1
|
Ahmed S, Adnan H, Khawaja MA, Butler AE. Novel Micro-Ribonucleic Acid Biomarkers for Early Detection of Type 2 Diabetes Mellitus and Associated Complications-A Literature Review. Int J Mol Sci 2025; 26:753. [PMID: 39859467 PMCID: PMC11765584 DOI: 10.3390/ijms26020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread chronic diseases globally, with its prevalence expected to rise significantly in the years ahead. Previous studies on risk stratification for T2DM identify certain biomarkers, including glycated hemoglobin (HbA1c), oral glucose tolerance testing (OGTT), fructosamine, and glycated albumin, as key indicators for predicting the onset and progression of T2DM. However, these traditional markers have been shown to lack sensitivity and specificity and their results are difficult to analyze due to non-standardized interpretation criteria, posing significant challenges to an accurate and definitive diagnosis. The strict measures of these traditional markers may not catch gradual increases in blood sugar levels during the early stages of diabetes evolution, as these might still fall within acceptable glycemic parameters. Recent advancements in research have suggested novel micro ribonucleic acid (miRNA) as circulatory molecules that can facilitate the early detection of prediabetic conditions in high-risk groups and potentially enable prevention of the progression to T2DM. This capability makes them a very powerful tool for potentially improving population health, enhancing outcomes for many patients, and reducing the overall burden of T2DM. These promising biomarkers are small, noncoding RNA involved in the regulation of many cellular functions that have a hand in the metabolic activities of cells, making them a very useful and relevant biomarker to explore for the diagnosis and risk stratification of T2DM. This review analyzes the current literature, outlining the occurrence of miRNAs in prediabetic and diabetic individuals and their implications in predicting dysglycemic disorders.
Collapse
Affiliation(s)
- Sara Ahmed
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Haroon Adnan
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Maryam A. Khawaja
- School of Medicine, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain; (S.A.); (H.A.); (M.A.K.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland-Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
2
|
Afzal M, Greco F, Quinzi F, Scionti F, Maurotti S, Montalcini T, Mancini A, Buono P, Emerenziani GP. The Effect of Physical Activity/Exercise on miRNA Expression and Function in Non-Communicable Diseases-A Systematic Review. Int J Mol Sci 2024; 25:6813. [PMID: 38999923 PMCID: PMC11240922 DOI: 10.3390/ijms25136813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Exercise may differently affect the expression of key molecular markers, including skeletal muscle and circulating miRNAs, involved in cellular and metabolic pathways' regulation in healthy individuals and in patients suffering from non-communicable diseases (NCDs). Epigenetic factors are emerging as potential therapeutic biomarkers in the prognosis and treatment of NCDs and important epigenetic factors, miRNAs, play a crucial role in cellular pathways. This systematic review aims to underline the potential link between changes in miRNA expression after different types of physical activity/exercise in some populations affected by NCDs. In June 2023, we systematically investigated the following databases: PubMed, MEDLINE, Scopus, and Web of Science, on the basis of our previously established research questions and following the PRISMA guidelines. The risk of bias and quality assessment were, respectively, covered by ROB2 and the Newcastle Ottawa scale. Of the 1047 records extracted from the initial search, only 29 studies were found to be eligible. In these studies, the authors discuss the association between exercise-modulated miRNAs and NCDs. The NCDs included in the review are cancer, cardiovascular diseases (CVDs), chronic obstructive pulmonary disease (COPD), and type 2 diabetes mellitus (T2DM). We evidenced that miR-146, miR-181, miR-133, miR-21, and miRNA-1 are the most reported miRNAs that are modulated by exercise. Their expression is associated with an improvement in health markers and they may be a potential target in terms of the development of future therapeutic tools.
Collapse
Affiliation(s)
- Moomna Afzal
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Greco
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy
| | - Federico Quinzi
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Grecia, 88100 Catanzaro, Italy
| | - Annamaria Mancini
- Department of Medicine, Movement Sciences and Wellbeing, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.r.l, 80131 Naples, Italy
| | - Pasqualina Buono
- Department of Medicine, Movement Sciences and Wellbeing, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.r.l, 80131 Naples, Italy
| | - Gian Pietro Emerenziani
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Othman NS, Aminuddin A, Zainal Abidin S, Syafruddin SE, Ahmad MF, Mohd Mokhtar N, Kumar J, Hamid AA, Ugusman A. Profiling of Differentially Expressed MicroRNAs in Human Umbilical Vein Endothelial Cells Exposed to Hyperglycemia via RNA Sequencing. Life (Basel) 2023; 13:1296. [PMID: 37374078 DOI: 10.3390/life13061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperglycemia is the hallmark of diabetes mellitus that results in oxidative stress, apoptosis, and diabetic vascular endothelial dysfunction. An increasing number of microRNAs (miRNAs) have been found to be involved in the pathogenesis of diabetic vascular complications. However, there is a limited number of studies that characterize the miRNA profile of endothelial cells exposed to hyperglycemia. Therefore, this study aims to analyze the miRNA profile of human umbilical-vein endothelial cells (HUVECs) exposed to hyperglycemia. HUVECs were divided into two groups: the control (treated with 5.5 mM glucose) and hyperglycemia (treated with 33.3 mM glucose) groups. RNA sequencing identified 17 differentially expressed miRNAs between the groups (p < 0.05). Of these, 4 miRNAs were upregulated, and 13 miRNAs were downregulated. Two of the most differentially expressed miRNAs (novel miR-1133 and miR-1225) were successfully validated with stem-loop qPCR. Collectively, the findings show that there is a differential expression pattern of miRNAs in HUVEC following exposure to hyperglycemia. These 17 differentially expressed miRNAs are involved in regulating cellular functions and pathways related to oxidative stress and apoptosis that may contribute to diabetic vascular endothelial dysfunction. The findings provide new clues on the role of miRNAs in the development of diabetic vascular endothelial dysfunction, which could be useful in future targeted therapy.
Collapse
Affiliation(s)
- Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Faizal Ahmad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications - A review. Int J Biol Macromol 2023; 230:123189. [PMID: 36623613 DOI: 10.1016/j.ijbiomac.2023.123189] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Sylvia F Fawzi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
5
|
Brandão-Lima PN, de Carvalho GB, Payolla TB, Sarti FM, Rogero MM. Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review. Metabolites 2022; 12:1044. [PMID: 36355127 PMCID: PMC9692352 DOI: 10.3390/metabo12111044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/04/2024] Open
Abstract
MicroRNA regulates multiple pathways in inflammatory response, adipogenesis, and glucose and lipid metabolism, which are involved in metabolic syndrome (MetS). Thus, this systematic review aimed at synthesizing the evidence on the relationships between circulating microRNA and risk factors for MetS. The systematic review was registered in the PROSPERO database (CRD42020168100) and included 24 case-control studies evaluating microRNA expression in serum/plasma of individuals ≥5 years old. Most of the studies focused on 13 microRNAs with higher frequency and there were robust connections between miR-146a and miR-122 with risk factors for MetS, based on average weighted degree. In addition, there was an association of miR-222 with adiposity, lipid metabolism, glycemic metabolism, and chronic inflammation and an association of miR-126, miR-221, and miR-423 with adiposity, lipid, and glycemic metabolism. A major part of circulating microRNA was upregulated in individuals with risk factors for MetS, showing correlations with glycemic and lipid markers and body adiposity. Circulating microRNA showed distinct expression profiles according to the clinical condition of individuals, being particularly linked with increased body fat. However, the exploration of factors associated with variations in microRNA expression was limited by the variety of microRNAs investigated by risk factor in diverse studies identified in this systematic review.
Collapse
Affiliation(s)
- Paula N. Brandão-Lima
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Gabrielli B. de Carvalho
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Tanyara B. Payolla
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Flavia M. Sarti
- School of Arts, Sciences and Humanities, University of Sao Paulo, 1000 Arlindo Bettio Avenue, Sao Paulo 03828-000, SP, Brazil
| | - Marcelo M. Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| |
Collapse
|
6
|
Mahjoob G, Ahmadi Y, Fatima rajani H, khanbabaei N, Abolhasani S. Circulating microRNAs as predictive biomarkers of coronary artery diseases in type 2 diabetes patients. J Clin Lab Anal 2022; 36:e24380. [PMID: 35349731 PMCID: PMC9102494 DOI: 10.1002/jcla.24380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an increasing metabolic disorder mostly resulting from unhealthy lifestyles. T2DM patients are prone to develop heart conditions such as coronary artery disease (CAD) which is a major cause of death in the world. Most clinical symptoms emerge at the advanced stages of CAD; therefore, establishing new biomarkers detectable in the early stages of the disease is crucial to enhance the efficiency of treatment. Recently, a significant body of evidence has shown alteration in miRNA levels associate with dysregulated gene expression occurring in T2DM and CAD, highlighting significance of circulating miRNAs in early detection of CAD arising from T2DM. Therefore, it seems crucial to establish a link between the miRNAs prognosing value and development of CAD in T2DM. AIM This study provides an overview on the alterations of the circulatory miRNAs in T2DM and various CADs and consider the potentials of miRNAs as biomarkers prognosing CADs in T2DM patients. MATERIALS AND METHODS Literature search was conducted for miRNAs involved in development of T2DM and CAD using the following key words: "miRNAs", "Biomarker", "Diabetes Mellitus Type 2 (T2DM)", "coronary artery diseases (CAD)". Articles written in the English language. RESULT There has been shown a rise in miR-375, miR-9, miR-30a-5p, miR-150, miR-9, miR-29a, miR-30d, miR-34a, miR-124a, miR-146a, miR-27a, and miR-320a in T2DM; whereas, miR-126, miR-21, miR-103, miR-28-3p, miR-15a, miR-145, miR-375, miR-223 have been shown to decrease. In addition to T2DM, some miRNAs such as mirR-1, miR-122, miR-132, and miR-133 play a part in development of subclinical aortic atherosclerosis associated with metabolic syndrome. Some miRNAs increase in both T2DM and CAD such as miR-1, miR-132, miR-133, and miR-373-3-p. More interestingly, some of these miRNAs such as miR-92a elevate years before emerging CAD in T2DM. CONCLUSION dysregulation of miRNAs plays outstanding roles in development of T2DM and CAD. Also, elevation of some miRNAs such as miR-92a in T2DM patients can efficiently prognose development of CAD in these patients, so these miRNAs can be used as biomarkers in this regard.
