arab Emirates.
| |
Collapse
|
17
|
Edzeamey FJ, Ramchunder Z, Pourzand C, Anjomani Virmouni S. Emerging antioxidant therapies in Friedreich's ataxia. Front Pharmacol 2024; 15:1359618. [PMID: 38379897 PMCID: PMC10876797 DOI: 10.3389/fphar.2024.1359618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a rare childhood neurologic disorder, affecting 1 in 50,000 Caucasians. The disease is caused by the abnormal expansion of the GAA repeat sequence in intron 1 of the FXN gene, leading to the reduced expression of the mitochondrial protein frataxin. The disease is characterised by progressive neurodegeneration, hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. The reduced expression of frataxin has been suggested to result in the downregulation of endogenous antioxidant defence mechanisms and mitochondrial bioenergetics, and the increase in mitochondrial iron accumulation thereby leading to oxidative stress. The confirmation of oxidative stress as one of the pathological signatures of FRDA led to the search for antioxidants which can be used as therapeutic modality. Based on this observation, antioxidants with different mechanisms of action have been explored for FRDA therapy since the last two decades. In this review, we bring forth all antioxidants which have been investigated for FRDA therapy and have been signed off for clinical trials. We summarise their various target points in FRDA disease pathway, their performances during clinical trials and possible factors which might have accounted for their failure or otherwise during clinical trials. We also discuss the limitation of the studies completed and propose possible strategies for combinatorial therapy of antioxidants to generate synergistic effect in FRDA patients.
Collapse
Affiliation(s)
- Fred Jonathan Edzeamey
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Zenouska Ramchunder
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Sara Anjomani Virmouni
- Ataxia Research Group, Division of Biosciences, Department of Life Sciences, College of Health, Medicine, and Life Sciences (CHMLS), Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
18
|
Kambale EK, Domingues I, Zhang W, Marotti V, Chen C, Hughes K, Quetin-Leclercq J, Memvanga PB, Beloqui A. "Green" synthesized versus chemically synthesized zinc oxide nanoparticles: In vivo antihyperglycemic activity and pharmacokinetics. Int J Pharm 2024; 650:123701. [PMID: 38081556 DOI: 10.1016/j.ijpharm.2023.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Zinc is one of the most studied trace elements, commonly used as supplement in diabetes treatment. By its involvement in the synthesis, secretion of insulin, promotion of insulin sensitivity and its multiple enzymatic functions it is known to contribute to reduce hyperglycemia. Researchers have shown that zinc administered under the form of zinc oxide nanoparticles (ZnONPs) is more effective than under its ionic form. Studies evaluating the antihyperglycemic activity of these nanocarriers include both ZnONPs synthesised using plants (i.e. green synthesized) or chemically synthesized. The present work aims to compare green synthesized ZnONPs with the marketed chemically synthesized ones. Green ZnONPs were synthesized using the aqueous extract of the stem bark of the medicinal plant Panda oleosa and zinc nitrate hexahydrate. Both nanocarriers were compared in terms of optical properties, morphology, composition, chemical functions, resistance to oxidation, in vivo antihyperglycemic activity via oral glucose tolerance test (OGTT) and pharmacokinetics in relation to zinc in C57BL/6J mice. A UV absorption peak was observed at 354 nm and 374 nm for the green and marketed ZnONPs, respectively. The shape and hydrodynamic diameters were anisotropic and of 228.8 ± 3.0 nm for the green ZnONPs and spherical and of 225.6 ± 0.9 nm for the marketed ZnONPs. Phenolic compounds accounted for 2.58 ± 0.04% of the green ZnONPs and allowed them to be more stable and unaffected by an oxidizing agent during the experiment, while the marketed chemically synthesized ZnONPs aggregated with or without contact with an oxidizing agent. No significant differences were observed on the amounts of zinc absorbed when comparing green ZnONPs, chemically synthesized ZnONPs and zinc sulfate in a pharmacokinetics study in normoglycemic mice. When evaluating the in vivo hypoglycemic activity of the nanocarriers in obese/diabetic mice, green synthesized ZnONPs displayed a significant hypoglycemic effect compared with the chemically synthesized nanoparticles following an OGTT. Altogether, these data indicate that phytocompounds, as catechin derivatives and polyphenols, attached to the green synthesized ZnONPs' surface, could contribute to their hypoglycemic activity. The comparison thus demonstrated that green synthesized ZnONPs are significantly more efficient than chemically ones at reducing hyperglycemia regardless of their absorption.
Collapse
Affiliation(s)
- Espoir K Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Inês Domingues
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Wunan Zhang
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Valentina Marotti
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Cheng Chen
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo; Centre de Recherche et d'Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium.
| |
Collapse
|
19
|
German IJS, Pomini KT, Andreo JC, Shindo JVTC, de Castro MVM, Detregiachi CRP, Araújo AC, Guiguer EL, Fornari Laurindo L, Bueno PCDS, de Souza MDSS, Gabaldi M, Barbalho SM, Shinohara AL. New Trends to Treat Muscular Atrophy: A Systematic Review of Epicatechin. Nutrients 2024; 16:326. [PMID: 38276564 PMCID: PMC10818576 DOI: 10.3390/nu16020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Epicatechin is a polyphenol compound that promotes skeletal muscle differentiation and counteracts the pathways that participate in the degradation of proteins. Several studies present contradictory results of treatment protocols and therapeutic effects. Therefore, the objective of this systematic review was to investigate the current literature showing the molecular mechanism and clinical protocol of epicatechin in muscle atrophy in humans, animals, and myoblast cell-line. The search was conducted in Embase, PubMed/MEDLINE, Cochrane Library, and Web of Science. The qualitative analysis demonstrated that there is a commonness of epicatechin inhibitory action in myostatin expression and atrogenes MAFbx, FOXO, and MuRF1. Epicatechin showed positive effects on follistatin and on the stimulation of factors related to the myogenic actions (MyoD, Myf5, and myogenin). Furthermore, the literature also showed that epicatechin can interfere with mitochondrias' biosynthesis in muscle fibers, stimulation of the signaling pathways of AKT/mTOR protein production, and amelioration of skeletal musculature performance, particularly when combined with physical exercise. Epicatechin can, for these reasons, exhibit clinical applicability due to the beneficial results under conditions that negatively affect the skeletal musculature. However, there is no protocol standardization or enough clinical evidence to draw more specific conclusions on its therapeutic implementation.
Collapse
Affiliation(s)
- Iris Jasmin Santos German
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Patrícia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Maricelma da Silva Soares de Souza
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Marcia Gabaldi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, São Paulo, Brazil; (K.T.P.); (M.V.M.d.C.); (A.C.A.); (E.L.G.); (S.M.B.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil; (L.F.L.); (M.d.S.S.d.S.)
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, University of São Paulo, (FOB-USP), Alameda Doutor Octávio Pinheiro Brisolla, 9-75, Bauru 17012-901, São Paulo, Brazil (J.V.T.C.S.)
| |
Collapse
|
20
|
Shah MA, Faheem HI, Hamid A, Yousaf R, Haris M, Saleem U, Shah GM, Alhasani RH, Althobaiti NA, Alsharif I, Silva AS. The entrancing role of dietary polyphenols against the most frequent aging-associated diseases. Med Res Rev 2024; 44:235-274. [PMID: 37486109 DOI: 10.1002/med.21985] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Aging, a fundamental physiological process influenced by innumerable biological and genetic pathways, is an important driving factor for several aging-associated disorders like diabetes mellitus, osteoporosis, cancer, and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. In the modern era, the several mechanisms associated with aging have been deeply studied. Treatment and therapeutics for age-related diseases have also made considerable advances; however, for the effective and long-lasting treatment, nutritional therapy particularly including dietary polyphenols from the natural origin are endorsed. These dietary polyphenols (e.g., apigenin, baicalin, curcumin, epigallocatechin gallate, kaempferol, quercetin, resveratrol, and theaflavin), and many other phytochemicals target certain molecular, genetic mechanisms. The most common pathways of age-associated diseases are mitogen-activated protein kinase, reactive oxygen species production, nuclear factor kappa light chain enhancer of activated B cells signaling pathways, metal chelation, c-Jun N-terminal kinase, and inflammation. Polyphenols slow down the course of aging and help in combatting age-linked disorders. This exemplified in the form of clinical trials on specific dietary polyphenols in various aging-associated diseases. With this context in mind, this review reveals the new insights to slow down the aging process, and consequently reduce some classic diseases associated with age such as aforementioned, and targeting age-associated diseases by the activities of dietary polyphenols of natural origin.
