1
|
Vargas-Galicia AJ, Argüello-García R, Pro-Martínez A, González-Cerón F, Santacruz-Varela A, Osorio-Alonso H, Sosa-Montes E. Effects of allicin on ascites syndrome traits and angiotensin II type 1 receptor gene expression in broilers reared in the Mexican highlands. Avian Pathol 2025; 54:371-382. [PMID: 39743981 DOI: 10.1080/03079457.2024.2447284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
Ascites syndrome (AS) is a deadly condition in fast-growing chickens, preceded by pulmonary arterial hypertension (PAH), where the angiotensin II type 1 receptor (ATR1) plays a role. We investigated whether allicin (ALLI), a garlic derivative, could (a) interact with broiler ATR1, (b) affect ascites-related traits [haematocrit content (Hct%), blood oxygen saturation (SaO2), and the right-to-total ventricular weight ratio (RV:TV)], (c) modify ATR1 expression in the lung, heart, and liver, alongside ascites mortality and growth performance in Ross 308 broilers raised at high altitude and under cold temperatures promoting PAH/AS. Three groups (n = 70 each) were studied: 0-ALLI (untreated), 1-ALLI (allicin 1 mg/kg bodyweight/daily at 14-27 days of age by oral-oesophageal route), and 2.5-ALLI. After 3-6 weeks, Hct%, SaO2, RV:TV ratios, and ATR1 expression in the lung, heart, and liver, were evaluated. Weekly productive performance and AS mortality were recorded. Molecular dockings and dynamic simulations predicted that ALLI might inhibit broiler ATR1 in a transitory manner. At 42 days of age, birds in the 2.5-ALLI group exhibited lower Hct% and lower RV:TV values, while ALLI marginally enhanced SaO2. ATR1 expression in the 1-ALLI and 2.5-ALLI groups was higher (i.e. restored) in the lungs and heart, respectively, but not in the liver compared with the untreated group. Productive performance remained unaffected by ALLI, and 2.5-ALLI provided a protection of 4.3% against ascites mortality. In conclusion, 2.5-ALLI mitigated PAH/AS traits in the lungs and heart without compromising broiler productive performance. Further studies adjusting ALLI doses and combinations are warranted.RESEARCH HIGHLIGHTS Broilers bred at >2000 m OSL and <20°C were treated with 1 or 2.5 mg allicin per os.Allicin at 2.5 mg per os decreased haematocrit and right ventricular hypertrophy.Allicin treatments restored ATR1 expression in the heart and lungs.Productive performance of broilers was not affected by allicin treatments.Allicin is a promising candidate to enhance the quality of poultry production.
Collapse
Affiliation(s)
| | - Raúl Argüello-García
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo Pro-Martínez
- Programme of Animal Science, Postgraduate College-Campus Montecillo, Texcoco, State of Mexico, Mexico
| | - Fernando González-Cerón
- Department of Animal Husbandry, Autonomous University of Chapingo, Chapingo, State of Mexico, Mexico
| | - Amalio Santacruz-Varela
- Programme of Genetics, Postgraduate College-Campus Montecillo, Texcoco, State of Mexico, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Eliseo Sosa-Montes
- Department of Animal Husbandry, Autonomous University of Chapingo, Chapingo, State of Mexico, Mexico
| |
Collapse
|
2
|
Tian L, Zhao S, Ding F, Zhang R. Allicin induced vasorelaxation via endothelium-dependent and endothelium-independent mechanisms. Food Funct 2025. [PMID: 40420838 DOI: 10.1039/d4fo06048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Allicin is an active component of garlic that exerts protective effects against cardiovascular diseases. Vascular contraction and relaxation are the essential capacities of the vascular system to maintain its normal function. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main types of cells that control vascular function. This study was aimed at assessing the effects of allicin on vascular function and exploring its potential regulatory mechanisms. Mass spectrometry analysis was used to identify potential downstream targets of allicin in the artery. A primary culture of mouse VSMCs and ECs was established via enzymatic digestion of the aorta. Small interfering RNA (siRNA) was used to knock down the expression of the target gene, and a vector was used to upregulate specific protein expressions. Protein levels were determined using western blotting. Our results showed that allicin treatment increased both endothelium-dependent and endothelium-independent relaxation in aortic rings. Based on mass spectrometry analysis, we proposed that ATP-binding cassette transporter G1 (ABCG1), ryanodine receptor 2 (RyR2), and peroxisome proliferator-activated receptor γ (PPAR γ) might be the downstream targets of allicin. In ECs, Allicin increased ABCG1 expression and nitric oxide (NO) production, ABCG1 siRNA decreased allicin-induced NO production. RyR2 expression and Ca2+ spark were inhibited by allicin in VSMCs; RyR2 overexpression partly reversed the allicin-induced Ca2+ spark decrease in VSMCs. PPAR γ siRNA significantly inhibited the effects of allicin in ECs and VSMCs. These results indicated that allicin treatment exerted vasorelaxation effects by increasing ABCG1 expression and NO production in ECs and reducing RyR2 expression and Ca2+ spark in VSMCs. The PPAR γ signaling pathway was confirmed to mediate these processes.
Collapse
Affiliation(s)
- Lei Tian
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Su Zhao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Piragine E, Malanima MA, Ceccanti C, Guidi L, Martelli A, Lucenteforte E, Calderone V. Alliaceae versus Brassicaceae for Dyslipidemia: State of the Art and Future Perspectives. Systematic Review and Meta-Analysis of Clinical Studies. Phytother Res 2024; 38:5765-5781. [PMID: 39343737 PMCID: PMC11634823 DOI: 10.1002/ptr.8350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Dyslipidemia is a risk factor for cardiovascular diseases. Preclinical studies have shown that organosulfur compounds from the Alliaceae and Brassicaceae plants, such as garlic (Allium sativum L.) and broccoli (Brassica oleracea L.), have potential lipid-lowering effects. However, their clinical efficacy is controversial, especially in "drug-free" patients. The aim of this work was to summarize evidence on the lipid-lowering properties of extracts containing organosulfur compounds in patients with dyslipidemia. Studies were searched in four databases (Medline, Scopus, Embase, and CENTRAL), from inception to October 11, 2023.Controlled clinical studies on patients with dyslipidemia receiving Alliaceae or Brassicaceae were included. The outcome was the change in lipid parameters from baseline. Random-effect meta-analysis of the extracted data was performed using R software. The effect size was expressed as mean difference (MD) and 95% confidence interval (CI). The certainty of evidence was assessed with the GRADE approach. Out of 28 studies that were reviewed, 22 were included in the meta-analysis (publication period: 1981-2022). Results showed that Alliaceae extracts significantly reduce total cholesterol [MD: -15.2 mg/dL; 95% CI: -21.3; -9.1] and low-density lipoprotein cholesterol levels [MD: -12.0 mg/dL; 95% CI: -18.1; -5.7], although with low certainty of evidence. Conversely, the lipid-lowering properties of Brassicaceae extracts are still unexplored. Our results support the use of Alliaceae extracts in patients with hypercholesterolemia, but future high-quality studies are needed. Our work suggests further exploration of the efficacy of Brassicaceae extracts, which may have high nutraceutical/phytotherapeutic potential, opening new perspectives in the management of dyslipidemia.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of PharmacyUniversity of PisaPisaItaly
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
| | | | - Costanza Ceccanti
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Lucia Guidi
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Alma Martelli
- Department of PharmacyUniversity of PisaPisaItaly
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
| | - Ersilia Lucenteforte
- Department of Statistics, Computer Science, Applications “G. Parenti” (DiSIA)University of FlorenceFlorenceItaly
| | - Vincenzo Calderone
- Department of PharmacyUniversity of PisaPisaItaly
- Interdepartmental Research Center “Nutraceuticals and Food for Health (NUTRAFOOD)”University of PisaPisaItaly
| |
Collapse
|
4
|
Valle-Velázquez E, Zambrano-Vásquez OR, Cortés-Camacho F, Sánchez-Lozada LG, Guevara-Balcázar G, Osorio-Alonso H. Naringenin - a potential nephroprotective agent for diabetic kidney disease: A comprehensive review of scientific evidence. BIOMOLECULES & BIOMEDICINE 2024; 24:1441-1451. [PMID: 38907737 PMCID: PMC11496875 DOI: 10.17305/bb.2024.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by persistent hyperglycemia, which is a major contributing factor to chronic kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular-related deaths. There are several mechanisms leading to kidney injury, with hyperglycemia well known to stimulate oxidative stress, inflammation, tissue remodeling, and dysfunction in the vascular system and organs. Increased reactive oxygen species (ROS) decrease the bioavailability of vasodilators while increasing vasoconstrictors, resulting in an imbalance in vascular tone and the development of hypertension. Treatments for diabetes focus on controlling blood glucose levels, but due to the complexity of the disease, multiple drugs are often required to successfully delay the development of microvascular complications, including CKD. In this context, naringenin, a flavonoid found in citrus fruits, has demonstrated anti-inflammatory, anti-fibrotic, and antioxidant effects, suggesting its potential to protect the kidney from deleterious effects of diabetes. This review aims to summarize the scientific evidence of the effects of naringenin as a potential therapeutic option for diabetes-induced CKD.