Collapse
Affiliation(s)
- Golnoosh Mahjoob
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Yasin Ahmadi
- Department of Medical Laboratory SciencesCollege of ScienceKomar University of Science and TechnologySulaimaniIraq
| | - Huda Fatima rajani
- Department of medical biotechnologySchool of advanced sciences in medicineTehran University of medical sciencesTehranIran
| | - Nafiseh khanbabaei
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Sakhavat Abolhasani
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| |
Collapse
|
7
|
Mir M, Mir R, Alghamdi M, Wani J, Elfaki I, Sabah Z, Alhujaily M, Jeelani M, Marakala V, Alharthi M, Al‑Shahrani A. Potential impact of GCK, MIR-196A-2 and MIR-423 gene abnormalities on the development and progression of type 2 diabetes mellitus in Asir and Tabuk regions of Saudi Arabia. Mol Med Rep 2022; 25:162. [PMID: 35293603 PMCID: PMC8941532 DOI: 10.3892/mmr.2022.12675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by persistent hyperglycemia and is associated with serious complications. The risk factors for T2DM include both genetic and lifestyle factors. Genome-wide association studies have indicated the association of genetic variations with many diseases, including T2DM. Glucokinase (GCK) plays a key role in the regulation of insulin release in the pancreas and catalyzes the first step in glycolysis in the liver. Genetic alterations in the GCK gene have been implicated in both hyperglycemia and hypoglycemia. MicroRNAs (miRNAs/miRs) are small non-coding RNA molecules that are involved in the important physiological processes including glucose metabolism. In the present study, the association of the single nucleotide polymorphisms (SNPs) in the GCK, MIR-196A-2 and MIR-423 genes with susceptibility to T2DM in patients from two regions of Saudi Arabia were examined, using the tetra-primer amplification refractory mutation system. The results showed that the AA genotype and the A allele of GCK rs1799884 were associated with T2DM [odds ratio (OR)=2.25, P=0.032 and OR=1.55, P=0.021, respectively]. Likewise, the CT genotype and T allele of MIR-196A-2 rs11614913 were associated with an increased risk of T2DM (OR=2.36, P=0.0059 and OR=1.74, P=0.023, respectively). In addition, the CA genotype of MIR-423 rs6505162 C>A was found to be linked with T2DM (OR=2.12 and P=0.021). It was concluded in the present research study that gene variations in GCK, MIR-196A-2 and MIR-423 are potentially associated with an increased risk of T2DM. These results, in the future, may help in the identification and stratification of individuals susceptible to T2DM. Future longitudinal studies with larger sample sizes and in different ethnic populations are recommended to validate these findings.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Department of Medical Laboratory Technology (MLT), Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Mushabab Alghamdi
- Department of Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia
| | - Javed Wani
- Department of Internal Medicine College of Medicine, King Khalid University, Abha 61421, Kingdom of Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Zia Sabah
- Department of Internal Medicine College of Medicine, King Khalid University, Abha 61421, Kingdom of Saudi Arabia
| | - Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia
| | - Mohammed Jeelani
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia
| | - Vijaya Marakala
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia
| | - Muffarah Alharthi
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia
| | - Abdullah Al‑Shahrani
- Department of Family Medicine, College of Medicine, University of Bisha, Bisha 61922, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Lou J, Chen H, Huang S, Chen P, Yu Y, Chen F. Update on risk factors and biomarkers of sudden unexplained cardiac death. J Forensic Leg Med 2022; 87:102332. [DOI: 10.1016/j.jflm.2022.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
|
9
|
Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Pardo-Marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022; 12:biom12020208. [PMID: 35204710 PMCID: PMC8961590 DOI: 10.3390/biom12020208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance defines an impairment in the biologic response to insulin action in target tissues, primarily the liver, muscle, adipose tissue, and brain. Insulin resistance affects physiology in many ways, causing hyperglycemia, hypertension, dyslipidemia, visceral adiposity, hyperinsulinemia, elevated inflammatory markers, and endothelial dysfunction, and its persistence leads to the development metabolic disease, including diabetes, obesity, cardiovascular disease, or nonalcoholic fatty liver disease (NAFLD), as well as neurological disorders such as Alzheimer’s disease. In addition to classical transcriptional factors, posttranscriptional control of gene expression exerted by microRNAs and RNA-binding proteins constitutes a new level of regulation with important implications in metabolic homeostasis. In this review, we describe miRNAs and RBPs that control key genes involved in the insulin signaling pathway and related regulatory networks, and their impact on human metabolic diseases at the molecular level, as well as their potential use for diagnosis and future therapeutics.
Collapse
|
10
|
Bielska A, Niemira M, Bauer W, Sidorkiewicz I, Szałkowska A, Skwarska A, Raczkowska J, Ostrowski D, Gugała K, Dobrzycki S, Krętowski A. Serum miRNA Profile in Diabetic Patients With Ischemic Heart Disease as a Promising Non-Invasive Biomarker. Front Endocrinol (Lausanne) 2022; 13:888948. [PMID: 35663309 PMCID: PMC9157821 DOI: 10.3389/fendo.2022.888948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing morbidity and mortality of type 2 diabetic mellitus (T2DM) patients with ischemic heart disease (IHD) highlight an urgent need to identify early biomarkers, which would help to predict individual risk of development of IHD. Here, we postulate that circulating serum-derived micro RNAs (miRNAs) may serve as potential biomarkers for early IHD diagnosis and support the identification of diabetic individuals with a predisposition to undergo IHD. We obtained serum samples from T2DM patients either with IHD or IHD-free and analysed the expression levels of 798 miRNAs using the NanoString nCounter technology platform. The prediction of the putative miRNAs targets was performed using the Ingenuity Pathway Analysis (IPA) software. Gene Ontology (GO) analysis was used to identify the biological function and signalling pathways associated with miRNA target genes. Hub genes of protein-protein interaction (PPI) network were identified by STRING database and Cytotoscape tool. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of identified miRNAs. Real-time quantitative polymerase chain reaction (qRT-PCR) was used for nCounter platform data validation. Our data showed that six miRNAs (miR-615-3p, miR-3147, miR-1224-5p, miR-5196-3p, miR-6732-3p, and miR-548b-3p) were significantly upregulated in T2DM IHD patients compared to T2DM patients without IHD. Further analysis indicated that 489 putative target genes mainly affected the endothelin-1 signalling pathway, glucocorticoid biosynthesis, and apelin cardiomyocyte signalling pathway. All tested miRNAs showed high diagnostic value (AUC = 0.779 - 0.877). Taken together, our research suggests that circulating miRNAs might have a crucial role in the development of IHD in diabetic patients and may be used as a potential biomarker for early diagnosis.
Collapse
Affiliation(s)
- Agnieszka Bielska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- *Correspondence: Agnieszka Bielska,
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Witold Bauer
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Anna Szałkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Anna Skwarska
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Damian Ostrowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Kamil Gugała
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Białystok, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
11
|
Kourtidou C, Stangou M, Marinaki S, Tziomalos K. Novel Cardiovascular Risk Factors in Patients with Diabetic Kidney Disease. Int J Mol Sci 2021; 22:11196. [PMID: 34681856 PMCID: PMC8537513 DOI: 10.3390/ijms222011196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with diabetic kidney disease (DKD) are at very high risk for cardiovascular events. Only part of this increased risk can be attributed to the presence of diabetes mellitus (DM) and to other DM-related comorbidities, including hypertension and obesity. The identification of novel risk factors that underpin the association between DKD and cardiovascular disease (CVD) is essential for risk stratification, for individualization of treatment and for identification of novel treatment targets.In the present review, we summarize the current knowledge regarding the role of emerging cardiovascular risk markers in patients with DKD. Among these biomarkers, fibroblast growth factor-23 and copeptin were studied more extensively and consistently predicted cardiovascular events in this population. Therefore, it might be useful to incorporate them in risk stratification strategies in patients with DKD to identify those who would possibly benefit from more aggressive management of cardiovascular risk factors.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, Medical School, National and Kapodistrian University of Athens, Laiko Hospital, 11527 Athens, Greece;
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| |
Collapse
|
12
|
Tamara A, Coulson DJ, Latief JS, Bakhashab S, Weaver JU. Upregulated anti-angiogenic miR-424-5p in type 1 diabetes (model of subclinical cardiovascular disease) correlates with endothelial progenitor cells, CXCR1/2 and other parameters of vascular health. Stem Cell Res Ther 2021; 12:249. [PMID: 33985567 PMCID: PMC8120744 DOI: 10.1186/s13287-021-02332-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/14/2023] Open
Abstract
Background In spite of clinical progress, cardiovascular disease (CVD) remains the predominant cause of mortality worldwide. Overexpression studies in animals have proven miR-424-5p to have anti-angiogenic properties. As type 1 diabetes mellitus (T1DM) without CVD displays endothelial dysfunction and reduced circulating endothelial progenitor cells (cEPCs), it offers a model of subclinical CVD. Therefore, we explored miR-424-5p, cytokines and vascular health in T1DM. Methods Twenty-nine well-controlled T1DM patients with no CVD and 20-matched controls were studied. Cytokines IL8, TNF-α, IL7, VEGF-C, cEPCs/CD45dimCD34+CD133+ cells and ex-vivo proangiogenic cells (PACs)/fibronectin adhesion assay (FAA) were measured. MiR-424-5p in plasma and peripheral blood mononuclear cells (PBMC) along with mRNAs in PBMC was evaluated. Results We found an elevation of IL7 (p = 0.008), IL8 (p = 0.003), TNF-α (p = 0.041), VEGF-C (p = 0.013), upregulation of mRNA CXCR1 (p = 0.009), CXCR2 (p < 0.001) and reduction of cEPCs (p < 0.001), PACs (p < 0.001) and FAA (p = 0.017) in T1DM. MiR-424-5p was upregulated in T1DM in PBMC (p < 0.001). MiR-424-5p was negatively correlated with cEPCs (p = 0.006), PACs (p = 0.005) and FAA (p < 0.001) and positively with HbA1c (p < 0.001), IL7 (p = 0.008), IL8 (p = 0.017), VEGF-C (p = 0.007), CXCR1 (p = 0.02) and CXCR2 (p = 0.001). ROC curve analyses showed (1) miR-424-5p to be a biomarker for T1DM (p < 0.001) and (2) significant upregulation of miR-424-5p, defining subclinical CVD, occurred at HbA1c of 46.5 mmol/mol (p = 0.002). Conclusion We validated animal research on anti-angiogenic properties of miR-424-5p in T1DM. MiR-424-5p may be a biomarker for onset of subclinical CVD at HbA1c of 46.5 mmol/mol (pre-diabetes). Thus, miR-424-5p has potential use for CVD monitoring whilst anti-miR-424-5p-based therapies may be used to reduce CVD morbidity/mortality in T1DM.
