1
|
Barberi L, Porcu C, Boccia C, Cosentino M, Nicoletti C, Peruzzi B, Iosi F, Forconi F, Bagnato G, Dobrowolny G, Di Cola S, Lapenna L, Cera G, Merli M, Musarò A. Circulating Extracellular Vesicles in Alcoholic Liver Disease Affect Skeletal Muscle Homeostasis and Differentiation. J Cachexia Sarcopenia Muscle 2025; 16:e13675. [PMID: 39921321 PMCID: PMC11806195 DOI: 10.1002/jcsm.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND The mechanisms underlying muscle alteration associated to alcoholic liver disease (ALD) are not fully understood and the physiopathologic mediators of the liver-muscle interplay remains elusive. We investigated the role of circulating extracellular vesicles (EVs) in ALD as potential mediators of muscle atrophy. METHODS We established a mouse model of sarcopenia associated to ALD, by feeding mice with an alcoholic diet for 8 weeks. We investigated the effects of hepatic and circulating EVs isolated from these mice (EtOH mice; n = 7 females) on muscle cell cultures, comparing them with EVs from mice fed with a standard diet (CD mice; n = 6 females). Additionally, we examined the impact of circulating EVs from patients with alcohol-related cirrhosis (7 males and 2 females, mean age 55.4 years) on primary human muscle cells, comparing them with EVs from age-matched healthy subjects (6 males and 3 females). We analysed the miRNA profile of the EVs to identify potential mediators of ALD-associated sarcopenia. RESULTS We demonstrated that circulating EVs were internalized by muscle cells and that EVs from ALD mice and cirrhotic patients caused alteration in the myogenic program. Molecular analysis revealed that serum EVs from ALD mice reduced protein synthesis in C2C12 cells, decreasing levels of p-AKT/AKT (-54.6%; p < 0.05), p-mTOR/mTOR (-54.5%; p < 0.05) and p-GSK3(Ser9)/GSK3 (-30.63%). Similarly, hepatic EVs induced defects in muscle differentiation, with reduced levels of p-AKT/AKT (-39.1%; p < 0.05), p-mTOR/mTOR (-30.1%; p < 0.05) and p-GSK3(Ser9)/GSK3 (-40%). C2C12 cells treated with either serum or hepatic EtOH-EVs exhibited upregulated expression of muscle-specific atrophy markers Atrogin-1 (+61.2% and +189.5%, respectively; p < 0.05) and MuRF1 (+260.4% and +112.5%, respectively; p < 0.05), along with an increased LC3-II/-I ratio (+131.5% and +40.2%, respectively; p < 0.05), indicating enhanced autophagy. MiRNA analysis revealed that both circulating and hepatic EVs from ALD mice showed elevated expression of miR-21, miR-155, miR-223 and miR-122 (+230% and +292%, respectively; p < 0.01) suggesting their potential role in sarcopenia. Human muscle cells exposed to EVs from cirrhotic patients exhibited reduced protein synthesis and upregulated Atrogin-1 (+113%; p < 0.05) and MuRF1 (+86.3%; p < 0.05), indicating proteasome activation. Circulating EVs of alcoholic patients showed upregulation of the same miRNAs observed in EtOH mice, including the liver-specific miR-122 (+260%; p < 0.05) suggesting, also in human liver disease, a hepatic origin of circulating EVs. CONCLUSIONS Our study highlights the critical role of ALD-derived circulating EVs in affecting muscle homeostasis and myogenic program, suggesting potential therapeutic targets for mitigating muscle loss in ALD.
Collapse
Affiliation(s)
- Laura Barberi
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Cristiana Porcu
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Caterina Boccia
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Marianna Cosentino
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Carmine Nicoletti
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Barbara Peruzzi
- Bone Pathophysiology Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Iosi
- Core Facilities, Microscopy AreaIstituto Superiore di SanitàRomeItaly
| | - Flavia Forconi
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Giulia Bagnato
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Bone Pathophysiology Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Gabriella Dobrowolny
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Simone Di Cola
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Lucia Lapenna
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Gianluca Cera
- Department of Orthopaedics and TraumatologyPoliclinico Umberto IRomeItaly
| | - Manuela Merli
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Scuola Superiore di Studi Avanzati Sapienza (SSAS)Sapienza University of RomeRomeItaly
| |
Collapse
|
2
|
Uhrova V, Parova H, Cervinkova Z, Kucera O, Palicka V. Optimal endogenous controls for microRNA analysis of visceral adipose tissue in the NAFLD mouse model. J Biosci 2025; 50:11. [PMID: 40098399 DOI: 10.1007/s12038-025-00492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/02/2024] [Indexed: 04/22/2025]
Abstract
The selection of proper reference genes and materials is critical in the design of PCR experiments, especially for differential expression studies. In this study, we propose a method to identify robust endogenous control miRNAs in the visceral adipose tissue of C57BL/6J mice with non-alcoholic fatty liver disease induced by alternating Western and control diets. This study outlines a comprehensive methodology for the analysis of microRNA endogenous controls using microfluidic cards in conjunction with miRNA profiling through small RNA sequencing and subsequent validation by quantitative PCR and the RefFinder algorithm. Criteria included were fold change, p-value, reads per million, and gene stability assessment. A set of six putative endogenous microRNAs was identified (miR-331-3p, let-7a-5p, miR-1839-5p, miR-151a-5p, let-7d-5p, and let-7c-5p). Subsequent validation and analysis using the RefFinder algorithm assessed the stability of the selected genes, and a combination of the three most stable endogenous miRNA controls (miR-331-3p, let-7a- 5p, and miR-1839-5p) exhibiting consistent expression patterns with minimal variability was set. Given the absence of universal endogenous controls, individual evaluation of normalizers for each experiment is imperative for accurate miRNA expression measurements. This approach, which combines multiple techniques and assessments, provides a reliable strategy for identifying and validating endogenous controls in miRNA studies.
Collapse
Affiliation(s)
- Veronika Uhrova
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Kra´love´ and University Hospital Hradec Kra´love´, Hradec Kra´love´, Czech Republic
| | | | | | | | | |
Collapse
|
3
|
Riddell DO, Hildyard JC, Harron RC, Wells DJ, Piercy RJ. Identification of reference microRNAs in skeletal muscle of a canine model of Duchenne muscular dystrophy. Wellcome Open Res 2024; 9:362. [PMID: 39649621 PMCID: PMC11621615 DOI: 10.12688/wellcomeopenres.22481.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by mutations in the dystrophin gene. DE50-MD dogs are an animal model of DMD used as a final translational model for evaluation of promising treatments. MicroRNA (miR) expressions in the muscle of DE50-MD dogs represent potential biomarkers, but stable reference miRs must first be identified. The aim of this paper was to establish a panel of reference miRs for WT and DE50-MD dogs over a range of ages and muscle groups. Methods RNA was extracted from WT and DE50-MD dog (N=6 per genotype) vastus lateralis muscle samples collected longitudinally at 3, 6, 9, 12, 15 and 18 months of age, and from muscles collected post-mortem (N=3 per genotype; cranial tibial, semimembranosus, lateral triceps and diaphragm). 87 RNAs were quantified in a subset of 6-month-old WT and DE50-MD muscles (N=4 per genotype) using the QIAcuity miFinder panel. GeNorm, BestKeeper and Normfinder were used to identify a candidate panel of the 8 most stable small RNAs, which were then quantified in all RNA samples, alongside the commonly used reference RNA snRNA U6. Results The most stable miRs of this subset were used to normalise quantities of dystromiRs miR-1, miR-133a and miR-206, and fibromiR miR-214. MicroRNAs miR-191, let-7b, miR-125a and miR-15a were the most stable miRs tested, while snRNA U6 performed poorly. DystromiR expression, normalised to the geometric mean of the panel of reference miRs, was lower for miR-1 and miR-133a in DE50-MD compared to WT muscles, while miR-206 levels did not significantly differ between genotypes. FibromiR miR-214 was 2- to 4-fold higher in DE50-MD versus WT muscles. Conclusions A normalisation factor derived from miR-191, let-7b, miR-125a and miR-15a is suitable for normalising miR expression data from WT and DE50-MD muscle over a range of ages and muscle types.
Collapse
Affiliation(s)
- Dominique O. Riddell
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - John C.W. Hildyard
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Rachel C.M. Harron
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Dominic J. Wells
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Comparative Neuromuscular Diseases Laboratory, Royal Veterinary College, London, NW1 0TU, UK
| |
Collapse
|
4
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
5
|
Sou YL, Chilian WM, Ratnam W, Zain SM, Syed Abdul Kadir SZ, Pan Y, Pung YF. Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus. PRECISION CLINICAL MEDICINE 2024; 7:pbae021. [PMID: 39347441 PMCID: PMC11438237 DOI: 10.1093/pcmedi/pbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease that is characterized by chronic hyperglycaemia. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play important roles in post-transcriptional gene regulation. They are negative regulators of their target messenger RNAs (mRNAs), in which they bind either to inhibit mRNA translation, or to induce mRNA decay. Similar to proteins, miRNAs exist in different isoforms (isomiRs). miRNAs and isomiRs are selectively loaded into small extracellular vesicles, such as the exosomes, to protect them from RNase degradation. In T2DM, exosomal miRNAs produced by different cell types are transported among the primary sites of insulin action. These interorgan crosstalk regulate various T2DM-associated pathways such as adipocyte inflammation, insulin signalling, and β cells dysfunction among many others. In this review, we first focus on the mechanism of exosome biogenesis, followed by miRNA biogenesis and isomiR formation. Next, we discuss the roles of exosomal miRNAs and isomiRs in the development of T2DM and provide evidence from clinical studies to support their potential roles as T2DM biomarkers. Lastly, we highlight the use of exosomal miRNAs and isomiRs in personalized medicine, as well as addressing the current challenges and future opportunities in this field. This review summarizes how research on exosomal miRNAs and isomiRs has developed from the very basic to clinical applications, with the goal of advancing towards the era of personalized medicine.