Collapse
Affiliation(s)
| | - Hafiza Ishmal Faheem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Haris
- Faculty of Pharmaceutical Sciences, Universiteit Gent, Ghent, Belgium
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Botany, Faculty of Health and Biological Sciences, Hazara University, Mansehra, Pakistan
| | - Reem H Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Ifat Alsharif
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ana Sanches Silva
- National Institute for Agrarian and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de St Comba, Coimbra, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Hoai Nga NT, Long TT, Ngoc TTB, Nguyen NHK, Thao DTP, Trinh NTM. Ethyl Acetate Extract from Romdoul ( Sphaerocoryne affinis) Fruit Induced Apoptosis in Human Promyelocytic Leukemia Cells. GLOBAL ADVANCES IN INTEGRATIVE MEDICINE AND HEALTH 2024; 13:27536130241296826. [PMID: 39494213 PMCID: PMC11528603 DOI: 10.1177/27536130241296826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Background Romdoul (Sphaerocoryne affinis) is a flowering plant of the Annonaceae family and has been used customarily in folk medicine. The bioactivities of this plant, especially the anti-cancer effect, however, remain surprisingly few. Objective this study aimed to elucidate the anti-leukemic effect of romdoul fruit extracts and their underlining mechanisms. Methods The extracts were prepared from fresh fruits and the phytochemical contents were evaluated by biochemical assays and HPLC method. The promising extract was identified via the inhibition of HL60 as well as normal NIH-3T3 cell densities utilizing MTT assay. The underline mechanism of the extract's effect was studied by accessing the treated HL60 cell population overtime (via MTT assay). The morphology of abnormal cells was examined by bright-field microscopic imaging. Hallmarks of apoptosis including nucleus characteristics and caspase 3 activation were analyzed by fluorescence imaging. The underline mechanisms of apoptosis and proliferation inhibition were accessed via RT-qPCR examination of involved genes. Results Our findings showed that the ethyl acetate extract of romdoul fruit (SA-EA) was found to be an exceptional anti-leukemic candidate (IC50 was as low as 4.11 μg/mL). More interestingly, the treated HL60 cells expressed nuclear fragmentation and caspase 3 activation, indicating the effect could follow an apoptotic mechanism. Importantly, the transcription assessment of apoptotic and proliferative genes suggested that SA-EA might suppress the growth of HL60 cells and induce p21-dependent apoptotic pathway. Conclusion This study demonstrated one of the first scientific evidence for the anti-cancer activity of Sphaerocoryne affinis fruit-derived extract. Thus, our findings exhibited a novel and promising anti-leukemic candidate for future studies.
Collapse
Affiliation(s)
- Nguyen Thi Hoai Nga
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
| | - Tran Thanh Long
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
| | - Truong Thi Bich Ngoc
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Nguyen Hoang Khoi Nguyen
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Dang Thi Phuong Thao
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
- Laboratory of Cancer Research, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
| | - Nguyen Thi My Trinh
- Department of Molecular and Environmental Biotechnology, Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City, Viet Nam
- Laboratory of Molecular Biotechnology, VNUHCM- University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
22
|
Lea TA, Panizza PM, Arthur PG, Bakker AJ, Pinniger GJ. Hypochlorous acid exposure impairs skeletal muscle function and Ca 2+ signalling: implications for Duchenne muscular dystrophy pathology. J Physiol 2023; 601:5257-5275. [PMID: 37864413 DOI: 10.1113/jp285263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease characterised by severe muscle wasting. The mechanisms underlying the DMD pathology likely involve the interaction between inflammation, oxidative stress and impaired Ca2+ signalling. Hypochlorous acid (HOCl) is a highly reactive oxidant produced endogenously via myeloperoxidase; an enzyme secreted by neutrophils that is significantly elevated in dystrophic muscle. Oxidation of Ca2+ -handling proteins by HOCl may impair Ca2+ signalling. This study aimed to determine the effects of HOCl on skeletal muscle function and its potential contribution to the dystrophic pathology. Extensor digitorum longus (EDL), soleus and interosseous muscles were surgically isolated from anaesthetised C57 (wild-type) and mdx (dystrophic) mice for measurement of ex vivo force production and intracellular Ca2+ concentration. In whole EDL muscle, HOCl (200 μM) significantly decreased maximal force and increased resting muscle tension which was only partially reversible by dithiothreitol. The effects of HOCl (200 μM) on maximal force in slow-twitch soleus were lower than found in the fast-twitch EDL muscle. In single interosseous myofibres, HOCl (10 μM) significantly increased resting intracellular Ca2+ concentration and decreased Ca2+ transient amplitude. These effects of HOCl were reduced by the application of tetracaine, Gd3+ or streptomycin, implicating involvement of ryanodine receptors and transient receptor potential channels. These results demonstrate the potent effects of HOCl on skeletal muscle function potentially mediated by HOCl-induced oxidation to Ca2+ signalling proteins. Hence, HOCl may provide a link between chronic inflammation, oxidative stress and impaired Ca2+ handling that is characteristic of DMD and presents a potential therapeutic target for DMD. KEY POINTS: Duchenne muscular dystrophy is a fatal genetic disease with pathological mechanisms which involve the complex interaction of chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations. Hypochlorous acid can be endogenously produced by neutrophils via the enzyme myeloperoxidase. Both neutrophil and myeloperoxidase activity are increased in dystrophic mice. This study found that hypochlorous acid decreased muscle force production and increased cytosolic Ca2+ concentrations in isolated muscles from wild-type and dystrophic mice at relatively low concentrations of hypochlorous acid. These results indicate that hypochlorous acid may be key in the Duchenne muscular dystrophy disease pathology and may provide a unifying link between the chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations observed in Duchenne muscular dystrophy. Hypochlorous acid production may be a potential target for therapeutic treatments of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Thomas A Lea
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter M Panizza
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony J Bakker
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gavin J Pinniger
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
23
|
Rehan T, Tahir A, Sultan A, Alabbosh KF, Waseem S, Ul-Islam M, Khan KA, Ibrahim EH, Ullah MW, Shah N. Mitigation of Benzene-Induced Haematotoxicity in Sprague Dawley Rats through Plant-Extract-Loaded Silica Nanobeads. TOXICS 2023; 11:865. [PMID: 37888715 PMCID: PMC10610980 DOI: 10.3390/toxics11100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Benzene, a potent carcinogen, is known to cause acute myeloid leukaemia. While chemotherapy is commonly used for cancer treatment, its side effects have prompted scientists to explore natural products that can mitigate the haematotoxic effects induced by chemicals. One area of interest is nano-theragnostics, which aims to enhance the therapeutic potential of natural products. This study aimed to enhance the effects of methanolic extracts from Ocimum basilicum, Rosemarinus officinalis, and Thymus vulgaris by loading them onto silica nanobeads (SNBs) for targeted delivery to mitigate the benzene-induced haematotoxic effects. The SNBs, 48 nm in diameter, were prepared using a chemical method and were then loaded with the plant extracts. The plant-extract-loaded SNBs were then coated with carboxymethyl cellulose (CMC). The modified SNBs were characterized using various techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The developed plant-extract-loaded and CMC-modified SNBs were administered intravenously to benzene-exposed rats, and haematological and histopathological profiling was conducted. Rats exposed to benzene showed increased liver and spleen weight, which was mitigated by the plant-extract-loaded SNBs. The differential white blood cell (WBC) count was higher in rats with benzene-induced haematotoxicity, but this count decreased significantly in rats treated with plant-extract-loaded SNBs. Additionally, blast cells observed in benzene-exposed rats were not found in rats treated with plant-extract-loaded SNBs. The SNBs facilitated targeted drug delivery of the three selected medicinal herbs at low doses. These results suggest that SNBs have promising potential as targeted drug delivery agents to mitigate haematotoxic effects induced by benzene in rats.