Collapse
Affiliation(s)
- Alice Tamara
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - David J Coulson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jevi Septyani Latief
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Sherin Bakhashab
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 80218, Saudi Arabia
| | - Jolanta U Weaver
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne, NE9 6SH, UK. .,Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
13
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
14
|
Czajka P, Fitas A, Jakubik D, Eyileten C, Gasecka A, Wicik Z, Siller-Matula JM, Filipiak KJ, Postula M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front Physiol 2021; 12:652579. [PMID: 33935804 PMCID: PMC8081881 DOI: 10.3389/fphys.2021.652579] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response.
Collapse
Affiliation(s)
- Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| | - Aleksandra Gasecka
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, Brazil
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Krzysztof J Filipiak
- First Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology, Warsaw, Poland
| |
Collapse
|
15
|
Niderla-Bielińska J, Ścieżyńska A, Moskalik A, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Kiernozek E, Podgórska A, Ciszek B, Majchrzak B, Ratajska A. A Comprehensive miRNome Analysis of Macrophages Isolated from db/db Mice and Selected miRNAs Involved in Metabolic Syndrome-Associated Cardiac Remodeling. Int J Mol Sci 2021; 22:2197. [PMID: 33672153 PMCID: PMC7926522 DOI: 10.3390/ijms22042197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiac macrophages are known from various activities, therefore we presume that microRNAs (miRNAs) produced or released by macrophages in cardiac tissue have impact on myocardial remodeling in individuals with metabolic syndrome (MetS). We aim to assess the cardiac macrophage miRNA profile by selecting those miRNA molecules that potentially exhibit regulatory functions in MetS-related cardiac remodeling. Cardiac tissue macrophages from control and db/db mice (an animal model of MetS) were counted and sorted with flow cytometry, which yielded two populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Total RNA was then isolated, and miRNA expression profiles were evaluated with Next Generation Sequencing. We successfully sequenced 1400 miRNAs in both macrophage populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Among the 1400 miRNAs, about 150 showed different expression levels in control and db/db mice and between these two subpopulations. At least 15 miRNAs are possibly associated with MetS pathology in cardiac tissue due to direct or indirect regulation of the expression of miRNAs for proteins involved in angiogenesis, fibrosis, or inflammation. In this paper, for the first time we describe the miRNA transcription profile in two distinct macrophage populations in MetS-affected cardiac tissue. Although the results are preliminary, the presented data provide a foundation for further studies on intercellular cross-talk/molecular mechanism(s) involved in the regulation of MetS-related cardiac remodeling.
Collapse
Affiliation(s)
- Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (J.N.-B.); (A.Ś.); (E.J.-S.)
| | - Krzysztof Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
| | - Mateusz Bartkowiak
- Student Scientific Group, Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland; (K.B.); (M.B.)
- Department of History of Medicine, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Anna Podgórska
- Molecular Biology Laboratory, Department of Medical Biology, Cardinal Stefan Wyszyński Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Bogdan Ciszek
- Department of Clinical Anatomy, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland;
| |
Collapse
|
16
|
MiRNA expression analysis emphasized the role of miR-424 in diabetic cardiovascular complications. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Liu G, Yan D, Yang L, Sun Y, Zhan L, Lu L, Jin Z, Zhang C, Long P, Chen J, Yuan Q. The effect of miR-471-3p on macrophage polarization in the development of diabetic cardiomyopathy. Life Sci 2021; 268:118989. [PMID: 33417962 DOI: 10.1016/j.lfs.2020.118989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
AIMS The imbalance of M1/M2 macrophage ratio promotes the occurrence of diabetic cardiomyopathy (DCM), but the precise mechanisms are not fully understood. The aim of this study was to investigate whether miR-471-3p/silent information regulator 1 (SIRT1) pathway is involved in the macrophage polarization during the development of DCM. METHODS Immunohistochemical staining was used to detect M1 and M2 macrophages infiltration in the heart tissue. Flow cytometry was used to detect the proportion of M1 and M2 macrophages. Expression of miR-471-3p was quantified by real time quantitative-PCR. Transfection of miRNA inhibitor into RAW264.7 cells was performed to investigate the underlying mechanisms. Bioinformatics methods and western blotting were used to explore the target gene of miR-471-3p and further confirmed by dual luciferase reporter assay. KEY FINDINGS We observed that M1 macrophages infiltration in the heart of tissue in DCM while M2 type was decreased. M1/M2 ratio was increased significantly in bone marrow-derived macrophages (BMDMs) from db/db mice and in RAW264.7 cells treated with advanced glycation end products (AGEs). Meanwhile, miR-471-3p was significantly upregulated in RAW264.7 cells induced by AGEs and inhibition of miR-471-3p could reduce the inflammatory polarization of macrophages. Bioinformatics analysis identified SIRT1 as a target of miR-471-3p. Both dual luciferase reporter assay and western blotting verified that miR-471-3p negatively regulated SIRT1 expression. SIRT1 agonist resveratrol could downregulate the increased proportion of M1 macrophages induced by AGEs. CONCLUSION Our results indicated that the development of DCM was related to AGEs-induced macrophage polarized to M1 type through a mechanism involving the miR-471-3p/SIRT1 pathway.
Collapse
Affiliation(s)
- Guangqi Liu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Yan
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Liu Yang
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, China
| | - Yunwei Sun
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Zhan
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Lili Lu
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhigang Jin
- China Resource & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Ping Long
- China Resource & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, China.
| | - Jinhua Chen
- Department of Pharmacy, Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, China.
| | - Qiong Yuan
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, College of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
18
|
Wang J, Yao Y, Wang K, Li J, Chu T, Shen H. MicroRNA-148a-3p alleviates high glucose-induced diabetic retinopathy by targeting TGFB2 and FGF2. Acta Diabetol 2020; 57:1435-1443. [PMID: 32661705 DOI: 10.1007/s00592-020-01569-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022]
Abstract
AIMS Diabetic retinopathy (DR), a common complication of type 1 or type 2 diabetes mellitus, has become the leading cause of blindness among adults in working age. The dysregulation of microRNA has been reported to be strongly related to the initiation or progression of DR. However, neither the biological role nor the molecular mechanism of miR-148a-3p has been researched in DR. This study is designed to investigate the function and mechanism of miR-148a-3p in DR. METHODS The bioinformatics analysis (Targetscan: https://www.targetscan.org/vert_72/ ) and numerous experiments including real-time quantitative polymerase chain reaction, terminal deoxynucleotidyltransferase dUTP nick end labeling, CCK-8, western blot, vasculogenesis and luciferase reporter assays were used to research the function and mechanism of miR-148a-3p in DR. RESULTS We constructed DR cell model by treating human retinal microvascular endothelial cells (HRECs) with different concentration gradients of high glucose (HG). Additionally, HG treatment reduced miR-148a-3p level in HRECs. In function, overexpression of miR-148a-3p caused an increase in cell viability and a decrease in cell apoptosis. Besides, miR-148a-3p overexpression led to a damage on blood-retinal barrier (BRB) and suppressed angiogenesis. In mechanism, miR-148a-3p specifically bound to 3' untranslated region of TGFB2 and FGF2. At least, rescue assays demonstrated that the inhibitive influence of miR-148a-3p mimics on BRB injury was offset by overexpression of TGFB2 and the attenuation of angiogenesis resulting from miR-148a-3p mimics was abrogated by overexpression of FGF2 CONCLUSIONS: In a word, we discovered that miR-148a-3p alleviated HG-induced DR by targeting TGFB2 and FGF2. This novel discovery indicated miR-148a-3p as a potential target for DR diagnosis or treatment.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China.
| | - Yong Yao
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Kelei Wang
- Department of Ophthalmology, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, Jiangsu, China
| | - Jia Li
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Ting Chu
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| | - Haicui Shen
- Department of Ophthalmology, Affiliated Hospital of Jiangnan University, No. 200 Huihe Road, Wuxi, 214000, Jiangsu, China
| |
Collapse
|
19
|
Saadatian Z, Nariman-Saleh-Fam Z, Khaheshi I, Mansoori Y, Daraei A, Ghaderian SMH, Omrani MD. Peripheral Blood Mononuclear Cells Expression Levels of miR-196a and miR-100 in Coronary Artery Disease Patients. Immunol Invest 2020; 50:914-924. [PMID: 32928012 DOI: 10.1080/08820139.2020.1791177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a chronic inflammatory disease, coronary artery disease (CAD) is a common cause of death worldwide. Dysregulation of microRNA expression levels in peripheral blood mononuclear cells (PBMCs) may contribute to CAD and serve as a potential diagnostic biomarker. Here, we evaluated PBMC expression of two CAD-related inflammatory miRNAs, miR-196a and miR-100, in PBMCs of CAD patients with significant stenosis (CAD, n: 72), patients with insignificant coronary stenosis (ICAD, n: 30), and controls (n: 74) and checked whether they can segregate study groups. MiRNA expression was evaluated using the standard stem-loop RT-qPCR method. MiR-196a expression was downregulated in ICAD compared to CADs and healthy groups. MiR100 expression levels were not different between groups. The receiver operating characteristic (ROC) curve analysis acquainted that miR-196a expression levels in PBMC could segregate CAD individuals or any of its clinical manifestations (i.e. unstable angina, stable angina, acute myocardial infarction) from ICADs. In conclusion, this study reported a distinct miR-196a expression pattern in PBMCs of all patient groups and recommended a biomarker potential for miR-196a in discriminating ICADs from CADs or healthy controls.
