1
|
Fuse H, Zheng Y, Alzoubi I, Graeber MB. TAMing Gliomas: Unraveling the Roles of Iba1 and CD163 in Glioblastoma. Cancers (Basel) 2025; 17:1457. [PMID: 40361384 PMCID: PMC12070867 DOI: 10.3390/cancers17091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Gliomas, the most common type of primary brain tumor, are a significant cause of morbidity and mortality worldwide. Glioblastoma, a highly malignant subtype, is particularly common, aggressive, and resistant to treatment. The tumor microenvironment (TME) of gliomas, especially glioblastomas, is characterized by a distinct presence of tumor-associated macrophages (TAMs), which densely infiltrate glioblastomas, a hallmark of these tumors. This macrophage population comprises both tissue-resident microglia as well as macrophages derived from the walls of blood vessels and the blood stream. Ionized calcium-binding adapter molecule 1 (Iba1) and CD163 are established cellular markers that enable the identification and functional characterization of these cells within the TME. This review provides an in-depth examination of the roles of Iba1 and CD163 in malignant gliomas, with a focus on TAM activation, migration, and immunomodulatory functions. Additionally, we will discuss how recent advances in AI-enhanced cell identification and visualization techniques have begun to transform the analysis of TAMs, promising unprecedented precision in their characterization and providing new insights into their roles within the TME. Iba1 and CD163 appear to have both unique and shared roles in glioma pathobiology, and both have the potential to be targeted through different molecular and cellular mechanisms. We discuss the therapeutic potential of Iba1 and CD163 based on available preclinical (experimental) and clinical (human tissue-based) evidence.
Collapse
Affiliation(s)
- Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Sydney, NSW 2010, Australia;
| | - Yuqi Zheng
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
3
|
Vámos E, Vántus VB, Deák P, Kálmán N, Sturm EM, Nayak BB, Makszin L, Loránd T, Gallyas FJ, Radnai B. MIF tautomerase inhibitor TE-11 prevents inflammatory macrophage activation and glycolytic reprogramming while reducing leukocyte migration and improving Crohn's disease-like colitis in male mice. Front Immunol 2025; 16:1558079. [PMID: 40330457 PMCID: PMC12053165 DOI: 10.3389/fimmu.2025.1558079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Background & aims Crohn's disease (CD) is a chronic inflammatory disorder primarily affecting the gastrointestinal tract. Leukocyte recruitment, M1 macrophage polarization and associated metabolic reprogramming are hallmarks of its pathomechanism. Here, we tested TE-11, a potent MIF tautomerase inhibitor (IC50 = 5.63 μmol/dm3) in experimental Crohn's disease in male mice, in leukocyte recruitment and in inflammatory M1 macrophage activation. Methods 2,4,6-trinitrobenzenesulfonic acid-(TNBS)-induced colitis was utilized as a CD-model in male mice. We performed macroscopic scoring and cytokine measurements. We also analyzed MIF-induced leukocyte migration and evaluated apoptosis. LPS+IFN-γ-induced RAW264.7 cells were applied as a M1 macrophage model. We performed qPCR, ROS and nitrite determinations, ELISA measurements, mitochondrial oxygen consumption rate and extracellular acidification rate determinations. Results TE-11 improved mucosal damage, reduced inflammation score and concentration of IL-1β and IL-6 in the colon. It inhibited MIF-induced human blood eosinophil and neutrophil migration and counteracted the anti-apoptotic effect of MIF. In macrophages, MIF inhibition prevented M1 polarization by downregulating HIF-1α gene expression in LPS+IFN-γ-activated cells. Additionally, the molecule reduced mRNA transcription and protein expression of chemokine CCL-2 and cytokine IL-6 while further increasing SOD2 gene transcription and decreased ROS and nitrite production in macrophages. During inflammatory metabolic reprogramming, TE-11 prevented LPS+IFN-γ-induced metabolic shift from OXPHOS to glycolysis. Similarly to anti-inflammatory M2 cells, TE-11 improved mitochondrial energy production by increasing basal respiration, ATP production, coupling efficiency, maximal respiration and spare respiratory capacity. Conclusion Comprehensively, TE-11, a MIF tautomerase inhibitor ameliorates CD-like colitis, reduces MIF-induced eosinophil and neutrophil migration and prevents M1 polarization and associated metabolic reprogramming; therefore, it may prove beneficial as a potential drug candidate regarding CD therapy.
Collapse
Affiliation(s)
- Eszter Vámos
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Viola Bagóné Vántus
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Deák
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Nikoletta Kálmán
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Eva Maria Sturm
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Barsha Baisakhi Nayak
- Otto-Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Tamás Loránd
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ferenc Jr Gallyas
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Radnai
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Zehetner L, Széliová D, Kraus B, Hernandez Bort JA, Zanghellini J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab Eng 2025; 91:103-118. [PMID: 40220853 DOI: 10.1016/j.ymben.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
HEK293 cells are a versatile cell line extensively used in the production of recombinant proteins and viral vectors, notably Adeno-associated virus (AAV) (Bulcha et al., 2021). Despite their high transfection efficiency and adaptability to various culture conditions, challenges remain in achieving sufficient yields of active viral particles. This study presents a comprehensive multi-omics analysis of two HEK293 strains under good manufacturing practice conditions, focusing on the metabolic and cellular responses during AAV production. The investigation included lipidomic, exometabolomic, and transcriptomic profiling across different conditions and time points. Genome-scale metabolic models (GSMMs) were reconstructed for these strains to elucidate metabolic shifts and identify potential bottlenecks in AAV production. Notably, the study revealed significant differences between a High-producing (HP) and a Low-producing (LP) HEK293 strains, highlighting pseudohypoxia in the LP strain. Key findings include the identification of hypoxia-inducible factor 1-alpha (HIF-1α) as a critical regulator in the LP strain, linking pseudohypoxia to poor AAV productivity. Inhibition of HIF-1α resulted in immediate cessation of cell growth and a 2.5-fold increase in viral capsid production, albeit with a decreased number of viral genomes, impacting the full-to-empty particle ratio. This trade-off is significant because it highlights a key challenge in AAV production: achieving a balance between capsid assembly and genome packaging to optimize the yield of functional viral vectors. Overall this suggests that while HIF-1α inhibition enhances capsid assembly, it simultaneously hampers nucleotide synthesis via the pentose phosphate pathway (PPP), necessary for nucleotide synthesis, and therefore for AAV genome replication.