Collapse
Affiliation(s)
- Touseef Rehan
- Department of Biochemistry, Women University Mardan, Mardan 23200, Pakistan
| | - Anum Tahir
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aneesa Sultan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Shahid Waseem
- Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 211, Oman
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for
Advanced Materials Science (RCAMS), Applied College, King Khalid University, Abha 61413, Saudi Arabia
| | - Essam H. Ibrahim
- Biology Department, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo 12611, Egypt
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
24
|
Garza-Juárez A, Pérez-Carrillo E, Arredondo-Espinoza EU, Islas JF, Benítez-Chao DF, Escamilla-García E. Nutraceuticals and Their Contribution to Preventing Noncommunicable Diseases. Foods 2023; 12:3262. [PMID: 37685194 PMCID: PMC10486909 DOI: 10.3390/foods12173262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The high rate of deaths around the world from noncommunicable diseases (NCDs) (70%) is a consequence of a poor diet lacking in nutrients and is linked to lifestyle and environmental conditions that together trigger predisposing factors. NCDs have increased 9.8% of public health spending worldwide, which has been increasing since 2000. Hence, international organizations such as the WHO, the Pan American Health Organization, and the Food and Agriculture Organization of the United Nations have been developing strategic plans to implement government and economic policies to strengthen programs in favor of food security and nutrition. A systematic review is presented to document an analysis of the origin and characteristics of obesity, cardiovascular disease, chronic respiratory diseases, diabetes, and cancers affecting a large part of the world's population. This review proposes a scientifically based report of functional foods including fruits, vegetables, grains, and plants, and how their bioactive compounds called nutraceuticals-when consumed as part of a diet-benefit in the prevention and treatment of NCDs from an early age. Multifactorial aspects of NCDs, such as culture and eating habits, are limitations to consider from the clinical, nutritional, and biochemical points of view of everyone who suffers from them.
Collapse
Affiliation(s)
- Aurora Garza-Juárez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Esther Pérez-Carrillo
- Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Eder Ubaldo Arredondo-Espinoza
- Laboratorio de Farmacología Molecular y Modelos Biológicos, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Monterrey 66427, Mexico
| | - José Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Diego Francisco Benítez-Chao
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (A.G.-J.)
| | - Erandi Escamilla-García
- Microbial Biotechnology Laboratory, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
25
|
Punia R, Ali M, Shamsi Y, Singh RP. A Polyherbal Formulation Habb-e-Ustukhuddus Induces Apoptosis and Inhibits Cell Migration in Lung and Breast Cancer Cells without Any Toxicity in Mice. Asian Pac J Cancer Prev 2023; 24:2713-2727. [PMID: 37642058 PMCID: PMC10685228 DOI: 10.31557/apjcp.2023.24.8.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE A polyherbal medicine, Habb-e-Ustukhuddus (HU), is used for its anti-inflammatory properties. However, the anticancer and chemopreventive properties of HU were not known, and Therefore, investigated in the present study. METHODS Cancer cells were treated with 50-400 µg/ml HU and MTT, trypan blue, and clonogenic assays were performed. Propidium iodide (PI) staining, annexin V-FITC assay, and JC-1 staining were done for cell cycle progression, apoptosis, and mitochondrial membrane potential, respectively, using flow cytometry. Immunoblotting, cell migration and invasion assays were performed. Chemical characterization of HU was done through GC-MS and HPLC analyses. C57BL/6 mice were used to assess the in vivo toxicity of HU. RESULTS While evaluating the anticancer activity, the methanolic extract of HU (50-400 µg/ml) strongly inhibited the growth and survival (P<0.05-0.001) of lung and breast cancer cells and increased the cell population in the sub-G1 phase of the cell cycle. HU caused apoptotic death of cancer cells (P<0.05-0.001), which was associated with the depolarization of mitochondrial membrane potential (Δψ) (P<0.001) and an increase in Bax to Bcl-2 protein ratio. Further, HU inhibited the invasion and migration of cancer cells, which was accompanied by an increase in the epithelial marker, E-cadherin, and a decrease in the mesenchymal marker, vimentin. The HU characterization by GC-MS and HPLC analyses showed the abundance of bioactive compounds including flavonoids and alkaloids. In the chemopreventive study, the oral administration of methanolic extract of the formulation HU (50 and 100 mg/kg body weight) to mice did not cause any toxicity and significantly increased the specific activities of hepatic drug metabolizing phase I and phase II enzymes, which suggested for its detoxification potential of xenobiotic compounds. CONCLUSION Together, these results demonstrated the anticancer potential HU, without any apparent toxicity in mice, and thus HU could be further explored for its clinical utility in cancer control.
Collapse
Affiliation(s)
- Reenu Punia
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Yasmeen Shamsi
- Department of Moalajat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
26
|
Usman I, Saif H, Imran A, Afzaal M, Saeed F, Azam I, Afzal A, Ateeq H, Islam F, Shah YA, Shah MA. Innovative applications and therapeutic potential of oilseeds and their by-products: An eco-friendly and sustainable approach. Food Sci Nutr 2023; 11:2599-2609. [PMID: 37324916 PMCID: PMC10261773 DOI: 10.1002/fsn3.3322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 06/17/2023] Open
Abstract
The risk of inadequate management of agro-waste is an emerging challenge. However, the economic relevance of agro-waste valorization is one of the key strategies to ensure sustainable development. Among the agro-waste, oilseed waste and its by-products are usually seen as mass waste after the extraction of oils. Oilseed by-products especially oilseed cakes are a potential source of protein, fiber, minerals, and antioxidants. Oilseed cakes contain high value-added bioactive compounds which have great significance among researchers to develop novel foods having therapeutic applications. Moreover, these oilseed cakes might be employed in the pharmaceutical and cosmetic industries. Thus, as a result of having desirable characteristics, oilseed by-products can be more valuable in wide application in the food business along with the preparation of supplements. The current review highlights that plentiful wastes or by-products from oilseeds are wasted if these underutilized materials are not properly valorized or effectively utilized. Hence, promising utilization of oilseeds and their wastes not only assists to overcome environmental concerns and protein insecurity but also helps to achieve the goals of zero waste and sustainability. Furthermore, the article also covers the production and industrial applications of oilseeds and by-products along with the potential role of oilseed cakes and phytochemicals in the treatment of chronic diseases.