Collapse
Affiliation(s)
- Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Isa Khaheshi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolreza Daraei
- Department of Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Ye D, Lou GH, Li AC, Dong FQ, Chen GP, Xu WW, Liu YN, Hu SJ. MicroRNA‑125a‑mediated regulation of the mevalonate signaling pathway contributes to high glucose‑induced proliferation and migration of vascular smooth muscle cells. Mol Med Rep 2020; 22:165-174. [PMID: 32319638 PMCID: PMC7248521 DOI: 10.3892/mmr.2020.11077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/11/2020] [Indexed: 01/14/2023] Open
Abstract
Hyperglycemia contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMC), which are closely associated with atherosclerosis. MicroRNAs (miRNAs/miRs) constitute a novel class of gene regulators, which have important roles in various pathological conditions. The aim of the present study was to identify miRNAs involved in the high glucose (HG)‑induced VSMC phenotype switch, and to investigate the underlying mechanism. miRNA sequencing and reverse transcription‑quantitative PCR results indicated that inhibition of miR‑125a expression increased the migration and proliferation of VSMCs following HG exposure, whereas the overexpression of miR‑125a abrogated this effect. Furthermore, dual‑luciferase reporter assay results identified that 3‑hydroxy‑3-methyglutaryl‑coA reductase (HMGCR), one of the key enzymes in the mevalonate signaling pathway, is a target of miR‑125a. Moreover, HMGCR knockdown, similarly to miR‑125a overexpression, suppressed HG‑induced VSMC proliferation and migration. These results were consistent with those from the miRNA target prediction programs. Using a rat model of streptozotocin‑induced diabetes mellitus, it was demonstrated that miR‑125a expression was gradually downregulated, and that the expressions of key enzymes in the mevalonate signaling pathway in the aortic media were dysregulated after several weeks. In addition, it was found that HG‑induced excessive activation of the mevalonate signaling pathway in VSMCs was suppressed following transfection with a miR‑125a mimic. Therefore, the present results suggest that decreased miR‑125a expression contributed to HG‑induced VSMC proliferation and migration via the upregulation of HMGCR expression. Thus, miR‑125a‑mediated regulation of the mevalonate signaling pathway may be associated with atherosclerosis.
Collapse
Affiliation(s)
- Dan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guo-Hua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ai-Chun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng-Qin Dong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guo-Ping Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei-Wei Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yan-Ning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
21
|
Su M, Niu Y, Dang Q, Qu J, Zhu D, Tang Z, Gou D. Circulating microRNA profiles based on direct S-Poly(T)Plus assay for detection of coronary heart disease. J Cell Mol Med 2020; 24:5984-5997. [PMID: 32343493 PMCID: PMC7294166 DOI: 10.1111/jcmm.15001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/07/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) is one of the leading causes of heart-associated deaths worldwide. Conventional diagnostic techniques are ineffective and insufficient to diagnose CHD with higher accuracy. To use the circulating microRNAs (miRNAs) as non-invasive, specific and sensitive biomarkers for diagnosing of CHD, 203 patients with CHD and 144 age-matched controls (126 high-risk controls and 18 healthy volunteers) were enrolled in this study. The direct S-Poly(T)Plus method was used to identify novel miRNAs expression profile of CHD patients and to evaluate their clinical diagnostic value. This method is an RNA extraction-free and robust quantification method, which simplifies procedures, reduces variations, in particular increases the accuracy. Twelve differentially expressed miRNAs between CHD patients and high-risk controls were selected, and their performances were evaluated in validation set-1 with 96 plasma samples. Finally, six (miR-15b-5p, miR-29c-3p, miR-199a-3p, miR-320e, miR-361-5p and miR-378b) of these 12 miRNAs were verified in validation set-2 with a sensitivity of 92.8% and a specificity of 89.5%, and the AUC was 0.971 (95% confidence interval, 0.948-0.993, P < .001) in a large cohort for CHD patients diagnosis. Plasma fractionation indicated that only a small amount of miRNAs were assembled into EVs. Direct S-Poly(T)Plus method could be used for disease diagnosis and 12 unique miRNAs could be used for diagnosis of CHD.
Collapse
Affiliation(s)
- Mingyang Su
- Shenzhen Key Laboratory of Microbial Genetic EngineeringVascular Disease Research CenterCollege of Life Sciences and OceanographyGuangdong Provincial Key Laboratory of Regional Immunity and DiseasesCarson International Cancer CenterShenzhen UniversityShenzhenGuangdongChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdongChina
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic EngineeringVascular Disease Research CenterCollege of Life Sciences and OceanographyGuangdong Provincial Key Laboratory of Regional Immunity and DiseasesCarson International Cancer CenterShenzhen UniversityShenzhenGuangdongChina
| | - Quanjin Dang
- Shenzhen Key Laboratory of Microbial Genetic EngineeringVascular Disease Research CenterCollege of Life Sciences and OceanographyGuangdong Provincial Key Laboratory of Regional Immunity and DiseasesCarson International Cancer CenterShenzhen UniversityShenzhenGuangdongChina
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhenGuangdongChina
| | - Daling Zhu
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Zhongren Tang
- Third Cardiovascular DepartmentMudanjiang City Second People's HospitalMudanjiangHeilongjiangChina
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic EngineeringVascular Disease Research CenterCollege of Life Sciences and OceanographyGuangdong Provincial Key Laboratory of Regional Immunity and DiseasesCarson International Cancer CenterShenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
22
|
Yu Z, Shibazaki M, Otsuka H, Takada H, Nakamura M, Endo Y. Dynamics of Platelet Behaviors as Defenders and Guardians: Accumulations in Liver, Lung, and Spleen in Mice. Biol Pharm Bull 2020; 42:1253-1267. [PMID: 31366863 DOI: 10.1248/bpb.b18-00975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic platelet behaviors in experimental animals are often assessed by infusion of isotope-labeled platelets and measuring them under anesthesia. However, such procedures alter, therefore may not reveal, real-life platelet behaviors. 5-Hydroxytryptamine (5HT or serotonin) is present within limited cell-types, including platelets. In our studies, by measuring 5HT as a platelet-marker in non-anesthetized mice, we identified stimulation- and time-dependent accumulations in liver, lung, and/or spleen as important systemic platelet behaviors. For example, intravenous, intraperitoneal, or intragingival injection of lipopolysaccharide (LPS, a cell-wall component of Gram-negative bacteria), interleukin (IL)-1, or tumor necrosis factor (TNF)-α induced hepatic platelet accumulation (HPA) and platelet translocation into the sinusoidal and perisinusoidal spaces or hepatocytes themselves. These events occurred "within a few hours" of the injection, caused hypoglycemia, and exhibited protective or causal effects on hepatitis. Intravenous injection of larger doses of LPS into normal mice, or intravenous antigen-challenge to sensitized mice, induced pulmonary platelet accumulation (PPA), as well as HPA. These reactions occurred "within a few min" of the LPS injection or antigen challenge and resulted in shock. Intravenous injection of 5HT or a catecholamine induced a rapid PPA "within 6 s." Intravenous LPS injection, within a minute, increased the pulmonary catecholamines that mediate the LPS-induced PPA. Macrophage-depletion from liver and spleen induced "day-scale" splenic platelet accumulation, suggesting the spleen is involved in clearing senescent platelets. These findings indicate the usefulness of 5HT as a marker of platelet behaviors, and provide a basis for a discussion of the roles of platelets as both "defenders" and "guardians."
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University
| | - Masahiro Shibazaki
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University
| | - Haruhiko Takada
- Department of Microbiology and Immunology, Graduate School of Dentistry, Tohoku University
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University
| |
Collapse
|
23
|
Huo W, Li H, Zhang Y, Li H. Epigenetic silencing of microRNA-874-3p implicates in erectile dysfunction in diabetic rats by activating the Nupr1/Chop-mediated pathway. FASEB J 2019; 34:1695-1709. [PMID: 31914690 DOI: 10.1096/fj.201902086r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
Abstract
Diabetes is a global medical problem that causes many deaths every year. Complications caused by diabetes are serious and affect patients' quality of life. Diabetes mellitus erectile dysfunction (DMED) affects more than half of male diabetes patients. In this study, we determined the role of microRNA-874-3p (miR-874-3p) and nuclear protein-1 (Nupr1) in streptozocin-induced DMED rats. Control rats received equal amount of vehicle. These rats were also injected with lentiviral vector or agomir to silence or overexpress miR-874-3p or Nupr1. Apomorphine (100 μg/kg, s.c.) was used to induce erection and time of erection was recorded. Intracavernosal and mean arterial pressure ratio (ICP/MAP) were also recorded. O2- level and concentration of thiobarbituric acid reactive substances (TBARs) were detected using lucigenin-derived chemiluminescence method and Colorimetry. Rat cavernosum tissues were collected for subsequent experiments. Cavernosum smooth muscle cells (CSMCs) were also used for in vitro experiments. Nupr1 was found highly expressed (by RT-qPCR and Western blot analysis) in cavernosum tissues from DMED rats. Nupr1 silencing improved the ICP/MAP ratio and erection time. Nupr1 silencing also reduced CSMC apoptosis (by TUNEL assay) as well as decreased O2- level and TBAR concentration. Nupr1 was targeted and inhibited by miR-874-3p (by luciferase activity and RNA immunoprecipitation assays), which was downregulated in DMED. miR-874-3p downregulation was due to increased methylation at the promoter region (methylation-specific PCR). miR-874-3p overexpression improved erection time and reduced apoptosis. In summary, miR-874-3p was downregulated which led to increased apoptosis and erectile dysfunction in DMED rats, through inhibition of Nupr1-mediated pathway. This study may also provide a new therapeutic direction for the treatment of DMED.