Collapse
Affiliation(s)
- Estefania Valle-Velázquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Oscar René Zambrano-Vásquez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Fernando Cortés-Camacho
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Gustavo Guevara-Balcázar
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
5
|
Sleiman C, Daou RM, Al Hazzouri A, Hamdan Z, Ghadieh HE, Harbieh B, Romani M. Garlic and Hypertension: Efficacy, Mechanism of Action, and Clinical Implications. Nutrients 2024; 16:2895. [PMID: 39275211 PMCID: PMC11397061 DOI: 10.3390/nu16172895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024] Open
Abstract
Hypertension is a major risk factor for heart disease and stroke. Garlic has a long history of use in traditional medicine for various conditions, including hypertension. This narrative review examined the scientific evidence on the efficacy of garlic in lowering blood pressure. It explores the historical uses of garlic in different cultures for medicinal purposes and delves into the phytochemical composition of garlic, highlighting key components, like allicin and ajoene, that are believed to contribute to its potential health benefits. Clinical studies that investigated the effects of garlic and garlic-based supplements on blood pressure are presented, with the findings suggesting that garlic consumption may modestly reduce blood pressure, particularly in individuals with mild hypertension. Potential mechanisms of action include increased nitric oxide production, improved endothelial function, and antioxidant properties. While garlic may offer some benefits for blood pressure management, it should not be considered a substitute for conventional antihypertensive medications. Further large-scale, long-term clinical trials are warranted to establish the efficacy of garlic in managing hypertension, including the optimal dosage and formulation.
Collapse
Affiliation(s)
- Christopher Sleiman
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Rose-Mary Daou
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Antonio Al Hazzouri
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Zahi Hamdan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Bernard Harbieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli 1300, Lebanon
| | - Maya Romani
- Department of Family Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
6
|
Cheng L, Chen Z, Yang F, Zheng R, He W, Shi F, Liu C, Wang F, Wang L, Xie Y, Lu H. Coronary hemodynamic simulation study. Proc Inst Mech Eng H 2024; 238:444-454. [PMID: 38503717 DOI: 10.1177/09544119241231028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, a two-way fluid-structure coupling model is developed to simulate and analyze the hemodynamic process based on dynamic coronary angiography, and examine the influence of different hemodynamic parameters on coronary arteries in typical coronary stenosis lesions. Using the measured FFR pressure data of a patient, the pressure-time function curve is fitted to ensure the accuracy of the boundary conditions. The average error of the simulation pressure results compared to the test data is 6.74%. In addition, the results related to blood flow, pressure contour and wall shear stress contour in a typical cardiac cycle are obtained by simulation analysis. These results are found to be in good agreement with the laws of the real cardiac cycle, which verifies the rationality of the simulation. In conclusion, based on the modeling and hemodynamic simulation analysis process of dynamic coronary angiography, this paper proposes a method to assist the analysis and evaluation of coronary hemodynamic and functional parameters, which has certain practical significance.
Collapse
Affiliation(s)
| | | | | | | | - Wenming He
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Fan Shi
- Ningbo University, Ningbo, Zhejiang, China
| | - Chang Liu
- Ningbo University, Ningbo, Zhejiang, China
| | | | - Li Wang
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Yanqing Xie
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| | - Haoxuan Lu
- Department of Cardiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Arellano Buendia AS, Juárez Rojas JG, García-Arroyo F, Aparicio Trejo OE, Sánchez-Muñoz F, Argüello-García R, Sánchez-Lozada LG, Bojalil R, Osorio-Alonso H. Antioxidant and anti-inflammatory effects of allicin in the kidney of an experimental model of metabolic syndrome. PeerJ 2023; 11:e16132. [PMID: 37786577 PMCID: PMC10541809 DOI: 10.7717/peerj.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Background Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.
Collapse
Affiliation(s)
- Abraham Said Arellano Buendia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, Mexico
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fernando García-Arroyo
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fausto Sánchez-Muñoz
- Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | - Raúl Argüello-García
- Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, Gustavo A. Madero, México
| | | | - Rafael Bojalil
- Atención a la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, México
| | - Horacio Osorio-Alonso
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| |
Collapse
|
8
|
Keihanian F, Moohebati M, Saeidinia A, Mohajeri SA. Iranian traditional medicinal plants for management of chronic heart failure: A review. Medicine (Baltimore) 2023; 102:e33636. [PMID: 37171363 PMCID: PMC10174410 DOI: 10.1097/md.0000000000033636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic heart failure is a public health problem with a high prevalence worldwide and an important topic in clinical cardiology. Despite of advances in the drug treatment strategy for heart failure, the number of deaths from this condition continues to rise. It will be a renewed focus on preventing heart failure using proven and perhaps novel drugs. Management will also focus on comorbid conditions that may influence the progression of the disease. Traditional medicine has a potential to introduce different approaches for treatment of some disorders. We here reviewed top medicinal plants, according to traditional medicine to experimental studies, and their potency for the treatment of chronic heart failure based on the evidence of their functions.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pediatric Department, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Mehta JK, Kaur G, Buttar HS, Bagabir HA, Bagabir RA, Bagabir SA, Haque S, Tuli HS, Telessy IG. Role of the renin-angiotensin system in the pathophysiology of coronary heart disease and heart failure: Diagnostic biomarkers and therapy with drugs and natural products. Front Physiol 2023; 14:1034170. [PMID: 36909245 PMCID: PMC9995912 DOI: 10.3389/fphys.2023.1034170] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in blood pressure regulation. In some cases, this steering mechanism is affected by various deleterious factors (mainly via the overactivation of the RAS) causing cardiovascular damage, including coronary heart disease (CHD) that can ultimately lead to chronic heart failure (CHF). This not only causes cardiovascular disability and absenteeism from work but also imposes significant healthcare costs globally. The incidence of cardiovascular diseases has escalated exponentially over the years with the major outcome in the form of CHD, stroke, and CHF. The involvement of the RAS in various diseases has been extensively researched with significant limelight on CHD. The RAS may trigger a cascade of events that lead to atherosclerotic mayhem, which causes CHD and related aggravation by damaging the endothelial lining of blood vessels via various inflammatory and oxidative stress pathways. Although there are various diagnostic tests and treatments available in the market, there is a constant need for the development of procedures and therapeutic strategies that increase patient compliance and reduce the associated side effects. This review highlights the advances in the diagnostic and treatment domains for CHD, which would help in subjugating the side effects caused by conventional therapy.