Collapse
Affiliation(s)
- Ifrah Usman
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Hina Saif
- Department of Food Sciences TechnologyChulalongkorn UniversityBangkokThailand
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Iqra Azam
- Department of Food SciencesGovernment College Women University FaisalabadFaisalabadPakistan
| | - Atka Afzal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Fakhar Islam
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Mohd Asif Shah
- Department of Economics, College of Business and EconomicsKebri Dehar UniversityJigjigaEthiopia
- Adjunct Faculty, University Centre for Research & DevelopmentChandigarh University, GharuanMohaliIndia
| |
Collapse
|
27
|
Tiwari A, Tiwari V, Sharma A, Singh D, Singh Rawat M, Virmani T, Virmani R, Kumar G, Kumar M, Alhalmi A, Noman OM, Mothana RA, Alali M. Tanshinone-I for the treatment of uterine fibroids: Molecular docking, simulation, and density functional theory investigations. Saudi Pharm J 2023; 31:1061-1076. [PMID: 37250358 PMCID: PMC10209546 DOI: 10.1016/j.jsps.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023] Open
Abstract
Uterine fibroids (UF), most prevalent gynecological disorder, require surgery when symptomatic. It is estimated that between 25 and 35 percent of women wait until the symptoms have worsened like extended heavy menstrual bleeding and severe pelvic pain. These UF may be reduced in size through various methods such as medical or surgical intervention. Progesterone (prog) is a crucial hormone that restores the endometrium and controls uterine function. In the current study, 28 plant-based molecules are identified from previous literature and docked onto the prog receptors with 1E3K and 2OVH. Tanshinone-I has shown the best docking score against both proteins. The synthetic prog inhibitor Norethindrone Acetate is used as a standard to evaluate the docking outcomes. The best compound, tanshinone-I, was analyzed using molecular modeling and DFT. The RMSD for the 1E3K protein-ligand complex ranged from 0.10 to 0.42 Å, with an average of 0.21 Å and a standard deviation (SD) of 0.06, while the RMSD for the 2OVH protein-ligand complex ranged from 0.08 to 0.42 Å, with an average of 0.20 Å and a SD of 0.06 showing stable interaction. In principal component analysis, the observed eigen values of HPR-Tanshinone-I fluctuate between -1.11 to 1.48 and -1.07 to 1.25 for PC1 and PC2, respectively (1E3K), and the prog-tanshinone-I complex shows eigen values of -38.88 to -31.32 and -31.32 to 35.87 for PC1 and PC2, respectively (2OVH), which shows Tanshinone-I forms a stable protein-ligand complex with 1E3K in comparison to 2OVH. The Free Energy Landscape (FEL) analysis shows the Gibbs free energy in the range of 0 to 8 kJ/mol for Tanshinone-I with 1E3K and 0 to 14 kJ/mol for Tanshinone-I with the 2OVH complex. The DFT calculation reveals ΔE value of 2.8070 eV shows tanshinone-I as a stable compound. 1E3K modulates the prog pathway, it may have either an agonistic or antagonistic effect on hPRs. Tanshinone-I can cause ROS, apoptosis, autophagy (p62 accumulation), up-regulation of inositol requiring protein-1, enhancer-binding protein homologous protein, p-c-Jun N-terminal kinase (p-JNK), and suppression of MMPs. Bcl-2 expression can change LC3I to LC3II and cause apoptosis through Beclin-1 expression.
Collapse
Affiliation(s)
- Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Varsha Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India
| | - Ajay Sharma
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Manju Singh Rawat
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana- 142024 Punjab, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutical Sciences, College of Pharmacy, Aden University, Aden, Yemen
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Alali
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
28
|
Filho WEM, Almeida-Souza F, Vale AAM, Victor EC, Rocha MCB, Silva GX, Teles AM, Nascimento FRF, Moragas-Tellis CJ, Chagas MDSDS, Behrens MD, Hardoim DDJ, Taniwaki NN, Lima JA, Abreu-Silva AL, Gil da Costa RM, Calabrese KDS, Azevedo-Santos APSD, Nascimento MDDSB. Antitumor Effect of Açaí ( Euterpe oleracea Mart.) Seed Extract in LNCaP Cells and in the Solid Ehrlich Carcinoma Model. Cancers (Basel) 2023; 15:cancers15092544. [PMID: 37174010 PMCID: PMC10177358 DOI: 10.3390/cancers15092544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Euterpe oleracea (açaí) fruit has approximately 15% pulp, which is partly edible and commercialized, and 85% seeds. Although açaí seeds are rich in catechins-polyphenolic compounds with antioxidant, anti-inflammatory, and antitumor effects-almost 935,000 tons/year of seeds are discarded as industrial waste. This work evaluated the antitumor properties of E. oleracea in vitro and in vivo in a solid Ehrlich tumor in mice. The seed extract presented 86.26 ± 0.189 mg of catechin/g of extract. The palm and pulp extracts did not exhibit in vitro antitumor activity, while the fruit and seed extracts showed cytotoxic effects on the LNCaP prostate cancer cell line, inducing mitochondrial and nuclear alterations. Oral treatments were performed daily at 100, 200, and 400 mg/kg of E. oleracea seed extract. The tumor development and histology were evaluated, along with immunological and toxicological parameters. Treatment at 400 mg/kg reduced the tumor size, nuclear pleomorphism, and mitosis figures, increasing tumor necrosis. Treated groups showed cellularity of lymphoid organs comparable to the untreated group, suggesting less infiltration in the lymph node and spleen and preservation of the bone marrow. The highest doses reduced IL-6 and induced IFN-γ, suggesting antitumor and immunomodulatory effects. Thus, açaí seeds can be an important source of compounds with antitumor and immunoprotective properties.
Collapse
Affiliation(s)
- Walbert Edson Muniz Filho
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Fernando Almeida-Souza
- Postgraduate Program in Animal Science, State University of Maranhão, Sao Luis 65055-310, Brazil
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil
| | - André Alvares Marques Vale
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Elis Cabral Victor
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Mirtes Castelo Branco Rocha
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Gabriel Xavier Silva
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Amanda Mara Teles
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
| | | | - Carla Junqueira Moragas-Tellis
- Natural Products Department, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | | | - Maria Dutra Behrens
- Natural Products Department, Institute of Pharmaceutical Technology, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Daiana de Jesus Hardoim
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil
| | | | - Josélia Alencar Lima
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Ana Lucia Abreu-Silva
- Postgraduate Program in Animal Science, State University of Maranhão, Sao Luis 65055-310, Brazil
| | - Rui M Gil da Costa
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65080-805, Brazil
- Health Research Network, Research Center of Portuguese Oncology, Institute of Porto (CI-IPOP/RISE@CI-IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Kátia da Silva Calabrese
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, Brazil
| | - Ana Paula Silva de Azevedo-Santos
- Laboratory for Applied Cancer Immunology, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Maria do Desterro Soares Brandão Nascimento
- Postgraduate Program in Northeast Biotechnology Network (RENORBIO), Federal University of Maranhão, São Luís 65080-805, Brazil
- Postgraduate Program in Adult Health (PPGSAD), Federal University of Maranhão, São Luís 65080-805, Brazil
| |
Collapse
|
29
|
Imran M, Insaf A, Hasan N, Sugandhi VV, Shrestha D, Paudel KR, Jha SK, Hansbro PM, Dua K, Devkota HP, Mohammed Y. Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer. Molecules 2023; 28:molecules28083475. [PMID: 37110709 PMCID: PMC10142939 DOI: 10.3390/molecules28083475] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived compounds, specifically antioxidants, have played an important role in scavenging the free radicals present under diseased conditions. The persistent generation of free radicals in the body leads to inflammation and can result in even more severe diseases such as cancer. Notably, the antioxidant potential of various plant-derived compounds prevents and deregulates the formation of radicals by initiating their decomposition. There is a vast literature demonstrating antioxidant compounds' anti-inflammatory, anti-diabetic, and anti-cancer potential. This review describes the molecular mechanism of various flavonoids, such as quercetin, kaempferol, naringenin, epicatechin, and epicatechin gallate, against different cancers. Additionally, the pharmaceutical application of these flavonoids against different cancers using nanotechnologies such as polymeric, lipid-based nanoparticles (solid-lipid and liquid-lipid), liposomes, and metallic nanocarriers is addressed. Finally, combination therapies in which these flavonoids are employed along with other anti-cancer agents are described, indicating the effective therapies for the management of various malignancies.
