1
|
Ma J, Wang J, Wan Y, Wang S, Jiang C. Probiotic-fermented traditional Chinese herbal medicine, a promising approach to maintaining the intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118815. [PMID: 39270882 DOI: 10.1016/j.jep.2024.118815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, PR China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Shihua Wang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| |
Collapse
|
2
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Yan M, Man S, Sun B, Ma L, Guo L, Huang L, Gao W. Gut liver brain axis in diseases: the implications for therapeutic interventions. Signal Transduct Target Ther 2023; 8:443. [PMID: 38057297 PMCID: PMC10700720 DOI: 10.1038/s41392-023-01673-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
Gut-liver-brain axis is a three-way highway of information interaction system among the gastrointestinal tract, liver, and nervous systems. In the past few decades, breakthrough progress has been made in the gut liver brain axis, mainly through understanding its formation mechanism and increasing treatment strategies. In this review, we discuss various complex networks including barrier permeability, gut hormones, gut microbial metabolites, vagus nerve, neurotransmitters, immunity, brain toxic metabolites, β-amyloid (Aβ) metabolism, and epigenetic regulation in the gut-liver-brain axis. Some therapies containing antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation (FMT), polyphenols, low FODMAP diet and nanotechnology application regulate the gut liver brain axis. Besides, some special treatments targeting gut-liver axis include farnesoid X receptor (FXR) agonists, takeda G protein-coupled receptor 5 (TGR5) agonists, glucagon-like peptide-1 (GLP-1) receptor antagonists and fibroblast growth factor 19 (FGF19) analogs. Targeting gut-brain axis embraces cognitive behavioral therapy (CBT), antidepressants and tryptophan metabolism-related therapies. Targeting liver-brain axis contains epigenetic regulation and Aβ metabolism-related therapies. In the future, a better understanding of gut-liver-brain axis interactions will promote the development of novel preventative strategies and the discovery of precise therapeutic targets in multiple diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, 300072, Tianjin, China.
| |
Collapse
|
4
|
Bu Y, Liu Y, Liu Y, Cao J, Zhang Z, Yi H. Protective Effects of Bacteriocin-Producing Lactiplantibacillus plantarum on Intestinal Barrier of Mice. Nutrients 2023; 15:3518. [PMID: 37630708 PMCID: PMC10459803 DOI: 10.3390/nu15163518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Bacteriocins are crucial metabolites of probiotics that display beneficial functions. The intestinal barrier is an important target on which probiotics exert their intestinal health activity. However, the impacts of bacteriocin-producing probiotics on the intestinal barrier are unclear. In this study, the effects of bacteriocin-producing Lactiplantibacillus plantarum Q7 and L. plantarum F3-2 on the intestinal barrier of mice were explored. It was shown that L. plantarum Q7 promoted the expression of mucin MUC2 to enhance the protection provided by the intestinal mucus layer. L. plantarum Q7 up-regulated the gene expression of intestinal tight junction proteins ZO-1 and JAM-1 significantly, and L. plantarum F3-2 up-regulated ZO-1 and Claudin-1 markedly, which exhibited tight junction intestinal barrier function. The two strains promoted the release of IgA and IgG at varying degrees. The antimicrobial peptide gene RegIIIγ was up-regulated markedly, and the gene expression of inflammatory cytokines appeared to exhibit an upward trend with L. plantarum Q7 treatment, so as to enhance intestinal immune regulation function. Furthermore, L. plantarum Q7 and L. plantarum F3-2 increased the abundance of the beneficial bacteria Muribaculaceae, inhibited the growth of the harmful bacteria Parabacteroides, and facilitated the synthesis of total short-chain fatty acids (SCFAs), which seemed to favor the prevention of metabolic diseases. Our results suggested that L. plantarum Q7 and L. plantarum F3-2 showed strain specificity in their protective effects on the intestinal chemical, physical, immunological and biological barriers of mice, which provided theoretical support for the selective utilization of bacteriocin-producing strains to regulate host health.
Collapse
Affiliation(s)
- Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yisuo Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinxue Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
| | - Jiayuan Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (Y.B.); (Y.L.); (J.C.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
5
|
Okamura T, Hamaguchi M, Hasegawa Y, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Sasano R, Nakanishi Y, Seno H, Takano H, Fukui M. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:27006. [PMID: 36821708 PMCID: PMC9945580 DOI: 10.1289/ehp11072] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microplastics (MPs) are small particles of plastic (≤5mm in diameter). In recent years, oral exposure to MPs in living organisms has been a cause of concern. Leaky gut syndrome (LGS), associated with a high-fat diet (HFD) in mice, can increase the entry of foreign substances into the body through the intestinal mucosa. OBJECTIVES We aimed to evaluate the pathophysiology of intestinal outcomes associated with consuming a high-fat diet and simultaneous intake of MPs, focusing on endocrine and metabolic systems. METHODS C57BL6/J mice were fed a normal diet (ND) or HFD with or without polystyrene MP for 4 wk to investigate differences in glucose tolerance, intestinal permeability, gut microbiota, as well as metabolites in serum, feces, and liver. RESULTS In comparison with HFD mice, mice fed the HFD with MPs had higher blood glucose, serum lipid concentrations, and nonalcoholic fatty liver disease (NAFLD) activity scores. Permeability and goblet cell count of the small intestine (SI) in HFD-fed mice were higher and lower, respectively, than in ND-fed mice. There was no obvious difference in the number of inflammatory cells in the SI lamina propria between mice fed the ND and mice fed the ND with MP, but there were more inflammatory cells and fewer anti-inflammatory cells in mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. The expression of genes related to inflammation, long-chain fatty acid transporter, and Na+/glucose cotransporter was significantly higher in mice fed the HFD with MPs than in mice fed the HFD without MPs. Furthermore, the genus Desulfovibrio was significantly more abundant in the intestines of mice fed the HFD with MPs in comparison with mice fed the HFD without MPs. Muc2 gene expression was decreased when palmitic acid and microplastics were added to the murine intestinal epithelial cell line MODE-K cells, and Muc2 gene expression was increased when IL-22 was added. DISCUSSION Our findings suggest that in this study, MP induced metabolic disturbances, such as diabetes and NAFLD, only in mice fed a high-fat diet. These findings suggest that LGS might have been triggered by HFD, causing MPs to be deposited in the intestinal mucosa, resulting in inflammation of the intestinal mucosal intrinsic layer and thereby altering nutrient absorption. These results highlight the need for reducing oral exposure to MPs through remedial environmental measures to improve metabolic disturbance under high-fat diet conditions. https://doi.org/10.1289/EHP11072.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | | | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Sciences, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
6
|
An L, Wirth U, Koch D, Schirren M, Drefs M, Koliogiannis D, Niess H, Andrassy J, Guba M, Bazhin AV, Werner J, Kühn F. Metabolic Role of Autophagy in the Pathogenesis and Development of NAFLD. Metabolites 2023; 13:metabo13010101. [PMID: 36677026 PMCID: PMC9864958 DOI: 10.3390/metabo13010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disease, ranging from simple steatosis to hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Liver fibrosis, which portends a poor prognosis in NAFLD, is characterized by the excessive accumulation of extracellular matrix (ECM) proteins resulting from abnormal wound repair response and metabolic disorders. Various metabolic factors play crucial roles in the progression of NAFLD, including abnormal lipid, bile acid, and endotoxin metabolism, leading to chronic inflammation and hepatic stellate cell (HSC) activation. Autophagy is a conserved process within cells that removes unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism. Accumulating evidence has shown the importance of autophagy in NAFLD and its close relation to NAFLD progression. Thus, regulation of autophagy appears to be beneficial in treating NAFLD and could become an important therapeutic target.