Collapse
Affiliation(s)
- Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rania Abubaker Bagabir
- Department of Hematology and Immunology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetics Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Istvan G Telessy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Piragine E, Citi V, Lawson K, Calderone V, Martelli A. Regulation of blood pressure by natural sulfur compounds: Focus on their mechanisms of action. Biochem Pharmacol 2022; 206:115302. [PMID: 36265595 DOI: 10.1016/j.bcp.2022.115302] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Natural sulfur compounds are emerging as therapeutic options for the management of hypertension and prehypertension. They are mainly represented by polysulfides from Alliaceae (i.e., garlic) and isothiocyanates from Brassicaceae (or crucifers). The beneficial cardiovascular effects of these compounds, especially garlic polysulfides, are well known and widely reported both in preclinical and clinical studies. However, only a few authors have linked the ability of natural sulfur compounds to induce vasorelaxation and subsequent antihypertensive effects with their ability to release hydrogen sulfide (H2S) in biological tissue. H2S is an endogenous gasotransmitter involved in vascular tone regulation. Some cardiovascular diseases, such as hypertension, are associated with lower plasma H2S levels. Consequently, exogenous sources of H2S (H2S donors) have been designed and synthesized or identified among secondary plant metabolites as potential therapeutic options. In addition to antioxidant effects due to its chemical properties as a reducing agent, H2S induces vasorelaxation by interacting with a range of molecular targets. The mechanisms of action accounting for H2S-induced vasodilation include opening of vascular potassium channels (such as ATP-sensitive (KATP) and voltage-operated (Kv7) channels), inhibition of 5-phosphodiesterase (5-PDE), and activation of vascular endothelial growth factor receptor-2 (VEGFR-2). These effects may be attributed to H2S-induced S-persulfidation (or S-sulfhydration), which is a posttranslational modification of cysteine residues of many types of proteins resulting in structural and functional alterations (activation/inhibition). Thus, H2S donors, such as natural sulfur compounds, are promising antihypertensive agents with novel mechanisms of action.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Kim Lawson
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
11
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
12
|
Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169082. [PMID: 36012349 PMCID: PMC9409331 DOI: 10.3390/ijms23169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors.
Collapse
|
13
|
Piragine E, Citi V, Lawson K, Calderone V, Martelli A. Potential Effects of Natural H 2S-Donors in Hypertension Management. Biomolecules 2022; 12:581. [PMID: 35454169 PMCID: PMC9024781 DOI: 10.3390/biom12040581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
After the discovery of hydrogen sulfide (H2S) in the central nervous system by Abe and Kimura in 1996, the physiopathological role of H2S has been widely investigated in several systems such as the cardiovascular. In particular, H2S plays a pivotal role in the control of vascular tone, exhibiting mechanisms of action able to induce vasodilation: for instance, activation of potassium channels (KATP and Kv7) and inhibition of 5-phosphodiesterase (5-PDE). These findings paved the way for the research of natural and synthetic exogenous H2S-donors (i.e., molecules able to release H2S) in order to have new tools for the management of hypertension. In this scenario, some natural molecules derived from Alliaceae (i.e., garlic) and Brassicaceae (i.e., rocket or broccoli) botanical families show the profile of slow H2S-donors able to mimic the endogenous production of this gasotransmitter and therefore can be viewed as interesting potential tools for management of hypertension or pre-hypertension. In this article, the preclinical and clinical impacts of these natural H2S-donors on hypertension and vascular integrity have been reviewed in order to give a complete panorama of their potential use for the management of hypertension and related vascular diseases.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
| | - Kim Lawson
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD)”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.P.); (V.C.); (V.C.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health (NUTRAFOOD)”, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
14
|
Phytochemical and Pharmacological Properties of Allium Ursinum. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2018-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Allium ursinum L. is a perennial herbaceous plant belonging to the Alliaceae family. Several classes of bioactive compounds have been isolated from A. ursinum so far, among them sulfur and phenolic compounds as quantitatively the most distributed constituents, responsible for pharmaceutical eff ects of the plant. Small amounts of steroidal glucosides, lecitins, fatty acids and several amino acids, as well as the essential oil are also present in A. ursinum. This plant species is characterized by a long history of use in traditional medicine in the prevention and treatment of cardiovascular disease, as digestive stimulant, antimicrobial agent, as a remedy in respiratory problems, insomnia and fainting. Despite its widespread use for medicinal purposes since the ancient time, studies referring to its pharmacological activity are still lacking. In this review, we summarized the current knowledge related to the phytochemical and pharmacological properties of Allium ursinum. This study may be a starting point for future researches in this field, which would fully clarify therapeutic potential of A. ursinum and make it a possible candidate for medicinal product.
Collapse
|
15
|
Papadopoulou A, Pettinau L, Seppänen E, Sikanen A, Anttila K. The interactive effects of exercise training and functional feeds on the cardiovascular performance of rainbow trout (Oncorhynchus mykiss) at high temperatures. Curr Res Physiol 2022; 5:142-150. [PMID: 35252881 PMCID: PMC8889263 DOI: 10.1016/j.crphys.2022.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022] Open
Abstract
The cardiovascular performance of salmonids in aquaculture can be impaired by acute climate warming, posing risks for fish survival. Exercise training and functional feeds have been shown to be cardioprotective in mammals but their action on the fish heart and its upper thermal performance has not been studied. To investigate this, rainbow trout were trained at a moderate water velocity of 1 body length per second (bl s−1) for 6 h per day, either alone or in combination with one of two functional feed-supplements, allicin and fucoidan. After 6 weeks of exercise training and feeding, maximum heart rate and the temperature coefficient of heart rate were significantly higher in the trained fish as compared to untrained ones. There was a slight increase in hematocrit in trained control fish reared on a normal diet (TC group) compared to untrained fish fed with the same diet (CC). This implies that exercise training enhanced oxygen delivery to trout tissues via an increase of cardiac blood flow in warm water. However, cardiac thermal tolerance was not affected by exercise training or feeding, except from the temperature of peak heart rate which was higher in the trained group fed with fucoidan supplement (TF) as compared to the untrained group fed with same diet (CF). Allicin supplement caused a significant reduction in the maximum heart rate and the temperature coefficient of heart rate, especially in trained fish, while fucoidan supplement did not cause any effect on heart rate. No differences were observed in growth performance among groups. However, fish fed with fucoidan-supplemented diet had a slight reduction in feed conversion efficiency. We suggest further investigations to understand the antagonistic effect of allicin supplemental feeding and exercise training on cardiovascular performance. More studies are also required to investigate if other exercise training intensities could increase cardiac thermal tolerance. Exercise training at 1 bl s−1 increased the hematocrit values of rainbow trout. Exercise training at 1 bl s−1 increased the maximum heart rate and temperature coefficient of rainbow trout. Exercise training at 1bl s−1 did not enhance the cardiac thermal tolerance of rainbow trout. Functional feeds, allicin and fucoidan, did not improve the cardiovascular system of rainbow trout at high temperatures.