Collapse
Affiliation(s)
- Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Areeba Insaf
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vrushabh V Sugandhi
- Department of Pharmaceutics, Y.B. Chavan College of Pharmacy, Aurangabad 431001, India
| | - Deumaya Shrestha
- Department of Bioscience, Mokp o National University, Muna 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muna 58554, Republic of Korea
| | - Philip M Hansbro
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
30
|
Khalaf SS, Shalaby OA, Hassan AR, El-Kherbetawy MK, Mehanna ET. Acacia nilotica stem bark extract ameliorates obesity, hyperlipidemia, and insulin resistance in a rat model of high fat diet-induced obesity. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
31
|
Wang L, Wu Y, Weng T, Li X, Zhang X, Zhang Y, Yuan L, Zhang Y, Liu M. Binding of combined irinotecan and epicatechin to a pH-responsive DNA tetrahedron for controlled release and enhanced cytotoxicity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
32
|
Matvieieva N, Bessarabov V, Khainakova O, Duplij V, Bohdanovych T, Ratushnyak Y, Kuzmina G, Lisovyi V, Zderko N, Kobylinska N. Cichorium intybus L. “hairy” roots as a rich source of antioxidants and anti-inflammatory compounds. Heliyon 2023; 9:e14516. [PMID: 37101499 PMCID: PMC10123141 DOI: 10.1016/j.heliyon.2023.e14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The present study aimed to determine the bioactive profile of various extracts of Cichorium intybus L. "hairy" roots. In particular, the total content of flavonoids as well as the reducing power, antioxidant and anti-inflammatory activity of the aqueous and ethanolic (70%) extracts were evaluated. The total content of flavonoids the ethanolic extract of the dry "hairy" root reached up to 121.3 mg (RE)/g, which was twofold greater than in the aqueous one. A total of 33 diverse polyphenols were identified by the LC-HRMS method. The experimental results showed a high amount of gallic (6.103 ± 0.008 mg/g) and caffeic (7.001 ± 0.068 mg/g) acids. In the "hairy" roots, the presence of rutin, apigenin, kaempferol, quercetin, and its derivatives was found in concentrations of 0.201±0.003 - 6.710±0.052 mg/g. The broad spectrum of pharmacological activities (antioxidant, anti-inflammatory, antimutagenic, anticarcinogenic, etc.) of the key flavonoids identified in the chicory "hairy" root extract was predicted by the General Unrestricted Structure-Activity Relationships algorithm based on in the substances detected in the extract. The evaluation of the antioxidant activity showed that the EC50 values of the ethanol and the aqueous extracts were 0.174 and 0.346 mg, respectively. Thus, the higher ability of the ethanol extract to scavenge the DPPH radical was observed. The calculated Michaelis and inhibition constants indicated that the ethanolic extract of C. intybus "hairy" roots is an efficient inhibitor of soybean 15-Lipoxygenase activity (IC50 = 84.13 ± 7.22 μM) in a mixed mechanism. Therefore, the obtained extracts could be the basis of herbal pharmaceuticals for the therapy of human diseases accompanied by oxidative stress and inflammation, including the pandemic coronavirus disease COVID-19.
Collapse
Affiliation(s)
- Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Volodymyr Bessarabov
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Olena Khainakova
- University of Oviedo, 8 Julián Claveria Av., Oviedo, 33006, Spain
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Taisa Bohdanovych
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Yakiv Ratushnyak
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 148 Zabolotnogo Str., Kyiv, 03143, Ukraine
| | - Galina Kuzmina
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Vadym Lisovyi
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Nazar Zderko
- Kyiv National University of Technologies and Design, 2 Nemyrovycha-Danchenko Str., Kyiv, 01011, Ukraine
| | - Natalia Kobylinska
- Dumansky Institute of Colloid and Water Chemistry, National Academy of Sciences of Ukraine, 42 akad. Vernadskoho Blvd., Kyiv, 03142, Ukraine
- Corresponding author.
| |
Collapse
|
33
|
Bordean ME, Ungur RA, Toc DA, Borda IM, Marțiș GS, Pop CR, Filip M, Vlassa M, Nasui BA, Pop A, Cinteză D, Popa FL, Marian S, Szanto LG, Muste S. Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants (Basel) 2023; 12:antiox12030596. [PMID: 36978844 PMCID: PMC10045255 DOI: 10.3390/antiox12030596] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Taking into account the increasing number of antibiotic-resistant bacteria, actual research focused on plant extracts is vital. The aim of our study was to investigate leaf and stem ethanolic extracts of Artemisia absinthium L. and Artemisia annua L. in order to explore their antioxidant and antibacterial activities. Total phenolic content (TPC) was evaluated spectrophotometrically. Antioxidant activity was evaluated by DPPH and ABTS. The antibacterial activity of wormwood extracts was assessed by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enteritidis cultures, and by zone of inhibition in Klebsiella carbapenem-resistant enterobacteriaceae (CRE) and Escherichia coli extended-spectrum β-lactamases cultures (ESBL). The Artemisia annua L. leaf extract (AnL) exhibited the highest TPC (518.09 mg/mL) and the highest expression of sinapic acid (285.69 ± 0.002 µg/mL). Nevertheless, the highest antioxidant capacity (1360.51 ± 0.04 µM Trolox/g DW by ABTS and 735.77 ± 0.02 µM Trolox/g DW by DPPH) was found in Artemisia absinthium L. leaf from the second year of vegetation (AbL2). AnL extract exhibited the lowest MIC and MBC for all tested bacteria and the maximal zone of inhibition for Klebsiella CRE and Escherichia coli ESBL. Our study revealed that AbL2 exhibited the best antioxidant potential, while AnL extract had the strongest antibacterial effect.
Collapse
Affiliation(s)
- Maria-Evelina Bordean
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Georgiana Smaranda Marțiș
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence: (I.M.B.); (G.S.M.)
| | - Carmen Rodica Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Mihaela Vlassa
- Raluca Ripan Institute for Research in Chemistry, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Bogdana Adriana Nasui
- Department of Community Health, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Delia Cinteză
- 9th Department-Physical Medicine and Rehabilitation, Carol Davila Univerity of Medicine and Pharmacy, 050474 București, Romania
| | - Florina Ligia Popa
- Physical Medicine and Rehabilitation Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, Victoriei Blvd., 550024 Sibiu, Romania
- Academic Emergency Hospital of Sibiu, Coposu Blvd., 550245 Sibiu, Romania
| | - Sabina Marian
- Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Lidia Gizella Szanto
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Sevastița Muste
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| |
Collapse
|
34
|
Haque A, Ahmad S, Azad ZRAA, Adnan M, Ashraf SA. Incorporating dietary fiber from fruit and vegetable waste in meat products: a systematic approach for sustainable meat processing and improving the functional, nutritional and health attributes. PeerJ 2023; 11:e14977. [PMID: 36890873 PMCID: PMC9988266 DOI: 10.7717/peerj.14977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Background Every year, the food business produces a sizeable amount of waste, including the portions of fruits and vegetables that are inedible, and those that have reached a stage where they are no longer suitable for human consumption. These by-products comprise of components such as natural antioxidants (polyphenols, carotenoid etc.), dietary fiber, and other trace elements, which can provide functionality to food. Due to changing lifestyles, there is an increased demand for ready-to-eat products like sausages, salami, and meat patties. In this line, meat products like buffalo meat sausages and patties are also gaining the interest of consumers because of their rich taste. Meat, however, has a high percentage of fat and is totally deprived of dietary fiber, which poses severe health problems like cardiovascular (CV) and gastrointestinal diseases. The health-conscious consumer is becoming increasingly aware of the importance of balancing flavor and nutrition. Therefore, to overcome this problem, several fruit and vegetable wastes from their respective industries can be successfully incorporated into meat products that provide dietary fiber and play the role of natural antioxidants; this will slow down lipid oxidation and increase the shelf-life of meat products. Methodology Extensive literature searches have been performed using various scientific search engines. We collected relevant and informative data from subject-specific and recent literature on sustainable food processing of wasted food products. We also looked into the various applications of waste fruit and vegetable products, including cereals, when they are incorporated into meat and meat products. All relevant searches meeting the criteria were included in this review, and exclusion criteria were also set. Results The pomace and peels of fruits like grapes, pomegranates, cauliflower, sweet lime, and other citrus are some of the most commonly used fruit and vegetable by-products. These vegetable by-products help inhibit oxidation (of both lipids and proteins) and the growth of pathogenic and spoilage bacteria, all without altering the consumer's acceptability of the product on a sensory level. When included in meat products, these by-products have the potential to improve the overall product quality and lengthen its shelf-life under certain circumstances. Conclusion Cost-effective and easily accessible by-products from the fruit and vegetable processing industries can be used in meat products to enhance their quality features (physicochemical, microbial, sensory, and textural aspects) and health benefits. Additionally, this will provides environmental food sustainability by lowering waste disposal and improving the food's functional efficacy.