Collapse
Affiliation(s)
- Wei Huo
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hongyan Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Yun Zhang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
24
|
Oses M, Margareto Sanchez J, Portillo MP, Aguilera CM, Labayen I. Circulating miRNAs as Biomarkers of Obesity and Obesity-Associated Comorbidities in Children and Adolescents: A Systematic Review. Nutrients 2019; 11:nu11122890. [PMID: 31783635 PMCID: PMC6950354 DOI: 10.3390/nu11122890] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 01/13/2023] Open
Abstract
Early detection of obesity and its associated comorbidities in children needs priority for the development of effective therapeutic intervention. Circulating miRNAs (microRNAs) have been proposed as biomarkers for obesity and its comorbidities; therefore, we conducted a systematic review to summarize results of studies that have quantified the profile of miRNAs in children and adolescents with obesity and/or associated disorders. Nine studies aiming to examine differences in miRNA expression levels between children with normal weight and obesity or between obese children with or without cardiometabolic diseases were included in this review. We identified four miRNAs overexpressed in obesity (miR-222, miR-142-3, miR-140-5p, and miR-143) and two miRNAs (miR-122 and miR-34a) overexpressed in children with obesity and nonalcoholic fatty liver disease (NAFLD) and/or insulin resistance. In conclusion, circulating miRNAs are promising diagnostic biomarkers of obesity-associated diseases such as NAFLD and type 2 diabetes already in childhood. However, more studies in children, using massive search technology and with larger sample sizes, are required to draw any firm conclusions.
Collapse
Affiliation(s)
- Maddi Oses
- Institute for Innovation & Sustainable Development in Food Chain, Public University of Navarre, Jeronimo de Ayanz Building, Campus de Arrosadia, 31006 Pamplona, Spain;
- Correspondence: ; Tel.: +34-636818502
| | | | - Maria P. Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Public University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, 01006 Vitoria, Spain;
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Health Institute Carlos III (ISCIII), 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria BIOARABA, 01006 Vitoria, Spain
| | - Concepción María Aguilera
- CIBEROBN (Physiopathology of Obesity and Nutrition Network CB12/03/30038), Health Institute Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain, Public University of Navarre, Jeronimo de Ayanz Building, Campus de Arrosadia, 31006 Pamplona, Spain;
| |
Collapse
|
25
|
Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br J Pharmacol 2019; 177:1241-1257. [PMID: 31243760 DOI: 10.1111/bph.14778] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/28/2022] Open
Abstract
The Mediterranean diet (MedDiet) is one of the most widely described and evaluated dietary patterns in scientific literature. It is characterized by high intakes of vegetables, legumes, fruits, nuts, grains, fish, seafood, extra virgin olive oil, and a moderate intake of red wine. A large body of observational and experimental evidence suggests that higher adherence to the MedDiet is associated with lower risk of mortality, cardiovascular disease, metabolic disease, and cancer. Current mechanisms underlying the beneficial effects of the MedDiet include reduction of blood lipids, inflammatory and oxidative stress markers, improvement of insulin sensitivity, enhancement of endothelial function, and antithrombotic function. Most likely, these effects are attributable to bioactive ingredients such as polyphenols, monounsaturated and polyunsaturated fatty acids, or fibre. This review will focus on both established and less established mechanisms of action of biochemical compounds contained in a MedDiet. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Lukas Schwingshackl
- Institute for Evidence in Medicine, Faculty of Medicine and Medical Centre, University of Freiburg, Freiburg, Germany
| | - Jakub Morze
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Georg Hoffmann
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Xu Q, Liang Y, Liu X, Zhang C, Liu X, Li H, Liang J, Yang G, Ge Z. miR‑132 inhibits high glucose‑induced vascular smooth muscle cell proliferation and migration by targeting E2F5. Mol Med Rep 2019; 20:2012-2020. [PMID: 31257477 DOI: 10.3892/mmr.2019.10380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/18/2019] [Indexed: 11/06/2022] Open
Abstract
The dysregulated behavior of vascular smooth muscle cells (VSMCs) serves an important role in the pathogenesis of cardiovascular diseases in diabetes. The present study aimed to investigate the effects of microRNA (miR)‑132 on the proliferation and migration of VSMCs under high glucose conditions to mimic diabetes. We observed that the expression of miR‑132 was significantly decreased and that of E2F transcription factor 5 (E2F5) was upregulated in high glucose (HG)‑treated VSMCs or those obtained from diabetic rats. A dual luciferase reporter gene assay revealed that miR‑132 could specifically bind to the 3'‑untranslated region of E2F5 and significantly suppress the luciferase activity. The proliferation and migration of diabetic rat or HG‑treated VSMCs were increased compared with non‑diabetic rat VSMCs and those under normal glucose conditions. Upregulation of miR‑132 significantly inhibited the proliferation and migration of diabetic rat VSMCs; similar effects were observed following E2F5 downregulation. The inhibitory effects of miR‑132 on the proliferation and migration of HG‑treated VSMCs could be reversed by E2F5 overexpression. In conclusion, miR‑132 was proposed to inhibit the proliferation and migration of diabetic rat or high‑glucose‑treated VSMCs by targeting E2F5. The findings of the present study suggested that increasing the expression of miR‑132 may serve as a novel therapeutic approach to inhibit the progression of cardiovascular disease in diabetes.
Collapse
Affiliation(s)
- Qun Xu
- Department of Geriatric Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Ying Liang
- Department of Geriatric Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Xiangjuan Liu
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunmei Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoqian Liu
- Department of Geriatric Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Hong Li
- Department of Geriatric Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Jiangjiu Liang
- Department of Geriatric Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Guang Yang
- Department of Geriatric Cardiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Zhiming Ge
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
27
|
Mongelli A, Martelli F, Farsetti A, Gaetano C. The Dark That Matters: Long Non-coding RNAs as Master Regulators of Cellular Metabolism in Non-communicable Diseases. Front Physiol 2019; 10:369. [PMID: 31191327 PMCID: PMC6539782 DOI: 10.3389/fphys.2019.00369] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs are pivotal for many cellular functions, such as splicing, gene regulation, chromosome structure, and hormone-like activity. Here, we will report about the biology and the general molecular mechanisms associated with long non-coding RNAs (lncRNAs), a class of >200 nucleotides-long ribonucleic acid sequences, and their role in chronic non-transmissible diseases. In particular, we will summarize knowledge about some of the best-characterized lncRNAs, such as H19 and MALAT1, and how they regulate carbohydrate and lipid metabolism as well as protein synthesis and degradation. Evidence is discussed about how lncRNAs expression might affect cellular and organismal metabolism and whether their modulation could provide ground for the development of innovative treatments.
Collapse
Affiliation(s)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Antonella Farsetti
- Institute of Cell Biology and Neurobiology, National Research Council, Università Cattolica di Roma, Rome, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, ICS Maugeri S.p.A., Pavia, Italy
| |
Collapse
|
28
|
Qi YH, Zhu R, Wang Q, Li Q, Liu YD, Qian ZY, Yang ZH, Mu ZH, Liu XJ, Zhang MY, Wang X, Liao XY, Wan Q, Lu D, Zou YY. Early intervention with gastrodin reduces striatal neurotoxicity in adult rats with experimentally‑induced diabetes mellitus. Mol Med Rep 2019; 19:3114-3122. [PMID: 30816461 PMCID: PMC6423552 DOI: 10.3892/mmr.2019.9954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity in the striatum has an important role in neurodegenerative diseases. It has been reported that diabetes mellitus (DM) induces excitotoxicity in striatal neurons, although the underlying mechanism remains to be fully elucidated. The present study aimed to investigate the effect of gastrodin on DM-induced excitotoxicity in the striatal neurons of diabetic rats. Adult Sprague-Dawley rats were divided into control, diabetic, and gastrodin intervention groups. Diabetes in the rats was induced with a single intraperitoneal injection of streptozotocin (65 mg/kg). In the gastrodin groups, the rats were gavaged with 60 or 120 mg/kg/day gastrodin for 6 weeks, 3 weeks following the induction of diabetes. Pathological alterations in the striatum were assessed using hematoxylin and eosin (H&E) staining. The protein expression levels of phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, p-mitogen-activated protein kinase kinase (MEK)1/2, tyrosine receptor kinase B (TrKB) and brain-derived neurotrophic factor (BDNF) in the striatal neurons were evaluated by western blotting and double immunofluorescence. Additionally, the extracellular levels of glutamate were measured by microanalysis followed by high-pressure-liquid-chromatography. In diabetic rats, striatal neuronal degeneration was evident following H&E staining, which revealed the common occurrence of pyknotic nuclei. This was coupled with an increase in glutamate levels in the striatal tissues. The protein expression levels of p-ERK1/2, p-MEK1/2, TrKB and BDNF in the striatal tissues were significantly increased in the diabetic rats compared with those in the normal rats. In the gastrodin groups, degeneration of the striatal neurons was ameliorated. Furthermore, the expression levels of glutamate, p-ERK1/2, p-MEK1/2, TrKB and BDNF in the striatal neurons were decreased. From these findings, it was concluded that reduced neurotoxicity in striatal neurons following treatment with gastrodin may be attributed to its suppressive effects on the expression of p-ERK1/2, p-MEK1/2, BDNF and TrKB.