Collapse
Affiliation(s)
- L Zehetner
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria; Doctoral School of Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - D Széliová
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| | - B Kraus
- Institute of Molecular Biotechnology, Institut für Molekulare Biotechnologie GmbH, Vienna, 1030, Austria
| | - J A Hernandez Bort
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Vienna, Vienna, 1100, Austria.
| | - J Zanghellini
- Department for Analytical Chemistry, University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
5
|
Chen R, Zheng S, Zhao X, Huang H, Xu Y, Qiu C, Li S, Liang X, Mao P, Yan Y, Lin Y, Song S, Cai W, Guan H, Yao Y, Zhu W, Shi X, Ganapathy V, Kou L. Metabolic reprogramming of macrophages by a nano-sized opsonization strategy to restore M1/M2 balance for osteoarthritis therapy. J Control Release 2025; 380:469-489. [PMID: 39921035 DOI: 10.1016/j.jconrel.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Osteoarthritis is a chronic and progressive joint disease accompanied by cartilage degeneration and synovial inflammation. It is associated with an imbalance of synovial macrophage M1/M2 ratio tilting more towards the pro-inflammatory M1 than the anti-inflammatory M2. The M1-macrophages rely on aerobic glycolysis for energy whereas the M2-macrophages derive energy from oxidative phosphorylation. Therefore, inhibiting aerobic glycolysis to induce metabolic reprogramming of macrophages and consequently promote the shift from M1 type to M2 type is a therapeutic strategy for osteoarthritis. Here we developed a macrophage-targeting strategy based on opsonization, using nanoparticles self-assembled to incorporate Chrysin (an anti-inflammatory flavonoid) and V-9302 (an inhibitor of glutamine uptake), and the outer layer modified by immunoglobulin IgG by electrostatic adsorption into IgG/Fe-CV NPs. In vitro studies showed that IgG/Fe-CV NPs effectively target M1 macrophages and inhibit HIF-1α and GLUT-1 essential for aerobic glycolysis and promote polarization from M1 to M2-type macrophages. In vivo, IgG/Fe-CV NPs inhibit inflammation and protect against cartilage damage. The metabolic reprogramming strategy with IgG/Fe-CV NPs to shift macrophage polarization from inflammatory to anti-inflammatory phenotype by inhibiting aerobic glycolysis and glutamine delivery may open up new avenues to treat osteoarthritis.
Collapse
Affiliation(s)
- Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shimin Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengjie Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xindan Liang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Pengfei Mao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinhao Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengnan Song
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiong Guan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinsha Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wanling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
6
|
Jeon S, Baek H, Kim S, Kim Y, Kim J, Kim JW. Microalgae-Derived Microparticles Improve Immunomodulation via Combined Glycolysis and MAPK Activation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8619-8626. [PMID: 40145572 DOI: 10.1021/acs.langmuir.4c05088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Natural polysaccharides possess potent immunostimulatory properties, but their poor solubility impedes efficiency of cellular delivery. This study focuses on extraction of microparticles (MPs) fromEuglena gracilis, a microalgae species characterized by abundant intracellular β-1,3-glucan and flexible cell membrane. We introduce anE. gracilis-derived MP (MPEG) system as a natural carrier for solubilized β-glucan. The MPEG system enhances β-glucan's solubility and loading efficiency through sequential sonication and cell extrusion. In vitro studies reveal that MPEG utilizes multiple endocytosis pathways, including phagocytosis, clathrin-mediated, and lipid raft-mediated routes, for effective β-glucan delivery into cells. Upon cellular internalization, MPEG components trigger dual activation of the MAPK signaling pathway and glycolysis in macrophages, leading to enhanced production of pro-inflammatory cytokines and lactic acid, ultimately strengthening innate immune responses. This MPEG system offers a promising approach to harnessing the immunostimulatory properties of natural polysaccharides while overcoming their solubility limitations, opening new avenues for targeted cellular delivery in immunomodulation therapies.
Collapse
Affiliation(s)
- Saetbyeol Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youngseok Kim
- Technology Innovation Center, Shinsegae International Inc., Seoul 06015, Republic of Korea
| | - Junoh Kim
- Technology Innovation Center, Shinsegae International Inc., Seoul 06015, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Quan T, Li R, Gao T. The Intestinal Macrophage-Intestinal Stem Cell Axis in Inflammatory Bowel Diseases: From Pathogenesis to Therapy. Int J Mol Sci 2025; 26:2855. [PMID: 40243444 PMCID: PMC11988290 DOI: 10.3390/ijms26072855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The gut plays a crucial role in digestion and immunity, so its balance is essential to overall health. This balance relies on dynamic interactions between intestinal epithelial cells, immune cells, and crypt stem cells. Inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, is a chronic relapsing inflammatory disease of the gastrointestinal tract closely related to immune dysfunction. Stem cells, known for their ability to self-renew and differentiate, play an important role in repairing damaged intestinal epithelium and maintaining homeostasis in vivo. Macrophages are key gatekeepers of intestinal immune homeostasis and have a significant impact on IBD. Current research has focused on the link between epithelial cells and stem cells, but interactions with macrophages, which have been recognized as attractive targets for the development of new therapeutic approaches to disease, have been less explored. Recently, the developing field of immunometabolism has reinforced that metabolic reprogramming is a key determinant of macrophage function and subsequent disease progression. The aim of this review is to explore the role of the macrophage-stem cell axis in the maintenance of intestinal homeostasis and to summarize potential approaches to treating IBD by manipulating the cellular metabolism of macrophages, as well as the main opportunities and challenges faced. In summary, our overview provides a framework for understanding the critical role of macrophage immunometabolism in maintaining gut health and potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Ting Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (T.Q.); (R.L.)