Collapse
Affiliation(s)
- Abdul Haque
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Saghir Ahmad
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Z R A A Azad
- Department of Post-Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pardesh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| |
Collapse
|
35
|
Kiran S, Patra A, Verma P, Purkait S, Chhabra G, Guttula PK, Ghosh A. Restoration of Altered Oncogenic and Tumor Suppressor microRNA Expression in Breast Cancer and Colorectal Cancer Cell using Epicatechin. Curr Mol Pharmacol 2023; 16:915-926. [PMID: 36809960 DOI: 10.2174/1874467216666230210091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND MicroRNAs (miRNA) are small non-coding RNAs that regulate the function of mRNA post-transcriptionally in a tissue-specific manner. miRNA expressions are heavily dysregulated in human cancer cells through various mechanisms, including epigenetic changes, karyotype abnormalities, and miRNA biogenesis defects. miRNAs may act as either oncogenes or tumor suppressors under different conditions. Epicatechin is a natural compound found in green tea which possesses antioxidant and antitumor properties. OBJECTIVE The objective of this study is to investigate the effect of epicatechin treatment on the expression level of several oncogenic and tumor suppressor miRNAs in breast and colorectal cancer cell lines (MCF7 and HT-29) and identify its mechanism of action. METHODS The MCF-7 and HT29 cells were treated with epicatechin for 24 hours and untreated cells were considered control cultures. miRNA was isolated and qRT-PCR was used to measure the expression profile changes of different oncogenic and tumor suppressor miRNAs. Furthermore, the mRNA expression profile was also screened at different concentrations of epicatechin. RESULTS Our results showed several-fold changes in miRNAs expression level, which is cell line specific. Also, epicatechin at different concentrations induces biphasic changes in mRNA expression levels in both cell lines. CONCLUSION Our findings first time demonstrated that epicatechin can reverse the expression of these miRNAs and may trigger the cytostatic effect at a lower concentration.
Collapse
Affiliation(s)
- Sheetal Kiran
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Abhilipsa Patra
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Poonam Verma
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Suvendu Purkait
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Gaurav Chhabra
- Department of Pathology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Praveen Kumar Guttula
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
36
|
Bagherniya M, Mahdavi A, Shokri-Mashhadi N, Banach M, Von Haehling S, Johnston TP, Sahebkar A. The beneficial therapeutic effects of plant-derived natural products for the treatment of sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2772-2790. [PMID: 35961944 PMCID: PMC9745475 DOI: 10.1002/jcsm.13057] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is an age-related muscle disorder typically associated with a poor quality of life. Its definition has evolved over time, and several underlying causes of sarcopenia in the elderly have been proposed. However, the exact mechanisms involved in sarcopenia, as well as effective treatments for this condition, are not fully understood. The purpose of this article was to conduct a comprehensive review of previous evidence regarding the definition, diagnosis, risk factors, and efficacy of plant-derived natural products for sarcopenia. The methodological approach for the current narrative review was performed using PubMed, Scopus, and Web of Science databases, as well as Google Scholar (up to March 2021) in order to satisfy our objectives. The substantial beneficial effects along with the safety of some plant-derived natural products including curcumin, resveratrol, catechin, soy protein, and ginseng on sarcopenia are reported in this review. Based on clinical studies, nutraceuticals and functional foods may have beneficial effects on physical performance, including handgrip and knee-extension strength, weight-lifting capacity, time or distance travelled before feeling fatigued, mitochondrial function, muscle fatigue, mean muscle fibre area, and total number of myonuclei. In preclinical studies, supplementation with herbs and natural bioactive compounds resulted in beneficial effects including increased plantaris mass, skeletal muscle mass and strength production, increased expression of anabolic factors myogenin, Myf5 and MyoD, enhanced mitochondrial capacity, and inhibition of muscle atrophy and sarcopenia. We found that several risk factors such as nutritional status, physical inactivity, inflammation, oxidative stress, endocrine system dysfunction, insulin resistance, history of chronic disease, mental health, and genetic factors are linked or associated with sarcopenia. The substantial beneficial effects of some nutraceuticals and functional foods on sarcopenia, including curcumin, resveratrol, catechin, soy protein, and ginseng, without any significant side effects, are reported in this review. Plant-derived natural products might have a beneficial effect on various components of sarcopenia. Nevertheless, due to limited human trials, the clinical benefits of plant-derived natural products remain inconclusive. It is suggested that comprehensive longitudinal clinical studies to better understand risk factors over time, as well as identifying a treatment strategy for sarcopenia that is based on its pathophysiology, be undertaken in future investigations.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
37
|
Pereira MTM, Charret TS, Pascoal VDB, Machado RLD, Rocha LM, Pascoal ACRF. Myrciaria Genus: Bioactive Compounds and Biological Activities. Chem Biodivers 2022; 19:e202200864. [PMID: 36250914 DOI: 10.1002/cbdv.202200864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 12/27/2022]
Abstract
The Myrtaceae family is of angiosperms, imposing its size and economic, cultural, and scientific importance. The genus Myrciaria, belonging to this family, has 33 species currently accepted, many of which are research targets aimed at elucidating their bioactive compounds and biological activities. Most species of the Myrciaria genus have terpenes in their composition, mainly mono and sesquiterpenes, and phenolic compounds such as tannins, phenolic acids, and flavonoids. Other secondary metabolites are also observed, such as alkaloids, steroids, coumarins, saponins, and naphthoquinones. These bioactive compounds are closely related to these species' most diverse biological activities: antioxidant, anti-inflammatory, analgesic, antiproliferative, antimicrobial, antiparasitic, insecticide, metabolic, protective, and nutraceutical. This work aims to provide a review of secondary metabolites and medicinal properties related to the genus Myrciaria, thus stimulating further studies on the species of this genus.
Collapse
Affiliation(s)
- Mariana Toledo Martins Pereira
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Thiago Sardou Charret
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Vinicius D'Avila Bitencourt Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| | - Ricardo Luiz Dantas Machado
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Leandro Machado Rocha
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório de Tecnologia de Produtos Naturais do Departamento de Tecnologia Farmacêutica da Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Aislan Cristina Rheder Fagundes Pascoal
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Laboratório Multiusuário de Pesquisa Biomédica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune, 22, Centro, Nova Friburgo, Rio de Janeiro, 22625-650, Brasil
| |
Collapse
|
38
|
Hidalgo I, Ortiz-Flores M, Villarreal F, Fonseca-Coronado S, Ceballos G, Meaney E, Nájera N. Is it possible to treat nonalcoholic liver disease using a flavanol-based nutraceutical approach? Basic and clinical data. J Basic Clin Physiol Pharmacol 2022; 33:703-714. [PMID: 35119232 DOI: 10.1515/jbcpp-2021-0285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/15/2022] [Indexed: 01/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by a spectrum of diseases, ranging from simple steatosis to hepatocellular carcinoma. The main factors for NAFLD are closely related to obesity, insulin resistance, intestinal microbiota alterations, hyperinsulinism, low-grade systemic inflammation, nitroxidative stress, lipid peroxidation, and mitochondrial dysfunction. Currently, the treatment of NAFLD is based on diet and exercise because, to date, there is no specific pharmacological agent, already approved, that raises the need for new therapeutic strategies. Nutraceuticals, such as polyphenols, have potential beneficial effects for health. In this article, the beneficial effects of epigallocatechin-3-gallate (EGCG) and (-)-epicatechin (EC) are discussed. EGCG is the main catechin in green tea, which has shown in various studies its potential effect preventing and treating NAFLD since it has shown antihyperlipidemic, anti-inflammatory, antifibrotic, antioxidant, and improvement of liver lipid metabolism. However, it has been found that excessive consumption may cause hepatotoxicity. EC is widely distributed in nature (fruits and vegetables). This flavanol has shown many beneficial effects, including antihypertensive, anti-inflammatory, anti-hyperglycemic, antithrombotic, and antifibrotic properties. It increases mitochondrial biogenesis, and it also has effects on the regulation of synthesis and metabolism of lipids. This flavanol is a nontoxic substance; it has been classified by the United States Food and Drug Administration as harmless. The EC-induced effects can be useful for the prevention and/or treatment of NAFLD.