Collapse
|
7
|
Chen X, Liu M, Tang J, Wang N, Feng Y, Ma H. Research Progress on the Therapeutic Effect of Polysaccharides on Non-Alcoholic Fatty Liver Disease through the Regulation of the Gut-Liver Axis. Int J Mol Sci 2022; 23:11710. [PMID: 36233011 PMCID: PMC9570256 DOI: 10.3390/ijms231911710] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting global public health at present, which can induce cirrhosis and liver cancer in serious cases. However, NAFLD is a multifactorial disease, and there is still a lack of research on its mechanism and therapeutic strategy. With the development of the gut-liver axis theory, the association between the gut-liver axis and the pathogenesis of NAFLD has been gradually disclosed. Polysaccharides, as a kind of natural product, have the advantages of low toxicity, multi-target and multi-pathway action. It has been reported that polysaccharides can affect the gut-liver axis at multiple interrelated levels, such as maintaining the ecological balance of gut microbiota (GM), regulating the metabolites of GM and improving the intestinal barrier function, which thereby plays a protective role in NAFLD. These studies have great scientific significance in understanding NAFLD based on the gut-liver axis and developing safe and effective medical treatments. Herein, we reviewed the recent progress of polysaccharides in improving nonalcoholic fatty liver disease (NAFLD) through the gut-liver axis.
Collapse
Affiliation(s)
- Xiang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Menghan Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong 999077, China
| | - Haotian Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Zhang L, Tian G, Huang L, Zhou M, Zhu J, Yi L, Mi M. Pterostilbene attenuates intestinal epithelial barrier loss induced by high loading intensity of exercise. Front Nutr 2022; 9:965180. [PMID: 35990348 PMCID: PMC9386544 DOI: 10.3389/fnut.2022.965180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Mounting evidence suggested that high loading intensity of exercise might be detrimental to human health, especially the gastrointestinal tract. Pterostilbene (PTE), derived from grapes and blueberries, might reach a high concentration of intestinal contents. Our study aimed to evaluate PTE’s ability to prevent the loss of intestinal epithelial barrier in high loading intensity of exercise. The exercise model was established by the forced running of mice. An effective HPLC-UV method was developed to quantify PTE concentration in intestinal content. The mRNA changes were detected by quantitative polymerase chain reaction (qPCR). The structure of intestinal flora was analyzed by 16S rRNA sequencing. The PTE (100 mg/kg/d) could significantly attenuate exercise-induced intestinal epithelial barrier loss. Moreover, the HPLC-UV assay showed that the PTE concentration of intestinal content could last 12 h. Furthermore, the exercise increased the abundance of Alistipes, which was related to lipopolysaccharide (LPS) production but could not be reversed by PTE intervention. Besides, cell experiments showed that PTE could promote the expression of intestinal epithelial tight junction (TJ) molecules in vitro. In conclusion, PTE has a significant interest in preventing exercise-induced intestinal damage.
Collapse
Affiliation(s)
- Lidong Zhang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guoliang Tian
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Huang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Zhou
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jundong Zhu
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Long Yi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mantian Mi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center for Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
9
|
Dong J, Ping L, Meng Y, Zhang K, Tang H, Liu D, Li B, Huo G. Bifidobacterium longum BL-10 with Antioxidant Capacity Ameliorates Lipopolysaccharide-Induced Acute Liver Injury in Mice by the Nuclear Factor-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8680-8692. [PMID: 35797025 DOI: 10.1021/acs.jafc.2c02950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bifidobacterium longum is frequently utilized and has broad prospects for preventing liver injury. The current research assessed the antioxidant capacity of B. longum BL-10 and probed its mechanism for ameliorating lipopolysaccharide (LPS)-induced acute liver injury (ALI). B. longum BL-10-encoded 15 antioxidant genes showed strong reducing power activity and scavenging activity of DPPH, hydroxyl radicals, and superoxide anions. The intragastric administration of B. longum BL-10 resulting in a marked reduction in liver function indicators (alanine aminotransferase, aspartate aminotransferase, total bilirubin, and total bile acid) and proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) was indicative of ALI recovery. Following 16s RNA analysis, B. longum BL-10 significantly altered the richness of genera, as for the Escherichia-Shigella, Lachnospiraceae_NK4A136_group, and Clostridia_UCG-014, dramatically contributing to the formation of acetic acid and butyric acid. Meanwhile, their metabolites regulated the TLR4/NF-κB signaling pathways to alleviate hepatic injury symptoms. Overall, all the results demonstrated that B. longum BL-10 had excellent efficiency in preventing LPS-induced ALI.
Collapse
Affiliation(s)
- Jiahuan Dong
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Ping
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yueyue Meng
- Dalian Minzu University, Ministry of Education, Dalian 116600, China
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian 116600, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Tang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Deyu Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
10
|
Leng J, Tian HJ, Fang Y, Hu YY, Peng JH. Amelioration of Non-Alcoholic Steatohepatitis by Atractylodes macrocephala Polysaccharide, Chlorogenic Acid, and Geniposide Combination Is Associated With Reducing Endotoxin Gut Leakage. Front Cell Infect Microbiol 2022; 12:827516. [PMID: 35865826 PMCID: PMC9294165 DOI: 10.3389/fcimb.2022.827516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/03/2022] [Indexed: 01/01/2023] Open
Abstract
Gut-derived lipopolysaccharide (LPS) leaking through the dysfunctional intestinal barrier contributes to the onset of non-alcoholic steatohepatitis (NASH) by triggering inflammation in the liver. In the present study, a combination consisting of Atractylodes macrocephala polysaccharide (A), chlorogenic acid (C), and geniposide (G) (together, ACG), was shown to ameliorate NASH in mice and reduce hepatic LPS signaling and endotoxemia without decreasing the abundance of identified Gram-negative bacteria through restoring the intestinal tight junctions. Our data indicated that inhibition of LPS gut leakage by the ACG combination contributed to its amelioration of NASH.
Collapse
Affiliation(s)
- Jing Leng
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua-jie Tian
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yi Fang
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yi-yang Hu
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Jing-hua Peng, ; Yi-yang Hu,
| | - Jing-hua Peng
- Institute of Liver Diseases, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- *Correspondence: Jing-hua Peng, ; Yi-yang Hu,
| |
Collapse
|
11
|
Namisaki T, Kaji K, Shimozato N, Kaya D, Ozutsumi T, Tsuji Y, Fujinaga Y, Kitagawa K, Furukawa M, Sato S, Sawada Y, Nishimura N, Takaya H, Okura Y, Seki K, Kawaratani H, Moriya K, Noguchi R, Asada K, Akahane T, Mitoro A, Yoshiji H. Effect of combined farnesoid X receptor agonist and angiotensin II type 1 receptor blocker on ongoing hepatic fibrosis. Indian J Gastroenterol 2022; 41:169-180. [PMID: 35279807 DOI: 10.1007/s12664-021-01220-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/19/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Nonalcoholic steatohepatitis (NASH) is difficult to diagnose in patients with no symptoms. We aimed to investigate the combined effect of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), and angiotensin II type 1 receptor blocker (ARB: losartan) on an ongoing hepatic fibrosis in a NASH rat model. METHODS Fischer 344 rats were fed with choline-deficient L-amino-acid-defined (CDAA) diet for 16 weeks. After 8-week administration of CDAA diet, OCA, losartan, or a combination of these drugs was administered at a dose of 30 mg/kg/day for 8 weeks by oral gavage. The in vivo and in vitro effects of OCA + losartan and liver fibrosis progression, lipopolysaccharide (LPS), Toll-like receptor 4 (TLR4) regulatory cascade, and gut barrier function were evaluated. RESULTS OCA + losartan alleviated hepatic fibrosis progression by suppressing α-SMA expression. It inhibited the proliferation of activated hepatic stellate cell (Ac-HSC) and mRNA expression of hepatic transforming growth factor-β1 (TGF-β1), TLR4, and tissue inhibitor of metalloproteinase-1 (TIMP-1) and decreased the hydroxyproline levels. OCA increased the hepatic matrix metalloproteinase-2 (MMP-2) mRNA expression. OCA decreased the mRNA expression of hepatic LPS-binding protein and intestinal permeability by ameliorating the disruption of CDAA diet-induced zonula occludens-1. Losartan directly inhibited the proliferation of Ac-HSC. The in vitro suppressive effects of OCA + losartan on the mRNA expressions of TGF-β1 and α1(I)-procollagen, TLR4, and TIMP-1 in Ac-HSCs were almost in parallel. CONCLUSIONS OCA + losartan suppressed the ongoing hepatic fibrosis by attenuating gut barrier dysfunction and suppressing Ac-HSC proliferation. Combined therapy may be a promising novel approach for NASH with fibrosis.