| |
Collapse
|
8
|
Zhang H, Lv B, Liu K, Du J, Jin H, Huang Y. Sulfur dioxide controls M1 macrophage polarization by sulphenylation of prolyl hydroxylase 2 at cysteine 260. Free Radic Biol Med 2025; 230:33-47. [PMID: 39892500 DOI: 10.1016/j.freeradbiomed.2025.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
M1 macrophage polarization plays a pivotal role in inflammation-related diseases. However, the endogenous regulatory factors and mechanisms underlying M1 macrophage polarization have not been entirely clarified. This study aimed to explore whether endogenous sulfur dioxide (SO2) is involved in M1 macrophage polarization and its mechanism. In the study, we found that the endogenous SO2/aspartate aminotransferase1 (AAT1) pathway was downregulated during M1 polarization of macrophages induced by lipopolysaccharide (LPS) stimulation, and supplementation with SO2 donors or AAT1 overexpression restored SO2 content, suppressed protein expression of inducible nitric oxide synthase, restrained mRNA level of M1 phenotype-related genes tumor necrosis factor α, interleukin-1β and interleukin-12β and decreased the CD86 expression. In addition, AAT1-knockdowned macrophages exhibited reduced level of hypoxia-inducible factor-1α (HIF-1α) hydroxylation, elevated HIF-1α protein level, and polarization into M1-type, while supplementation with SO2 reversed the above effects. Mechanistically, SO2 maintained prolyl hydroxylase (PHD) activity in a thiol-dependent manner. SO2 maintained PHD2 activity by sulphenylating PHD2 at Cys260, thereby reducing HIF-1α protein levels and subsequently inhibiting M1 macrophage polarization. Besides, SO2 enhanced PHD2 sulphenylation, inhibited M1 macrophage polarization, and alleviated lung damage in a mouse model of LPS-induced acute lung injury. These results suggested that downregulation of the endogenous SO2/AAT1 pathway was a pivotal mechanism for M1 macrophage polarization. SO2 maintained PHD2 activity via sulphenylation of Cys260, and promoted HIF-1α hydroxylation and degradation, thereby impeding M1 macrophage polarization.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Keyu Liu
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, 100191, Peking University, Beijing, China.
| | - Yaqian Huang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, 100191, Peking University, Beijing, China.
| |
Collapse
|
9
|
Prantner D, Vogel SN. Intracellular methylglyoxal accumulation in classically activated mouse macrophages is mediated by HIF-1α. J Leukoc Biol 2025; 117:qiae215. [PMID: 39360990 DOI: 10.1093/jleuko/qiae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 03/30/2025] Open
Abstract
Approximately one million cases of sepsis in the United States occur annually. The early phase of sepsis features dramatic changes in host metabolism and inflammation. While examining the effects of metabolic pathways on inflammation, we discovered that the highly reactive glycolytic metabolite, methylglyoxal (MG), accumulates intracellularly during classical activation of macrophages. Herein, we explored the role of glycolysis and the master regulator of glycolysis, Hypoxia-Inducing Factor-1α (HIF-1α), in inflammation and MG accumulation in mouse and human macrophages. To determine how HIF-1α regulates the inflammatory response of macrophages, we correlated HIF-1α stabilization with proinflammatory gene expression and MG-adduct accumulation in WT vs HIF1a-deficient macrophages treated with LPS or LPS + IFN-γ. A nearly complete loss of HIF-1α protein expression in response to the hypoxia mimetic, cobalt chloride, confirmed the phenotype of the HIF1a-deficient macrophages. Moreover, absence of HIF-1α was also associated with decreased MG accumulation. Increasing the glucose concentration in cultured macrophages was sufficient to cause accumulation of endogenous MG-adducts which correlated with increased Tnf and Il1b expression during classical activation. The use of the MG antagonist, aminoguanidine, led to a significant decrease in Tnf and Il1b expression in both mouse macrophages and the THP-1 human macrophage cell line. Although off-target effects cannot be ruled out, these results are consistent with the possibility that MG regulates cytokine expression in classically activated macrophages. Collectively, this work suggests that HIF-1α stabilization is upstream of MG accumulation and that targeting the activity of HIF-1α in macrophages may be therapeutic during sepsis by limiting endogenous MG accumulation.
Collapse
Affiliation(s)
- Daniel Prantner
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St., Suite 380, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St., Suite 380, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Zhang J, Gao P, Chang WR, Song JY, An FY, Wang YJ, Xiao ZP, Jin H, Zhang XH, Yan CL. The role of HIF-1α in hypoxic metabolic reprogramming in osteoarthritis. Pharmacol Res 2025; 213:107649. [PMID: 39947451 DOI: 10.1016/j.phrs.2025.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The joint dysfunction caused by osteoarthritis (OA) is increasingly becoming a major challenge in global healthcare, and there is currently no effective strategy to prevent the progression of OA. Therefore, better elucidating the relevant mechanisms of OA occurrence and development will provide theoretical basis for formulating new prevention and control strategies. Due to long-term exposure of cartilage tissue to the hypoxic microenvironment of joints, metabolic reprogramming changes occur. Hypoxia-inducible factor-1alpha (HIF-1α), as a core gene regulating hypoxia response in vivo, plays an important regulatory role in the hypoxic metabolism of chondrocytes. HIF-1α adapts to the hypoxic microenvironment by regulating metabolic reprogramming changes such as glycolysis, oxidative phosphorylation (OXPHOS), amino acid metabolism, and lipid metabolism in OA chondrocytes. In addition, HIF-1α also regulates macrophage polarization and synovial inflammation, chondrocytes degeneration and extracellular matrix (ECM) degradation, subchondral bone remodeling and angiogenesis in the hypoxic microenvironment of OA, and affects the pathophysiological progression of OA. Consequently, the regulation of chondrocytes metabolic reprogramming by HIF-1α has become an important therapeutic target for OA. Therefore, this article reviews the mechanism of hypoxia affecting chondrocyte metabolic reprogramming, focusing on the regulatory mechanism of HIF-1α on chondrocyte metabolic reprogramming, and summarizes potential effective ingredients or targets targeting chondrocyte metabolic reprogramming, in order to provide more beneficial basis for the prevention and treatment of clinical OA and the development of effective drugs.