Collapse
|
16
|
Nadeem MS, Kazmi I, Ullah I, Muhammad K, Anwar F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants (Basel) 2021; 11:87. [PMID: 35052591 PMCID: PMC8772758 DOI: 10.3390/antiox11010087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
Allicin (diallylthiosulfinate) is a defense molecule produced by cellular contents of garlic (Allium sativum L.). On tissue damage, the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide) is converted to allicin in an enzyme-mediated process catalysed by alliinase. Allicin is hydrophobic in nature, can efficiently cross the cellular membranes and behaves as a reactive sulfur species (RSS) inside the cells. It is physiologically active molecule with the ability to oxidise the thiol groups of glutathione and between cysteine residues in proteins. Allicin has shown anticancer, antimicrobial, antioxidant properties and also serves as an efficient therapeutic agent against cardiovascular diseases. In this context, the present review describes allicin as an antioxidant, and neuroprotective molecule that can ameliorate the cognitive abilities in case of neurodegenerative and neuropsychological disorders. As an antioxidant, allicin fights the reactive oxygen species (ROS) by downregulation of NOX (NADPH oxidizing) enzymes, it can directly interact to reduce the cellular levels of different types of ROS produced by a variety of peroxidases. Most of the neuroprotective actions of allicin are mediated via redox-dependent pathways. Allicin inhibits neuroinflammation by suppressing the ROS production, inhibition of TLR4/MyD88/NF-κB, P38 and JNK pathways. As an inhibitor of cholinesterase and (AChE) and butyrylcholinesterase (BuChE) it can be applied to manage the Alzheimer's disease, helps to maintain the balance of neurotransmitters in case of autism spectrum disorder (ASD) and attention deficit hyperactive syndrome (ADHD). In case of acute traumatic spinal cord injury (SCI) allicin protects neuron damage by regulating inflammation, apoptosis and promoting the expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2). Metal induced neurodegeneration can also be attenuated and cognitive abilities of patients suffering from neurological diseases can be ameliorates by allicin administration.
Collapse
Affiliation(s)
- Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| | - Inam Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Khushi Muhammad
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan; (I.U.); (K.M.)
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; or
| |
Collapse
|
17
|
Edres HA, Taha NM, Lebda MA, Elfeky MS. The potential neuroprotective effect of allicin and melatonin in acrylamide-induced brain damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58768-58780. [PMID: 34120280 DOI: 10.1007/s11356-021-14800-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Acrylamide (ACR) is an unsaturated monomer that served various fields; however, it is a potent neurotoxin. The target of the present study is to explore the neuroprotective efficacy of allicin and melatonin on ACR-induced neurotoxicity. Thirty-six male adult rats were non-selectively separated into six groups: placebo, allicin (20 mg/kg b.w daily per os), melatonin (10 mg/kg b.w 3 times/week per os), ACR (50 mg/kg b.w daily per os), ACR-allicin, and ACR-melatonin at the same doses as the preceding groups. The assessment of brain biomarkers, neurotransmitters, antioxidative status, Nrf2 signaling pathway, and histopathological analyses was performed following 21 days. ACR exposure induced brain lipid and DNA oxidative damage as well as reduced the glutathione (GSH) levels. The obvious brain oxidative injuries contributed to distinct brain dysfunction that was assured by alteration of brain neurotransmitters (serotonin, dopamine, acetylcholine, and acetylcholinesterase) and pathological brain lesions. Furthermore, ACR exposure increased hydroxy deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), and amyloid protein (AB1-42). Finally, the mRNA transcripts of brain Keap-1, Nrf2, and NF-kB were upregulated after ACR intoxication. Interestingly, allicin and melatonin alleviated the ACR-induced brain damage assessed by the normalization of the mentioned analyses. The present study demonstrated the protective role of both allicin and melatonin in ACR-prompted neuropathy by alleviation of redox imbalance and enhancement of neurotransmitters as well as relieving DNA damage and anti-inflammatory effect.
Collapse
Affiliation(s)
- Hanan A Edres
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nabil M Taha
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A Lebda
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt.
| | - Mohamed S Elfeky
- Biochemistry Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Sánchez-Gloria JL, Martínez-Olivares CE, Rojas-Morales P, Hernández-Pando R, Carbó R, Rubio-Gayosso I, Arellano-Buendía AS, Rada KM, Sánchez-Muñoz F, Osorio-Alonso H. Anti-Inflammatory Effect of Allicin Associated with Fibrosis in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22168600. [PMID: 34445305 PMCID: PMC8395330 DOI: 10.3390/ijms22168600] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling. Recent evidence supports that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Recent studies have shown that garlic extract has protective effects in PAH, but the precise role of allicin, a compound derived from garlic, is unknown. Thus, we used allicin to evaluate its effects on inflammation and fibrosis in PAH. Male Wistar rats were divided into three groups: control (CON), monocrotaline (60 mg/kg) (MCT), and MCT plus allicin (16 mg/kg/oral gavage) (MCT + A). Right ventricle (RV) hypertrophy and pulmonary arterial medial wall thickness were determined. IL-1β, IL-6, TNF-α, NFκB p65, Iκβ, TGF-β, and α-SMA were determined by Western blot analysis. In addition, TNF-α and TGF-β were determined by immunohistochemistry, and miR-21-5p and mRNA expressions of Cd68, Bmpr2, and Smad5 were determined by RT-qPCR. Results: Allicin prevented increases in vessel wall thickness due to TNF-α, IL-6, IL-1β, and Cd68 in the lung. In addition, TGF-β, α-SMA, and fibrosis were lower in the MCT + A group compared with the MCT group. In the RV, allicin prevented increases in TNF-α, IL-6, and TGF-β. These observations suggest that, through the modulation of proinflammatory and profibrotic markers in the lung and heart, allicin delays the progression of PAH.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Disulfides/therapeutic use
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hypertension, Pulmonary/drug therapy
- Male
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats
- Rats, Wistar
- Smad5 Protein/genetics
- Smad5 Protein/metabolism
- Sulfinic Acids/therapeutic use
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Constanza Estefanía Martínez-Olivares
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Pedro Rojas-Morales
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Karla M. Rada
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Correspondence: (F.S.-M.); (H.O.-A.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
- Correspondence: (F.S.-M.); (H.O.-A.)