Collapse
Affiliation(s)
- Yong Ling Sou
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Yan Pan
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| |
Collapse
|
6
|
Luo X, Jiao L, Guo Q, Chen Y, Wang N, Wen Y, Song J, Chen H, Zhou J, Song X. Diagnostic model for hepatocellular carcinoma using small extracellular vesicle-propagated miRNA signatures. Front Mol Biosci 2024; 11:1419093. [PMID: 39006969 PMCID: PMC11239443 DOI: 10.3389/fmolb.2024.1419093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Small extracellular vesicles (sEVs) are bilayer lipid membrane vesicles containing RNA that exhibit promising diagnostic and prognostic potential as cancer biomarkers. Aims To establish a miRNA panel from peripheral blood for use as a noninvasive biomarker for the diagnosis of HCC. Methods sEVs obtained from plasma were profiled using high-throughput sequencing. The identified differential miRNA expression patterns were subsequently validated using quantitative real-time polymerase chain reaction analysis. Results The random forest method identified ten distinct miRNAs distinguishing HCC plasma from non-HCC plasma. During validation, miR-140-3p (p = 0.0001) and miR-3200-3p (p = 0.0017) exhibited significant downregulation. Enrichment analysis uncovered a notable correlation between the target genes of these miRNAs and cancer development. Utilizing logistic regression, we developed a diagnostic model incorporating these validated miRNAs. Receiver operating characteristic (ROC) curve analysis revealed an area under the curve (AUC) of 0.951, with a sensitivity of 90.1% and specificity of 87.8%. Conclusion These aberrantly expressed miRNAs delivered by sEVs potentially contribute to HCC pathology and may serve as diagnostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xinyi Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Guo
- Department of Laboratory Medicine, the First People's Hospital of Ziyang, Ziyang, China
| | - Yi Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Nian Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - JiaJia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Boonkaew B, Satthawiwat N, Pinjaroen N, Chuaypen N, Tangkijvanich P. Circulating Extracellular Vesicle-Derived microRNAs as Novel Diagnostic and Prognostic Biomarkers for Non-Viral-Related Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16043. [PMID: 38003232 PMCID: PMC10671272 DOI: 10.3390/ijms242216043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Extracellular vesicle-derived microRNAs (EV-miRNAs) are promising circulating biomarkers for chronic liver disease. In this study, we explored the potential significance of plasma EV-miRNAs in non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). We compared, using the NanoString method, plasma EV-miRNA profiles between NBNC-HCC and control groups including patients with non-alcoholic fatty liver disease (NAFLD) and healthy controls. The differentially expressed EV-miRNAs were validated in another set of plasma samples by qRT-PCR. A total of 66 significantly differentially expressed EV-miRNAs between the HCC and the control groups were identified in the discovery set. In the validation cohort, including plasma samples of 70 NBNC-HCC patients, 70 NAFLD patients, and 35 healthy controls, 5 plasma EV-miRNAs were significantly elevated in HCC, which included miR-19-3p, miR-16-5p, miR-223-3p, miR-30d-5p, and miR-451a. These miRNAs were found to participate in several cancer-related signaling pathways based on bioinformatic analysis. Among them, EV-miR-19-3p exhibited the best diagnostic performance and displayed a high sensitivity for detecting alpha-fetoprotein-negative HCC and early-stage HCC. In multivariate analysis, a high EV-miR-19-3p level was demonstrated as an independently unfavorable predictor of overall survival in patients with NBNC-HCC. In conclusion, our data have indicated, for the first time, that EV-miR-19-3p could serve as a novel circulating biomarker for the diagnosis and prognosis of NBNC-HCC.
Collapse
Affiliation(s)
- Bootsakorn Boonkaew
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Nantawat Satthawiwat
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Nutcha Pinjaroen
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (B.B.); (N.S.)
| |
Collapse
|
8
|
Burdiel M, Jiménez J, Rodríguez-Antolín C, García-Guede Á, Pernía O, Sastre-Perona A, Rosas-Alonso R, Colmenarejo J, Rodríguez-Jiménez C, Diestro MD, Martínez-Marín V, Higueras O, Cruz P, Losantos-García I, Peinado H, Vera O, de Castro J, Ibáñez de Cáceres I. MiR-151a: a robust endogenous control for normalizing small extracellular vesicle cargo in human cancer. Biomark Res 2023; 11:94. [PMID: 37864266 PMCID: PMC10589979 DOI: 10.1186/s40364-023-00526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023] Open
Abstract
Small extracellular vesicles (sEVs) in the blood of cancer patients contain higher amounts of tumor markers than those identified as free-circulating. miRNAs have significant biomedical relevance due to their high stability and feasible detection. However, there is no reliable endogenous control available to measure sEVs-miRNA content, impairing the acquisition of standardized consistent measurements in cancer liquid biopsy. In this study, we identified three miRNAs from a panel of nine potential normalizers that emerged from a comprehensive analysis comparing the sEV-miRNA profile of six lung and ovarian human cancer cell lines in the absence of or under different conditions. Their relevance as normalizers was tested in 26 additional human cancer cell lines from nine different tumor types undergoing chemotherapy or radiotherapy treatment. The validation cohorts were comprised of 242 prospective plasma and ascitic fluid samples from three different human tumor types. Variability and normalization properties were tested in comparison to miR-16, the most used control to normalize free-circulating miRNAs in plasma. Our results indicate that miR-151a is consistently represented in small extracellular vesicles with minimal variability compared to miR-16, providing a novel normalizer to measure small extracellular vesicle miRNA content that will benefit liquid biopsy in cancer patients.
Collapse
Affiliation(s)
- Miranda Burdiel
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Julia Jiménez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Carlos Rodríguez-Antolín
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Álvaro García-Guede
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Olga Pernía
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Ana Sastre-Perona
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Rocío Rosas-Alonso
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Julián Colmenarejo
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - Carmen Rodríguez-Jiménez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | - María Dolores Diestro
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Gynecologic Oncology Unit, La Paz University Hospital, Madrid, Spain
| | | | - Oliver Higueras
- Medical Oncology Department, La Paz University Hospital, Madrid, Spain
| | - Patricia Cruz
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain
| | | | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Olga Vera
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain.
| | - Javier de Castro
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, Madrid, Spain
| | - Inmaculada Ibáñez de Cáceres
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain.
| |
Collapse
|
9
|
Suo L, Cheng J, Yuan H, Jiang Z, Tash D, Wang L, Cheng H, Zhang Z, Zhang F, Zhang M, Cao Z, Zhao R, Guan D. miR-26a/30d/152 are reliable reference genes for miRNA quantification in skin wound age estimation. Forensic Sci Res 2023; 8:230-240. [PMID: 38221964 PMCID: PMC10785593 DOI: 10.1093/fsr/owad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/23/2023] [Indexed: 01/16/2024] Open
Abstract
UNLABELLED MicroRNAs (miRNAs) are a class of small non-coding RNAs that exert their biological functions as negative regulators of gene expression. They are involved in the skin wound healing process with a dynamic expression pattern and can therefore potentially serve as biomarkers for skin wound age estimation. However, no reports have described any miRNAs as suitable reference genes (RGs) for miRNA quantification in wounded skin or samples with post-mortem changes. Here, we aimed to identify specific miRNAs as RGs for miRNA quantification to support further studies of skin wound age estimation. Overall, nine miRNAs stably expressed in mouse skin at certain posttraumatic intervals (PTIs) were preselected by next-generation sequencing as candidate RGs. These nine miRNAs and the commonly used reference genes (comRGs: U6, GAPDH, ACTB, 18S, 5S, LC-Ogdh) were quantitatively examined using quantitative real-time reverse-transcription polymerase chain reaction at different PTIs during skin wound healing in mice. The stabilities of these genes were evaluated using four independent algorithms: GeNorm, NormFinder, BestKeeper, and comparative Delta Ct. Stability was further evaluated in mice with different post-mortem intervals (PMIs). Overall, mmu-miR-26a-5p, mmu-miR-30d-5p, and mmu-miR-152-3p were identified as the most stable genes at both different PTIs and PMIs. These three miRNA RGs were additionally validated and compared with the comRGs in human samples. After assessing using one, two, or three miRNAs in combination for stability at different PTIs, PMIs, or in human samples, the set of miR-26a/30d/152 was approved as the best normalizer. In conclusion, our data suggest that the combination of miR-26a/30d/152 is recommended as the normalization strategy for miRNA qRT-PCR quantification in skin wound age estimation. KEY POINTS The small size of miRNAs makes them less susceptible to post-mortem autolysis or putrefaction, leading to their potential use in wound age estimation.Studying miRNAs as biological indicators of skin wound age estimation requires the selection and validation of stable reference genes because commonly used reference genes, such as U6, ACTB, GAPDH, 5S, 18S, and LC-Ogdh, are not stable.miR-26a/30d/152 are stable and reliable as reference genes and their use in combination is a recommended normalization strategy for miRNA quantitative analysis in wounded skin.
Collapse
Affiliation(s)
- Longlong Suo
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Jian Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Haomiao Yuan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhenfei Jiang
- Department of Road Traffic Accident Investigation, Academy of Forensic Science, Shanghai, China
| | - Dilichati Tash
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Autonomous Prefecture Public Security Bureau, Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Linlin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Hao Cheng
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhongduo Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Fuyuan Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Zhipeng Cao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| | - Dawei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science, Shenyang, China
- Laboratory of Forensic Biochemistry, China Medical University School of Forensic Medicine, Shenyang, China
| |
Collapse
|
10
|
Hsu CC, Yang Y, Kannisto E, Zeng X, Yu G, Patnaik SK, Dy GK, Reid ME, Gan Q, Wu Y. Simultaneous Detection of Tumor Derived Exosomal Protein-MicroRNA Pairs with an Exo-PROS Biosensor for Cancer Diagnosis. ACS NANO 2023; 17:8108-8122. [PMID: 37129374 DOI: 10.1021/acsnano.2c10970] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumor derived exosomes (TEXs) have emerged as promising biomarkers for cancer liquid biopsy. Conventional methods (such as ELISA and qRT-PCR) and emerging biosensing technologies mainly detect a single type of exosomal biomarker due to the distinct properties of different biomolecules. Sensitive detection of two different types of TEX biomarkers, i.e., protein and microRNA combined biomarkers, may greatly improve cancer diagnostic accuracy. We developed an exosome protein microRNA one-stop (Exo-PROS) biosensor that not only selectively captured TEXs but also enabled in situ, simultaneous detection of TEX protein-microRNA pairs via a surface plasmon resonance mechanism. Exo-PROS assay is a fast, reliable, low sample consumption, and user-friendly test. With a total of 175 cancer patients and normal controls, we demonstrated that TEX protein-microRNA pairs measured by Exo-PROS assay detected lung cancer and breast cancer with 99% and 96% accuracy, respectively. Exo-PROS assay also showed superior diagnostic performance to conventional ELISA and qRT-PCR methods. Our results demonstrated that Exo-PROS assay is a potent liquid biopsy assay for cancer diagnosis.
Collapse
Affiliation(s)
- Chang-Chieh Hsu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Xie Zeng
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Guan Yu
- Department of Biostatistics, University at Buffalo, The State University of New York, Buffalo, New York 14263, United States
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Mary E Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Street, Buffalo, New York 14263, United States
| | - Qiaoqiang Gan
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Materials Science Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Hawke DC, Watson AJ, Betts DH. Selecting Normalizers for MicroRNA RT-qPCR Expression Analysis in Murine Preimplantation Embryos and the Associated Conditioned Culture Media. J Dev Biol 2023; 11:jdb11020017. [PMID: 37092479 PMCID: PMC10123758 DOI: 10.3390/jdb11020017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Normalizing RT-qPCR miRNA datasets that encompass numerous preimplantation embryo stages requires the identification of miRNAs that may be used as stable reference genes. A need has also arisen for the normalization of the accompanying conditioned culture media as extracellular miRNAs may serve as biomarkers of embryo developmental competence. Here, we evaluate the stability of six commonly used miRNA normalization candidates, as well as small nuclear U6, using five different means of evaluation (BestKeeper, NormFinder, geNorm, the comparative Delta Ct method and RefFinder comprehensive analysis) to assess their stability throughout murine preimplantation embryo development from the oocyte to the late blastocyst stages, both in whole embryos and the associated conditioned culture media. In descending order of effectiveness, miR-16, miR-191 and miR-106 were identified as the most stable individual reference miRNAs for developing whole CD1 murine preimplantation embryos, while miR-16, miR-106 and miR-103 were ideal for the conditioned culture media. Notably, the widely used U6 reference was among the least appropriate for normalizing both whole embryo and conditioned media miRNA datasets. Incorporating multiple reference miRNAs into the normalization basis via a geometric mean was deemed beneficial, and combinations of each set of stable miRNAs are further recommended, pending validation on a per experiment basis.