Collapse
Affiliation(s)
- Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan.
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Naotaka Shimozato
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Daisuke Kaya
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Ozutsumi
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Yukihisa Fujinaga
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Masanori Furukawa
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Yasuhiko Sawada
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Yasushi Okura
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Kenichiro Seki
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Ryuichi Noguchi
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Kiyoshi Asada
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
12
|
Zhang R, Zhang H, Liu J, Zeng X, Wu Y, Yang C. Rhamnolipids enhance growth performance by improving the immunity, intestinal barrier function, and metabolome composition in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:908-919. [PMID: 34235749 DOI: 10.1002/jsfa.11423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rhamnolipids (RLS), well known as glycolipid biosurfactants, display low toxicity, high biodegradability, and strong antibacterial properties. This study was carried out to evaluate the use of RLS supplementation as a substitute for antibiotics, and particularly to evaluate its effects on growth performance, immunity, intestinal barrier function, and metabolome composition in broilers. RESULTS The RLS treatment improved the growth performance, immunity, and intestinal barrier function in broilers. The 16S rRNA sequencing revealed that the genus Alistipes was the dominant genus in broilers treated by RLS. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomic analysis indicated that the sphingolipid metabolism, glycine, serine, and threonine metabolism, the gycerophospholipid metabolism, and the tryptophan metabolism were changed in broilers that were treated with RLS. CONCLUSION l-Tryptophan may be the medium for RLS to regulate the growth and physiological metabolism. Rhamnolipids can be used as a potential alternative to antibiotics, with similar functions to antibiotics in the diet of broilers. The optimal level of supplemented RLS in the diet was 1000 mg kg-1 . © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Haoran Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Xinfu Zeng
- Zhejiang Vegamax Biotechnology Co., Ltd, Anji, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|
13
|
Ren B, Wang L, Mulati A, Liu Y, Liu Z, Liu X. Methionine Restriction Improves Gut Barrier Function by Reshaping Diurnal Rhythms of Inflammation-Related Microbes in Aged Mice. Front Nutr 2022; 8:746592. [PMID: 35004799 PMCID: PMC8733897 DOI: 10.3389/fnut.2021.746592] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Age-related gut barrier dysfunction and dysbiosis of the gut microbiome play crucial roles in human aging. Dietary methionine restriction (MR) has been reported to extend lifespan and reduce the inflammatory response; however, its protective effects on age-related gut barrier dysfunction remain unclear. Accordingly, we focus on the effects of MR on inflammation and gut function. We found a 3-month methionine-restriction reduced inflammatory factors in the serum of aged mice. Moreover, MR reduced gut permeability in aged mice and increased the levels of the tight junction proteins mRNAs, including those of occludin, claudin-1, and zona occludens-1. MR significantly reduced bacterial endotoxin lipopolysaccharide concentration in aged mice serum. By using 16s rRNA sequencing to analyze microbiome diurnal rhythmicity during 24 h, we found MR moderately recovered the cyclical fluctuations of the gut microbiome which was disrupted in aged mice, leading to time-specific enhancement of the abundance of short-chain fatty acid-producing and lifespan-promoting microbes. Moreover, MR dampened the oscillation of inflammation-related TM7-3 and Staphylococcaceae. In conclusion, the effects of MR on the gut barrier were likely related to alleviation of the oscillations of inflammation-related microbes. MR can enable nutritional intervention against age-related gut barrier dysfunction.
Collapse
Affiliation(s)
- Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Aiziguli Mulati
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yan Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Zhang P, Jing C, Liang M, Jiang S, Huang L, Jiao N, Li Y, Yang W. Zearalenone Exposure Triggered Cecal Physical Barrier Injury through the TGF-β1/Smads Signaling Pathway in Weaned Piglets. Toxins (Basel) 2021; 13:toxins13120902. [PMID: 34941739 PMCID: PMC8708673 DOI: 10.3390/toxins13120902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
This study aims to investigate the effects of exposure to different dosages of zearalenone (ZEA) on cecal physical barrier functions and its mechanisms based on the TGF-β1/Smads signaling pathway in weaned piglets. Thirty-two weaned piglets were allotted to four groups and fed a basal diet supplemented with ZEA at 0, 0.15, 1.5, and 3.0 mg/kg, respectively. The results showed that 1.5 and 3.0 mg/kg ZEA damaged cecum morphology and microvilli, and changed distribution and shape of M cells. Moreover, 1.5 and 3.0 mg/kg ZEA decreased numbers of goblet cells, the expressions of TFF3 and tight junction proteins, and inhibited the TGF-β1/Smads signaling pathway. Interestingly, the 0.15 mg/kg ZEA had no significant effect on cecal physical barrier functions but decreased the expressions of Smad3, p-Smad3 and Smad7. Our study suggests that high-dose ZEA exposure impairs cecal physical barrier functions through inhibiting the TGF-β1/Smads signaling pathway, but low-dose ZEA had no significant effect on cecum morphology and integrity through inhibiting the expression of smad7. These findings provide a scientific basis for helping people explore how to reduce the toxicity of ZEA in feeds.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Changwei Jing
- Technical Department, Shandong Chinwhiz Co., Ltd., Weifang 262400, China;
| | - Ming Liang
- Department of Feeding Microecology, Shandong Baolaililai Bioengineering Co., Ltd., Tai’an 271001, China;
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Libo Huang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Ning Jiao
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
| | - Yang Li
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
- Correspondence: (Y.L.); (W.Y.)
| | - Weiren Yang
- Department of Animal Sciences and Technology, Shandong Agricultural University, Tai’an 271018, China; (P.Z.); (S.J.); (L.H.); (N.J.)