| |
Collapse
|
19
|
Keihanian F, Moohebati M, Saeidinia A, Mohajeri SA, Madaeni S. Therapeutic effects of medicinal plants on isoproterenol-induced heart failure in rats. Biomed Pharmacother 2020; 134:111101. [PMID: 33338752 DOI: 10.1016/j.biopha.2020.111101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
AIMS Natural products still serves as a hope for some illnesses which modern medicine fails to cure. Many people, either knowing their effects or not, are using these herbal products. Treatment of chronic heart failure (CHF) is yet a complicated clinical challenge and there is need to improve or make new therapeutic targets. Finding new agents for CHF is an important subject in cardiovascular drug research. In this study, we evaluated the effects of ten herbals on treatment of CHF on isoproterenol-induced model. METHODS AND RESULTS Ninety-six male Wistar rats (16 weeks old) were used in 12 groups. Transthoracic echocardiography was performed on the rats for confirmation of CHF model by decreasing ejection fraction. After 4 weeks' treatment, hearts were removed and blood samples were collected in tubes to measure plasma levels of laboratory findings. Our results showed that the mean of ejection fraction in model rats was 51.82 ± 3.49 percent and all of our used natural products could significantly increase the ejection fraction (P < 0.01). The most effective herbals in improving the ejection fraction were Allium sativum (30.69 %), Peganum harmala (26.08 %) and Apium graveolens (24.09 %). The best results in decreasing NT-ProBNP, was obtained from Allium sativum, Peganum harmala and Berberis vulgaris respectively. Our results showed that none of natural products had toxic effect on renal and liver tissues. CONCLUSION Our results showed that Allium sativum, Peganum harmala and Berberis vulgaris could significantly improve cardiac function by improvement of left ventricular remodeling, lowering hs-CRP and NT-ProBNP and echocardiographic indexes without liver or renal side effects.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pediatric Department, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeid Madaeni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Wang K, Dong Y, Liu J, Qian L, Wang T, Gao X, Wang K, Zhou L. Effects of REDOX in Regulating and Treatment of Metabolic and Inflammatory Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5860356. [PMID: 33282111 PMCID: PMC7685846 DOI: 10.1155/2020/5860356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/05/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Reduction oxidation (REDOX) reaction is crucial in life activities, and its dynamic balance is regulated by ROS. Reactive oxygen species (ROS) is associated with a variety of metabolic diseases involving in multiple cellular signalling in pathologic and physiological signal transduction. ROS are the by-products of numerous enzymatic reactions in various cell compartments, including the cytoplasm, cell membrane, endoplasmic reticulum (ER), mitochondria, and peroxisome. ROS signalling is not only involved in normal physiological processes but also causes metabolic dysfunction and maladaptive responses to inflammatory signals, which depends on the cell type or tissue environment. Excess oxidants are able to alter the normal structure and function of DNA, lipids, and proteins, leading to mutations or oxidative damage. Therefore, excessive oxidative stress is usually regarded as the cause of various pathological conditions, such as cancer, neurodegeneration, cardiovascular diseases (CVDs), diabetes, and kidney diseases. Currently, it has been possible to detect diabetes and other cardiac diseases by detecting derivatives accompanied by oxidative stress in vivo as biomarkers, but there is no effective method to treat these diseases. In consequence, it is essential for us to seek new therapy targeting these diseases through understanding the role of ROS signalling in regulating metabolic activity, inflammatory activation, and cardiac diseases related to metabolic dysfunction. In this review, we summarize the current literature on REDOX and its role in the regulation of cardiac metabolism and inflammation, focusing on ROS, local REDOX signalling pathways, and other mechanisms.
Collapse
Affiliation(s)
- Kai Wang
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yanhan Dong
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Jing Liu
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Lili Qian
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Tao Wang
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Xiangqian Gao
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Luyu Zhou
- Institute of translational medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| |
Collapse
|
21
|
Arellano-Buendía AS, Castañeda-Lara LG, Loredo-Mendoza ML, García-Arroyo FE, Rojas-Morales P, Argüello-García R, Juárez-Rojas JG, Tapia E, Pedraza-Chaverri J, Sánchez-Lozada LG, Osorio-Alonso H. Effects of Allicin on Pathophysiological Mechanisms during the Progression of Nephropathy Associated to Diabetes. Antioxidants (Basel) 2020; 9:antiox9111134. [PMID: 33203103 PMCID: PMC7697950 DOI: 10.3390/antiox9111134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to assess the impact of allicin on the course of diabetic nephropathy. Study groups included control, diabetes, and diabetes-treated rats. Allicin treatment (16 mg/kg day/p.o.) started after 1 month of diabetes onset and was administered for 30 days. In the diabetes group, the systolic blood pressure (SBP) increased, also, the oxidative stress and hypoxia in the kidney cortex were evidenced by alterations in the total antioxidant capacity as well as the expression of nuclear factor (erythroid-derived 2)-like 2/Kelch ECH associating protein 1 (Nrf2/Keap1), hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), erythropoietin (Epo) and its receptor (Epo-R). Moreover, diabetes increased nephrin, and kidney injury molecule-1 (KIM-1) expression that correlated with mesangial matrix, the fibrosis index and with the expression of connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), and α-smooth muscle actin (α-SMA). The insulin levels and glucose transporter protein type-4 (GLUT4) expression were decreased; otherwise, insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) expression was increased. Allicin increased Nrf2 expression and decreased SBP, Keap1, HIF-1α, and VEGF expression. Concurrently, nephrin, KIM-1, the mesangial matrix, fibrosis index, and the fibrotic proteins were decreased. Additionally, allicin decreased hyperglycemia, improved insulin levels, and prevented changes in (GLUT4) and IRSs expression induced by diabetes. In conclusion, our results demonstrate that allicin has the potential to help in the treatment of diabetic nephropathy. The cellular mechanisms underlying its effects mainly rely on the regulation of antioxidant, antifibrotic, and antidiabetic mechanisms, which can contribute towards delay in the progression of renal disease.
Collapse
Affiliation(s)
- Abraham Said Arellano-Buendía
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Luis Gerardo Castañeda-Lara
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - María L. Loredo-Mendoza
- Histopathology Laboratory, Research Subdivision, School of Medicine, Universidad Panamericana, Donatello 43, Mexico City 03910, Mexico;
| | - Fernando E. García-Arroyo
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Pedro Rojas-Morales
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Juan G. Juárez-Rojas
- Department of Endocrinology, Instituto Nacional de Cardiología “Ignacio Chávez” México City 14080, Mexico;
| | - Edilia Tapia
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
- Correspondence: or
| |
Collapse
|
22
|
Tavakoli R, Tabeshpour J, Asili J, Shakeri A, Sahebkar A. Cardioprotective Effects of Natural Products via the Nrf2 Signaling Pathway. Curr Vasc Pharmacol 2020; 19:525-541. [PMID: 33155913 DOI: 10.2174/1570161119999201103191242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Due to its poor regenerative capacity, the heart is specifically vulnerable to xenobiotic- induced cardiotoxicity, myocardial ischaemia/reperfusion injury and other pathologies. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered as an essential factor in protecting cardiomyocytes against oxidative stress resulting from free radicals and reactive oxygen species. It also serves as a key regulator of antioxidant enzyme expression via the antioxidant response element, a cis-regulatory element, which is found in the promoter region of several genes encoding detoxification enzymes and cytoprotective proteins. It has been reported that a variety of natural products are capable of activating Nrf2 expression, and in this way, increase the antioxidant potential of cardiomyocytes. In the present review, we consider the cardioprotective activities of natural products and their possible therapeutic potential.