Collapse
Affiliation(s)
- David C. Hawke
- Departments of Physiology and Pharmacology & Obstetrics and Gynaecology, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Andrew J. Watson
- Departments of Physiology and Pharmacology & Obstetrics and Gynaecology, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Dean H. Betts
- Departments of Physiology and Pharmacology & Obstetrics and Gynaecology, Western University, London, ON N6A 3K7, Canada
- Children’s Health Research Institute—Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
12
|
Rahman MM, Nakanishi R, Tsukada F, Takashima S, Wakihara Y, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Identification of Suitable Internal Control miRNAs in Bovine Milk Small Extracellular Vesicles for Normalization in Quantitative Real-Time Polymerase Chain Reaction. MEMBRANES 2023; 13:185. [PMID: 36837688 PMCID: PMC9961204 DOI: 10.3390/membranes13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to identify a suitable RNA extraction kit and stable internal control microRNA (miRNA) in bovine milk small extracellular vesicles (sEVs) for a quantitative polymerase chain reaction (qPCR) analysis. Two RNA extraction kits, miRNeasy Micro Kit, and Maxwell RSC miRNA Tissue Kit, were compared and evaluated using bovine milk sEVs via qPCR analysis. Five miRNAs, bta-miR-29a, bta-miR-200a, bta-miR-26b, hsa-miR-27b-3p, and hsa-miR-30b-5p, were selected by microarray analyses, and their cycle threshold (Ct) values were further evaluated mathematically using geNorm, NormFinder, BestKeeper, and ∆Ct algorithms. The results revealed that both the miRNeasy Micro Kit and Maxwell RSC miRNA Tissue Kit are useful for the efficient recovery of RNA from bovine milk sEVs. According to the final stability ranking analyzed by RefFinder, hsa-miR-27b-3p and bta-miR-29a can be used as suitable internal control miRNAs in bovine milk sEVs. The study also indicated that using a suitable internal control miRNA may improve the reliability and accuracy of the qPCR analysis for normalization in bovine milk sEVs. To the best of our knowledge, this is the first study to uncover the suitable internal control miRNAs in bovine milk sEVs.
Collapse
Affiliation(s)
- Md. Matiur Rahman
- Laboratory of Food and Environmental Hygiene, Gifu University, Gifu 501-1193, Japan
- Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ryoka Nakanishi
- Laboratory of Food and Environmental Hygiene, Gifu University, Gifu 501-1193, Japan
| | - Fumi Tsukada
- Laboratory of Food and Environmental Hygiene, Gifu University, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Yoshiko Wakihara
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Yuji O. Kamatari
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, Gifu 501-1193, Japan
| | - Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Gifu University, Gifu 501-1193, Japan
| | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu 501-1193, Japan
- Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Wu ZQ, Zhu YX, Jin Y, Zhan YC. Exosomal miRNA in early-stage hepatocellular carcinoma. World J Clin Cases 2023; 11:528-533. [PMID: 36793641 PMCID: PMC9923864 DOI: 10.12998/wjcc.v11.i3.528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/23/2023] Open
Abstract
The incidence and mortality of hepatic carcinoma (HCC) remain high, and early diagnosis of HCC is seen as a key approach in improving clinical outcomes. However, the sensitivity and specificity of current early screening methods for HCC are not satisfactory. In recent years, research around exosomal miRNA has gradually increased, and these molecules have emerged as attractive candidates for early diagnosis and treatment of HCC. This review summarizes the feasibility of using miRNAs in peripheral blood exosomes as early diagnostic tools for HCC.
Collapse
Affiliation(s)
- Zhi-Qiang Wu
- Department of Surgery, The Second People's Hosptal of Quzhou, Quzhou 324000, Zhejiang Province, China
| | - Yi-Xin Zhu
- Department of Surgery, The Second People's Hosptal of Quzhou, Quzhou 324000, Zhejiang Province, China
| | - Yun Jin
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Yin-Chu Zhan
- Department of Surgery, The Second People's Hosptal of Quzhou, Quzhou 324000, Zhejiang Province, China
| |
Collapse
|
14
|
Abstract
Exosomes are extracellular vesicles, which have the ability to convey various types of cargo between cells. Lately, a great amount of interest has been paid to exosomal microRNAs (miRNAs), since much evidence has suggested that the sorting of miRNAs into exosomes is not an accidental process. It has been shown that exosomal miRNAs (exo-miRNAs) are implicated in a variety of cellular processes including (but not limited to) cell migration, apoptosis, proliferation, and autophagy. Exosomes can play a role in cardiovascular diseases and can be used as diagnostic biomarkers for several diseases, especially cancer. Tremendous advances in technology have led to the development of various platforms for miRNA profiling. Each platform has its own limitations and strengths that need to be understood in order to use them properly. In the current review, we summarize some exo-miRNAs that are relevant to exo-miRNA profiling studies and describe new methods used for the measurement of miRNA profiles in different human bodily fluids.
Collapse
|
15
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
16
|
Zhang H, Cai YH, Ding Y, Zhang G, Liu Y, Sun J, Yang Y, Zhan Z, Iliuk A, Gu Z, Gu Y, Tao WA. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation. Cells 2022; 11:2070. [PMID: 35805153 PMCID: PMC9265938 DOI: 10.3390/cells11132070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) play an important role in the diagnosis and treatment of diseases because of their rich molecular contents involved in intercellular communication, regulation, and other functions. With increasing efforts to move the field of EVs to clinical applications, the lack of a practical EV isolation method from circulating biofluids with high throughput and good reproducibility has become one of the biggest barriers. Here, we introduce a magnetic bead-based EV enrichment approach (EVrich) for automated and high-throughput processing of urine samples. Parallel enrichments can be performed in 96-well plates for downstream cargo analysis, including EV characterization, miRNA, proteomics, and phosphoproteomics analysis. We applied the instrument to a cohort of clinical urine samples to achieve reproducible identification of an average of 17,000 unique EV peptides and an average of 2800 EV proteins in each 1 mL urine sample. Quantitative phosphoproteomics revealed 186 unique phosphopeptides corresponding to 48 proteins that were significantly elevated in prostate cancer patients. Among them, multiple phosphoproteins were previously reported to associate with prostate cancer. Together, EVrich represents a universal, scalable, and simple platform for EV isolation, enabling downstream EV cargo analyses for a broad range of research and clinical applications.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
- EVLiXiR Biotech, Nanjing 210032, China
| | - Yu-Han Cai
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
- Bell Mountain Molecular MedTech Institute, Nanjing 210032, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Yuchen Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; (Y.Y.); (Y.G.)
| | - Zhen Zhan
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN 47906, USA;
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; (H.Z.); (Y.-H.C.); (Y.D.); (G.Z.); (Y.L.); (J.S.); (Z.Z.); (Z.G.)
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; (Y.Y.); (Y.G.)
| | - W. Andy Tao
- Tymora Analytical Operations, West Lafayette, IN 47906, USA;
- Department of Chemistry and Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Chekka LMS, Langaee T, Johnson JA. Comparison of Data Normalization Strategies for Array-Based MicroRNA Profiling Experiments and Identification and Validation of Circulating MicroRNAs as Endogenous Controls in Hypertension. Front Genet 2022; 13:836636. [PMID: 35432462 PMCID: PMC9008777 DOI: 10.3389/fgene.2022.836636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Introduction: MicroRNAs are small noncoding RNAs with potential regulatory roles in hypertension and drug response. The presence of many of these RNAs in biofluids has spurred investigation into their role as possible biomarkers for use in precision approaches to healthcare. One of the major challenges in clinical translation of circulating miRNA biomarkers is the limited replication across studies due to lack of standards for data normalization techniques for array-based approaches and a lack of consensus on an endogenous control normalizer for qPCR-based candidate miRNA profiling studies. Methods: We conducted genome-wide profiling of 754 miRNAs in baseline plasma of 36 European American individuals with uncomplicated hypertension selected from the PEAR clinical trial, who had been untreated for hypertension for at least one month prior to sample collection. After appropriate quality control with amplification score and missingness filters, we tested different normalization strategies such as normalization with global mean of imputed and unimputed data, mean of restricted set of miRNAs, quantile normalization, and endogenous control miRNA normalization to identify the method that best reduces the technical/experimental variability in the data. We identified best endogenous control candidates with expression pattern closest to the mean miRNA expression in the sample, as well as by assessing their stability using a combination of NormFinder, geNorm, Best Keeper and Delta Ct algorithms under the Reffinder software. The suitability of the four best endogenous controls was validated in 50 hypertensive African Americans from the same trial with reverse-transcription–qPCR and by evaluating their stability ranking in that cohort. Results: Among the compared normalization strategies, quantile normalization and global mean normalization performed better than others in terms of reducing the standard deviation of miRNAs across samples in the array-based data. Among the four strongest candidate miRNAs from our selection process (miR-223-3p, 19b, 106a, and 126-5p), miR-223-3p and miR-126-5p were consistently expressed with the best stability ranking in the validation cohort. Furthermore, the combination of miR-223-3p and 126-5p showed better stability ranking when compared to single miRNAs. Conclusion: We identified quantile normalization followed by global mean normalization to be the best methods in reducing the variance in the data. We identified the combination of miR-223-3p and 126-5p as potential endogenous control in studies of hypertension.
Collapse
Affiliation(s)
- Lakshmi Manasa S. Chekka
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Julie A. Johnson,
| |
Collapse
|
18
|
Ragni E, Perucca Orfei C, Viganò M, Valli F, de Girolamo L. Endogenous Controls for the Evaluation of Osteoarthritis-Related miRNAs in Extracellular Vesicles from Bone-Marrow-Derived Mesenchymal Stromal Cells and the Impact of Osteoarthritis Synovial Fluid. Biomolecules 2022; 12:biom12020316. [PMID: 35204816 PMCID: PMC8869367 DOI: 10.3390/biom12020316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Bone-marrow-derived stromal cells (BMSCs) have emerged as promising therapeutic option for the treatment of osteoarthritis (OA) due to their tissue regenerative and anti-inflammatory features. BMSCs’ clinical potential is mainly ascribed to their released factors and extracellular vesicles (EVs), whose therapeutic portfolio may be modulated by the environment in vivo or specific priming in vitro. Within the array of molecules shaping EVs’ power, miRNAs are considered privileged players. In this frame, a correct EV-miRNA detection and quantification is mandatory to understand and possibly boost BMSCs potential, either when envisioned as cell therapeutics or when proposed as producer of cell-free and clinical grade EVs. The aim of this study is to identify reliable reference genes (RGs) to study miRNAs in BMSC-EVs cultivated under standard or OA synovial fluid (OA-SF). miR-23a-3p and miR-221-3p emerged as the best candidates, respectively. Moreover, when both conditions were analyzed together, miR-24-3p resulted the most stable RGs, allowing for a sharper comparison of EVs content, further validated on the OA-related miRNA-193b-5p. The different RG stability ranking depending on the culturing conditions, as well as its divergence with respect to adipose (ASCs) and amniotic (hAMSCs) MSCs, confirm that miRNA RG selection in EVs is a mandatory step and that the identification of the most reliable candidate is greatly depending on the cell type and culturing/environmental conditions.
Collapse
Affiliation(s)
- Enrico Ragni
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
| | - Carlotta Perucca Orfei
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
| | - Marco Viganò
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
| | - Federico Valli
- Chirurgia Articolare Sostitutiva e Chirurgia Ortopedica (CASCO), IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy;
| | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all’Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, I-20161 Milan, Italy; (E.R.); (C.P.O.); (M.V.)