- Correspondence: (Y.L.); (W.Y.)
| |
Collapse
|
15
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
16
|
Panwar S, Sharma S, Tripathi P. Role of Barrier Integrity and Dysfunctions in Maintaining the Healthy Gut and Their Health Outcomes. Front Physiol 2021; 12:715611. [PMID: 34630140 PMCID: PMC8497706 DOI: 10.3389/fphys.2021.715611] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Mucosal surface layers are the critical borders throughout epithelial membranes. These epithelial cells segregate luminal material from external environments. However, mucosal linings are also accountable for absorbing nutrients and requiring specific barrier permeability. These functional acts positioned the mucosal epithelium at the epicenter of communications concerning the mucosal immune coordination and foreign materials, such as dietary antigens and microbial metabolites. Current innovations have revealed that external stimuli can trigger several mechanisms regulated by intestinal mucosal barrier system. Crucial constituents of this epithelial boundary are physical intercellular structures known as tight junctions (TJs). TJs are composed of different types transmembrane proteins linked with cytoplasmic adaptors which helps in attachment to the adjacent cells. Disruption of this barrier has direct influence on healthy or diseased condition, as barrier dysfunctions have been interrelated with the initiation of inflammation, and pathogenic effects following metabolic complications. In this review we focus and overview the TJs structure, function and the diseases which are able to influence TJs during onset of disease. We also highlighted and discuss the role of phytochemicals evidenced to enhance the membrane permeability and integrity through restoring TJs levels.
Collapse
Affiliation(s)
- Shruti Panwar
- Infection and Immunology, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
17
|
Hussain M, Umair Ijaz M, Ahmad MI, Khan IA, Bukhary SUF, Khan W, Hussain S, Hashmi MS, Li C. Gut inflammation exacerbates hepatic injury in C57BL/6J mice via gut-vascular barrier dysfunction with high-fat-incorporated meat protein diets. Food Funct 2021; 11:9168-9176. [PMID: 33026380 DOI: 10.1039/d0fo02153a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM Meat and its derivatives provide nutrients essential for human health. However, meat consumption, along with excessive fat intake, has been associated with gut inflammation, intestinal barrier dysfunction and alterations in gut microbiota. Herein, we investigated whether and how these changes in the intestinal barrier system affect the gut liver axis and hepatic injury and eventually lead to the progression of liver syndrome such as NAFLD. METHODS Mice were fed with high fat (60% kcal) or low fat (12% kcal) along with soybean (control), chicken and pork proteins (HFCH, HFP, LFCH, and LFP) for 12 weeks. The biomarkers for liver injury were investigated after meat protein intake along with the high fat. FINDINGS Greater amount of fat vacuoles visible in the H&E staining increased the inflammatory cell infiltration and disorganized liver structures were observed in the HFP-fed mice. Oil Red O staining revealed that the HFP-fed and HFCH-fed mice showed more lipid droplets, confirming the increased hepatic lipid accumulation. Potential serum markers for NAFLD, ALT and AST were increased in the HF meat diet groups. Key genes responsible for hepatic inflammation and lipogenesis, such as MCP-1, IL1-β and TNF-α were upregulated. HF meat protein diet-fed mice exhibited signs of compromised liver with increased levels of endotoxin in the liver and its binding protein in serum, upregulation of TLRs in the liver, and significant increase in TG, TC, LDL-C and HDL-C concentrations. SIGNIFICANCE Intestinal inflammation and barrier dysfunction aggravate liver injury and fibrosis due to the intake of HF meat protein diets in mice, which may contribute to the progress of liver injury and associated complications. Gut inflammation may directly contribute to the development of NAFLD, especially of the gut vascular barricade dysfunction.
Collapse
Affiliation(s)
- Muzahir Hussain
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China. and Department of Horticulture, Abdul Wali Khan University Mardan, KPK, Pakistan and Department of Food Science and Technology, The University of Agriculture Peshawar, Peshawar, KPK 26000, Pakistan
| | - Muhammad Umair Ijaz
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Muhammad Ijaz Ahmad
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Iftikhar Ali Khan
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Syed Umar Farooq Bukhary
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Waqar Khan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Sayed Hussain
- Department of Horticulture, Abdul Wali Khan University Mardan, KPK, Pakistan
| | - Majid Suhail Hashmi
- Department of Food Science and Technology, The University of Agriculture Peshawar, Peshawar, KPK 26000, Pakistan
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
18
|
Gerges SH, Wahdan SA, Elsherbiny DA, El-Demerdash E. Non-alcoholic fatty liver disease: An overview of risk factors, pathophysiological mechanisms, diagnostic procedures, and therapeutic interventions. Life Sci 2021; 271:119220. [PMID: 33592199 DOI: 10.1016/j.lfs.2021.119220] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disorder of excessive fat accumulation in the liver, known as steatosis, without alcohol overconsumption. NAFLD can either manifest as simple steatosis or steatohepatitis, known as non-alcoholic steatohepatitis (NASH), which is accompanied by inflammation and possibly fibrosis. Furthermore, NASH might progress to hepatocellular carcinoma. NAFLD and NASH prevalence is in a continuous state of growth, and by 2018, NAFLD became a devastating metabolic disease with a global pandemic prevalence. The pathophysiology of NAFLD and NASH is not fully elucidated, but is known to involve the complex interplay between different metabolic, environmental, and genetic factors. In addition, unhealthy dietary habits and pre-existing metabolic disturbances together with other risk factors predispose NAFLD development and progression from simple steatosis to steatohepatitis, and eventually to fibrosis. Despite their growing worldwide prevalence, to date, there is no FDA-approved treatment for NAFLD and NASH. Several off-label medications are used to target disease risk factors such as obesity and insulin resistance, and some medications are used for their hepatoprotective effects. Unfortunately, currently used medications are not sufficiently effective, and research is ongoing to investigate the beneficial effects of different drugs and phytochemicals in NASH. In this review article, we outline the different risk factors and pathophysiological mechanisms involved in NAFLD, diagnostic procedures, and currently used management techniques.
Collapse
Affiliation(s)
- Samar H Gerges
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbasia, Cairo 11566, Egypt.
| |
Collapse
|
19
|
Zhang Y, Sun Y, Liu J, Han Y, Yan J. MicroRNA-346-5p Regulates Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Inhibiting Transmembrane Protein 9. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8822232. [PMID: 33299881 PMCID: PMC7704134 DOI: 10.1155/2020/8822232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.