Collapse
Affiliation(s)
- Rasool Tavakoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Bransh, Islamic Azad University, Damghan, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Natural Drugs as a Treatment Strategy for Cardiovascular Disease through the Regulation of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5430407. [PMID: 33062142 PMCID: PMC7537704 DOI: 10.1155/2020/5430407] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress (OS) refers to the physiological imbalance between oxidative and antioxidative processes leading to increased oxidation, which then results in the inflammatory infiltration of neutrophils, increased protease secretion, and the production of a large number of oxidative intermediates. Oxidative stress is considered an important factor in the pathogenesis of cardiovascular disease (CVD). At present, active components of Chinese herbal medicines (CHMs) have been widely used for the treatment of CVD, including coronary heart disease and hypertension. Since the discovery of artemisinin for the treatment of malaria by Nobel laureate Youyou Tu, the therapeutic effects of active components of CHM on various diseases have been widely investigated by the medical community. It has been found that various active CHM components can regulate oxidative stress and the circulatory system, including ginsenoside, astragaloside, and resveratrol. This paper reviews advances in the use of active CHM components that modulate oxidative stress, suggesting potential drugs for the treatment of various CVDs.
Collapse
|
24
|
Cui T, Liu W, Chen S, Yu C, Li Y, Zhang JY. Antihypertensive effects of allicin on spontaneously hypertensive rats via vasorelaxation and hydrogen sulfide mechanisms. Biomed Pharmacother 2020; 128:110240. [PMID: 32480217 DOI: 10.1016/j.biopha.2020.110240] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Allicin, the principle active constituent in garlic, has been reported to have antihypertensive effects on drug-induced hypertension or renal hypertension in rats, but reports on spontaneously hypertensive rats (SHRs) are rare. Allicin is comprised of a variety of sulfur-containing compounds, and hydrogen sulfide (H2S) has been shown to have specific vasomotor effects. We therefore hypothesize that allicin may exert a vasorelaxant activity by inducing H2S production, and this eventually result in a reduction in blood pressure in SHRs. METHODS The in vivo antihypertensive effect of allicin was assessed using a tail-cuff method on SHRs. The in vitro vasorelaxant effect and in-depth mechanisms of allicin were explored on rat mesenteric arterial rings (RMARs) isolated from SD rats. RESULTS In the in vivo study, administration of allicin (7 mg/kg and 14 mg/kg, 4 weeks, i.g) dramatically decreased the blood pressure in SHRs, which was also shown to be attenuated by H2S synthase inhibitor (PAG, 32 mg/kg, i.g). In in vitro studies, allicin (2.50-15.77 mM) produced a concentration-dependent vasorelaxation on RMARs, which was obviously reduced by preincubation with PAG. The removal of endothelium led to a decline in allicin's vasorelaxation, which was almost completely mitigated when treatment was followed with PAG. Inhibitors of nitric oxide (NO) and prostaglandin (PGI2) pathways separately suppressed the vasorelaxation induced by allicin to a certain degree. When the RMARs incubated with PAG were treated with or without the above inhibitors in separate groups, the relaxations caused by allicin were almost identical under both these conditions. Moreover, allicin treatment increased cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) levels (downstream products of NO and PGI2 pathways), which was decreased by PAG. Additionally, allicin increased the acetylcholine-induced endothelium-derived hyperpolarizing factor (EDHF) -mediated relaxation, which was unaffected by PAG. CONCLUSION Allicin exhibits a potent antihypertensive effect through vasodilatory properties and H2S mechanisms. Moreover, the vasodilation of allicin is partially dependent on endothelium. The endothelium-dependent vasodilation of allicin is mediated by the NO-sGC-cGMP, PGI2-AC-cAMP and EDHF pathways, of which H2S participates in the first two but not the third one. The endothelium independent vasodilation can be predominantly attributed to H2S production.
Collapse
Affiliation(s)
- Tianwei Cui
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Weiyu Liu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Shangke Chen
- Research & Development Department, Xinjiang Ailexin Pharmaceutical. Co., Ltd., the Xinjiang Uygur Autonomous Region 830011, China.
| | - Chenghao Yu
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Yikui Li
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Jin-Yan Zhang
- Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
25
|
Sánchez-Gloria JL, Osorio-Alonso H, Arellano-Buendía AS, Carbó R, Hernández-Díazcouder A, Guzmán-Martín CA, Rubio-Gayosso I, Sánchez-Muñoz F. Nutraceuticals in the Treatment of Pulmonary Arterial Hypertension. Int J Mol Sci 2020; 21:E4827. [PMID: 32650586 PMCID: PMC7402298 DOI: 10.3390/ijms21144827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease characterized by the loss and obstructive remodeling of the pulmonary arterial wall, causing a rise in pulmonary arterial pressure and pulmonary vascular resistance, which is responsible for right heart failure, functional decline, and death. Although many drugs are available for the treatment of this condition, it continues to be life-threatening, and its long-term treatment is expensive. On the other hand, many natural compounds present in food have beneficial effects on several cardiovascular conditions. Several studies have explored many of the potential beneficial effects of natural plant products on PAH. However, the mechanisms by which natural products, such as nutraceuticals, exert protective and therapeutic effects on PAH are not fully understood. In this review, we analyze the current knowledge on nutraceuticals and their potential use in the protection and treatment of PAH, as well as whether nutraceuticals could enhance the effects of drugs used in PAH through similar mechanisms.