- Correspondence: ; Tel.: +39-02-66214059
| |
Collapse
|
19
|
Huang PS, Liao CJ, Huang YH, Yeh CT, Chen CY, Tang HC, Chang CC, Lin KH. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. Cancers (Basel) 2021; 13:5361. [PMID: 34771525 PMCID: PMC8582514 DOI: 10.3390/cancers13215361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
Liver cancer is the leading cause of cancer-related mortality in the world. This mainly reflects the lack of early diagnosis tools and effective treatment methods. MicroRNAs (miRNAs) are a class of non-transcribed RNAs, some of which play important regulatory roles in liver cancer. Here, we discuss microRNAs with key impacts on liver cancer, such as miR-122, miR-21, miR-214, and miR-199. These microRNAs participate in various physiological regulatory pathways of liver cancer cells, and their modulation can have non-negligible effects in the treatment of liver cancer. We discuss whether these microRNAs can be used for better clinical diagnosis and/or drug development. With the advent of novel technologies, fast, inexpensive, and non-invasive RNA-based biomarker research has become a new mainstream approach. However, the clinical application of microRNA-based markers has been limited by the high sequence similarity among them and the potential for off-target problems. Therefore, researchers particularly value microRNAs that are specific to or have special functions in liver cancer. These include miR-122, which is specifically expressed in the liver, and miR-34, which is necessary for the replication of the hepatitis C virus in liver cancer. Clinical treatment drugs have been developed based on miR-34 and miR-122 (MRX34 and Miravirsen, respectively), but their side effects have not yet been overcome. Future research is needed to address these weaknesses and establish a feasible microRNA-based treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Cheng-Chih Chang
- Department of General Surgery, Chang Gung Memorial Hospital at Chia-yi, Chia-yi 613, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.H.); (C.-T.Y.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| |
Collapse
|
20
|
Zheng W, Ji D, Zhou Y, Yu L, Huang P, Zheng Y, Meng N, Wang H, Bai X, Huang Z, Chen W, Yam JWP, Xu Y, Cui Y. Exosomal non-coding RNAs in Hepatobiliary Cancer: A Rising Star. Mol Cancer Ther 2021; 20:1777-1788. [PMID: 34376575 DOI: 10.1158/1535-7163.mct-21-0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022]
Abstract
Hepatobiliary cancers are a heterogeneous group of malignancies with a dismal prognosis. Despite intensive research efforts focused on these tumors, methods for early diagnosis and effective targeted therapies are still lacking. Exosomes, released by most cells, exist in all kinds of body fluids and play an important role in cell-to-cell communication. They are small membranous vesicles containing biological molecules, such as noncoding RNAs (ncRNAs), which are not translated into proteins, but they exert effects on the regulation of gene transcription and translation. There is growing evidence for the essential roles of ncRNAs in exosomes in both physiological and pathological conditions of hepatobiliary cancers. They have been identified as sensitive diagnostic biomarkers as well as potential therapeutic targets. The present review discusses recent findings in the crosstalk between hepatobiliary cancers cells and the surrounding cells of the microenvironment and discuss their potential clinical usage.
Collapse
Affiliation(s)
- Wangyang Zheng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Daolin Ji
- Forth Affiliated Hospital of Harbin Medical University
| | - Yongxu Zhou
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Liang Yu
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Peng Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Yuling Zheng
- Department of Pediatric, Second Affiliated Hospital of Harbin Medical University
| | - Nanfeng Meng
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Hang Wang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xue Bai
- Department of Renal Cancer and Melanoma/Cancer Center, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute/Massachusetts General Hospital
| | - ZiYue Huang
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Wangming Chen
- Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Judy W P Yam
- Department of Pathology, University of Hong Kong
| | - Yi Xu
- Department of Pathology, University of Hong Kong
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
21
|
Xu J, Xie G, Yang W, Wang W, Zuo Z, Wang W. Platelet-rich plasma attenuates intervertebral disc degeneration via delivering miR-141-3p-containing exosomes. Cell Cycle 2021; 20:1487-1499. [PMID: 34229586 PMCID: PMC8354670 DOI: 10.1080/15384101.2021.1949839] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress mediated apoptotic and pyroptotic cell death contributes to intervertebral disc (IVD) degeneration, and platelet-rich plasma (PRP) exerts protective effects to attenuate IVD degeneration. Hence, the present study aimed to validate this issue and uncover the potential underlying mechanisms. The mice and cellular models for IVD degeneration were established by using puncture method and H2O2 exposure, respectively, and we evidenced that NLRP3-mediated cell pyroptosis, apoptosis and inflammatory responses occurred during IVD degeneration progression in vitro and in vivo. Then, the PRP-derived exosomes (PRP-exo) were isolated and purified, and we noticed that both PRP-exo and ROS scavenger (NAC) reversed the detrimental effects of H2O2 treatment on the nucleus pulposus (NP) cells. Further results supported that PRP-exo exerted its protective effects on H2O2 treated NP cells by modulating the Keap1-Nrf2 pathway. Mechanistically, PRP-exo downregulated Keap1, resulting in the release of Nrf2 from the Keap1-Nrf2 complex, which further translocated from cytoplasm to nucleus to achieve its anti-oxidant biological functions, and H2O2 treated NP cells with Nrf2-deficiency did not respond to PRP-exo treatment. In addition, miR-141-3p was enriched in PRP-exo, and miR-141-3p targeted the 3' untranslated region (3'UTR) of Keap1 mRNA for its degradation, leading to Nrf2 translocation. Furthermore, overexpression of miR-141-3p ameliorated the cytotoxic effects of H2O2 on NP cells, which were abrogated by upregulating Keap1 and silencing Nrf2. Taken together, we concluded that PRP secreted exosomal miR-141-3p to activate the Keap1-Nrf2 pathway, which helped to slow down IVD degeneration.
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangying Xie
- Department of Blood Transfusion, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiliang Yang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wantao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuan Zuo
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbo Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Cukovic D, Bagla S, Ukasik D, Stemmer PM, Jena BP, Naik AR, Sood S, Asano E, Luat A, Chugani DC, Dombkowski AA. Exosomes in Epilepsy of Tuberous Sclerosis Complex: Carriers of Pro-Inflammatory MicroRNAs. Noncoding RNA 2021; 7:ncrna7030040. [PMID: 34287356 PMCID: PMC8293460 DOI: 10.3390/ncrna7030040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/14/2023] Open
Abstract
Exosomes are a class of small, secreted extracellular vesicles (EV) that have recently gained considerable attention for their role in normal cellular function, disease processes and potential as biomarkers. Exosomes serve as intercellular messengers and carry molecular cargo that can alter gene expression and the phenotype of recipient cells. Here, we investigated alterations of microRNA cargo in exosomes secreted by epileptogenic tissue in tuberous sclerosis complex (TSC), a multi-system genetic disorder that includes brain lesions known as tubers. Approximately 90% of TSC patients suffer from seizures that originate from tubers, and ~60% are resistant to antiseizure drugs. It is unknown why some tubers cause seizures while others do not, and the molecular basis of drug-resistant epilepsy is not well understood. It is believed that neuroinflammation is involved, and characterization of this mechanism may be key to disrupting the "vicious cycle" between seizures, neuroinflammation, and increased seizure susceptibility. We isolated exosomes from epileptogenic and non-epileptogenic TSC tubers, and we identified differences in their microRNA cargo using small RNA-seq. We identified 12 microRNAs (including miR-142-3p, miR-223-3p and miR-21-5p) that are significantly increased in epileptogenic tubers and contain nucleic acid motifs that activate toll-like receptors (TLR7/8), initiating a neuroinflammatory cascade. Exosomes from epileptogenic tissue caused induction of key pathways in cultured cells, including innate immune signaling (TLR), inflammatory response and key signaling nodes SQSTM1 (p62) and CDKN1A (p21). Genes induced in vitro were also significantly upregulated in epileptogenic tissue. These results provide new evidence on the role of exosomes and non-coding RNA cargo in the neuroinflammatory cascade of epilepsy and may help advance the development of novel biomarkers and therapeutic approaches for the treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Daniela Cukovic
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
| | - Shruti Bagla
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
| | - Dylan Ukasik
- Translational Neurosciences Program, Wayne State University, Detroit, MI 48201, USA;
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Bhanu P. Jena
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (B.P.J.); (A.R.N.)
| | - Akshata R. Naik
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (B.P.J.); (A.R.N.)
| | - Sandeep Sood
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Eishi Asano
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
- Translational Neurosciences Program, Wayne State University, Detroit, MI 48201, USA;
- Department of Neurology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Aimee Luat
- Department of Neurology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
- Department of Pediatrics, Central Michigan University, Mt Pleasant, MI 48858, USA
| | - Diane C. Chugani
- Departments of Communication Sciences and Disorders, and Chemistry and Biochemistry, University of Delaware, Newark, DE 19713, USA;
| | - Alan A. Dombkowski
- Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (D.C.); (S.B.); (E.A.)
- Translational Neurosciences Program, Wayne State University, Detroit, MI 48201, USA;
- Correspondence: ; Tel.: +1-(313)-745-6381
| |
Collapse
|
23
|
miREV: An Online Database and Tool to Uncover Potential Reference RNAs and Biomarkers in Small-RNA Sequencing Data Sets from Extracellular Vesicles Enriched Samples. J Mol Biol 2021; 433:167070. [PMID: 34052284 DOI: 10.1016/j.jmb.2021.167070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized, membrane-enclosed vesicles released by cells for intercellular communication. EVs are involved in pathological processes and miRNAs in EVs have gained interest as easily accessible biomolecules in liquid biopsies for diagnostic purposes. To validate potential miRNA biomarker, transcriptome analyses must be carried out to detect suitable reference miRNAs. miREV is a database with over 400 miRNA sequencing data sets and helps the researcher to find suitable reference miRNAs for their individual experimental setup. The researcher can put together a specific sample set in miREV, which is similar to his own experimental concept in order to find the most suitable references. This allows to run validation experiments without having to carry out a complex and costly transcriptome analysis priorly. Additional read count tables of each generated sample set are downloadable for further analysis. miREV is freely available at https://www.physio.wzw.tum.de/mirev/.
Collapse
|
24
|
Sorop A, Constantinescu D, Cojocaru F, Dinischiotu A, Cucu D, Dima SO. Exosomal microRNAs as Biomarkers and Therapeutic Targets for Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22094997. [PMID: 34066780 PMCID: PMC8125948 DOI: 10.3390/ijms22094997] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the second most common cause of cancer-related death globally. This type of liver cancer is frequently detected at a late stage by current biomarkers because of the high clinical and biological heterogeneity of HCC tumours. From a plethora of molecules and cellular compounds, small nanoparticles with an endosomal origin are valuable cancer biomarkers or cargos for novel treatments. Despite their small sizes, in the range of 40–150 nm, these particles are delimited by a lipid bilayer membrane with a specific lipid composition and carry functional information—RNA, proteins, miRNAs, long non-coding RNAs (lncRNAs), or DNA fragments. This review summarizes the role of exosomal microRNA (miRNA) species as biomarkers in HCC therapy. After we briefly introduce the exosome biogenesis and the methods of isolation and characterization, we discuss miRNA’s correlation with the diagnosis and prognosis of HCC, either as single miRNA species, or as specific panels with greater clinical impact. We also review the role of exosomal miRNAs in the tumourigenic process and in the cell communication pathways through the delivery of cargos, including proteins or specific drugs.
Collapse
Affiliation(s)
- Andrei Sorop
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Diana Constantinescu
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
| | - Florentina Cojocaru
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Anca Dinischiotu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
| | - Dana Cucu
- Department DAFAB, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (F.C.); (A.D.)
- Correspondence: ; Tel.: +40-728-257-607
| | - Simona Olimpia Dima
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; (A.S.); (D.C.); (S.O.D.)