Collapse
Affiliation(s)
- Yicai Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150010, China
- Department of Orthopedic, The Third People's Hospital of Huizhou, Huizhou, Guangdong, 516002, China
| | - Yi Sun
- Department of Orthopedic, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150010, China
| | - Jinlong Liu
- Department of Orthopedic, The 80th Group Army Hospital of PLA, Weifang, Shandong 261042, China
| | - Yu Han
- Department of Orthopedic, The Third People's Hospital of Huizhou, Huizhou, Guangdong, 516002, China
| | - Jinglong Yan
- Department of Orthopedic, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
20
|
Zhang W, Zhang S, Wang J, Shan A, Xu L. Changes in intestinal barrier functions and gut microbiota in rats exposed to zearalenone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111072. [PMID: 32758694 DOI: 10.1016/j.ecoenv.2020.111072] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that causes serious health problems in humans and animals. However, few studies have focused on the destruction of the intestinal barrier caused by ZEN. In this study, rats were exposed to different dosages of ZEN (0, 0.2, 1.0 and 5.0 mg/kg bw) by gavage for 4 weeks. The results showed that 1.0 and 5.0 mg/kg ZEN impaired gut morphology, induced the inflammatory response, reduced mucin expression, increased intestinal permeability, decreased the expression of TJ proteins and activated the RhoA/ROCK pathway. However, 0.2 mg/kg ZEN had no significant effect on intestinal barrier except for reducing the expression of some TJ proteins and mucins. Moreover, exposure to ZEN led to slight imbalance in microbiota. In conclusion, ZEN exposure resulted in intestinal barrier dysfunction by inducing intestinal microbiota dysbiosis, decreasing the expression of TJ proteins, activating the RhoA/ROCK pathway, and inducing the inflammatory response.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shihua Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Li Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
21
|
Dai X, Guo Z, Chen D, Li L, Song X, Liu T, Jin G, Li Y, Liu Y, Ajiguli A, Yang C, Wang B, Cao H. Maternal sucralose intake alters gut microbiota of offspring and exacerbates hepatic steatosis in adulthood. Gut Microbes 2020; 11:1043-1063. [PMID: 32228300 PMCID: PMC7524393 DOI: 10.1080/19490976.2020.1738187] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is considered to be associated with diet and gut dysbiosis. Excessive sucralose can induce gut dysbiosis and negatively affect host health. Maternal diet shapes the microbial communities of neonate and this effect continues in later life. We aimed to investigate the effects of maternal sucralose (MS) intake on the susceptibility of offspring to hepatic steatosis in adulthood. METHODS C57BL/6 pregnant mice were randomized into MS group (MS during gestation and lactation) and maternal control (MC) group (MC diet). After weaning, all offspring were fed a control diet until 8 weeks of age, and then treated with a high-fat diet (HFD) for 4 weeks. The intestinal development, mucosal barrier function, and gut microbiota were assessed in the 3-week-old offspring. Moreover, the severity of hepatic steatosis, serum biochemistry, lipid metabolism, and gut microbiota was then assessed in the 12th week. RESULTS MS significantly inhibited intestinal development and disrupted barrier function in 3-week-old offspring. MS also induced intestinal low-grade inflammation, significantly changed the compositions and diversity of gut microbiota including reducing butyrate-producing bacteria and cecal butyrate production with down-regulation of GPR43. Mechanically, blocking GPR43 blunted the anti-inflammatory effect of one of the butyrate-producing bacteria, Clostridium butyricum in vitro. After HFD treatment, MS exacerbated hepatic steatosis, and disturbed fatty acid biosynthesis and metabolism, accompanied by inducing gut dysbiosis compared with MC group. CONCLUSIONS MS intake inhibits intestinal development, induces gut dysbiosis in offspring through down-regulation of GPR43, and exacerbates HFD-induced hepatic steatosis in adulthood.
Collapse
Affiliation(s)
- Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zixuan Guo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yun Li
- Department of Pharmacy, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yi Liu
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China,Department of Gastroenterology and Hepatology, Hotan District People’s Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Aihemaiti Ajiguli
- Department of Gastroenterology and Hepatology, Hotan District People’s Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Cheng Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine,Tianjin
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China,CONTACT Bangmao Wang Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, 154 Anshan Road, Heping District, China, Tianjin , 300052
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China,Department of Gastroenterology and Hepatology, Hotan District People’s Hospital, Xinjiang Uygur Autonomous Region, Xinjiang, China,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine,Tianjin,Hailong Cao Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, 154 Anshan Road, Heping District, Tianjin300052, China
| |
Collapse
|
22
|
|
23
|
Akkermansia muciniphila Prevents Fatty Liver Disease, Decreases Serum Triglycerides, and Maintains Gut Homeostasis. Appl Environ Microbiol 2020; 86:AEM.03004-19. [PMID: 31953338 DOI: 10.1128/aem.03004-19] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 01/12/2020] [Indexed: 12/19/2022] Open
Abstract
The objective of this study was to elucidate the effect of intestinal Akkermansia muciniphila bacteria on fatty liver disease. Five-week-old C57BL/6N mice were administered either phosphate-buffered saline (PBS; control) or A. muciniphila at 108 to 109 CFU/ml, and were fed either a 45% fat diet (high-fat diet [HFD]) or a 10% fat diet (normal diet [ND]) for 10 weeks. After 10 weeks, the mice were euthanized, and blood and tissue samples, including adipose tissue, cecum, liver, and brain, were immediately collected. Biochemical and histological analyses were conducted, and the expression levels of related factors were compared to determine the antiobesity effects of Akkermansia muciniphila The gut microbiome was analyzed in fecal samples. Oral administration of A. muciniphila significantly (P < 0.05) lowered serum triglyceride (TG) and alanine aminotransferase (ALT) levels in obese mice. Compared to the non-A. muciniphila-treated group, the expression of SREBP (regulator of TG synthesis in liver tissue) was decreased in the A. muciniphila-treated group. The expression of IL-6 in the liver of obese mice was decreased following the administration of A. muciniphila Furthermore, alterations in the ratio of Firmicutes to Bacteroidetes and the decrease in bacterial diversity caused by the HFD were restored upon the administration of A. muciniphila These results indicate that A. muciniphila prevents fatty liver disease in obese mice by regulating TG synthesis in the liver and maintaining gut homeostasis.IMPORTANCE This study investigated the effect of Akkermansia muciniphila on fatty liver disease. Although some research about the effects of A. muciniphila on host health has been published, study of the relationship between A. muciniphila administration and fatty liver, as well as changes in the gut microbiota, has not been conducted. In this study, we demonstrated that A. muciniphila prevented fatty liver disease by regulation of the expression of genes that regulate fat synthesis and inflammation in the liver.
Collapse
|
24
|
Bi Y, Marcus AK, Robert H, Krajmalnik-Brown R, Rittmann BE, Westerhoff P, Ropers MH, Mercier-Bonin M. The complex puzzle of dietary silver nanoparticles, mucus and microbiota in the gut. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:69-89. [PMID: 31920169 DOI: 10.1080/10937404.2019.1710914] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hundreds of consumer and commercial products containing silver nanoparticles (AgNPs) are currently used in food, personal-care products, pharmaceutical, and many other applications. Human exposure to AgNPs includes oral intake, inhalation, and dermal contact. The aim of this review was to focus on oral intake, intentional and incidental of AgNPs where well-known antimicrobial characteristics that might affect the microbiome and mucus in the gastrointestinal tract (GIT). This critical review summarizes what is known regarding the impacts of AgNPs on gut homeostasis. It is fundamental to understand the forms of AgNPs and their physicochemical characterization before and during digestion. For example, lab-synthesized AgNPs differ from "real" ingestable AgNPs used as food additives and dietary supplements. Similarly, the gut environment alters the chemical and physical state of Ag that is ingested as AgNPs. Emerging research on in vitro and in vivo rodent and human indicated complex multi-directional relationships among AgNPs, the intestinal microbiota, and the epithelial mucus. It may be necessary to go beyond today's descriptive approach to a modeling-based ecosystem approach that might quantitatively integrate spatio-temporal interactions among microbial groups, host factors (e.g., mucus), and environmental factors, including lifestyle-based stressors. It is suggested that future research (1) utilize more representative AgNPs, focus on microbe/mucus interactions, (2) assess the effects of environmental stressors for longer and longitudinal conditions, and (3) be integrated using quantitative modeling.