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (H.O.-A.); (A.S.A.-B.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Carlos A. Guzmán-Martín
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (C.A.G.-M.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| |
Collapse
|
26
|
Mocayar Marón FJ, Camargo AB, Manucha W. Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases. Life Sci 2020; 249:117513. [PMID: 32145307 DOI: 10.1016/j.lfs.2020.117513] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
According to investigations in phytomedicine and ethnopharmacology, the therapeutic properties of garlic (Allium sativum) have been described by ancestral cultures. Notwithstanding, it is of particular concern to elucidate the molecular mechanisms underlying this millenary empirical knowledge. Allicin (S-allyl prop-2-ene-1-sulfinothioate), a thioester of sulfenic acid, is one of the main bioactive compounds present in garlic, and it is responsible for the particular aroma of the spice. The pharmacological attributes of allicin integrate a broad spectrum of properties (e.g., anti-inflammatory, immunomodulatory, antibiotic, antifungal, antiparasitic, antioxidant, nephroprotective, neuroprotective, cardioprotective, and anti-tumoral activities, among others). The primary goal of the present article is to review and clarify the common molecular mechanisms by which allicin and its derivates molecules may perform its therapeutic effects on cardiovascular diseases and neuroinflammatory processes. The intricate interface connecting the cardiovascular and nervous systems suggests that the impairment of one organ could contribute to the dysfunction of the other. Allicin might target the cornerstone of the pathological processes underlying cardiovascular and neuroinflammatory disorders, like inflammation, renin-angiotensin-aldosterone system (RAAS) hyperactivation, oxidative stress, and mitochondrial dysfunction. Indeed, the current evidence suggests that allicin improves mitochondrial function by enhancing the expression of HSP70 and NRF2, decreasing RAAS activation, and promoting mitochondrial fusion processes. Finally, allicin represents an attractive therapeutic alternative targeting the complex interaction between cardiovascular and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-UNCuyo), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - Alejandra Beatriz Camargo
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, Mendoza, Argentina
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU-UNCuyo), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
27
|
Orabi SH, Abd Eldaium D, Hassan A, Sabagh HSE, Abd Eldaim MA. Allicin modulates diclofenac sodium induced hepatonephro toxicity in rats via reducing oxidative stress and caspase 3 protein expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103306. [PMID: 31812117 DOI: 10.1016/j.etap.2019.103306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
PURPOSE This study was designed to evaluate the protective effects of allicin against diclofenac sodium induced hepatonephro toxicity in rats. METHODS Sixty male Wister albino rats were assigned into six groups. The control group received calcium carbonate and corn starch. 2nd group received diclofenac sodium (2 mg/kg bw orally) for 30 days. 3rd group received allicin (45 mg/kg bw orally) for 30 days. 4th group administrated diclofenac sodium as in the 2nd group and allicin (15 mg/kg bw orally) for 30 days. 5th group received diclofenac sodium as in the 2nd group and allicin (30 mg/kg bw orally) for 30 days. 6th group received diclofenac sodium as 2nd and allicin (45 mg/kg bw orally) for 30 days. RESULTS Diclofenac sodium significantly elevated activities of serum aspartate aminotransferase and alanine aminotransferase and serum levels of creatinine and urea. In addition, it induced hyperglycemia, lipid peroxidation, pathological alteration and caspase 3 protein expression in hepatic and renal tissues. However, it decreased reduced glutathione concentration and proliferating cell nuclear antigen protein expression in hepatic tissues. In contrast, allicin modulated the diclofenac sodium induced alteration in liver and kidney functions and structures dose dependently. CONCLUSION This study indicated that allicin had potential preventive effects against diclofenac sodium induced hepatonephro toxicity in rats.
Collapse
Affiliation(s)
- Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Doaa Abd Eldaium
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Hesham Saad El Sabagh
- Department of Toxicology and Fronsic Medicine, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt; Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, 606-8502, Japan
| |
Collapse
|
28
|
Inflammation and Oxidative Stress in Chronic Kidney Disease-Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int J Mol Sci 2019; 21:ijms21010263. [PMID: 31906008 PMCID: PMC6981831 DOI: 10.3390/ijms21010263] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a debilitating pathology with various causal factors, culminating in end stage renal disease (ESRD) requiring dialysis or kidney transplantation. The progression of CKD is closely associated with systemic inflammation and oxidative stress, which are responsible for the manifestation of numerous complications such as malnutrition, atherosclerosis, coronary artery calcification, heart failure, anemia and mineral and bone disorders, as well as enhanced cardiovascular mortality. In addition to conventional therapy with anti-inflammatory and antioxidative agents, growing evidence has indicated that certain minerals, vitamins and plant-derived metabolites exhibit beneficial effects in these disturbances. In the current work, we review the anti-inflammatory and antioxidant properties of various agents which could be of potential benefit in CKD/ESRD. However, the related studies were limited due to small sample sizes and short-term follow-up in many trials. Therefore, studies of several anti-inflammatory and antioxidant agents with long-term follow-ups are necessary.
Collapse
|
29
|
Salehi B, Zucca P, Orhan IE, Azzini E, Adetunji CO, Mohammed SA, Banerjee SK, Sharopov F, Rigano D, Sharifi-Rad J, Armstrong L, Martorell M, Sureda A, Martins N, Selamoğlu Z, Ahmad Z. Allicin and health: A comprehensive review. Trends Food Sci Technol 2019; 86:502-516. [DOI: 10.1016/j.tifs.2019.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Shi P, Cao Y, Gao J, Fu B, Ren J, Ba L, Song C, Qi H, Huang W, Guan X, Sun H. Allicin improves the function of cardiac microvascular endothelial cells by increasing PECAM-1 in rats with cardiac hypertrophy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:241-254. [PMID: 30466623 DOI: 10.1016/j.phymed.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Cardiac microvascular damage is significantly associated with the development of cardiac hypertrophy (CH). Researchers found that allicin could inhibit CH, but the relationship between cardiac microvessel and the inhibition of allicin on CH has not been reported. We aimed to investigate the effect of allicin on the function of cardiac microvascular endothelial cells (CMECs) in CH rat. MATERIALS AND METHODS The hemodynamic parameters were measured by BL-420F biological function experimental system and the indicators of the ventricular structure and function were measured by echocardiographic system. MTT assay was performed to assess the cell viability. Nitrite detection was performed to detect nitric oxide content. The morphology and molecular characteristics were detected by electron micrographs, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), western blot. Wound healing experiment, analysis of tube formation and shear adaptation were performed to assess CMECs migration ability, angiogenesis and shear-responsiveness respectively. RESULT Our findings have identified that microvascular density was decreased by observing the expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) in CH rats. Interestingly, allicin improved the distribution and expression of PECAM-1. Meanwhile, allicin enhanced the migration and angiogenesis ability of CMECs, activated PECAM-1-PI3K-AKT-eNOS signaling pathway, however, the role of allicin was disappear after PECAM-1 was silenced. Allicin decreased the expression of caspase-3 and receptor interacting protein 3 (RIP3), inhibited necroptosis, and increased the levels of Angiopoietin-2 (Ang-2) and platelet-derived growth factor receptor-β (PDGFR-β). Under 10 dyn/cm2 condition, allicin advanced the modification ability of CMECs's shear-adaptation by activating PECAM-1. CONCLUSION Allicin provided cardioprotection for CH rats by improving the function of CMECs through increasing the expression of PECAM-1.