Collapse
Affiliation(s)
- Yu-Han Qi
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Rui Zhu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qing Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yi-Dan Liu
- Institute of Drug Discovery and Development, Kunming Pharmaceutical Corporation, Kunming, Yunnan 650500, P.R. China
| | - Zhong-Yi Qian
- Department of Morphological Laboratory, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Hong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Hao Mu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xin-Jie Liu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Mei-Yan Zhang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xin-Yu Liao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Neurosurgery of The Affiliated Hospital, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Di Lu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
29
|
Tao H, Song ZY, Ding XS, Yang JJ, Shi KH, Li J. LncRNAs and miRs as epigenetic signatures in diabetic cardiac fibrosis: new advances and perspectives. Endocrine 2018; 62:281-291. [PMID: 30054866 DOI: 10.1007/s12020-018-1688-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes, which further lead to heartfailure. It is known that diabetes-induced cardiac fibrosis is a key pathogenic factor contributing topathological changes in DCM. However, pathogenetic mechanisms underlying diabetes cardiac fibrosis arestill elusive. Recent studies have indicated that noncoding RNAs (ncRNAs) play a key role in diabetescardiac fibrosis. The increasing complexity of epigenetic regulator poses great challenges to ourconventional conceptions regarding how ncRNAs regulate diabetes cardiac fibrosis. METHODS We searched PubMed, Web of Science, and Scopus for manuscripts published prior to April 2018 using keywords "Diabetic cardiomyopathy" AND " diabetes cardiac fibrosis " OR " noncoding RNAs " OR " longnoncoding RNAs " OR " microRNAs " OR "epigenetic". Manuscripts were collated, studied and carriedforward for discussion where appropriate. RESULTS Based on the view that during diabetic cardiac fibrosis, ncRNAs are able to regulate diabetic cardiac fibrosisby targeting genes involved in epigenetic pathways. Many studies have focused on ncRNAs, an epigeneticregulator deregulating protein-coding genes in diabetic cardiac fibrosis, to identify potential therapeutictargets. Recent advances and new perspectives have found that long noncoding RNAs and microRNAs,exert their own effects on the progression of diabetic cardiac fibrosis. CONCLUSION We firstly examine the growing role of ncRNAs characteristics and ncRNAs-regulated genes involved indiabetic cardiac fibrosis. Then, we provide several possible therapeutic strategies and highlight the potentialof molecular mechanisms in which targeting epigenetic regulators are considered as an effective means of treating diabetic cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, 230601, Hefei, China
| | - Zheng-Yu Song
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, 210009, Nanjing, China.
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 230601, Hefei, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, 230601, Hefei, China.
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, Nanjing, China.
| | - Jun Li
- School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| |
Collapse
|
30
|
Yue Y, Lv W, Zhang L, Kang W. MiR-147b influences vascular smooth muscle cell proliferation and migration via targeting YY1 and modulating Wnt/β-catenin activities. Acta Biochim Biophys Sin (Shanghai) 2018; 50:905-913. [PMID: 30060075 DOI: 10.1093/abbs/gmy086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. Dysregulation of microRNAs (miRNAs) has been found to be associated with cardiovascular diseases such as atherosclerosis. In the present study, we examined the role of miR-147b in the proliferation and migration of vascular smooth muscle cells (VSMCs). Quantitative real-time PCR was performed to determine the expression levels of miR-147b and Yin Yang 1 (YY1) mRNA. CCK-8, transwell migration and wound healing assays were used to determine cell proliferation and migration of VSMCs, respectively. Luciferase reporter assay confirmed the downstream target of miR-147b. The protein level of YY1 was measured by western blot analysis. Platelet-derived growth factor-bb (PDGF-bb) treatment promoted cell proliferation and increased miR-147b expression in VSMCs. Overexpression of miR-147b enhanced cell proliferation and migration of VSMCs, while knock-down of miR-147b suppressed cell proliferation and migration of VSMCs or PDGF-bb-treated VSMCs. Further, bioinformatics prediction and luciferase reporter assay showed that YY1 was a downstream target of miR-147b, and miR-147b negatively regulated the mRNA and protein expression of YY1 in VSMCs. Overexpression of YY1 inhibited cell proliferation and migration of VSMCs and attenuated the effects of miR-147b overexpression on cell proliferation and migration. In addition, overexpression of miR-147b increased the Wnt/β-catenin signaling activities in VSMCs. In conclusion, our results suggest that miR-147b plays important roles in the control of cell proliferation and migration of VSMCs possibly via targeting YY1.
Collapse
Affiliation(s)
- Yulun Yue
- Department of Clinical Laboratory, The Affiliated Baoji Hospital of Xi'an Medical University, Xi'an, China
| | - Wenyan Lv
- Department of Clinical Laboratory, The Affiliated Baoji Hospital of Xi'an Medical University, Xi'an, China
| | - Lin Zhang
- Department of Clinical Laboratory, The Affiliated Baoji Hospital of Xi'an Medical University, Xi'an, China
| | - Wei Kang
- Xi'an Tianbo Medical Laboratory, Xi'an, China
| |
Collapse
|
31
|
Patanè S. Genetic Substrate, QTc Duration, and Arrhythmia Risk in LQTS. J Am Coll Cardiol 2018; 72:700-701. [DOI: 10.1016/j.jacc.2018.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 10/28/2022]
|
32
|
Zhou M, Gao M, Luo Y, Gui R, Ji H. Long non-coding RNA metallothionein 1 pseudogene 3 promotes p2y12 expression by sponging miR-126 to activate platelet in diabetic animal model. Platelets 2018; 30:452-459. [PMID: 29617185 DOI: 10.1080/09537104.2018.1457781] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Platelet hyperaggregation and hypercoagulation are associated with increase of thrombogenic risk, especially in patients with type 2 diabetes (T2D). High activity of P2Y12 receptor is found in T2D patients, exposing such patients to a prothrombotic condition. P2Y12 is a promising target for antiplatelet, but due to P2Y12 receptor constitutive activation, the clinical practical phenomena such as "clopidogrel resistance" are commonly occurring. In this study, we investigate the role of lncRNA on platelet activation. By lncRNA array, we screened thousands of differentially expressed lncRNA in megakaryocytes from T2D patients and confirmed that lncRNA metallothionein 1 pseudogene 3 (MT1P3) was significantly upregulated in megakaryocytes from T2D patients than in healthy controls. And we further investigate the biofunction of MT1P3 on platelet activation and the regulatory mechanism on p2y12. MT1P3 was positively correlated with p2y12 mRNA levels and promoted p2y12 expression by sponging miR-126. Knockdown of MT1P3 by siRNA reduced p2y12 expression, inhibiting platelet activation and aggregation in diabetes animal model. In conclusion, our findings identify MT1P3 as a key regulator in platelet activation by increasing p2y12 expression through sponging miR-126 under T2D condition. These findings may provide a new insight for managing platelet hyperactivity-related diseases.
Collapse
Affiliation(s)
- Ming Zhou
- a Department of Hematology , Hunan Provincial People's Hospital, The first affiliated hospital of Hunan normal University , Hunan Province , China
| | - Meng Gao
- b Department of Transfusion , The Third Xiangya Hospital, Central South University , Changsha , China
| | - Yanwei Luo
- b Department of Transfusion , The Third Xiangya Hospital, Central South University , Changsha , China
| | - Rong Gui
- b Department of Transfusion , The Third Xiangya Hospital, Central South University , Changsha , China
| | - Hongwen Ji
- c Department of Anesthesiology , Transfusion Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College , Beijing , China
| |
Collapse
|
33
|
miR-214-Dependent Increase of PHLPP2 Levels Mediates the Impairment of Insulin-Stimulated Akt Activation in Mouse Aortic Endothelial Cells Exposed to Methylglyoxal. Int J Mol Sci 2018; 19:ijms19020522. [PMID: 29425121 PMCID: PMC5855744 DOI: 10.3390/ijms19020522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 01/08/2023] Open
Abstract
Evidence has been provided linking microRNAs (miRNAs) and diabetic complications, by the regulation of molecular pathways, including insulin-signaling, involved in the pathophysiology of vascular dysfunction. Methylglyoxal (MGO) accumulates in diabetes and is associated with cardiovascular complications. This study aims to analyze the contribution of miRNAs in the MGO-induced damaging effect on insulin responsiveness in mouse aortic endothelial cells (MAECs). miRNA modulation was performed by transfection of specific miRNA mimics and inhibitors in MAECs, treated or not with MGO. miRNA-target protein levels were evaluated by Western blot. PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) regulation by miR-214 was tested by luciferase assays and by the use of a target protector specific for miR-214 on PHLPP2-3′UTR. This study reveals a 4-fold increase of PHLPP2 in MGO-treated MAECs. PHLPP2 levels inversely correlate with miR-214 modulation. Moreover, miR-214 overexpression is able to reduce PHLPP2 levels in MGO-treated MAECs. Interestingly, a direct regulation of PHLPP2 is proved to be dependent by miR-214. Finally, the inhibition of miR-214 impairs the insulin-dependent Akt activation, while its overexpression rescues the insulin effect on Akt activation in MGO-treated MAECs. In conclusion, this study shows that PHLPP2 is a target of miR-214 in MAECs, and identifies miR-214 downregulation as a contributing factor to MGO-induced endothelial insulin-resistance.