Collapse
Affiliation(s)
- Isabel Hidalgo
- Unidad de Investigación Laboratorio de Investigación en Inmunología y Salud Publica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Miguel Ortiz-Flores
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | | | - Salvador Fonseca-Coronado
- Unidad de Investigación Laboratorio de Investigación en Inmunología y Salud Publica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Guillermo Ceballos
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - Eduardo Meaney
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - Nayelli Nájera
- Laboratorio de investigación integral cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| |
Collapse
|
39
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
40
|
Systems Network Pharmacology-Based Prediction and Analysis of Potential Targets and Pharmacological Mechanism of Actinidia chinensis Planch. Root Extract for Application in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2116006. [PMID: 36193154 PMCID: PMC9526650 DOI: 10.1155/2022/2116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Purpose Traditional Chinese medicine (TCM) sometimes plays a crucial role in advanced cancer treatment. Despite the significant therapeutic efficacy in hepatocellular carcinoma (HCC) that Actinidia chinensis Planch root extract (acRoots) has proven, its complex composition and underlying mechanism have not been fully elucidated. Therefore, this study analyzed the multiple chemical compounds in acRoots and their targets via network pharmacology and bioinformatics analysis, with the overarching goal of revealing the potential mechanisms of the anti-HCC effect. Methods The main ingredients contained in acRoots were initially screened from the traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the candidate bioactive ingredient targets were identified using DrugBank and the UniProt public databases. Second, the biological processes of the targets of active molecules filtered from the ingredients of acRoots were evaluated using gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Third, weighted gene coexpression network analysis (WGCNA) was performed to identify gene coexpression modules associated with HCC. The hub genes of acRoots in HCC were defined via contrasting the above module eigengenes with candidate target genes of acRoots. Furthermore, the target-pathway network was analyzed to explore the mechanism for anti-HCC effect of hub genes. Kaplan–Meier plotter database analysis was performed to validate the hub genes of acRoots correlation with prognostic values in HCC. In order to verify the results of the network pharmacological analysis, we performed a molecular docking approach on the active ingredients and key targets using the Discovery Studio software. The viability of SMMC-7721 and HL-7702 cells was determined by Cell counting kit-8 (CCK-8) after being treated with different concentrations of (+)-catechin (0, 50, 100, 150, 200, and 250 g/ml) for 24, 48, and 72 hours, respectively. Finally, qRT-PCR and Western blot involving human hepatocarcinoma cells were utilized to verify the impact of (+)-catechin on the hub genes associated with prognosis. Results 6 out of 26 active ingredients extracted from TCMSP were deemed as the core ingredients of acRoots. 175 bioactive-ingredient targets of acRoots were obtained and a bioactive-ingredient targets network was established correspondingly. The biological processes (BP) of target genes mainly involved processes, such as toxic substance and wounding. The results of KEGG pathways indicated that the target genes were mainly enriched in pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, and other pathways. Also, the two hub genes (i.e., ESR1 and CAT) were closely associated with the prognosis of HCC patients. As a consequence, we predicated a series of signaling pathways, including estrogen signaling pathway and longevity regulation pathway, through which acRoots could facilitate the treatment for HCC. The molecular docking experiment ascertained that ESR1 and CAT had an effective binding force with (+)-catechin, one of the core ingredients of acRoots. Furthermore, (+)-catechin inhibited SMMC-7721 cell growth in a dose-dependent manner and a time-dependent manner. Finally, we suggest that the expression level of ESR1 and CAT is positively related to the (+)-catechin concentrations in in-vitro experiments. Conclusion The bioactive ingredients of acRoots, including quercetin, (+)-catechin, beta-sitosterol, and aloe-emodin, have synergistic interactions in reinforcing the anticancer effect in HCC. Evidently, acRoots took effect by regulating multitargets and multipathways through its active ingredients. Further, (+)-catechin, the possible paramount anti-HCC active ingredient in acRoots, helped improve the prognosis of HCC patients by increasing the expression of ESR1 and CAT. Additionally, the findings yielded provide a conceptual guidance for the clinical treatment of HCC and the methods adopted are potentially applicable in the future comprehensive analysis of the underlying mechanisms of TCMs.
Collapse
|
41
|
de Lourdes Chaves Macêdo E, Colombo Pimentel T, de Sousa Melo D, Cristina de Souza A, Santos de Morais J, Dos Santos Lima M, Ribeiro Dias D, Freitas Schwan R, Magnani M. Yeasts from fermented Brazilian fruits as biotechnological tools for increasing phenolics bioaccessibility and improving the volatile profile in derived pulps. Food Chem 2022; 401:134200. [PMID: 36115231 DOI: 10.1016/j.foodchem.2022.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
Abstract
Caatinga Biome fruits have been scarcely explored as a source of biotechnological yeasts. This study isolated yeasts from naturally fermented Caatinga fruits and evaluated Hanseniaspora opuntiae125,Issatchenkia terricola 129, and Hanseniaspora opuntiae 148 on fermentation of soursop and umbu-cajá pulps. All strains were able to ferment the pulps (72 h), increasing (p < 0.05) acetic acid, phenolics concentration and bioaccessibility, and maintaining counts above 7 log CFU/mL after fermentation and/or in vitro digestion. H. opuntiae 125 showed the highest counts (8.43-8.76 log CFU/mL; p < 0.05) in pulps and, higher organic acids production, increased survival to digestion, and higher bioaccessibility of various phenolics (p < 0.05) in the umbu-cajá pulp.I. terricola129 andH. opuntiae 148 showed higher metabolic activity, concentration and bioaccessibility of specific phenolics in umbu-cajá and soursop pulps, respectively (p < 0.05). Volatiles varied (p < 0.05) with the yeast strain. Generally, the yeast biotechnological performance for pulp fermentation was better on its fruit source.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marciane Magnani
- Federal University of Paraiba, 58051-900 João Pessoa, PB, Brazil.
| |
Collapse
|
42
|
Alò R, Fazzari G, Zizza M, Avolio E, Di Vito A, Olvito I, Bruno R, Canonaco M, Facciolo RM. Emotional and Spontaneous Locomotor Behaviors Related to cerebellar Daidzein-dependent TrkB Expression Changes in Obese Hamsters. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01432-1. [PMID: 35794426 DOI: 10.1007/s12311-022-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Current evidence supports the beneficial role of phytoestrogens in metabolic diseases, but their influences on spontaneous motor and anxiety behaviors plus neuroprotective effects have still not been completely elucidated. With the present study, neuro-behavioral activities were correlated to daidzein (DZ)-dependent expression changes of a high affinity catalytic receptor for several neurotrophins, and namely tropomyosin-related kinase B receptor (TrkB) in the cerebellar cortex of high-fat diet (HFD) hamsters (Mesocricetus auratus). Indeed, these changes appear to be tightly linked to altered plasma lipid profiles as shown by reduced low-density lipoproteins plus total cholesterol levels in DZ-treated obesity hamsters accounting for increased spontaneous locomotor together with diminished anxiety activities in novel cage (NCT) and light/dark box (LDT) tests. For this latter case, the anxiolytic-like hamsters spent more time in the light compartment, which was retained the aversive area of the LDT box. As for the evaluation of the neurotrophin receptor site, significantly elevated TrkB levels were also detected, for the first time, in the cerebellum of obese hamsters treated with DZ. In this condition, such a treatment widely led to an overall improvement of HFD-induced neurodegeneration damages, above all in the Purkinje and granular layers of the cerebellum. In this context, the notably active TrkB signaling events occurring in a DZ-dependent manner may turn out to be a key neuroprotective element capable of restoring normal emotional and spontaneously linked locomotor behaviors regulated by cerebellar cortical areas especially in obesity-related conditions.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory, Biology, Ecology & Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte Pietro Bucci 4B, 87030, Cosenza, Italy.