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, 022238 Bucharest, Romania
| |
Collapse
|
25
|
Zivko C, Fuhrmann G, Luciani P. Liver-derived extracellular vesicles: A cell by cell overview to isolation and characterization practices. Biochim Biophys Acta Gen Subj 2021; 1865:129559. [DOI: 10.1016/j.bbagen.2020.129559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
|
26
|
Yang Y, Kannisto E, Patnaik SK, Reid ME, Li L, Wu Y. Ultrafast Detection of Exosomal RNAs via Cationic Lipoplex Nanoparticles in a Micromixer Biochip for Cancer Diagnosis. ACS APPLIED NANO MATERIALS 2021; 4:2806-2819. [PMID: 34849458 PMCID: PMC8628515 DOI: 10.1021/acsanm.0c03426] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Exosomes are cell-derived, nanosized extracellular vesicles for intercellular communication. Exosomal RNAs have been shown as one type of promising cancer liquid biopsy biomarkers. Conventional methods to characterize exosomal RNAs such as quantitative reverse transcription polymerase chain reaction (qRT-PCR) are limited by low sensitivity, large sample consumption, time-consuming process, and high cost. Many technologies have been developed to overcome these challenges; however, many hours are still required to complete the assays, especially when exosome lysis and RNA extraction are required. We have developed a microfluidic cationic lipoplex nanoparticles (mCLN) assay that utilizes a micromixer biochip to allow for the effective capture of exosomes by cationic lipoplex nanoparticles and thus enables ultrafast and sensitive exosomal RNA detection for cancer diagnosis. The sensing performance and diagnostic performance of the mCLN assay were investigated using non-small cell lung cancer (NSCLC) as the disease model and exosomal microRNA-21 and TTF-1 mRNA as the biomarkers. The limits of detection of the mCLN assay were 2.06 × 109 and 3.71 × 109 exosomes/mL for microRNA-21 and TTF-1 mRNA, respectively, indicating that the mCLN assay may require as low as 1 μL of serum for exosomal RNA detection. The mCLN assay successfully distinguished NSCLC from normal controls by detecting significantly higher microRNA-21 and TTF-1 mRNA levels in exosomes from both NSCLC patient serum samples and A549 NSCLC cells than those from normal controls and BEAS-2B normal bronchial epithelial cells. Compared with conventional qRT-PCR assay, the mCLN assay showed a higher diagnostic accuracy in lung cancer, required less sample volume (30 vs 100 μL), and consumed much less time (10 min vs 4 h).
Collapse
Affiliation(s)
- Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Mary E Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Lei Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
27
|
Ragni E, Colombini A, De Luca P, Libonati F, Viganò M, Perucca Orfei C, Zagra L, de Girolamo L. miR-103a-3p and miR-22-5p Are Reliable Reference Genes in Extracellular Vesicles From Cartilage, Adipose Tissue, and Bone Marrow Cells. Front Bioeng Biotechnol 2021; 9:632440. [PMID: 33659243 PMCID: PMC7917212 DOI: 10.3389/fbioe.2021.632440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cartilage cells (CCs), adipose tissue (ASC)- and bone marrow (BMSC)-derived mesenchymal stromal cells (MSCs) have been shown as promising candidates for the treatment of osteoarthritis (OA). Despite their adaptive ability, exposure to chronic catabolic and inflammatory processes can limit their survival and healing potential. An attractive cell-free alternative or complementary strategy is represented by their secreted extracellular vesicles (EVs), having homeostatic properties on OA chondrocytes and synovial cells. In view of clinical translation, a thorough characterization of the shuttled therapeutic molecules, like miRNAs, is greatly needed to fingerprint and develop the most effective EV formulation for OA treatment. To date, a crucial pitfall is given by the lack of EV-miRNA-associated reference genes (RGs) for the reliable quantification and comparison among different therapeutic EV-based therapeutic products. In this study, the stability of 12 putative miRNA RGs (let-7a-5p, miR-16-5p, miR-22-5p, miR-23a-3p, miR-26a-5p, miR-29a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p and miR-660-5p), already proposed by literature in EV products from alternative sources, was assessed in EVs isolated from three donor-matched ASCs, BMSCs, and CCs through geNorm, NormFinder, BestKeeper, and ΔCt algorithms and the geometric mean of rankings. ASC-EVs and BMSC-EVs shared more similar molecular signatures than cartilage-derived EVs, although overall miR-103a-3p consistently ranked as the first and miR-22-5p as the second most stable EV-miRNA RG, whereas miR-221-3p behaved poorly. Further, to emphasize the impact of incorrect RG choice, the abundance of four OA-therapeutic miRNAs (miR-93-5p, miR-125b-5p, miR-455-3p, and miR-27b-3p) was compared. The use of miR-221-3p led to less accurate EV fingerprinting and, when applied to sift therapeutic potency prediction, to misleading indication of the most appropriate clinical product. In conclusion, miR-103a-3p and miR-22-5p will represent reliable RGs for the quantification of miRNAs embedded in MSC- and CC-EVs, a mandatory step for the molecular definition and comparison of the clinical potency of these innovative cell-free-based therapeutic products for OA in particular, as well as for a wider array of regenerative-medicine-based approaches.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Francesca Libonati
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Luigi Zagra
- IRCCS Istituto Ortopedico Galeazzi, Hip Department, Milan, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| |
Collapse
|
28
|
Gorji-Bahri G, Moradtabrizi N, Vakhshiteh F, Hashemi A. Validation of common reference genes stability in exosomal mRNA-isolated from liver and breast cancer cell lines. Cell Biol Int 2021; 45:1098-1110. [PMID: 33501690 DOI: 10.1002/cbin.11556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/02/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Accurate relative gene expression analysis by reverse transcription-quantitative polymerase chain reaction relies on the usage of suitable reference genes for data normalization. The RNA content of small extracellular vesicles including exosomes is growingly considered as cancer biomarkers. So, reliable relative quantification of exosomal messenger RNA (mRNA) is essential for cancer diagnosis and prognosis applications. However, suitable reference genes for accurate normalization of a target gene in exosomes derived from cancer cells are not depicted yet. Here, we analyzed the expression and stability of eight well-known reference genes namely GAPDH, B2M, HPRT1, ACTB, YWHAZ, UBC, RNA18S, and TBP in exosomes-isolated from the liver (Huh7, HepG2, PLC/PRF/5) and breast (SK-BR-3) cancer cell lines using five different algorithms including geNorm, BestKeeper, Delta Ct, NormFinder, and RefFinder. Our results showed that ACTB, TBP, and HPRT1 were not expressed in exosomes-isolated from studied liver and breast cancer cell lines. The geNorm and BestKeeper algorithms indicated GAPDH and UBC as the most stable candidates. Moreover, Delta Ct and NormFinder algorithms showed YWHAZ as the most stable reference genes. Comprehensive ranking calculated by the RefFinder algorithm also pointed out GAPDH, YWHAZ, and UBC as the first three stable reference genes. Taken together, this study validated the common reference genes stability in exosomal mRNA derived from liver and breast cancer cell lines for the first time. We believe that this study would be the first step in finding more stable reference genes in exosomes that triggers more accurate detection of exosomal biomarkers.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Moradtabrizi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
MiR-26a-5p as a Reference to Normalize MicroRNA qRT-PCR Levels in Plasma Exosomes of Pediatric Hematological Malignancies. Cells 2021; 10:cells10010101. [PMID: 33429910 PMCID: PMC7827902 DOI: 10.3390/cells10010101] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Plasma exosomal microRNAs (miRNAs) are considered as valid circulating biomarkers for cancer diagnosis and prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR), the most commonly used technique to assess circulating miRNA levels, requires a normalization step involving uniformly expressed endogenous miRNAs. However, there is still no consensus on reference miRNAs for plasma exosomal miRNA abundance normalization. In this study, we identified a panel of miRNAs with stable abundance by analyzing public plasma exosome RNA-seq data and selected miR-486-5p, miR-26a-5p, miR-423-5p and miR191-5p as candidate normalizers. Next, we tested the abundance variation of these miRNAs by qRT-PCR in plasma exosomes of healthy donors and pediatric patients with anaplastic large cell lymphoma, Burkitt lymphoma, Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia. MiR-486-5p and miR-26a-5p showed the most stable levels, both between healthy controls and patients and among the malignancies analyzed. In light of previous reports on miRNA stability in different exosome isolation methods, our data indicated that miR-26a-5p is a bona fide reference miRNA for qRT-PCR normalization to evaluate miRNA abundance from circulating plasma exosomes in studies of hematological malignancies.
Collapse
|
30
|
Moayedi J, Hashempour T, Musavi Z, Arefian E, Naderi M, Heidari MR, Dehghani B, Hasanshahi Z, Merat S. Evaluation of miR-122 Serum Level and IFN-λ3 Genotypes in Patients with Chronic HCV and HCV-Infected Liver Transplant Candidate. Microrna 2021; 10:58-65. [PMID: 33334303 DOI: 10.2174/2211536609666201217101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/07/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are the most common markers of liver damage, but serum level interpretation can be complicated. In hepatocytes, microRNA-122 (miR-122) is the most abundant miRs and its high expression in the serum is a characteristic of liver disease. OBJECTIVE We aimed to compare the circulatory level of miR-122 in patients with Chronic Hepatitis C (CHC), Hepatitis C Virus (HCV) infected Liver Transplant Candidates (LTC) and healthy controls to determine if miR-122 can be considered as an indicator of chronic and advanced stage of liver disease. METHODS MiR-122 serum level was measured in 170 Interferon-naïve (IFN-naïve) CHC patients, 62 LTC patients, and 132 healthy individuals via TaqMan real-time PCR. Serum levels of miR-122 were normalized to the serum level of Let-7a and miR-221. Also, the ALT and AST levels were measured. RESULTS ALT and AST activities and the expression of circulatory miR-122 were similar in the CHC and LTC groups, but it had significantly increased compared to healthy individuals (P<0.001 and P<0.001, respectively). Up-regulation of miR-122 in the sample of patients with normal ALT and AST activities was also observed, indicating that miR-122 is a good marker with high sensitivity and specificity for diagnosing liver damage. CONCLUSION miR-122 seemed to be more specific for liver diseases in comparison with the routine ALT and AST liver enzymes. Since the lower levels of circulating miR-122 were observed in the LTC group compared to the CHC group, advanced liver damages might reduce the release of miR-122 from the hepatocytes, as a sign of liver function deficiency.
Collapse
Affiliation(s)
- Javad Moayedi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Musavi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Reza Heidari
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Dehghani
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hasanshahi
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Merat
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
The crucial choice of reference genes: identification of miR-191-5p for normalization of miRNAs expression in bone marrow mesenchymal stromal cell and HS27a/HS5 cell lines. Sci Rep 2020; 10:17728. [PMID: 33082452 PMCID: PMC7576785 DOI: 10.1038/s41598-020-74685-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have a critical role in tissue regeneration and in the hematopoietic niche due to their differentiation and self-renewal capacities. These mechanisms are finely tuned partly by small non-coding microRNA implicated in post-transcriptional regulation. The easiest way to quantify them is RT-qPCR followed by normalization on validated reference genes (RGs). This study identified appropriate RG for normalization of miRNA expression in BM-MSCs and HS27a and HS5 cell lines in various conditions including normoxia, hypoxia, co-culture, as model for the hematopoietic niche and after induced differentiation as model for regenerative medicine. Six candidates, namely miR-16-5p, miR-34b-3p, miR-103a-3p, miR-191-5p, let-7a-5p and RNU6A were selected and their expression verified by RT-qPCR. Next, a ranking on stability of the RG candidates were performed with two algorithms geNorm and RefFinder and the optimal number of RGs needed to normalize was determined. Our results indicate miR-191-5p as the most stable miRNA in all conditions but also that RNU6a, usually used as RG is the less stable gene. This study demonstrates the interest of rigorously evaluating candidate miRNAs as reference genes and the importance of the normalization process to study the expression of miRNAs in BM-MSCs or derived cell lines.