Collapse
|
34
|
Corella D, Coltell O, Macian F, Ordovás JM. Advances in Understanding the Molecular Basis of the Mediterranean Diet Effect. Annu Rev Food Sci Technol 2018; 9:227-249. [PMID: 29400994 DOI: 10.1146/annurev-food-032217-020802] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increasingly, studies showing the protective effects of the Mediterranean diet (MedDiet) on different diseases (cardiovascular, diabetes, some cancers, and even total mortality and aging indicators) are being published. The scientific evidence level for each outcome is variable, and new studies are needed to better understand the molecular mechanisms whereby the MedDiet may exercise its effects. Here, we present recent advances in understanding the molecular basis of MedDiet effects, mainly focusing on cardiovascular diseases but also discussing other related diseases. There is heterogeneity in defining the MedDiet, and it can, owing to its complexity, be considered as an exposome with thousands of nutrients and phytochemicals. We review MedDiet composition and assessment as well as the latest advances in the genomic, epigenomic (DNA methylation, histone modifications, microRNAs, and other emerging regulators), transcriptomic (selected genes and whole transcriptome), and metabolomic and metagenomic aspects of the MedDiet effects (as a whole and for its most typical food components). We also present a critical review of the limitations of the studies undertaken and propose new analyses and greater bioinformatic integration to better understand the most important molecular mechanisms whereby the MedDiet as a whole, or its main food components, may exercise their protective effects.
Collapse
Affiliation(s)
- Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, Valencia, 46010, Spain; .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, 28029, Spain.,Department of Computer Languages and Systems, School of Technology and Experimental Sciences, Universitat Jaume I, Castellón, 12071, Spain
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts 02111, USA.,Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,IMDEA Alimentación, Madrid, 28049, Spain
| |
Collapse
|
35
|
Pechlivani N, Ajjan RA. Thrombosis and Vascular Inflammation in Diabetes: Mechanisms and Potential Therapeutic Targets. Front Cardiovasc Med 2018; 5:1. [PMID: 29404341 PMCID: PMC5780411 DOI: 10.3389/fcvm.2018.00001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease remains the main cause of morbidity and mortality in patients with diabetes. The risk of vascular ischemia is increased in this population and outcome following an event is inferior compared to individuals with normal glucose metabolism. The reasons for the adverse vascular profile in diabetes are related to a combination of more extensive atherosclerotic disease coupled with an enhanced thrombotic environment. Long-term measures to halt the accelerated atherosclerotic process in diabetes have only partially addressed vascular pathology, while long-term antithrombotic management remains largely similar to individuals without diabetes. We address in this review the pathophysiological mechanisms responsible for atherosclerosis with special emphasis on diabetes-related pathways. We also cover the enhanced thrombotic milieu, characterized by increased platelet activation, raised activity of procoagulant proteins together with compromised function of the fibrinolytic system. Potential new therapeutic targets to reduce the risk of atherothrombosis in diabetes are explored, including alternative use of existing therapies. Special emphasis is placed on diabetes-specific therapeutic targets that have the potential to reduce vascular risk while keeping an acceptable clinical side effect profile. It is now generally acknowledged that diabetes is not a single clinical entity but a continuum of various stages of the condition with each having a different vascular risk. Therefore, we propose that future therapies aiming to reduce vascular risk in diabetes require a stratified approach with each group having a "stage-specific" vascular management strategy. This "individualized care" in diabetes may prove to be essential to improve vascular outcome in this high risk population.
Collapse
Affiliation(s)
- Nikoletta Pechlivani
- School of Medicine, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Ramzi A Ajjan
- School of Medicine, Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
36
|
Zhao Y, Cong L, Lukiw WJ. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication. Cell Mol Neurobiol 2018; 38:133-140. [PMID: 28879580 PMCID: PMC11482019 DOI: 10.1007/s10571-017-0547-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Anatomy and Cell Biology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA
| | - Lin Cong
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA
- Department of Neurology, Shengjing Hospital, China Medical University, 36 No. 3 Street, Heping District, Shenyang, Liaoning, China
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA.
- Department of Neurology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
- Department of Ophthalmology, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112-2272, USA.
| |
Collapse
|
37
|
De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne) 2018; 9:2. [PMID: 29387042 PMCID: PMC5776102 DOI: 10.3389/fendo.2018.00002] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead to heart failure through a variety of mechanisms, including myocardial infarction and chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intracellular signaling pathways, energy production, redox status, increased susceptibility to ischemia, and extracellular matrix remodeling. The close relationship between type 2 DM and CVD has led to the common soil hypothesis, postulating that both conditions share common genetic and environmental factors influencing this association. However, although the common risk factors of both CVD and type 2 DM, such as obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be identified in the majority of affected patients, less is known about how these factors influence both conditions, so that efforts are still needed for a more comprehensive understanding of this relationship. The genetic, epigenetic, and environmental backgrounds of both type 2 DM and CVD have been more recently studied and updated. However, the underlying pathogenetic mechanisms have seldom been investigated within the broader shared background, but rather studied in the specific context of type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 DM and CVD are not entirely understood and many aspects still require elucidation, an integrated description of the genetic, epigenetic, and environmental influences involved in the concomitant development of both diseases is of paramount importance to shed new light on the interlinks between type 2 DM and CVD. This review addresses the current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation has been implicated in both disease conditions, either etiologically or as cause for their progression. Understanding the links between these disorders may help to drive future research toward an integrated pathophysiological approach and to provide future directions in the field.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Daniela P. Foti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| |
Collapse
|
38
|
Cao G, Fan J, Yu H, Chen Z. Resveratrol attenuates high glucose-induced cardiomyocytes injury via interfering ROS-MAPK-NF-κB signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:48-57. [PMID: 31938086 PMCID: PMC6957970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/07/2017] [Indexed: 06/10/2023]
Abstract
Cardiomyocyte inflammatory injury is likely required for cardiomyocytes death under hyperglycemia condition. Resveratrol (Res) is famous for its anti-inflammatory effect. However, there are few reports about the anti-inflammatory effect of Res induced by high glucose in cardiomyocytes. The aim of the present study is to investigate the inflammatory effect of high glucose and the anti-inflammatory effect of Res induced by high glucose in cardiomyocytes. Primary cardiomyocytes were isolated from new born SD rats and high glucose (30 mmol/L) was used as a stimulant for cell injury. Cell viability was assayed by CCK-8 method; protein expression was identified by Western blot or ELISA, respectively. The production of reactive oxygen species (ROS) was observed under a fluorescence microscope. The results indicated that High glucose (30 mmol/L) significantly decreased the cell viability of cardiomyocytes after co-cultivated for 12 h and had a time-dependent manner, and increased IL-1β, IL-6 and TNF-α secretion in cardiomyocytes. The injury effect of high glucose involved in ROS-MAPK-NF-κB signaling pathway. For the reason that antioxidant NAC, ERK1/2, p38 MAPK and NF-κB specific pathway inhibitors was able to abolish the secretion of this inflammatory factors; pretreatment with antioxidant NAC significantly decreased the level of phosphorylated ERK1/2, p38 MAPK and nuclear NF-κB; pretreatment of PD98059 and SB203580 can significantly decrease NF-κB level in nuclei. After treatment with Res 20 μmol/L for 12 h, IL-1β, IL-6 and TNF-α secretion were markedly decreased, and the phosphorylation of ERK1/2, p38 MAPK and NF-κB level were also decreased. All the results showed that Res attenuates high glucose-induced inflammatory injury through ROS-ERK1/2/p38-NF-κB signaling pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Ge Cao
- Department of Cardiovascular Surgery, West China Hospital of Sichuan UniversityChengdu, China
| | - Jingxiu Fan
- Department of Cardiovascular Surgery, West China Hospital of Sichuan UniversityChengdu, China
| | - Hui Yu
- Department of Cardiovascular Surgery, West China Hospital of Sichuan UniversityChengdu, China
| | - Zejun Chen
- Department of Cardiology, The Third Hospital of ChengduChengdu, China
| |
Collapse
|
39
|
Fosmo AL, Skraastad ØB. The Kv7 Channel and Cardiovascular Risk Factors. Front Cardiovasc Med 2017; 4:75. [PMID: 29259974 PMCID: PMC5723334 DOI: 10.3389/fcvm.2017.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
Potassium channels play a pivotal role in the regulation of excitability in cells such as neurons, cardiac myocytes, and vascular smooth muscle cells. The KCNQ (Kv7) family of voltage-activated K+ channels hyperpolarizes the cell and stabilizes the membrane potential. Here, we outline how Kv7 channel activity may contribute to the development of the cardiovascular risk factors such as hypertension, diabetes, and obesity. Questions and hypotheses regarding previous and future research have been raised. Alterations in the Kv7 channel may contribute to the development of cardiovascular disease (CVD). Pharmacological modification of Kv7 channels may represent a possible treatment for CVD in the future.
Collapse
Affiliation(s)
- Andreas L Fosmo
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Øyvind B Skraastad
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Al Hariri M, Elmedawar M, Zhu R, Jaffa MA, Zhao J, Mirzaei P, Ahmed A, Kobeissy F, Ziyadeh FN, Mechref Y, Jaffa AA. Proteome profiling in the aorta and kidney of type 1 diabetic rats. PLoS One 2017; 12:e0187752. [PMID: 29121074 PMCID: PMC5679573 DOI: 10.1371/journal.pone.0187752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/25/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetes is associated with a number of metabolic and cardiovascular risk factors that contribute to a high rate of microvascular and macrovascular complications. The risk factors and mechanisms that contribute to the development of micro- and macrovascular disease in diabetes are not fully explained. In this study, we employed mass spectrometric analysis using tandem LC-MS/MS to generate a proteomic profile of protein abundance and post-translational modifications (PTM) in the aorta and kidney of diabetic rats. In addition, systems biology analyses were employed to identify key protein markers that can provide insights into molecular pathways and processes that are differentially regulated in the aorta and kidney of type 1 diabetic rats. Our results indicated that 188 (111 downregulated and 77 upregulated) proteins were significantly identified in the aorta of diabetic rats compared to normal controls. A total of 223 (109 downregulated and 114 upregulated) proteins were significantly identified in the kidney of diabetic rats compared to normal controls. When the protein profiles from the kidney and aorta of diabetic and control rats were analyzed by principal component analysis, a distinct separation of the groups was observed. In addition, diabetes resulted in a significant increase in PTM (oxidation, phosphorylation, and acetylation) of proteins in the kidney and aorta and this effect was partially reversed by insulin treatment. Ingenuity pathway analysis performed on the list of differentially expressed proteins depicted mitochondrial dysfunction, oxidative phosphorylation and acute phase response signaling to be among the altered canonical pathways by diabetes in both tissues. The findings of the present study provide a global proteomics view of markers that highlight the mechanisms and putative processes that modulate renal and vascular injury in diabetes.