Collapse
Affiliation(s)
- Yuqiang Bi
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Andrew K Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Hervé Robert
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | | | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
25
|
Feng D, Zou J, Su D, Mai H, Zhang S, Li P, Zheng X. Curcumin prevents high-fat diet-induced hepatic steatosis in ApoE -/- mice by improving intestinal barrier function and reducing endotoxin and liver TLR4/NF-κB inflammation. Nutr Metab (Lond) 2019; 16:79. [PMID: 31788011 PMCID: PMC6858759 DOI: 10.1186/s12986-019-0410-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and has become a public health concern worldwide. The hallmark of NAFLD is hepatic steatosis. Therefore, there is an urgent need to develop new therapeutic strategies that are efficacious and have minimal side effects in hepatic steatosis and NAFLD treatment. The present study aimed to investigate the effect of dietary supplement of curcumin on high-fat diet (HFD)-induced hepatic steatosis and the underlying mechanism. Methods ApoE−/− mice were fed a normal diet, high-fat diet (HFD) or HFD supplemented with curcumin (0.1% w/w) for 16 weeks. Body and liver weight, blood biochemical. parameters, and liver lipids were measured. Intestinal permeability, hepatic steatosis and mRNA and protein expressions of TLR4-related inflammatory signaling molecule were analyzed. Results The administration of curcumin significantly prevented HFD-induced body weight gain and reduced liver weight. Curcumin attenuated hepatic steatosis along with improved serum lipid profile. Moreover, curcumin up-regulated the expression of intestinal tight junction protein zonula occluden-1 and occludin, which further improved gut barrier dysfunction and reduced circulating lipopolysaccharide levels. Curcumin also markedly down-regulated the protein expression of hepatic TLR4 and myeloid differentiation factor 88 (MyD88), inhibited p65 nuclear translocation and DNA binding activity of nuclear factor-κB (NF-κB) in the liver. In addition, the mRNA expression of hepatic tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) as well as the plasma levels of TNF-α and IL-1β were also lowered by curcumin treatment. Conclusion These results indicated that curcumin protects against HFD-induced hepatic steatosis by improving intestinal barrier function and reducing endotoxin and liver TLR4/NF-κB inflammation. The ability of curcumin to inhibit hepatic steatosis portrayed its potential as effective dietry intervention for NAFLD prevention.
Collapse
Affiliation(s)
- Dan Feng
- 1Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University(Northern Campus), 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong Province China
| | - Jun Zou
- 2Department of Cardiology, Affiliated Nanhai Hospital of Southern Medical University, Foshan, 528200 China
| | - Dongfang Su
- 3Department of Clinic Nutrition, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Haiyan Mai
- 4Department of Clinic Nutrition, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 China
| | - Shanshan Zhang
- 1Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University(Northern Campus), 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong Province China
| | - Peiyang Li
- 1Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University(Northern Campus), 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong Province China
| | - Xiumei Zheng
- 1Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University(Northern Campus), 74 Zhongshan Road 2, Guangzhou, 510080 Guangdong Province China
| |
Collapse
|
26
|
The promising role of probiotic and synbiotic therapy in aminotransferase levels and inflammatory markers in patients with nonalcoholic fatty liver disease - a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2019; 31:703-715. [PMID: 31009401 DOI: 10.1097/meg.0000000000001371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. The pathogenesis of NAFLD is complex and multifactorial. There is growing evidence that altered gut microbiota plays a key role in NAFLD progression. Probiotics/synbiotics, by modifying gut microbiota, may be a promising treatment choice for NAFLD management. AIM The aim of this study was to study the effect of probiotics/synbiotics on various laboratory and radiographic parameters in NAFLD management. MATERIALS AND METHODS A systematic review and meta-analysis were carried out according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. We searched PubMed, Medline, and Google Scholar for randomized-controlled trials that studied the role of probiotics/synbiotics in NAFLD. The primary outcome was change in baseline alanine aminotransferase and aspartate aminotransferase in the treatment arm. We used a random-effects model and inverse variance for the continuous data to estimate the mean difference (MD) and the standard mean difference (SMD) in RevMan Version 5.3. RESULTS We included 12 randomized-controlled trials for analysis. The intervention arm, which comprised of the probiotic and/or the synbiotic arm, showed a significant improvement in alanine aminotransferase levels, MD=-13.93, confidence interval (CI)=-20.20 to -7.66, P value of less than 0.0001, I=92% and aspartate aminotransferase levels MD=-11.45, CI=-15.15 to -7.74, P value of less than 0.00001, I=91%. There was a reduction in high-sensitivity C-reactive protein levels in the intervention arm, SMD=-0.68, CI=-1.10 to -0.26, P value of 0.001, I=0%. The liver fibrosis score improved in the intervention arm, MD=-0.71, CI=-0.81 to -0.61, P value less than 0.00001, I=0%. CONCLUSION Probiotic/synbiotic use improves aminotransaminase levels and reduces proinflammatory marker high-sensitivity C-reactive protein and liver fibrosis in NAFLD patients.
Collapse
|
27
|
Escherichia coli K12: An evolving opportunistic commensal gut microbe distorts barrier integrity in human intestinal cells. Microb Pathog 2019; 133:103545. [PMID: 31112772 DOI: 10.1016/j.micpath.2019.103545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023]
Abstract
Commensal enteric microbes under specific conditions viz. immunocompromised system, altered microbiota or uncompetitive niche induce their otherwise dormant pathogenic phenotype to distort host cellular functioning. Here we investigate how under in vitro environment established by using Caco-2 cells, commensal gut microbe E. coli K12 (ATCC 14849) disrupt intestinal epithelial barrier function. Caco-2 cells exposed to E. coli showed the time dependent significant (P < 0.01) decrease in transepithelial electrical resistance (TEER) and concomitantly increased phenol red flux across cell monolayer in contrast to non infected control cells. E. coli infected intestinal cells were observed with suppressed (p < 0.05) mRNA levels of ZO-1, Claudin-1, Occludin and Cingulin-1 in contrast to significantly (p < 0.05) higher PIgR and hbd-2 mRNA fold changes. Immunofluorescent and electron micrographs revealed the disrupted distribution and localisation of specific tight junction proteins (Zo-1 and Claudin-1) and actin filament in E. coli infected Caco-2 cells that ultimately resulted in deformed cellular morphology. Taken together, E. coli K12 under compromised in vitro milieu disrupted the intestinal barrier functions by decreasing the expression of important tight junction genes along with the altered distribution of associated proteins that increased the intestinal permeability as reflected by phenol red flux and TEER values.
Collapse
|
28
|
Pilose antler polypeptides ameliorate inflammation and oxidative stress and improves gut microbiota in hypoxic-ischemic injured rats. Nutr Res 2019; 64:93-108. [DOI: 10.1016/j.nutres.2019.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/12/2019] [Accepted: 01/19/2019] [Indexed: 12/11/2022]
|
29
|
Dornas W, Lagente V. Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacol Res 2019; 141:418-428. [PMID: 30658094 DOI: 10.1016/j.phrs.2019.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Fatty livers are susceptible to factors that cause inflammation and fibrosis, but fat deposition and the inflammatory response can be dissociated. While nonalcoholic fatty liver disease (NAFLD), caused by pathologic fat accumulation inside the liver, can remain stable for several years, in other cases NAFLD progresses to nonalcoholic steatohepatitis (NASH), which is characterized by fat accumulation and inflammation and is not a benign condition. In this review, we discuss the NASH host cells and microbial mechanisms that stimulate inflammation and predispose the liver to hepatocyte injury and fibrotic stages via increased lipid deposition. We highlight the interactions between intestine-derived bacterial products, such as lipopolysaccharide, and nutritional models of NAFLD and/or obese individuals. The results of modulating enteric microbiota suggest that gut-derived endotoxins may be essential determinants of fibrotic progression and regression in NASH.