Collapse
Affiliation(s)
- Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Wei-Rong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Jia-Yi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Fang-Yu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Yu-Jie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Zhi-Pan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| | - Xu-Hui Zhang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China
| | - Chun-Lu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China; Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu 73000, PR China.
| |
Collapse
|
12
|
Wong A, Sun Q, Latif II, Karwi QG. Macrophage energy metabolism in cardiometabolic disease. Mol Cell Biochem 2025; 480:1763-1783. [PMID: 39198360 PMCID: PMC11842501 DOI: 10.1007/s11010-024-05099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
In a rapidly expanding body of literature, the major role of energy metabolism in determining the response and polarization status of macrophages has been examined, and it is currently a very active area of research. The metabolic flux through different metabolic pathways in the macrophage is interconnected and complex and could influence the polarization of macrophages. Earlier studies suggested glucose flux through cytosolic glycolysis is a prerequisite to trigger the pro-inflammatory phenotypes of macrophages while proposing that fatty acid oxidation is essential to support anti-inflammatory responses by macrophages. However, recent studies have shown that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully defined yet. In this review, we systematically reviewed and summarized the literature regarding the role of energy metabolism in controlling macrophage activity and how that might be altered in cardiometabolic diseases, namely heart failure, obesity, and diabetes. We critically appraised the experimental studies and methodologies in the published studies. We also highlighted the challenging concepts in macrophage metabolism and identified several research questions yet to be addressed in future investigations.
Collapse
Affiliation(s)
- Angela Wong
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qiuyu Sun
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ismail I Latif
- Department of Microbiology, College of Medicine, University of Diyala, Baqubaa, Diyala, Iraq
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|
13
|
Liang J, Ran Y, Hu C, Zhou J, Ye L, Su W, Liu Z, Xi J. Inhibition of HIF-1α ameliorates pulmonary fibrosis by suppressing M2 macrophage polarization through PRMT1/STAT6 signals. Int Immunopharmacol 2025; 146:113931. [PMID: 39733638 DOI: 10.1016/j.intimp.2024.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
OBJECTIVE Pulmonary fibrosis (PF) is a chronic, progressive, and irreversible lung interstitial disease of unknown etiology with a fatal outcome. M2 macrophages have been recognized to play a significant role in PF pathogenesis. The role of protein hypoxia-inducible factor 1-α (HIF-1α) in M2 macrophage polarization in PF is largely unknown. This study aimed to investigate the role of macrophage HIF-1α in the regulation of PF. METHODS PF was induced in C57BL/6 mice by the intratracheal injection of bleomycin (BLM), and small hairpin RNA (shRNA) lentiviral construct specifically targeting HIF-1α were designed for in vitro and in vivo experiments. In the in vitro experiment, bone marrow-derived macrophages (BMDMs) were used to explore molecular mechanism analysis. In the in vivo experiment, mice were administered BLM intratracheally on day 0, treated with shRNA on day 7, and sacrificed on day 21. Histopathological techniques (H&E and Masson's trichrome staining) were used to evaluate PF severity. Western blot, immunofluorescence, quantitative real-time PCR, and flow cytometry were performed to explore the underlying mechanisms. RESULTS HIF-1α was upregulated and macrophages polarized toward M2 phenotype in BLM-induced mouse pulmonary fibrosis models. By constructing HIF-1α knockdown shRNA lentiviral construct, we found that the knockdown of HIF-1α in macrophages significantly suppressed M2-type polarization in vitro, hence alleviating fibrosis in lung epithelial cells. Further results revealed that HIF-1α in macrophages promoted M2-type polarization by mediating the signal transducer and activator of transcription 6 (STAT6) arginine methylation. Meanwhile, its arginine methylation modification site is at position Arg27. Further experiments indicated that the regulation of STAT6 arginine methylation by HIF-1α mainly depended on the protein arginine methyltransferase 1 (PRMT1). Finally, animal experiments demonstrated that Knockdown of HIF-1α, PRMT1, and STAT6 relieved the BLM-induced pulmonary fibrosis of mice. CONCLUSION HIF-1α may act as a novel factor to promote macrophage of the M2 program. Therapeutic approaches to target macrophage HIF-1α may act as a new therapeutic strategy to combat PF in the future.
Collapse
Affiliation(s)
- Jingjing Liang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Ran
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Changbin Hu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jie Zhou
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| | - Wei Su
- Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y, Mao XL, Li SW, Zhou XB. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects. Front Immunol 2025; 16:1524801. [PMID: 39925801 PMCID: PMC11802498 DOI: 10.3389/fimmu.2025.1524801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Esophageal cancer (EC) is the seventh-most prevalent cancer worldwide and is a significant contributor to cancer-related mortality. Metabolic reprogramming in tumors frequently coincides with aberrant immune function alterations, and extensive research has demonstrated that perturbations in energy metabolism within the tumor microenvironment influence the occurrence and progression of esophageal cancer. Current treatment modalities for esophageal cancer primarily include encompass chemotherapy and a limited array of targeted therapies, which are hampered by toxicity and drug resistance issues. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited promising results; however, a substantial proportion of patients remain unresponsive. The optimization of these immunotherapies requires further investigation. Mounting evidence underscores the importance of modulating metabolic traits within the tumor microenvironment (TME) to augment anti-tumor immunotherapy. Methods We selected relevant studies on the metabolism of the esophageal cancer tumor microenvironment and immune cells based on our searches of MEDLINE and PubMed, focusing on screening experimental articles and reviews related to glucose metabolism, amino acid metabolism, and lipid metabolism, as well their interactions with tumor cells and immune cells, published within the last five years. We analyzed and discussed these studies, while also expressing our own insights and opinions. Results A total of 137 articles were included in the review: 21 articles focused on the tumor microenvironment of esophageal cancer, 33 delved into research related to glucose metabolism and tumor immunology, 30 introduced amino acid metabolism and immune responses, and 17 focused on the relationship between lipid metabolism in the tumor microenvironment and both tumor cells and immune cells. Conclusion This article delves into metabolic reprogramming and immune alterations within the TME of EC, systematically synthesizes the metabolic characteristics of the TME, dissects the interactions between tumor and immune cells, and consolidates and harnesses pertinent immunotherapy targets, with the goal of enhancing anti-tumor immunotherapy for esophageal cancer and thereby offering insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jia-Li Ma
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ying Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
15
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Lotsios NS, Keskinidou C, Karagiannis SP, Papavassiliou KA, Papavassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE, Vassiliou AG. Expression and Regulation of Hypoxia-Inducible Factor Signalling in Acute Lung Inflammation. Cells 2024; 14:29. [PMID: 39791730 PMCID: PMC11719729 DOI: 10.3390/cells14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are central regulators of gene expression in response to oxygen deprivation, a common feature in critical illnesses. The significant burden that critical illnesses place on global healthcare systems highlights the need for a deeper understanding of underlying mechanisms and the development of innovative treatment strategies. Among critical illnesses, impaired lung function is frequently linked to hypoxic conditions. This review focuses on the expression and regulation of HIF signalling in experimental models of acute lung injury (ALI) and clinical studies in critically ill patients with acute respiratory distress syndrome (ARDS). We explore the potential dual role of HIF signalling in acute lung inflammation. Furthermore, its role in key biological processes and its potential prognostic significance in clinical scenarios are discussed. Finally, we explore recent pharmacological advancements targeting HIF signalling, which have emerged as promising alternatives to existing therapeutic approaches, potentially enabling more effective management strategies.