| | - Gilda Fazzari
- Comparative Neuroanatomy Laboratory, Biology, Ecology & Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte Pietro Bucci 4B, 87030, Cosenza, Italy
| | - Merylin Zizza
- Comparative Neuroanatomy Laboratory, Biology, Ecology & Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte Pietro Bucci 4B, 87030, Cosenza, Italy
| | - Ennio Avolio
- Comparative Neuroanatomy Laboratory, Biology, Ecology & Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte Pietro Bucci 4B, 87030, Cosenza, Italy
- Experimental and Clinical Medicine Department, Molecular Oncology Laboratory, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
- Health Center Srl, Biomedical and Nutritional Center, via Sabotino 66, 87100, Cosenza, Italy
| | - Anna Di Vito
- Experimental and Clinical Medicine Department, Molecular Oncology Laboratory, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| | - Ilaria Olvito
- Comparative Neuroanatomy Laboratory, Biology, Ecology & Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte Pietro Bucci 4B, 87030, Cosenza, Italy
| | - Rosalinda Bruno
- Department of Pharmacy and Science of Health and Nutrition, Edificio Polifunzionale, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Marcello Canonaco
- Comparative Neuroanatomy Laboratory, Biology, Ecology & Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte Pietro Bucci 4B, 87030, Cosenza, Italy
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory, Biology, Ecology & Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte Pietro Bucci 4B, 87030, Cosenza, Italy
| |
Collapse
|
43
|
Majdan M, Bobrowska-Korczak B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022; 14:2496. [PMID: 35745226 PMCID: PMC9229651 DOI: 10.3390/nu14122496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammation plays an important role in the pathogenesis of many diseases, including cardiovascular diseases, atherosclerosis, diabetes, asthma, and cancer. An appropriate diet and the active compounds contained in it can affect various stages of the inflammatory process and significantly affect the course of inflammatory diseases. Recent reports indicate that polyphenolic acids, vitamins, minerals, and other components of fruits may exhibit activity stimulating an anti-inflammatory response, which may be of importance in maintaining health and reducing the risk of disease. The article presents the latest data on the chemical composition of fruits and the health benefits arising from their anti-inflammatory and antioxidant effects. The chemical composition of fruits determines their anti-inflammatory and antioxidant properties, but the mechanisms of action are not fully understood.
Collapse
Affiliation(s)
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
44
|
(-)-Epicatechin Reduces Neuroinflammation, Protects Mitochondria Function, and Prevents Cognitive Impairment in Sepsis-Associated Encephalopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2657713. [PMID: 35656027 PMCID: PMC9155907 DOI: 10.1155/2022/2657713] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Sepsis-associated encephalopathy is a common neurological complication of sepsis. Despite advances in pathological and diagnostic investigations, its treatment remains a major challenge. In sepsis-associated encephalopathy, neuroinflammatory overactivation and mitochondrial damage are thought to contribute to cognitive and behavioral impairments. In this study, we found that administration of (−)-Epicatechin, a dietary flavonoid of the flavan-3-ol subgroup, improves memory deficits and behavior performance by ameliorating neuroinflammation, regulating mitochondria function, enhancing synaptic plasticity, and reducing neuronal loss in a mouse model of lipopolysaccharide-induced sepsis. We further show that the AMPK signaling pathway might be among the mechanisms involved in the beneficial memory effects. Our data demonstrated the potential of (−)-Epicatechin as a new drug candidate for the treatment of sepsis-associated cognitive impairment by targeting AMPK.
Collapse
|
45
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
46
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
47
|
(-) - Epicatechin improves Tibialis anterior muscle repair in CD1 mice with BaCl2-induced damage. J Nutr Biochem 2022; 107:109069. [DOI: 10.1016/j.jnutbio.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
|
48
|
Ruiz-Iglesias P, Massot-Cladera M, Rodríguez-Lagunas MJ, Franch À, Camps-Bossacoma M, Pérez-Cano FJ, Castell M. Protective Effect of a Cocoa-Enriched Diet on Oxidative Stress Induced by Intensive Acute Exercise in Rats. Antioxidants (Basel) 2022; 11:antiox11040753. [PMID: 35453438 PMCID: PMC9028332 DOI: 10.3390/antiox11040753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Intensive acute exercise can induce oxidative stress, leading to muscle damage and immune function impairment. Cocoa diet could prevent this oxidative stress and its consequences on immunity. Our aim was to assess the effect of a cocoa-enriched diet on the reactive oxygen species (ROS) production by peritoneal macrophages, blood immunoglobulin (Ig) levels, leukocyte counts, and the physical performance of rats submitted to an intensive acute exercise, as well as to elucidate the involvement of cocoa fiber in such effects. For this purpose, Wistar rats were fed either a standard diet, i.e., a diet containing 10% cocoa (C10), or a diet containing 5% cocoa fiber (CF) for 25 days. Then, half of the rats of each diet ran on a treadmill until exhaustion, and 16 h later, the samples were obtained. Both C10 and CF diets significantly prevented the increase in ROS production. However, neither the cocoa diet or the cocoa fiber-enriched diet prevented the decrease in serum IgG induced by acute exercise. Therefore, although the cocoa-enriched diet was able to prevent the excessive oxidative stress induced by intensive exercise, this was not enough to avoid the immune function impairment due to exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-93-402-45-05 (F.J.P.-C. & M.C.)
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-93-402-45-05 (F.J.P.-C. & M.C.)
| |
Collapse
|
49
|
Gupta S, Singh V, Varadwaj PK, Chakravartty N, Katta AVSKM, Lekkala SP, Thomas G, Narasimhan S, Reddy AR, Reddy Lachagari VB. Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins. J Biomol Struct Dyn 2022; 40:2264-2283. [PMID: 33107812 PMCID: PMC7605658 DOI: 10.1080/07391102.2020.1837679] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the current global pandemic that has caused a death toll of >1.12 million worldwide and number continues to climb in several countries. Currently, there are neither specific antiviral drugs nor vaccines for the treatment and prevention of COVID-19. We screened in silico, a group of natural spice and herbal secondary metabolites (SMs) for their inhibition efficacy against multiple target proteins of SARS-CoV-2 as well as the human angiotensin-converting enzyme 2 protein. Docking and simulation results indicated that epicatechin, embelin, hesperidin, cafestol, murrayanine and murrayaquinone-A have higher inhibition efficacy over at least one of the known antiviral drugs such as Hydroxychloroquine, Remdesivir and Ribavirin. Combination of these potentially effective SMs from their respective plant sources was analysed, and its absorption and acute oral toxicity were examined in Wistar rats and classified as category 5 as per the Globally Harmonized System. The identified SMs may be useful in the development of preventive nutraceuticals, food supplements and antiviral drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | | | | | | | | | | | - Arjula R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
50
|
Zhang C, Ren H, Yao X, Wang K, Chang J. Comparative Transcriptome Analysis Reveals Differential Regulation of Flavonoids Biosynthesis Between Kernels of Two Pecan Cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:804968. [PMID: 35283902 PMCID: PMC8914201 DOI: 10.3389/fpls.2022.804968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids influence the flavor and nutritional value of pecan nuts. However, limited information is available regarding the molecular mechanisms underlying pecan flavonoid biosynthesis. Here, we used a high ("YLC28") and a low ("Oconee") flavonoid content cultivar as the research objects. The changes in flavonoid content and the gene transcription patterns during kernel development were identified. Different accumulation patterns of total flavonoids (TF) and condensed tannins (CT) were observed between the two cultivars. The contents of TF and CT in "YLC28" were 1.76- and 2.67-fold higher levels than that of "Oconee" on 150 days after full bloom of female flowers, respectively. In total, 30 RNA-Seq libraries were constructed and sequenced. The upregulated genes in "YLC28" were highly enriched in flavonoid-related pathways. Thirty-three structural genes were identified, and the expression of two phenylalanine ammonia lyases, one chalcone synthase, one flavonoid 3',5'-hydroxylase, and one flavonol synthase exhibited high correlation (r ≥ 0.7, p < 0.01) with the condensed tannin content in "YLC28." A putative MYB transcription factor, CIL1093S0100, might act as a flavonoid biosynthesis repressor during kernel development. Altogether, these results will be useful for uncovering the molecular mechanisms of flavonoid biosynthesis and subsequently accelerating quality pecan breeding.
Collapse
|