Collapse
Affiliation(s)
- Waleska Dornas
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| |
Collapse
|
30
|
Cheng C, Tan J, Qian W, Zhang L, Hou X. Gut inflammation exacerbates hepatic injury in the high-fat diet induced NAFLD mouse: Attention to the gut-vascular barrier dysfunction. Life Sci 2018; 209:157-166. [PMID: 30096384 DOI: 10.1016/j.lfs.2018.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
AIMS Gut inflammation has been put forward to be associated with hepatic injury in the clinical practice. The dismantled intestinal barrier was highly concerned, however, largely unknown about the role of gut-vascular barrier (GVB) in this process. This study aimed to investigate if inflamed gut directly contributes to the progression of non-alcoholic steatohepatitis (NASH), especially attention to the GVB dysfunction. MAIN METHODS Male C57bl/6 mice were fed with a high-fat diet (HFD) and 1% DSS for 12 weeks. The colonic inflammatory injury as well as hepatic injury were evaluated. The GVB function was assessed via measuring the permeability to fluorescently-labeled dextran (70 kDa) and the expression of plasmalemma vesicle-associated protein-1 (PV1). Furthermore, the plasma endotoxin level and hepatic TLR4/TLR9 mRNA expression were detected. KEY FINDINGS There were evident colitis in DSS-exposed mice, which trend to be more apparent in HFD ones. The HFD + DSS mice exhibited more serious hepatic steatosis, inflammation and fibrosis than HFD groups. The downregulated tight junction protein in HFD + DSS mice indicated loss of epithelial barrier. The GVB disruption were also confirmed with increased permeability to macromolecules and high expression of endothelial PV1 in HFD + DSS mice. Accordingly, potentially elevated plasma endotoxin levels and markedly increased TLR4/TLR9 mRNA expression were demonstrated in HFD + DSS mice rather than HFD groups. SIGNIFICANCE Gut inflammation exacerbates liver injury and fibrosis in HFD mice, which may contribute to the development of NASH. Beyond the damaged intestinal epithelial barrier, GVB disruption with bacterial translocation into may play a key role in the pathogenesis of NASH.
Collapse
Affiliation(s)
- Chunwei Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
31
|
Mucus: An Underestimated Gut Target for Environmental Pollutants and Food Additives. Microorganisms 2018; 6:microorganisms6020053. [PMID: 29914144 PMCID: PMC6027178 DOI: 10.3390/microorganisms6020053] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Synthetic chemicals (environmental pollutants, food additives) are widely used for many industrial purposes and consumer-related applications, which implies, through manufactured products, diet, and environment, a repeated exposure of the general population with growing concern regarding health disorders. The gastrointestinal tract is the first physical and biological barrier against these compounds, and thus their first target. Mounting evidence indicates that the gut microbiota represents a major player in the toxicity of environmental pollutants and food additives; however, little is known on the toxicological relevance of the mucus/pollutant interplay, even though mucus is increasingly recognized as essential in gut homeostasis. Here, we aimed at describing how environmental pollutants (heavy metals, pesticides, and other persistent organic pollutants) and food additives (emulsifiers, nanomaterials) might interact with mucus and mucus-related microbial species; that is, “mucophilic” bacteria such as mucus degraders. This review highlights that intestinal mucus, either directly or through its crosstalk with the gut microbiota, is a key, yet underestimated gut player that must be considered for better risk assessment and management of environmental pollution.
Collapse
|
32
|
Ray I, Dasgupta A, De RK. Succinate aggravates NAFLD progression to liver cancer on the onset of obesity: An in silico model. J Bioinform Comput Biol 2018; 16:1850008. [PMID: 29954288 DOI: 10.1142/s0219720018500087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incidence and prevalence of nonalcoholic fatty liver disease (NAFLD) have been increasing to epidemic proportions around the world. NAFLD, a chronic liver disease that affects the nondrinkers, is mainly associated with steatohepatitis and cirrhosis. The progression of NAFLD associated with obesity increases the risk of liver cancer, a disease with poor outcomes and limited therapeutic options. In order to investigate the underlying cellular dynamics leading to NAFLD progression towards cancer on the onset of obesity, we have integrated human hepatocyte pathway with hypoxia-inducible factor1- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> (HIF1- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> ) signaling pathway using state space model based on classical control theory. Modified Michaelis-Menten equation and mass action law have been used to define flux vectors of the proposed model. We have incorporated feedback inhibition/activation and allosteric effects into the simulink-based model. The values of kinetic constants have been taken from the literature. It is found that on the onset of obesity, HIF1- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -induced proteins stabilize approximately 62 times that in the case of a normal cell. Consequently, the HIF1- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> -induced proteins enhance the enzymatic activities of hexokinase (HK), phosphofructo kinase (PFK), lactate dehydrogenase (LDH), and pyruvate dehydrogenase (PDH), which induce Warburg effect promoting an environment suitable for cancer cells.
Collapse
Affiliation(s)
- Indrani Ray
- Machine Intelligence Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| | - Abhijit Dasgupta
- Machine Intelligence Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| | - Rajat K De
- Machine Intelligence Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India
| |
Collapse
|
33
|
Li J, Sasaki GY, Dey P, Chitchumroonchokchai C, Labyk AN, McDonald JD, Kim JB, Bruno RS. Green tea extract protects against hepatic NFκB activation along the gut-liver axis in diet-induced obese mice with nonalcoholic steatohepatitis by reducing endotoxin and TLR4/MyD88 signaling. J Nutr Biochem 2018; 53:58-65. [PMID: 29190550 DOI: 10.1016/j.jnutbio.2017.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Green tea extract (GTE) reduces NFκB-mediated inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized that its anti-inflammatory activities would be mediated in a Toll-like receptor 4 (TLR4)-dependent manner. Wild-type (WT) and loss-of-function TLR4-mutant (TLR4m) mice were fed a high-fat diet containing GTE at 0 or 2% for 8 weeks before assessing NASH, NFκB-mediated inflammation, TLR4 and its adaptor proteins MyD88 and TRIF, circulating endotoxin, and intestinal tight junction protein mRNA expression. TLR4m mice had lower (P<.05) body mass compared with WT mice but similar adiposity, whereas body mass and adiposity were lowered by GTE regardless of genotype. Liver steatosis, serum alanine aminotransferase, and hepatic lipid peroxidation were also lowered by GTE in WT mice, and were similarly lowered in TLR4m mice regardless of GTE. Phosphorylation of the NFκB p65 subunit and pro-inflammatory genes (TNFα, iNOS, MCP-1, MPO) were lowered by GTE in WT mice, and did not differ from the lowered levels in TLR4m mice regardless of GTE. TLR4m mice had lower TLR4 mRNA, which was also lowered by GTE in both genotypes. TRIF expression was unaffected by genotype and GTE, whereas MyD88 was lower in mice fed GTE regardless of genotype. Serum endotoxin was similarly lowered by GTE regardless of genotype. Tight junction protein mRNA levels were unaffected by genotype. However, GTE similarly increased claudin-1 mRNA in the duodenum and jejunum and mRNA levels of occludin and zonula occluden-1 in the jejunum and ileum. Thus, GTE protects against inflammation during NASH, likely by limiting gut-derived endotoxin translocation and TLR4/MyD88/NFκB activation.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Priyankar Dey
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Allison N Labyk
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol 2017; 109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023]
Abstract
Gut health is determined by an intact epithelial barrier and balanced gut microbiota, both involved in the regulation of immune responses in the gut. Disruption of this system contributes to the etiology of various non-communicable diseases, including intestinal, metabolic, and autoimmune disorders. Studies suggest that some direct food additives, but also some food contaminants, such as pesticide residues and substances migrating from food contact materials (FCMs), may adversely affect the gut barrier or gut microbiota. Here, we focus on gut-related effects of FCM-relevant substances (e.g. surfactants, N-ring containing substances, nanoparticles, and antimicrobials) and show that gut health is an underappreciated target in the toxicity assessment of FCMs. Understanding FCMs' impact on gut health requires more attention to ensure safety and prevent gut-related chronic diseases. Our review further points to the existence of large population subgroups with an increased intestinal permeability; this may lead to higher uptake of compounds of not only low (<1000 Da) but also high (>1000 Da) molecular weight. We discuss the potential toxicological relevance of high molecular weight compounds in the gut and suggest that the scientific justification for the application of a molecular weight-based cut-off in risk assessment of FCMs should be reevaluated.