Collapse
Affiliation(s)
- Moustafa Al Hariri
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohamad Elmedawar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Adnan Ahmed
- Center for Biotechnology & Genomics, Texas Tech University, Canton & Main, Experimental Sciences building, Lubbock, Texas, United States of America
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fuad N. Ziyadeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, Texas, United States of America
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
41
|
Retnakaran R. Novel Biomarkers for Predicting Cardiovascular Disease in Patients With Diabetes. Can J Cardiol 2017; 34:624-631. [PMID: 29287943 DOI: 10.1016/j.cjca.2017.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/13/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022] Open
Abstract
It is generally acknowledged that patients with diabetes comprise a high-risk population for the development of cardiovascular disease. However, it is perhaps less well recognized that there actually exists considerable heterogeneity in vascular risk within this patient population, with a sizable subset of individuals seemingly at low risk for major cardiovascular events despite the presence of diabetes. Because traditional clinical risk calculators have shown wide variability in their performance in the setting of diabetes, there exists a need for additional risk predictors in this patient population. In this context, there has been considerable interest in the potential utility of circulating biomarkers as clinical tools that might facilitate risk stratification and thereby guide therapeutic and preventative decision-making. Coupled with the current era of dedicated cardiovascular outcome trials in type 2 diabetes, this interest has spawned a growing literature of recent studies that evaluated potential biomarkers. To date, these studies have identified N-terminal pro-B-type natriuretic peptide, high-sensitivity cardiac troponins, and growth differentiation factor-15 as cardiovascular biomarkers of particular potential in patients with diabetes. Furthermore, recognizing the potential benefit of collective consideration of different biomarkers reflecting distinct pathophysiologic processes that might contribute to the development of cardiovascular disease, there is emerging emphasis on the evaluation of combinations of biomarkers for optimal risk prediction. Although not currently ready for clinical practice, this rapidly-growing topic of biomarker research might ultimately facilitate the goal of individualized risk stratification and thereby enable truly personalized management of diabetes.
Collapse
Affiliation(s)
- Ravi Retnakaran
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada; Division of Endocrinology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
Jiang J, Zhao L, Lin L, Gui M, Aleteng Q, Wu B, Wang S, Pan B, Ling Y, Gao X. Postprandial Blood Glucose Outweighs Fasting Blood Glucose and HbA1c in screening Coronary Heart Disease. Sci Rep 2017; 7:14212. [PMID: 29079813 PMCID: PMC5660170 DOI: 10.1038/s41598-017-14152-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
The objective of the present study is to assess the performance of fasting blood glucose (FBG), postprandial blood glucose (PBG), and glycated hemoglobin (HbA1c) as screening for coronary heart disease (CHD) in an inpatient population undergoing coronary angiography. 1852 consecutive patients scheduled for coronary angiography were classified into Normal Glucose Tolerance (NGT), Impaired Glucose Regulation (IGR), and diabetes, based on FBG, PBG, and HbA1c. Correlations of Gensini score with glucose metabolism and insulin resistance were analyzed. The associations between glycemic variables and Gensini score or the presence of CHD were analyzed by multiple linear regression and logistic regression, respectively. CHD was diagnosed in 488, 622, and 414 patients with NGT, IGR, and diabetes, respectively. Gensini score was positively correlated with FBG (r = 0.09, p < 0.01), PBG (r = 0.20, p < 0.01), and HbA1c (r = 0.19, p < 0.01). Gensini score was not correlated with fasting insulin (r = −0.081, p = 0.36), post-prandial insulin (r = −0.02, p = 0.61), or HOMAIR (r = −0.0059, p = 0.13). When FBG, PBG and HbA1c were pooled altogether, only PBG persisted in its association with Gensini score and the prevalence of CHD. The severity of CHD was associated with glucose rather than insulin resistance in this Chinese population. PBG was optimally correlated with the presence and severity of CHD.
Collapse
Affiliation(s)
- Jingjing Jiang
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Lin Zhao
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Liu Lin
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Minghui Gui
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Qiqige Aleteng
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Bingjie Wu
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Shanshan Wang
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Yan Ling
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, ZhongShan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Zhu LL, Huang X, Yu W, Chen H, Chen Y, Dai YT. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia 2017; 50. [PMID: 29057541 DOI: 10.1111/and.12871] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- L. L. Zhu
- Department of Urology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi Jiangsu China
| | - X. Huang
- Department of Urology; Wuxi People's Hospital Affiliated to Nanjing Medical University; Wuxi Jiangsu China
| | - W. Yu
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - H. Chen
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - Y. Chen
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| | - Y. T. Dai
- Department of Andrology; Drum tower Hospital of Nanjing University Medical School; Nanjing Jiangsu China
| |
Collapse
|
44
|
Khullar M, Cheema BS, Raut SK. Emerging Evidence of Epigenetic Modifications in Vascular Complication of Diabetes. Front Endocrinol (Lausanne) 2017; 8:237. [PMID: 29085333 PMCID: PMC5649155 DOI: 10.3389/fendo.2017.00237] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
Genes, dietary, and lifestyle factors have been shown to be important in the pathophysiology of diabetes and associated microvascular complications. Epigenetic modifications, such as DNA methylation, histone acetylation, and post-transcriptional RNA regulation, are being increasingly recognized as important mediators of the complex interplay between genes and the environment. Recent studies suggest that diabetes-induced dysregulation of epigenetic mechanisms resulting in altered gene expression in target cells can lead to diabetes-associated complications, such as diabetic cardiomyopathy, diabetic nephropathy, retinopathy, and so on, which are the major contributors to diabetes-associated morbidity and mortality. Thus, knowledge of dysregulated epigenetic pathways involved in diabetes can provide much needed new drug targets for these diseases. In this review, we constructed our search strategy to highlight the role of DNA methylation, modifications of histones and role of non-coding RNAs (microRNAs and long non-coding RNAs) in vascular complications of diabetes, including cardiomyopathy, nephropathy, and retinopathy.
Collapse
Affiliation(s)
- Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Satish K. Raut
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
45
|
Liyanage KIP, Ganegoda GU. Therapeutic Approaches and Role of ncRNAs in Cardiovascular Disorders and Insulin Resistance. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4078346. [PMID: 29057258 PMCID: PMC5625813 DOI: 10.1155/2017/4078346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Diseases resulting from alterations in gene expressions through mutations in the genes or through changes in the gene expression regulation could be identified through the analysis of RNA expressions. ncRNAs play a significant role in regulation of the gene expression by controlling the expression levels of the coding RNAs and other cellular processes. Discoveries have shown that the human genome is encoded with sequences responsible for the transcription of thousands of ncRNAs. Even though the studies conducted on ncRNAs are still at initial stages, facts established so far display biomarkers that confirm their relationship with certain diseases such as cancers, cardiovascular diseases, and insulin resistance. These studies have been facilitated with high throughput modern sequencing techniques such as microarrays and RNA sequencing. The data obtained through the above analysis are processed with the aid of existing databases, to deduce conclusions on different diagnostic biomarkers and therapeutic targets for specific diseases. This review focuses on the association of ncRNAs in disease prediction, focusing mainly on cardiovascular diseases and disorders caused by insulin resistance. The report also analyzes regulatory functions of ncRNAs and novel approaches used in disease therapeutics.
Collapse
|
46
|
Mozos I, Malainer C, Horbańczuk J, Gug C, Stoian D, Luca CT, Atanasov AG. Inflammatory Markers for Arterial Stiffness in Cardiovascular Diseases. Front Immunol 2017; 8:1058. [PMID: 28912780 PMCID: PMC5583158 DOI: 10.3389/fimmu.2017.01058] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/15/2017] [Indexed: 01/13/2023] Open
Abstract
Arterial stiffness predicts an increased risk of cardiovascular events. Inflammation plays a major role in large arteries stiffening, related to atherosclerosis, arteriosclerosis, endothelial dysfunction, smooth muscle cell migration, vascular calcification, increased activity of metalloproteinases, extracellular matrix degradation, oxidative stress, elastolysis, and degradation of collagen. The present paper reviews main mechanisms explaining the crosstalk between inflammation and arterial stiffness and the most common inflammatory markers associated with increased arterial stiffness, considering the most recent clinical and experimental studies. Diverse studies revealed significant correlations between the severity of arterial stiffness and inflammatory markers, such as white blood cell count, neutrophil/lymphocyte ratio, adhesion molecules, fibrinogen, C-reactive protein, cytokines, microRNAs, and cyclooxygenase-2, in patients with a broad variety of diseases, such as metabolic syndrome, diabetes, coronary heart disease, peripheral arterial disease, malignant and rheumatic disorders, polycystic kidney disease, renal transplant, familial Mediterranean fever, and oral infections, and in women with preeclampsia or after menopause. There is strong evidence that inflammation plays an important and, at least, partly reversible role in the development of arterial stiffness, and inflammatory markers may be useful additional tools in the assessment of the cardiovascular risk in clinical practice. Combined assessment of arterial stiffness and inflammatory markers may improve non-invasive assessment of cardiovascular risk, enabling selection of high-risk patients for prophylactic treatment or more regular medical examination. Development of future destiffening therapies may target pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Ioana Mozos
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Jarosław Horbańczuk
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
| | - Cristina Gug
- Department of Microscopic Morphology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- 2nd Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Constantin Tudor Luca
- Department of Cardiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|