Collapse
Affiliation(s)
- Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Yonggang Cao
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Jingquan Gao
- Department of Nursing, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Bowen Fu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Jing Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Lina Ba
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Wei Huang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Xueying Guan
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
31
|
Sárközy M, Kovács ZZA, Kovács MG, Gáspár R, Szűcs G, Dux L. Mechanisms and Modulation of Oxidative/Nitrative Stress in Type 4 Cardio-Renal Syndrome and Renal Sarcopenia. Front Physiol 2018; 9:1648. [PMID: 30534079 PMCID: PMC6275322 DOI: 10.3389/fphys.2018.01648] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem and a recognized risk factor for cardiovascular diseases (CVD). CKD could amplify the progression of chronic heart failure leading to the development of type 4 cardio-renal syndrome (T4CRS). The severity and persistence of heart failure are strongly associated with mortality risk in T4CRS. CKD is also a catabolic state leading to renal sarcopenia which is characterized by the loss of skeletal muscle strength and physical function. Renal sarcopenia also promotes the development of CVD and increases the mortality in CKD patients. In turn, heart failure developed in T4CRS could result in chronic muscle hypoperfusion and metabolic disturbances leading to or aggravating the renal sarcopenia. The interplay of multiple factors (e.g., comorbidities, over-activated renin-angiotensin-aldosterone system [RAAS], sympathetic nervous system [SNS], oxidative/nitrative stress, inflammation, etc.) may result in the progression of T4CRS and renal sarcopenia. Among these factors, oxidative/nitrative stress plays a crucial role in the complex pathomechanism and interrelationship between T4CRS and renal sarcopenia. In the heart and skeletal muscle, mitochondria, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, uncoupled nitric oxide synthase (NOS) and xanthine oxidase are major ROS sources producing superoxide anion (O2·−) and/or hydrogen peroxide (H2O2). O2·− reacts with nitric oxide (NO) forming peroxynitrite (ONOO−) which is a highly reactive nitrogen species (RNS). High levels of ROS/RNS cause lipid peroxidation, DNA damage, interacts with both DNA repair enzymes and transcription factors, leads to the oxidation/nitration of key proteins involved in contractility, calcium handling, metabolism, antioxidant defense mechanisms, etc. It also activates the inflammatory response, stress signals inducing cardiac hypertrophy, fibrosis, or cell death via different mechanisms (e.g., apoptosis, necrosis) and dysregulates autophagy. Therefore, the thorough understanding of the mechanisms which lead to perturbations in oxidative/nitrative metabolism and its relationship with pro-inflammatory, hypertrophic, fibrotic, cell death and other pathways would help to develop strategies to counteract systemic and tissue oxidative/nitrative stress in T4CRS and renal sarcopenia. In this review, we also focus on the effects of some well-known and novel pharmaceuticals, nutraceuticals, and physical exercise on cardiac and skeletal muscle oxidative/nitrative stress in T4CRS and renal sarcopenia.
Collapse
Affiliation(s)
- Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Z A Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mónika G Kovács
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gergő Szűcs
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
32
|
Phytochemical and Pharmacological Properties of Allium Ursinum. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2018. [DOI: 10.2478/sjecr2018-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Allium ursinum L. is a perennial herbaceous plant belonging to the Alliaceae family. Several classes of bioactive compounds have been isolated from A. ursinum so far, among them sulfur and phenolic compounds as quantitatively the most distributed constituents, responsible for pharmaceutical effects of the plant. Small amounts of steroidal glucosides, lecitins, fatty acids and several amino acids, as well as the essential oil are also present in A. ursinum. Th is plant species is characterized by a long history of use in traditional medicine in the prevention and treatment of cardiovascular disease, as digestive stimulant, antimicrobial agent, as a remedy in respiratory problems, insomnia and fainting. Despite its widespread use for medicinal purposes since the ancient time, studies referring to its pharmacological activity are still lacking. In this review, we summarized the current knowledge related to the phytochemical and pharmacological properties of Allium ursinum. Th is study may be a starting point for future researches in this field, which would fully clarify therapeutic potential of A. ursinum and make it a possible candidate for medicinal product.
Collapse
|
33
|
Lai Y, Liang X, Zhong F, Wu W, Zeng T, Huang J, Duan X, Li S, Zeng G, Wu W. Allicin attenuates calcium oxalate crystal deposition in the rat kidney by regulating gap junction function. J Cell Physiol 2018; 234:9640-9651. [PMID: 30378099 DOI: 10.1002/jcp.27651] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yongchang Lai
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Xiongfa Liang
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Fangling Zhong
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Weizhou Wu
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Tao Zeng
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Jian Huang
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Xiaolu Duan
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Shujue Li
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Guohua Zeng
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| | - Wenqi Wu
- Department of Urology Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University Guangzhou China
- Guangdong Key Laboratory of Urology Guangzhou Urology Research Institute Guangzhou China
| |
Collapse
|
34
|
Gomaa AMS, Abdelhafez AT, Aamer HA. Garlic (Allium sativum) exhibits a cardioprotective effect in experimental chronic renal failure rat model by reducing oxidative stress and controlling cardiac Na +/K +-ATPase activity and Ca 2+ levels. Cell Stress Chaperones 2018; 23:913-920. [PMID: 29679284 PMCID: PMC6111091 DOI: 10.1007/s12192-018-0898-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Gentamicin (GNT)-induced nephrotoxicity culminates into renal failure with a possible cardiovascular impact. Garlic extract (GE) is a cardiovascular protectant with limited mechanistic data. Therefore, we assessed the disturbance in specific cardiac parameters and the potential protective effect of GE supplementation against them in a rat model of GNT-induced chronic renal failure (CRF). Adult male rats (n = 24) were randomly assigned into four groups (n = 6 each): normal controls (CON), garlic extract controls (GE; 250 mg kg-1, orally), GNT-induced CRF (GNT; 100 mg kg-1, i.p.), and GNT + GE (GNT and GE in the same previous doses) groups. GNT and GE were given daily for 3 weeks. Animals co-treated with GNT and GE exhibited improved renal functions, body weight (BW), and heart weight (HW)/BW ratio; declined blood pressure; lowered plasma levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and total peroxides (TP); and elevated total antioxidant capacity (TAC) levels. Moreover, the heart tissue contained raised levels of TAC and Na+/K+-ATPase activity and lowered levels of TP and Ca2+. Findings provide evidence that administration of GE in experimental CRF model helped protect the heart through reducing oxidative stress and controlling cardiac Na+/K+-ATPase activity and Ca2+ levels.
Collapse
Affiliation(s)
- Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hazem A Aamer
- Department of Animal, Poultry and Environment Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
35
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
36
|
|
37
|
The Beneficial Effects of Allicin in Chronic Kidney Disease Are Comparable to Losartan. Int J Mol Sci 2017; 18:ijms18091980. [PMID: 28926934 PMCID: PMC5618629 DOI: 10.3390/ijms18091980] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022] Open
Abstract
Recent studies suggest that allicin may play a role in chronic kidney disease (CKD), reducing hypertension and oxidative stress and improving renal dysfunction. In the present study, CKD was induced by 5/6 nephrectomy and the animals were divided into four treatment groups as follows: control (C), CKD, CKD+allicin (40 mg/kg pathway oral) (CKDA), and CKD+Losartan (20 mg/kg) (CKDL). After CKD induction, the rats developed hypertension from week 3 to the end of the study. This was associated with increased creatinine and blood urea nitrogen (BUN) levels in serum, increased albuminuria, increased urinary excretion of N-acetyl-β-d-glucosaminidase (NAG), increased nephrin expression, and incrased histological alterations in the cortex. The levels of angiotensin receptors and endothelial nitric oxide synthase (eNOS) were decreased in the renal cortex from the CKD group. Otherwise, lipid and protein oxidation were higher in the CKD group than in the control group. A disturbance was observed in the expression levels of the nuclear factor erythroid 2-related factor 2/Kelch ECH associating protein 1 system (Nrf2/keap1) and the antioxidant enzymes catalase, superoxide dismutase, and heme oxygenase-1. Allicin or losartan treatments relieved renal dysfunction, hypertension, and oxidative stress. In addition, both treatments showed the same efficacy on the expression of angiotensin receptors, the nephrin, Nrf2/keap1 pathway, and eNOS. Further in silico analyses suggest that allicin and losartan could have a common mechanism involving interaction with AT1 receptors. Allicin showed antihypertensive, antioxidant, and nephroprotective effects. The beneficial effects showed by allicin are similar, or even better, than those of losartan. In fact, the effect of allicin on blood pressure and renal function is comparable to reductions seen with losartan, a prescription drug commonly used as a first-line therapy.
Collapse
|