Collapse
Affiliation(s)
- Nikolaos S. Lotsios
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Chrysi Keskinidou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Sotirios P. Karagiannis
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Kostas A. Papavassiliou
- First University Department of Respiratory Medicine, ‘Sotiria’ Chest Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Stylianos E. Orfanos
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| | - Alice G. Vassiliou
- First Department of Critical Care Medicine, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (N.S.L.); (C.K.); (S.P.K.); (A.K.); (I.D.); (S.E.O.)
| |
Collapse
|
17
|
Kumar V, Stewart Iv JH. Platelet's plea to Immunologists: Please do not forget me. Int Immunopharmacol 2024; 143:113599. [PMID: 39547015 DOI: 10.1016/j.intimp.2024.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Platelets are non-nucleated mammalian cells originating from the cytoplasmic expulsion of the megakaryocytes. Megakaryocytes develop during hematopoiesis through megakaryopoiesis, whereas platelets develop from megakaryocytes through thrombopoiesis. Since their first discovery, platelets have been studied as critical cells controlling hemostasis or blood coagulation. However, coagulation and innate immune response are evolutionarily linked processes. Therefore, it has become critical to investigate the immunological functions of platelets to maintain immune homeostasis. Advances in immunology and platelet biology research have explored different critical roles of platelets, including phagocytosis, release of different immune mediators, and controlling functions of different immune cells by direct interaction and immune mediators. The current article discusses platelet's development and their critical role as innate immune cells, which express different pattern recognition receptors (PRRs), recognizing different pathogen or microbe-associated molecular patterns (PAMPs or MAMPs) and death/damage-associated molecular patterns (DAMPs) and their direct interactions with innate and adaptive immune cells to maintain immune homeostasis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA.
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310 USA
| |
Collapse
|
18
|
Zhang J, Li N, Hu X. Metabolic Reprograming of Macrophages: A New Direction in Traditional Chinese Medicine for Treating Liver Failure. J Immunol Res 2024; 2024:5891381. [PMID: 39741958 PMCID: PMC11688140 DOI: 10.1155/jimr/5891381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/03/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Acute liver failure (ALF) is a fulminant clinical syndrome that usually leads to multiple organ failure and high mortality. Macrophages play a crucial role in the initiation, development, and recovery of ALF. Targeting macrophages through immunotherapy holds significant promise as a therapeutic strategy. These cells exhibit remarkable plasticity, enabling them to differentiate into various subtypes based on changes in their surrounding microenvironment. M1-type macrophages are associated with a pro-inflammatory phenotype and primarily rely predominantly on glycolysis. In contrast, M2-type macrophages, which are characterized by anti-inflammatory phenotype, predominantly obtain their energy from oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Shifting macrophage metabolism from glycolysis to OXPHOS inhibits M1 macrophage activation and promotes M2 macrophage activation, thereby exerting anti-inflammatory and reparative effects. This study elucidates the relationship between macrophage activation and glucose metabolism reprograming from an immunometabolism perspective. A comprehensive literature review revealed that several signaling pathways may regulate macrophage polarization through energy metabolism, including phosphatidyl-inositol 3-kinase/protein kinase B (PI3K/AKT), mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α), nuclear factor-κB (NF-κB), and AMP-activated protein kinase (AMPK), which exhibit crosstalk with one another. Additionally, we systematically reviewed several traditional Chinese medicine (TCM) monomers that can modulate glucose metabolism reprograming and influence the polarization states of M1 and M2 macrophages. This review aimed to provide valuable insights that could contribute to the development of new therapies or drugs for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
21
|
Elsaid KA, Zhang LX, Zhao T, Marks A, Jenkins D, Schmidt TA, Jay GD. Proteoglycan 4 (Lubricin) and regulation of xanthine oxidase in synovial macrophage as a mechanism of controlling synovitis. Arthritis Res Ther 2024; 26:214. [PMID: 39696446 DOI: 10.1186/s13075-024-03455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Synovial macrophages (SMs) are important effectors of joint health and disease. A novel Cx3CR1 + TREM2 + SM population expressing the tight junction protein claudin-5, was recently discovered in synovial lining. Ablation of these SMs was associated with onset of arthritis. Proteoglycan 4 (PRG4) is a mucinous glycoprotein that fulfills lubricating and homeostatic roles in the joint. The aim of this work is to study the role of PRG4 in modulating synovitis in the context of SM homeostasis and assess the contribution of xanthine oxidase (XO)-hypoxia inducible factor alpha (HIF-1a) axis to this regulation. METHODS We used Prg4FrtloxP/FrtloxP;R26FlpoER/+, a novel transgenic mouse, where the Prg4Frt allele normally expresses the PRG4 protein and was designed to flank the first two exons of Prg4 with a flippase recognition target and "LOXP" sites. Inducing flippase activity with tamoxifen (TAM) inactivates the Frt allele and thus creates a conditional knockout state. We studied anti-inflammatory SMs and XO by quantitative immunohistochemistry, isolated RNA and studied immune pathway activations by multiplexed assays and isolated SMs and studied PRG4 signaling dysfunction in relation to glycolytic switching due to pro-inflammatory activation. Prg4 inactivated mice were treated with oral febuxostat, a specific XO inhibitor, and quantification of Cx3CR1 + TREM2 + SMs, XO immunostaining and synovitis assessment were conducted. RESULTS Prg4 inactivation induced Cx3CR1 + TREM2 + SM loss (p < 0.001) and upregulated glycolysis and innate immune pathways in the synovium. In isolated SMs, Xdh (p < 0.01) and Hif1a (p < 0.05) were upregulated. Pro-inflammatory activation of SMs was evident by enhanced glycolytic flux and XO-generated reactive oxygen species (ROS). Febuxostat reduced glycolytic flux (p < 0.001) and HIF-1a levels (p < 0.0001) in SMs. Febuxostat also reduced systemic inflammation (p < 0.001), synovial hyperplasia (p < 0.001) and preserved Cx3CR1 + TREM2 + SMs (p < 0.0001) in synovia of Prg4 inactivated mice. CONCLUSIONS PRG4 is a biologically significant modulator of synovial homeostasis via inhibition of XO expression and downstream HIF-1a activation. PRG4 signaling is anti-inflammatory and promotes synovial homeostasis in chronic synovitis, where direct XO inhibition is potentially therapeutic in chronic synovitis.