Collapse
|
32
|
Kuang Y, Zheng X, Zhang L, Ai X, Venkataramani V, Kilic E, Hermann DM, Majid A, Bähr M, Doeppner TR. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles 2020; 10:e12024. [PMID: 33304476 PMCID: PMC7710129 DOI: 10.1002/jev2.12024] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Grafted mesenchymal stem cells (MSCs) yield neuroprotection in preclinical stroke models by secreting extracellular vesicles (EVs). The neuroprotective cargo of EVs, however, has not yet been identified. To investigate such cargo and its underlying mechanism, primary neurons were exposed to oxygen-glucose-deprivation (OGD) and cocultured with adipose-derived MSCs (ADMSCs) or ADMSC-secreted EVs. Under such conditions, both ADMSCs and ADMSC-secreted EVs significantly reduced neuronal death. Screening for signalling cascades being involved in the interaction between ADMSCs and neurons revealed a decreased autophagic flux as well as a declined p53-BNIP3 activity in neurons receiving either treatment paradigm. However, the aforementioned effects were reversed when ADMSCs were pretreated with the inhibitor of exosomal secretion GW4869 or when Hrs was knocked down. In light of miR-25-3p being the most highly expressed miRNA in ADMSC-EVs interacting with the p53 pathway, further in vitro work focused on this pathway. Indeed, a miR-25-3p oligonucleotide mimic reduced cell death, whereas the anti-oligonucleotide increased autophagic flux and cell death by modulating p53-BNIP3 signalling in primary neurons exposed to OGD. Likewise, native ADMSC-EVs but not EVs obtained from ADMSCs pretreated with the anti-miR-25-3p oligonucleotide (ADMSC-EVsanti-miR-25-3p) confirmed the aforementioned in vitro observations in C57BL/6 mice exposed to cerebral ischemia. The infarct size was reduced, and neurological recovery was increased in mice treated with native ADMSC-EVs when compared to ADMSC-EVsanti-miR-25-3p. ADMSCs induce neuroprotection by improved autophagic flux through secreted EVs containing miR-25-3p. Hence, our work uncovers a novel key factor in naturally secreted ADMSC-EVs for the regulation of autophagy and induction of neuroprotection in a preclinical stroke model.
Collapse
Affiliation(s)
- Yaoyun Kuang
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Xuan Zheng
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Lin Zhang
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Xiaoyu Ai
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Vivek Venkataramani
- University Medical Center GoettingenInstitute for PathologyGoettingenGermany
| | - Ertugrul Kilic
- Istanbul Medipol UniversityRegenerative and Restorative Medical Research CenterIstanbulTurkey
| | - Dirk M. Hermann
- Department of NeurologyUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Arshad Majid
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Mathias Bähr
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Thorsten R. Doeppner
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
- Istanbul Medipol UniversityRegenerative and Restorative Medical Research CenterIstanbulTurkey
| |
Collapse
|
33
|
Chen J, Fei X, Wang J, Cai Z. Tumor-derived extracellular vesicles: Regulators of tumor microenvironment and the enlightenment in tumor therapy. Pharmacol Res 2020; 159:105041. [PMID: 32580030 DOI: 10.1016/j.phrs.2020.105041] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
In recent decades, extracellular vesicles (EVs) have been proven to establish an important bridge of communication between cells or cells and their microenvironment. It is well known that EVs play crucial roles in many human diseases, especially in tumors. Tumor-derived EVs (TEVs) are not only involved in epithelial-mesenchymal transition and extracellular matrix remodeling to promote the invasion and metastasis, but also contribute to the suppression of antitumor immune responses by carrying different inhibitory molecules. In this review, we mainly discuss the effects of TEVs on the remodeling of tumor microenvironment through immune and non-immune associated mechanisms. We summarize the latest studies about utilizing EVs in clinical diagnosis and therapeutic drug delivery as well. In addition, the perspective of tumor therapy by targeting EVs is discussed in this review.
Collapse
Affiliation(s)
- Jiming Chen
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuefeng Fei
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310006, China.
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Lead Contact, China.
| |
Collapse
|
34
|
Narita M, Nishida H, Asahina R, Nakata K, Yano H, Dickinson PJ, Tanaka T, Akiyoshi H, Maeda S, Kamishina H. Expression of microRNAs in plasma and in extracellular vesicles derived from plasma for dogs with glioma and dogs with other brain diseases. Am J Vet Res 2020; 81:355-360. [PMID: 32228257 DOI: 10.2460/ajvr.81.4.355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure expression of microRNAs (miRNAs) in plasma and in extracellular vesicles (EVs) derived from plasma for dogs with glioma and dogs with other brain diseases. SAMPLE Plasma samples from 11 dogs with glioma and 19 control dogs with various other brain diseases. PROCEDURES EVs were isolated from plasma samples by means of ultracentrifugation. Expression of 4 candidate reference miRNAs (let-7a, miR-16, miR-26a, and miR-103) and 4 candidate target miRNAs (miR-15b, miR-21, miR-155, and miR-342-3p) was quantified with reverse transcription PCR assays. Three software programs were used to select the most suitable reference miRNAs from among the 4 candidate reference miRNAs. Expression of the 4 target miRNAs was then calculated relative to expression of the reference genes in plasma and EVs, and relative expression was compared between dogs with glioma and control dogs with other brain diseases. RESULTS The most suitable reference miRNAs were miR-16 for plasma and let-7a for EVs. Relative expression of miR-15b in plasma and in EVs was significantly higher in dogs with glioma than in control dogs. Relative expression of miR-342-3p in EVs was significantly higher in dogs with glioma than in control dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that miR-15b and miR-342-3p have potential as noninvasive biomarkers for differentiating glioma from other intracranial diseases in dogs. However, more extensive analysis of expression in specific glioma subtypes and grades, compared with expression in more defined control populations, will be necessary to assess their clinical relevance.
Collapse
|
35
|
Orr C, Myers R, Li B, Jiang Z, Flaherty J, Gaggar A, Meissner EG. Longitudinal analysis of serum microRNAs as predictors of cirrhosis regression during treatment of hepatitis B virus infection. Liver Int 2020; 40:1693-1700. [PMID: 32301252 PMCID: PMC7681260 DOI: 10.1111/liv.14474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/27/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Most patients with cirrhosis induced by chronic HBV infection experience fibrosis regression after long-term antiviral treatment, while some remain cirrhotic. Fibrosis regression is associated with lower odds of developing hepatic decompensation and hepatocellular carcinoma, but mechanisms impacting differential fibrosis regression between individuals are unclear. We asked whether soluble molecules, including serum microRNAs, could serve as biomarkers of fibrosis regression. METHODS We analysed cryopreserved sera from clinical trials in which cirrhotic HBV-infected patients (baseline Ishak fibrosis score of 5-6) received 240 weeks of nucleotide analogue treatment. Liver biopsies at week 240 in these trials showed 71/96 patients (74%) had fibrosis regression (Ishak ≤ 4) while 25/96 (26%) remained cirrhotic (Ishak 5-6). We quantified inflammatory markers (CXCL10, soluble CD163) and miRNAs (n = 179) from serum at baseline, week 48 and week 240 of treatment in a sub-cohort of patients with (n = 14) or without (n = 14) fibrosis regression. RESULTS CXCL10, sCD163 and miRNAs previously associated with HBV replication and inflammation decreased during treatment but did not differ based on fibrosis regression. Two miRNAs (miR-421 and miR-454-3p) had lower baseline expression in patients with subsequent fibrosis regression. In all, 27 miRNAs differed at week 240 and had higher expression in patients with fibrosis regression (eg miR-199a-3p, miR-423-3p, miR-142-3p, miR-let-7d-5p). Several miRNAs (miR-141-3p, let-7d-5p) that correlated with regression have previously been implicated in the pathophysiology of non-alcoholic steatohepatitis. CONCLUSIONS In cirrhotic patients with chronic HBV infection treated with antiviral therapy, serum miRNAs have differential expression based on fibrosis regression, suggesting potential utility as biomarkers.
Collapse
Affiliation(s)
- Cody Orr
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | | | - Biao Li
- Gilead Sciences, Foster City, CA
| | | | | | | | - Eric G. Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
36
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Serum Exosomal miRNAs for Grading Hepatic Fibrosis Due to Schistosomiasis. Int J Mol Sci 2020; 21:ijms21103560. [PMID: 32443549 PMCID: PMC7278994 DOI: 10.3390/ijms21103560] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic infection with Schistosoma japonicum or Schistosoma mansoni results in hepatic fibrosis of the human host. The staging of fibrosis is crucial for prognosis and to determine the need for treatment of patients with schistosomiasis. This study aimed to determine whether there is a correlation between the levels of serum exosomal micro-ribonucleic acids (miRNAs) (exomiRs) and fibrosis progression in schistosomiasis. Reference gene (RG) validation was initially carried out for the analysis of serum exomiRs expression in staging liver fibrosis caused by schistosome infection. The expression levels of liver fibrosis-associated exomiRs in serum were determined in a murine schistosomiasis model and in a cohort of Filipino schistosomiasis japonica patients (n = 104) with different liver fibrosis grades. Of twelve RG candidates validated, miR-103a-3p and miR-425-5p were determined to be the most stable genes in the murine schistosomiasis model and subjects from the schistosomiasis-endemic area, respectively. The temporal expression profiles of nine fibrosis-associated serum exomiRs, as well as their correlations with the liver pathologies, were determined in C57BL/6 mice during S. japonicum infection. The serum levels of three exomiRs (miR-92a-3p, miR-146a-5p and miR-532-5p) were able to distinguish subjects with fibrosis grades I-III from those with no fibrosis, but only the serum level of exosomal miR-146a-5p showed potential for distinguishing patients with mild (grades 0–I) versus severe fibrosis (grades II–III). The current data imply that serum exomiRs can be a supplementary tool for grading liver fibrosis in hepatosplenic schistosomiasis with moderate accuracy.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
- Correspondence: (P.C.); (D.P.M.); Tel.: +61-7-3362-0406 (P.C.); +61-7-3362-0401 (D.P.M.)
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
| | - Remigio M. Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila 1781, Philippines;
| | - Allen G. Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia; (A.G.R.); (D.U.O.)
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR, B), Dhaka 1212, Bangladesh
| | - David U. Olveda
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia; (A.G.R.); (D.U.O.)
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia;
- Correspondence: (P.C.); (D.P.M.); Tel.: +61-7-3362-0406 (P.C.); +61-7-3362-0401 (D.P.M.)
| |
Collapse
|
37
|
Bandopadhyay M, Bharadwaj M. Exosomal miRNAs in hepatitis B virus related liver disease: a new hope for biomarker. Gut Pathog 2020; 12:23. [PMID: 32346400 PMCID: PMC7183117 DOI: 10.1186/s13099-020-00353-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
The World Health Organisation, in its 2019 progress report on HIV, viral hepatitis and STDs indicates that 257 million people are afflicted with chronic HBV infections, of which, 1 million patients lose their lives every year due to HBV related chronic liver diseases including serious complications such as liver cirrhosis and hepatocellular carcinoma. The course of HBV infection and associated liver injury depend on several host factors, genetic variability of the virus, and the host viral interplay. The challenge of medical science is the early diagnosis/identification of the potential for development of fatal complications like liver cirrhosis and HCC so that timely medical intervention can improve the chances of survival. Currently, neither the vaccination regime nor the diagnostic methods are completely effective as reflected in the high number of annual deaths. It is evident from numerous publications that microRNAs (miRNAs) are the critical regulators of gene expression and various cellular processes like proliferation, development, differentiation, apoptosis and tumorigenesis. Expressions of these diminutive RNAs are significantly affected in cancerous tissues as a result of numerous genomic and epigenetic modifications. Exosomes are membrane-derived vesicles (30–100 nm) secreted by normal as well as malignant cells, and are present in all body fluids. They are recognized as critical molecules in intercellular communication between cells through horizontal transfer of information via their cargo, which includes selective proteins, mRNAs and miRNAs. Exosomal miRNAs are transferred to recipient cells where they can regulate target gene expression. This provides an insight into the elementary biology of cancer progression and therefore the development of therapeutic approaches. This concise review outlines various on-going research on miRNA mediated regulation of HBV pathogenesis with special emphasis on association of exosomal miRNA in advanced stage liver disease like hepatocellular carcinoma. This review also discusses the possible use of exosomal miRNAs as biomarkers in the early detection of HCC and liver cirrhosis.