Collapse
|
35
|
Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis. PLoS One 2017. [PMID: 28632732 PMCID: PMC5478096 DOI: 10.1371/journal.pone.0175406] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Impairments in intestinal barrier function, epithelial mucins, and tight junction proteins have been reported to be associated with nonalcoholic steatohepatitis. Prebiotic fructo-oligosaccharides restore balance in the gastrointestinal microbiome. This study was conducted to determine the effects of dietary fructo-oligosaccharides on intestinal barrier function and steatohepatitis in methionine–choline-deficient mice. Three groups of 12-week-old male C57BL/6J mice were studied for 3 weeks; specifically, mice were fed a methionine–choline-deficient diet, a methionine–choline-deficient diet plus 5% fructo-oligosaccharides in water, or a normal control diet. Fecal bacteria, short-chain fatty acids, and immunoglobulin A (IgA) levels were investigated. Histological and immunohistochemical examinations were performed using mice livers for CD14 and Toll-like receptor-4 (TLR4) expression and intestinal tissue samples for IgA and zonula occludens-1 expression in epithelial tight junctions. The methionine–choline-deficient mice administered 5% fructo-oligosaccharides maintained a normal gastrointestinal microbiome, whereas methionine–choline-deficient mice without prebiotic supplementation displayed increases in Clostridium cluster XI and subcluster XIVa populations and a reduction in Lactobacillales spp. counts. Methionine–choline-deficient mice given 5% fructo-oligosaccharides exhibited significantly decreased hepatic steatosis (p = 0.003), decreased liver inflammation (p = 0.005), a decreased proportion of CD14-positive Kupffer cells (p = 0.01), decreased expression of TLR4 (p = 0.04), and increases in fecal short-chain fatty acid and IgA concentrations (p < 0.04) compared with the findings in methionine–choline-deficient mice that were not administered this prebiotic. This study illustrated that in the methionine–choline-deficient mouse model, dietary fructo-oligosaccharides can restore normal gastrointestinal microflora and normal intestinal epithelial barrier function, and decrease steatohepatitis. The findings support the role of prebiotics, such as fructo-oligosaccharides, in maintaining a normal gastrointestinal microbiome; they also support the need for further studies on preventing or treating nonalcoholic steatohepatitis using dietary fructo-oligosaccharides.
Collapse
|
36
|
The microbiome-immune-host defense barrier complex (microimmunosome) and developmental programming of noncommunicable diseases. Reprod Toxicol 2017; 68:49-58. [DOI: 10.1016/j.reprotox.2016.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
|
37
|
Ferolla SM, Couto CA, Costa-Silva L, Armiliato GNA, Pereira CAS, Martins FS, Ferrari MDLA, Vilela EG, Torres HOG, Cunha AS, Ferrari TCA. Beneficial Effect of Synbiotic Supplementation on Hepatic Steatosis and Anthropometric Parameters, But Not on Gut Permeability in a Population with Nonalcoholic Steatohepatitis. Nutrients 2016; 8:nu8070397. [PMID: 27367724 PMCID: PMC4963873 DOI: 10.3390/nu8070397] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/10/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease is the most prevalent chronic liver disease in Western countries; it can progress to nonalcoholic steatohepatitis (NASH), cirrhosis and hepatocarcinoma. The importance of gut-liver-adipose tissue axis has become evident and treatments targeting gut microbiota may improve inflammatory and metabolic parameters in NASH patients. In a randomized, controlled clinical trial, involving 50 biopsy-proven NASH patients, we investigated the effects of synbiotic supplementation on metabolic parameters, hepatic steatosis, intestinal permeability, small intestinal bacterial overgrowth (SIBO) and lipopolysaccharide (LPS) serum levels. Patients were separated into two groups receiving Lactobacillus reuteri with guar gum and inulin for three months and healthy balanced nutritional counseling versus nutritional counseling alone. Before and after the intervention we assessed steatosis by magnetic resonance imaging, intestinal permeability by lactulose/mannitol urinary excretion and SIBO by glucose breath testing. NASH patients presented high gut permeability, but low prevalence of SIBO. After the intervention, only the synbiotic group presented a reduction in steatosis, lost weight, diminished BMI and waist circumference measurement. Synbiotic did not improve intestinal permeability or LPS levels. We concluded that synbiotic supplementation associated with nutritional counseling seems superior to nutritional counseling alone for NASH treatment as it attenuates steatosis and may help to achieve weight loss.
Collapse
Affiliation(s)
- Silvia M Ferolla
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Cláudia A Couto
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Luciana Costa-Silva
- Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Geyza N A Armiliato
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Cristiano A S Pereira
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Brazil.
| | - Maria de Lourdes A Ferrari
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Eduardo G Vilela
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Henrique O G Torres
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Aloísio S Cunha
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Teresa C A Ferrari
- Departamento de ClínicaMédica, Faculdade de Medicina, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil.
| |
Collapse
|
38
|
Sun H, Ni X, Song X, Wen B, Zhou Y, Zou F, Yang M, Peng Z, Zhu H, Zeng Y, Wang H, Fu X, Shi Y, Yin Z, Pan K, Jing B, Zeng D, Wang P. Fermented Yupingfeng polysaccharides enhance immunity by improving the foregut microflora and intestinal barrier in weaning rex rabbits. Appl Microbiol Biotechnol 2016; 100:8105-20. [DOI: 10.1007/s00253-016-7619-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/01/2016] [Accepted: 05/07/2016] [Indexed: 02/06/2023]
|
39
|
Yuan DD, Chi XJ, Jin Y, Li X, Ge M, Gao WL, Guan JQ, Zhang AL, Hei ZQ. Intestinal injury following liver transplantation was mediated by TLR4/NF-κB activation-induced cell apoptosis. Mol Med Rep 2015; 13:1525-32. [PMID: 26707779 PMCID: PMC4732843 DOI: 10.3892/mmr.2015.4719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
Intestinal motility and barriers are often impaired due to intestinal congestion during liver transplantation. Intestinal bacteria and enterogenous endotoxins enter into the blood stream or lymphatic system and translocate to other organs, which can result in postoperative multi-organ dysfunction (MODF) and systemic inflammatory reaction syndrome (SIRS) severely affecting patient survival. However, the mechanisms underlying liver transplantation-induced intestinal injury remain unclear and effective therapies are lacking. Thus, the present study investigated whether these effects were associated with endotoxin-mediated apoptosis. Rat autologous orthotopic liver transplantation (AOLT) models were established to observe dynamic intestinal injuries at different time-points following reperfusion. Changes in the levels of endotoxins and the primary receptor, toll-like receptor 4 (TLR4), as well as its downstream signaling molecule, nuclear factor-κB (NF-κB) were all determined. Finally, immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling assays were conducted to detect caspase-3 expression and intestinal cell apoptosis, respectively. AOLT resulted in significant pathological intestinal injury, with the most serious intestine damage apparent four or eight hours following reperfusion. Furthermore, the levels of endotoxins and inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, peaked during this time period and gradually decreased to the normal level. Notably, TLR4 and downstream NF-κB expression, as well as NF-κB-mediated caspase-3 activation and intestinal cell aapoptosis coincided with the intestinal pathological damage. Thus, the possible mechanism of post-liver transplantation intestinal injury was demonstrated to be associated with NF-κB activation-induced cell apoptosis.
Collapse
Affiliation(s)
- Dong-Dong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xin-Jin Chi
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yi Jin
- Department of Pathology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xi Li
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Mian Ge
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Wan-Ling Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jian-Qiang Guan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ai-Lan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zi-Qing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|