Collapse
Affiliation(s)
- Khaled A Elsaid
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA.
| | - Ling X Zhang
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA
| | | | - Ava Marks
- Brown University, Providence, RI, USA
| | - Derek Jenkins
- Department of Orthopaedics, Rhode Island Hospital, Providence, RI, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Gregory D Jay
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA
- Department of Orthopaedics, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
22
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
23
|
Lin XF, Cui XN, Yang J, Jiang YF, Wei TJ, Xia L, Liao XY, Li F, Wang DD, Li J, Wu Q, Yin DS, Le YY, Yang K, Wei R, Hong TP. SGLT2 inhibitors ameliorate NAFLD in mice via downregulating PFKFB3, suppressing glycolysis and modulating macrophage polarization. Acta Pharmacol Sin 2024; 45:2579-2597. [PMID: 39294445 PMCID: PMC11579449 DOI: 10.1038/s41401-024-01389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024]
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitor (SGLT2i) is a novel class of anti-diabetic drug, which has displayed a promising benefit for non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effects of SGLT2i against NAFLD and the underlying mechanisms. The db/db mice and western diet-induced NAFLD mice were treated with dapagliflozin (1 mg·kg-1·d-1, i.g.) or canagliflozin (10 mg·kg-1·d-1, i.g.) for 8 weeks. We showed that the SGLT2i significantly improved NAFLD-associated metabolic indexes, and attenuated hepatic steatosis and fibrosis. Notably, SGLT2i reduced the levels of pro-inflammatory cytokines and chemokines, downregulated M1 macrophage marker expression and upregulated M2 macrophage marker expression in liver tissues. In cultured mouse bone marrow-derived macrophages and human peripheral blood mononuclear cell-derived macrophages, the SGLT2i (10, 20 and 40 μmol/L) significantly promoted macrophage polarization from M1 to M2 phenotype. RNA sequencing, Seahorse analysis and liquid chromatography-tandem mass spectrometry analysis revealed that the SGLT2i suppressed glycolysis and triggered metabolic reprogramming in macrophages. By using genetic manipulation and pharmacological inhibition, we identified that the SGLT2i targeted PFKFB3, a key enzyme of glycolysis, to modulate the macrophage polarization of M1 to M2 phenotype. Using a co-culture of macrophages with hepatocytes, we demonstrated that the SGLT2i inhibited lipogenesis in hepatocytes via crosstalk with macrophages. In conclusion, this study highlights a potential therapeutic application for repurposing SGLT2i and identifying a potential target PFKFB3 for NAFLD treatment.
Collapse
Affiliation(s)
- Xia-Fang Lin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao-Na Cui
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Ya-Fei Jiang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Tian-Jiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Xin-Yue Liao
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Dan-Dan Wang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Jian Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - De-Shan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Yun-Yi Le
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Kun Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| | - Tian-Pei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
24
|
Galkin F, Pulous FE, Fu Y, Zhang M, Pun FW, Ren F, Zhavoronkov A. Roles of hypoxia-inducible factor-prolyl hydroxylases in aging and disease. Ageing Res Rev 2024; 102:102551. [PMID: 39447706 DOI: 10.1016/j.arr.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia. While most discussions of the HIF-PH signalling axis focus on hypoxia, there is a growing recognition of its importance under normoxic conditions. Recent advances in PHD biology have highlighted the potential of targeting this pathway therapeutically for a range of aging-related diseases. In this article, we review these recent discoveries, situate them within the broader context of aging and disease, and explore current therapeutic strategies that target PHD enzymes for these indications.
Collapse
Affiliation(s)
- Fedor Galkin
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Fadi E Pulous
- Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States
| | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Feng Ren
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR; Insilico Medicine Canada Inc., 1250 René-Lévesque Ouest, Suite 3710, Montréal, Québec H3B 4W8, Canada; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
25
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Sri-Ngern-Ngam K, Umthong S, Takano J, Koseki H, Palaga T. A polycomb group protein EED epigenetically regulates responses in lipopolysaccharide tolerized macrophages. Epigenetics Chromatin 2024; 17:36. [PMID: 39614386 DOI: 10.1186/s13072-024-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND To avoid exaggerated inflammation, innate immune cells adapt to become hypo-responsive or "tolerance" in response to successive exposure to stimuli, which is a part of innate immune memory. Polycomb repressive complex 2 (PRC2) mediates the transcriptional repression by catalyzing histone H3 lysine 27 trimethylation (H3K27me3) but little is known about its role in lipopolysaccharide (LPS)-induced tolerance in macrophages. RESULT We examined the unexplored roles of EED, a component of the PRC2, in LPS tolerant macrophages. In Eed KO macrophages, significant reduction in H3K27me3 and increased active histone mark, H3K27ac, was observed. Eed KO macrophages exhibited dampened pro-inflammatory cytokine productions (TNF-α and IL-6) while increasing non-tolerizable genes upon LPS tolerance. Pharmacological inhibition of EED also reduced TNF-α and IL-6 during LPS tolerance. Mechanistically, LPS tolerized Eed KO macrophages failed to increase glycolytic activity. RNA-Seq analyses revealed that the hallmarks of hypoxia, TGF-β, and Wnt/β-catenin signaling were enriched in LPS tolerized Eed KO macrophages. Among the upregulated genes, the promoter of Runx3 was found to be associated with EED. Silencing Runx3 in Eed KO macrophages partially rescued the dampened pro-inflammatory response during LPS tolerance. Enrichment of H3K27me3 was decreased in a subset of genes that are upregulated in Eed KO LPS tolerized macrophages, indicating the direct regulatory roles of PRC2 on such genes. Motif enrichment analysis identified the ETS family transcription factor binding sites in the absence of EED in LPS tolerized macrophages. CONCLUSION Our results provided mechanistic insight into how the PRC2 via EED regulates LPS tolerance in macrophages by epigenetically silencing genes that play a crucial role during LPS tolerance such as those of the TGF-β/Runx3 axis.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Inter-disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittitach Sri-Ngern-Ngam