Collapse
Affiliation(s)
- Manikankana Bandopadhyay
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (NICPR), Indian Council of Medical Research (ICMR), Noida, Uttar Pradesh 201301 India
| | - Mausumi Bharadwaj
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research (NICPR), Indian Council of Medical Research (ICMR), Noida, Uttar Pradesh 201301 India
| |
Collapse
|
38
|
miRNA Reference Genes in Extracellular Vesicles Released from Amniotic Membrane-Derived Mesenchymal Stromal Cells. Pharmaceutics 2020; 12:pharmaceutics12040347. [PMID: 32290510 PMCID: PMC7238137 DOI: 10.3390/pharmaceutics12040347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Human amniotic membrane and amniotic membrane-derived mesenchymal stromal cells (hAMSCs) have produced promising results in regenerative medicine, especially for the treatment of inflammatory-based diseases and for different injuries including those in the orthopedic field such as tendon disorders. hAMSCs have been proposed to exert their anti-inflammatory and healing potential via secreted factors, both free and conveyed within extracellular vesicles (EVs). In particular, EV miRNAs are considered privileged players due to their impact on target cells and tissues, and their future use as therapeutic molecules is being intensely investigated. In this view, EV-miRNA quantification in either research or future clinical products has emerged as a crucial paradigm, although, to date, largely unsolved due to lack of reliable reference genes (RGs). In this study, a panel of thirteen putative miRNA RGs (let-7a-5p, miR-16-5p, miR-22-5p, miR-23a-3p, miR-26a-5p, miR-29a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, miR-660-5p and U6 snRNA) that were identified in different EV types was assessed in hAMSC-EVs. A validated experimental pipeline was followed, sifting the output of four largely accepted algorithms for RG prediction (geNorm, NormFinder, BestKeeper and ΔCt method). Out of nine RGs constitutively expressed across all EV isolates, miR-101-3p and miR-22-5p resulted in the most stable RGs, whereas miR-423-5p and U6 snRNA performed poorly. miR-22-5p was also previously reported to be a reliable RG in adipose-derived MSC-EVs, suggesting its suitability across samples isolated from different MSC types. Further, to shed light on the impact of incorrect RG choice, the level of five tendon-related miRNAs (miR-29a-3p, miR-135a-5p, miR-146a-5p, miR-337-3p, let-7d-5p) was compared among hAMSC-EVs isolates. The use of miR-423-5p and U6 snRNA did not allow a correct quantification of miRNA incorporation in EVs, leading to less accurate fingerprinting and, if used for potency prediction, misleading indication of the most appropriate clinical batch. These results emphasize the crucial importance of RG choice for EV-miRNAs in hAMSCs studies and contribute to the identification of reliable RGs such as miR-101-3p and miR-22-5p to be validated in other MSC-EVs related fields.
Collapse
|
39
|
Liu C, Kannisto E, Yu G, Yang Y, Reid ME, Patnaik SK, Wu Y. Non-invasive Detection of Exosomal MicroRNAs via Tethered Cationic Lipoplex Nanoparticles (tCLN) Biochip for Lung Cancer Early Detection. Front Genet 2020; 11:258. [PMID: 32265989 PMCID: PMC7100709 DOI: 10.3389/fgene.2020.00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating microRNAs carried by exosomes have emerged as promising diagnostic biomarkers for cancer because of their abundant amount and remarkable stability in body fluids. Exosomal microRNAs in blood are typically quantified using the RNA isolation-qRT-PCR workflow, which cannot distinguish circulating microRNAs secreted by cancer cells from those released by non-tumor cells, making it potentially less sensitive in detecting cancer-specific microRNA biomarkers. We have developed a sensitive and simple tethered cationic lipoplex nanoparticles (tCLN) biochip to detect exosomal microRNAs in human sera. The tCLN biochip allows the discrimination of tumor-derived exosomes from their non-tumor counterparts, and thus achieves higher detection sensitivity and specificity than qRT-PCR. We have demonstrated the clinical utility of the tCLN biochip in lung cancer diagnosis using sera from normal controls, therapy-naive early stage and late stage non-small cell lung cancer (NSCLC) patients. Total five microRNAs (miR-21, miR-25, miR-155, miR-210, and miR-486) were selected as the biomarkers. Each microRNA biomarker measured by tCLN assay showed higher sensitivity and specificity in lung cancer detection than that measured by qRT-PCR. When all five microRNAs were combined, the tCLN assay distinguished normal controls from all NSCLC patients with sensitivity of 0.969, specificity of 0.933 and AUC of 0.970, and provided much better diagnostic accuracy than qRT-PCR (sensitivity = 0.469, specificity = 1.000, AUC = 0.791). Remarkably, the tCLN assay achieved absolute sensitivity and specificity in discriminating early stage NSCLC patients from normal controls, demonstrating its great potential as a liquid biopsy assay for lung cancer early detection.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University at Buffalo – The State University of New York, Buffalo, NY, United States
| | - Eric Kannisto
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Guan Yu
- Department of Biostatistics, University at Buffalo – The State University of New York, Buffalo, NY, United States
| | - Yunchen Yang
- Department of Biomedical Engineering, University at Buffalo – The State University of New York, Buffalo, NY, United States
| | - Mary E. Reid
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Santosh K. Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo – The State University of New York, Buffalo, NY, United States
| |
Collapse
|
40
|
Muñoz JJ, Anauate AC, Amaral AG, Ferreira FM, Meca R, Ormanji MS, Boim MA, Onuchic LF, Heilberg IP. Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Sci Rep 2020; 10:231. [PMID: 31937827 PMCID: PMC6959247 DOI: 10.1038/s41598-019-57112-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease is a complex clinical entity which comprises a group of genetic diseases that leads to renal cyst development. We evaluated the most suitable housekeeping genes for microRNA expression by RT-qPCR analyses of kidney tissues in Pkd1-deficient mouse models from a panel of five candidates genes (miR-20a, miR-25, miR-26a, miR-191 and U6) and 3 target genes (miR-17, miR-21 and let-7a) using samples from kidneys of cystic mice (Pkd1flox/flox:Nestincre, CY), non-cystic controls (Pkd1flox/flox, NC), Pkd1-haploinsufficient (Pkd1+/−, HT), wild-type controls (Pkd1+/+, WT), severely cystic mice (Pkd1V/V, SC), wild-type controls (CO). The stability of the candidate genes was investigated using NormFinder, GeNorm, BestKeeper, DataAssist, and RefFinder software packages and the comparative ΔCt method. The analyses identified miR-26a as the most stable housekeeping gene for all kidney samples, miR-20a for CY and NC, miR-20a and miR-26a for HT and WT, and miR-25 and miR-26a for SC and CO. Expression of miR-21 was upregulated in SC compared to CO and trends of miR-21 upregulation and let-7a downregulation in CY and HT compared to its control kidneys, when normalized by different combinations of miR-20a, miR-25 and miR-26a. Our findings established miR-20a, miR-25, and miR-26a as the best housekeeping genes for miRNA expression analyses by RT-qPCR in kidney tissues of Pkd1-deficient mouse models.
Collapse
Affiliation(s)
- J J Muñoz
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A C Anauate
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A G Amaral
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - F M Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - R Meca
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M S Ormanji
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A Boim
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Onuchic
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - I P Heilberg
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Human Circulating miRNAs Real-time qRT-PCR-based Analysis: An Overview of Endogenous Reference Genes Used for Data Normalization. Int J Mol Sci 2019; 20:ijms20184353. [PMID: 31491899 PMCID: PMC6769746 DOI: 10.3390/ijms20184353] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
miRNAs are small non-coding RNAs of about 18–25 nucleotides that negatively regulate gene expression at the post-transcriptional level. It was reported that a deregulation of their expression patterns correlates to the onset and progression of various diseases. Recently, these molecules have been identified in a great plethora of biological fluids, and have also been proposed as potential diagnostic and prognostic biomarkers. Actually, real time quantitative polymerase chain reaction is the most widely used approach for circulating miRNAs (c-miRNAs) expression profiling. Nevertheless, the debate on the choice of the most suitable endogenous reference genes for c-miRNAs expression levels normalization is still open. In this regard, numerous research groups are focusing their efforts upon identifying specific, highly stable, endogenous c-mRNAs. The aim of this review is to provide an overview on the reference genes currently used in the study of various pathologies, offering to researchers the opportunity to select the appropriate molecules for c-miRNA levels normalization, when their choosing is based upon literature data.
Collapse
|
42
|
Madadi S, Schwarzenbach H, Lorenzen J, Soleimani M. MicroRNA expression studies: challenge of selecting reliable reference controls for data normalization. Cell Mol Life Sci 2019; 76:3497-3514. [PMID: 31089747 PMCID: PMC11105490 DOI: 10.1007/s00018-019-03136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/13/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
Accurate determination of microRNA expression levels is a prerequisite in using these small non-coding RNA molecules as novel biomarkers in disease diagnosis and prognosis. Quantitative PCR is the method of choice for measuring the expression levels of microRNAs. However, a major obstacle that affects the reliability of results is the lack of validated reference controls for data normalization. Various non-coding RNAs have previously been used as reference controls, but their use may lead to variations and lack of comparability of microRNA data among the studies. Despite the growing number of studies investigating microRNA profiles to discriminate between healthy and disease stages, robust reference controls for data normalization have so far not been established. In the present article, we provide an overview of different reference controls used in various diseases, and highlight the urgent need for the identification of suitable reference controls to produce reliable data. Our analysis shows, among others, that RNU6 is not an ideal normalizer in studies using patient material from different diseases. Finally, our article tries to disclose the challenges to find a reference control which is uniformly and stably expressed across all body tissues, fluids, and diseases.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johan Lorenzen
- Department of Nephrology, University Hospital Zürich, Zurich, Switzerland
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
43
|
Tian F, Yu C, Wu M, Wu X, Wan L, Zhu X. MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Prolif 2019; 52:e12635. [PMID: 31334580 PMCID: PMC6797514 DOI: 10.1111/cpr.12635] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES MicroRNAs are powerful regulators in hepatocellular carcinoma (HCC) tumorigenesis. MicoRNA-191 (miR-191) has been reported to play an important role in HCC, However, the regulatory mechanism is still unclear. In this study, we investigated the role of miR-191 in HCC and studied its underlying mechanisms of action. MATERIALS AND METHODS The expression of miR-191 in HCC tissues was determined by quantitative real-time PCR (qRT-PCR). The role of miR-191 in HCC cells was examined by using both in vitro and in vivo assays. Downstream targets of miR-191 were determined by qRT-PCR and Western blot analysis. Dual-luciferase assays were performed to validate the interaction between miR-191 and its targets. RESULTS The expression of miR-191 was significantly higher in HCC patients and a higher miR-191 expression predicted poorer prognosis. Analysis of The Cancer Genome Atlas data sets suggested that miR-191 positively correlated with cell cycle progression. Gain and loss of function assays showed that miR-191 promoted cell cycle progression and proliferation. Luciferase reporter assay showed that miR-191 directly targeted the 3'-untranslated region of KLF6 mRNA. Furthermore, circular RNA has_circ_0000204 could sponge with miR-191, resulting in inactivation of miR-191. CONCLUSIONS Our study sheds light on the novel underlying mechanism of miR-191 in HCC, which may accelerate the development of cancer therapy.