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supawadee Umthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junichiro Takano
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
26
|
Bögel G, Sváb G, Murányi J, Szokol B, Kukor Z, Kardon T, Őrfi L, Tretter L, Hrabák A. The role of PI3K-Akt-mTOR axis in Warburg effect and its modification by specific protein kinase inhibitors in human and rat inflammatory macrophages. Int Immunopharmacol 2024; 141:112957. [PMID: 39197292 DOI: 10.1016/j.intimp.2024.112957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
The Warburg effect occurs both in cancer cells and in inflammatory macrophages. The aim of our work was to demonstrate the role of PI3K-Akt-mTOR axis in the Warburg effect in HL-60 derived, rat peritoneal and human blood macrophages and to investigate the potential of selected inhibitors of this pathway to antagonize it. M1 polarization in HL-60-derived and human blood monocyte-derived macrophages was supported by the increased expression of NOS2 and inflammatory cytokines. All M1 polarized and inflammatory macrophages investigated expressed higher levels of HIF-1α and NOS2, which were reduced by selected kinase inhibitors, supporting the role of PI3K-Akt-mTOR axis. Using Seahorse XF plates, we found that in HL-60-derived and human blood-derived macrophages, glucose loading reduced oxygen consumption (OCR) and increased glycolysis (ECAR) in M1 polarization, which was antagonized by selected kinase inhibitors and by dichloroacetate. In rat peritoneal macrophages, the changes in oxidative and glycolytic metabolism were less marked and the NOS2 inhibitor decreased OCR and increased ECAR. Non-mitochondrial oxygen consumption and ROS production were likely due to NADPH oxidase, expressed in each macrophage type, independently of PI3K-Akt-mTOR axis. Our results suggest that inflammation changed the metabolism in each macrophage model, but a clear relationship between polarization and Warburg effect was confirmed only after glucose loading in HL-60 and human blood derived macrophages. The effect of kinase inhibitors on Warburg effect was variable in different cell types, whereas dichloroacetate caused a shift toward oxidative metabolism. Our findings suggest that these originally anti-cancer inhibitors may also be candidates for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Gábor Bögel
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Gergely Sváb
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - József Murányi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Bálint Szokol
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary
| | - Zoltán Kukor
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - Tamás Kardon
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - László Őrfi
- Vichem Chemie Research Ltd., Veszprém, H-8200, Viola u. 2., Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, H-1092 Hőgyes E. u. 9., Hungary
| | - László Tretter
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary
| | - András Hrabák
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, H-1094 Tűzoltó u. 37-47, Hungary.
| |
Collapse
|
27
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024; 83:1603-1613. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
28
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
29
|
Yan F, Yuan WQ, Wu SM, Yang YH, Cui DJ. Novel mechanisms of intestinal flora regulation in high-altitude hypoxia. Heliyon 2024; 10:e38220. [PMID: 39498080 PMCID: PMC11534185 DOI: 10.1016/j.heliyon.2024.e38220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024] Open
Abstract
Background This study investigates the molecular mechanisms behind firmicutes-mediated macrophage (Mψ) polarization and glycolytic metabolic reprogramming through HIF-1α in response to intrinsic mucosal barrier injury induced by high-altitude hypoxia. Methods Establishing a hypoxia mouse model of high altitude, we utilized single-cell transcriptome sequencing to identify key cell types involved in regulating intestinal mucosal barrier damage caused by high-altitude hypoxia. Through proteomic analysis of colonic tissue Mψ and metabolomic analysis of Mψ metabolites, we determined crucial proteins and metabolic pathways influencing intestinal mucosal barrier damage induced by high-altitude hypoxia. Mechanistic validation was conducted using RAW264.7 Mψ in vitro by assessing cell viability with CCK-8 assay following treatment with different metabolites. The hypoxia mouse model was further validated in vivo by transplanting gut microbiota of Firmicutes. Histological examinations through H&E staining assessed colonic cell morphology and structure, while the FITC-dextran assay evaluated intestinal tissue permeability. Hypoxia probe signal intensity in mouse colonic tissue was assessed via metronidazole staining. Various experimental techniques, including flow cytometry, immunofluorescence, ELISA, Western blot, and RT-qPCR, were employed to study the impact of HIF-1α/glycolysis pathway and different gut microbiota metabolites on Mψ polarization. Results Bioinformatics analysis revealed that single-cell transcriptomics identified Mψ as a key cell type, with their polarization pattern playing a crucial role in the intestinal mucosal barrier damage induced by high-altitude hypoxia. Proteomics combined with metabolomics analysis indicated that HIF-1α and the glycolytic pathway are pivotal proteins and signaling pathways in the intestinal mucosal barrier damage caused by high-altitude hypoxia. In vitro cell experiments demonstrated that activation of the glycolytic pathway by HIF-1α led to a significant upregulation of mRNA levels of IL-1β, IL-6, and TNFα while downregulating mRNA levels of IL-10 and TGFβ, thereby promoting M1 Mψ activation and inhibiting M2 Mψ polarization. Further mechanistic validation experiments revealed that the metabolite butyric acid from Firmicutes bacteria significantly downregulated the protein expression of HIF-1α, GCK, PFK, PKM, and LDH, thus inhibiting the HIF-1α/glycolytic pathway that suppresses M1 Mψ and activates M2 Mψ, consequently alleviating the hypoxic symptoms in RAW264.7 cells. Subsequent animal experiments confirmed that Firmicutes bacteria inhibited the HIF-1α/glycolytic pathway to modulate Mψ polarization, thereby mitigating intestinal mucosal barrier damage in high-altitude hypoxic mice. Conclusion The study reveals that firmicutes, through the inhibition of the HIF-1α/glycolysis pathway, mitigate Mψ polarization, thereby alleviating intrinsic mucosal barrier injury in high-altitude hypoxia.