Collapse
Affiliation(s)
- Fang Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Chengtao Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaoyu Wu
- Life Science and Technology Institute, China Pharmaceutical University, Nanjing, China
| | - Lingfeng Wan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xuejun Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
44
|
Narita M, Nishida H, Asahina R, Nakata K, Yano H, Ueda T, Inden M, Akiyoshi H, Maeda S, Kamishina H. Identification of reference genes for microRNAs of extracellular vesicles isolated from plasma samples of healthy dogs by ultracentrifugation, precipitation, and membrane affinity chromatography methods. Am J Vet Res 2019; 80:449-454. [PMID: 31034274 DOI: 10.2460/ajvr.80.5.449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare ultracentrifugation, precipitation, and membrane affinity chromatography methods for isolation of extracellular vesicles (EVs) from canine plasma samples and to identify suitable reference genes for incorporation into a quantitative reverse transcription PCR assay of microRNA expression in plasma EVs of healthy dogs. ANIMALS 6 healthy Beagles. PROCEDURES Plasma samples were obtained from each dog, and EVs were isolated from 0.3 mL of these samples via ultracentrifugation, precipitation, and membrane-affinity chromatographic methods. Nanoparticle tracking analysis was performed to determine the concentration and size distribution of EVs isolated by the ultracentrifugation method. Expression levels (cycle threshold values) of 4 microRNAs (let-7a, miR-16, miR-26a, and miR-103) were then compared by means of quantitative reverse transcription PCR assay. Three statistical programs were used to identify the microRNAs most suitable for use as reference genes. RESULTS Results indicated that ultracentrifugation was the most stable of all 3 methods for isolating microRNAs from 0.3 mL of plasma. Nanoparticle tracking revealed that EV samples obtained by the ultracentrifugation method contained a mean ± SD of approximately 1.59 × 1010 vesicles/mL ± 4.2 × 108 vesicles/mL. Of the 4 microRNAs in plasma EVs isolated by ultracentrifugation, miR-103 was the most stable. CONCLUSIONS AND CLINICAL RELEVANCE The ultracentrifugation method has potential as a stable method for isolating EVs from canine plasma samples with a high recovery rate, and miR-103 may provide the most stable reference gene for normalizing microRNA expression data pertaining to plasma EVs isolated by ultracentrifugation.
Collapse
|
45
|
miR-22-5p and miR-29a-5p Are Reliable Reference Genes for Analyzing Extracellular Vesicle-Associated miRNAs in Adipose-Derived Mesenchymal Stem Cells and Are Stable under Inflammatory Priming Mimicking Osteoarthritis Condition. Stem Cell Rev Rep 2019; 15:743-754. [DOI: 10.1007/s12015-019-09899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Exosomes Modulate the Viral Replication and Host Immune Responses in HBV Infection. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2103943. [PMID: 31275965 PMCID: PMC6558633 DOI: 10.1155/2019/2103943] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/21/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
Although current diagnosis and treatment of hepatitis B virus (HBV) infection can maintain viral suppression, new therapies need to be invented to sustain off-treatment virologic suppression and reduce side effects. Exosomes act as intercellular communicators to facilitate direct transfer of proteins, lipids, and nucleic acids between cells in vitro and in vivo. Pioneering work has demonstrated that exosomal cargos changed markedly during HBV infection. An improved understanding of the functions of exosomes during HBV infection could lead to a powerful new strategy for preventing and treating HBV. In this review, we point out the role of exosomes in HBV infection: (1) exosomes could directly participate in HBV replication; (2) exosomes modulate immune response during HBV infections; (3) exosomal RNAs and proteins might be selected as novel biomarkers for the diagnosis of HBV infections; and (4) exosomes can also be designed as vaccines.
Collapse
|
47
|
Ragni E, De Luca P, Perucca Orfei C, Colombini A, Viganò M, Lugano G, Bollati V, de Girolamo L. Insights into Inflammatory Priming of Adipose-Derived Mesenchymal Stem Cells: Validation of Extracellular Vesicles-Embedded miRNA Reference Genes as A Crucial Step for Donor Selection. Cells 2019; 8:cells8040369. [PMID: 31018576 PMCID: PMC6523846 DOI: 10.3390/cells8040369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are promising tools for cell-based therapies due to their homing to injury sites, where they secrete bioactive factors such as cytokines, lipids, and nucleic acids, either free or conveyed within extracellular vesicles (EVs). Depending on the local environment, MSCs’ therapeutic value may be modulated, determining their fate and cell behavior. Inflammatory signals may induce critical changes on both the phenotype and secretory portfolio. Intriguingly, in animal models resembling joint diseases as osteoarthritis (OA), inflammatory priming enhanced the healing capacity of MSC-derived EVs. In this work, we selected miRNA reference genes (RGs) from the literature (let-7a-5p, miR-16-5p, miR-23a-3p, miR-26a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, U6 snRNA), using EVs isolated from adipose-derived MSCs (ASCs) primed with IFNγ (iASCs). geNorm, NormFinder, BestKeeper, and ΔCt methods identified miR-26a-5p/16-5p as the most stable, while miR-103a-rp/425-5p performed poorly. Our results were validated on miRNAs involved in OA cartilage trophism. Only a proper normalization strategy reliably identified the differences between donors, a critical factor to empower the therapeutic value of future off-the-shelf MSC-EV isolates. In conclusion, the proposed pipeline increases the accuracy of MSC-EVs embedded miRNAs assessment, and help predicting donor variability for precision medicine approaches.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Gaia Lugano
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| | - Valentina Bollati
- University of Milan, EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, I-20122 Milan, Italy.
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, I-20161 Milan, Italy.
| |
Collapse
|
48
|
Lin H, Zhang Z. Diagnostic value of a microRNA signature panel in exosomes for patients with hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1478-1487. [PMID: 31933965 PMCID: PMC6947065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fifth most frequently diagnosed cancer worldwide and the second most frequent cause of cancer death. The aim of this study is to investigate the early diagnostic value of a panel of peripheral blood exosomal micro-RNAs (miRNAs) in patients with HCC compared with patients with Hepatitis B virus (HBV) and hepatocirrhosis. PATIENTS AND METHODS Blood samples from 72 patients with HCC, 72 patients with hepatocirrhosis and 72 patients with HBV were obtained at Beijing Friendship Hospital, Capital Medical University. The miRNA expression levels were detected by real-time polymerase chain reaction (RT-PCR). Areas under curve (AUCs) were used to compare diagnostic values of plasmic and exosomal miRNAs. RESULTS We screened plasmic and exosomal solutions of 3 HCC, 3 cirrhosis and 3 HBV patients to perform miRNA microarray analysis. Three distinctly differential microRNAs including miRNA-26a, miRNA-29c, and miRNA-21 were selected to perform further evaluation. First, we found that the expressions of miRNA-26a, miRNA-29c, and miRNA-21 were significantly lower in patients with HCC compared with cirrhotic and HBV group in both exosomes and plasma. Second, we found miRNA-26a, miRNA-29c, and miRNA-21 were significantly down-regulated in HCC tumor tissues compared with normal tissues. Thirdly, we found miRNAs in exosomes had better diagnostic value for patients with HCC compared with plasmic miRNAs among different groups. CONCLUSIONS In conclusion, we found that the expression of miRNA-26a, miRNA-29c, and miRNA-21 were significantly lower in patients with HCC, and we confirmed miRNA-26a, miRNA-29c, and miRNA-21 could be identified as independent diagnostic biomarkers for patients with HCC.
Collapse
Affiliation(s)
- Huajun Lin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, People's Republic of China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, People's Republic of China
| |
Collapse
|
49
|
Wu HY, Li MW, Li QQ, Pang YY, Chen G, Lu HP, Pan SL. Elevation of miR-191-5p level and its potential signaling pathways in hepatocellular carcinoma: a study validated by microarray and in-house qRT-PCR with 1,291 clinical samples. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1439-1456. [PMID: 31933962 PMCID: PMC6947072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The miR-191-5p expression has been reported to increase in hepatocellular carcinoma (HCC), but its clinical value and exact role remain to be further clarified. Thus, a comprehensive analysis was performed in the current study to explore the underlying function of miR-191-5p in HCC. METHODS HCC-related expression data were collected to conduct a thorough analysis to determine the miR-191-5p expression and its clinical significance in HCC, including microarray data from the Gene Expression Omnibus and ArrayExpress database as well as quantitative real-time polymerase chain reaction (qRT-PCR) data of 178 matched clinical samples. The underlying relationship between miR-191-5p and HCC was also explored on the basis of a series of bioinformatics analyses. RESULTS The overall pooled meta-analysis showed an overexpression of miR-191-5p in the HCC samples (SMD=0.400, 95% CI=0.139-0.663, P=0.003), consistent with the detected result of the clinical HCC samples through the qRT-PCR analysis. Higher miR-191-5p levels were correlated with advanced TNM stages (III and IV), higher pathological grades, and metastasis. Functionally, 64 potential target genes were acquired for further mechanism analysis. Two pathways (p75 neurotrophin receptor and liver kinase B1-mediated signaling pathways), which were likely modulated by miR-191-5p, were regarded to be linked to the deterioration of HCC. Early growth response 1 and UBE2D3 were identified as the most likely targets for miR-191-5p in HCC and were commonly implied in the top enriched pathways and protein-protein network. CONCLUSIONS In summary, miR-191-5p may function as a tumor promoter miRNA of HCC, and the miR-191-5p inhibitor may contribute to the targeted HCC treatment in the future.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Mei-Wei Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qi-Qi Li
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
50
|
Sasaki R, Kanda T, Yokosuka O, Kato N, Matsuoka S, Moriyama M. Exosomes and Hepatocellular Carcinoma: From Bench to Bedside. Int J Mol Sci 2019; 20:E1406. [PMID: 30897788 PMCID: PMC6471845 DOI: 10.3390/ijms20061406] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
As hepatocellular carcinoma (HCC) usually occurs in the background of cirrhosis, which is an end-stage form of liver diseases, treatment options for advanced HCC are limited, due to poor liver function. The exosome is a nanometer-sized membrane vesicle structure that originates from the endosome. Exosome-mediated transfer of proteins, DNAs and various forms of RNA, such as microRNA (miRNA), long noncoding RNA (lncRNA) and messenger RNA (mRNA), contributes to the development of HCC. Exosomes mediate communication between both HCC and non-HCC cells involved in tumor-associated cells, and several molecules are implicated in exosome biogenesis. Exosomes may be potential diagnostic biomarkers for early-stage HCC. Exosomal proteins, miRNAs and lncRNAs could provide new biomarker information for HCC. Exosomes are also potential targets for the treatment of HCC. Notably, further efforts are required in this field. We reviewed recent literature and demonstrated how useful exosomes are for diagnosing patients with HCC, treating patients with HCC and predicting the prognosis of HCC patients.
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Naoya Kato
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shunichi Matsuoka
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|