Collapse
Affiliation(s)
- Fang Yan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Wen-qiang Yuan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| | - Shi-min Wu
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Zunyi Medical University, Zunyi, 563006, China
| | - Yun-han Yang
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| | - De-jun Cui
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
- Medical College of Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
30
|
Kang GS, Kim YE, Oh HR, Jo HJ, Bok S, Jeon YK, Cheon GJ, Roh TY, Chang YT, Park DJ, Ahn GO. Hypoxia-inducible factor-1α-deficient adipose-tissue macrophages produce the heat to mediate lipolysis of white adipose tissue through uncoupling protein-1. Lab Anim Res 2024; 40:37. [PMID: 39473019 PMCID: PMC11523771 DOI: 10.1186/s42826-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Uncoupling protein 1 (UCP1) is a proton uncoupler located across the mitochondrial membrane generally involved in thermogenesis of brown adipose tissues. Although UCP1 is known to be strongly expressed in brown adipocytes, recent evidence suggest that white adipocytes can also express UCP1 under certain circumstances such as cold- or β-adrenergic receptor-stimulation, allowing them to acquire brown adipocyte-like features thereby becoming 'beige' adipocytes. RESULTS In this study, we report that UCP1 can be expressed in adipose-tissue macrophages (ATM) lacking functional hypoxia-inducible factor-1 (HIF-1) and this does not require cold- nor β-adrenergic receptor activation. By using myeloid-specific Hif-1α knockout (KO) mice, we observed that these mice were protected from diet-induced obesity and exhibited an improved thermogenic tolerance upon cold challenge. ATM isolated from white adipose tissues (WAT) of these mice fed with high fat diet exhibited significantly higher M2-polarization, decreased glycolysis, increased mitochondrial functions and acetyl-CoA levels, along with increased expression of Ucp1, peroxisome proliferator activated receptor-gamma co-activator-1a, and others involved in histone acetylation. Consistent with the increased Ucp1 gene expression, these ATM produced a significant amount of heat mediating lipolysis of co-cultured adipocytes liberating free fatty acid. Treating ATM with acetate, a substrate for acetyl-CoA synthesis was able to boost the heat production in wild-type or Hif-1α-deficient but not UCP1-deficient macrophages, indicating that UCP1 was necessary for the heat production in macrophages. Lastly, we observed a significant inverse correlation between the number of UCP1-expressing ATM in WAT and the body mass index of human individuals. CONCLUSIONS UCP1-expressing ATM produce the heat to mediate lipolysis of adipocytes, indicating that this can be a novel strategy to treat and prevent diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Young-Eun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Ho Rim Oh
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Seoyeon Bok
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, College of Medicine, Seoul National University, Seoul, 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Korea
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Tae-Young Roh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | | | - Do Joong Park
- Department of Surgery, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea.
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
| |
Collapse
|
31
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Diao RX, Lv WY, Wang YC, Shen QL, Tang KH, Luo XX, Jin YY. Aquaporin-1 Facilitates Macrophage M1 Polarization by Enhancing Glycolysis Through the Activation of HIF1α in Lipopolysaccharide-Induced Acute Kidney Injury. Inflammation 2024:10.1007/s10753-024-02154-8. [PMID: 39365391 DOI: 10.1007/s10753-024-02154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
This study aimed to investigate how aquaporin 1 (AQP1) modulates hypoxia-inducible factor-1α (HIF1α) to promote glycolysis and drive the M1 polarization of macrophages. Within 12 h post-treatment with LPS to induce acute kidney injury in rats, a significant upregulation of AQP1 and HIF1α protein levels was noted in serum and kidney tissues. This elevation corresponded with a decrease in blood glucose concentrations and an enhancement of glycolytic activity relative to the control group. Furthermore, there was a pronounced reduction in the circulating levels of the anti-inflammatory cytokine IL-10, accompanied by an upregulation in the levels of the pro-inflammatory cytokines IL-6 and TNF-α. The administration of an HIF1α inhibitor reversed these effects, which did not affect the production of AQP1 protein. In cellular assays, AQP1 knockdown mitigated the increase in HIF1α expression induced by LPS. Furthermore, the suppression of HIF1α with PX-478 led to decreased expression levels of Hexokinase 2 (HK2) and Lactate Dehydrogenase A (LDHA), indicating that AQP1 regulates glycolysis through HIF1α. M1 polarization of macrophages was reduced by AQP1 knockdown and was further diminished by the addition of an HIF1α inhibitor. Inhibition of the glycolytic process not only weakened M1 polarization but also promoted M2 polarization, thereby reducing the release of inflammatory cytokines. These findings provide a novel perspective for developing therapeutic strategies that target AQP1 and HIF1α, potentially improving the treatment of sepsis-associated AKI.
Collapse
Affiliation(s)
- Ru-Xue Diao
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wu-Yang Lv
- Department of Clinical Laboratory, Shangluo Central Hospital, Shanxi, China
| | - Yu-Chen Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiu-Ling Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai-Hong Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Xiao Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying-Yu Jin
- Department of Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
33
|
Wu KKL, Xu X, Wu M, Li X, Hoque M, Li GHY, Lian Q, Long K, Zhou T, Piao H, Xu A, Hui HX, Cheng KKY. MDM2 induces pro-inflammatory and glycolytic responses in M1 macrophages by integrating iNOS-nitric oxide and HIF-1α pathways in mice. Nat Commun 2024; 15:8624. [PMID: 39366973 PMCID: PMC11452520 DOI: 10.1038/s41467-024-53006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
M1 macrophages induce protective immunity against infection, but also contribute to metabolic and inflammatory diseases. Here we show that the E3 ubiquitin ligase, MDM2, promotes the glycolytic and inflammatory activities of M1 macrophage by increasing the production of IL-1β, MCP-1 and nitric oxide (NO). Mechanistically, MDM2 triggers the ubiquitination and degradation of E3 ligase, SPSB2, to stabilize iNOS and increases production of NO, which s-nitrosylates and activates HIF-1α for triggering the glycolytic and pro-inflammatory programs in M1 macrophages. Myeloid-specific haplodeletion of MDM2 in mice not only blunts LPS-induced endotoxemia and NO production, but also alleviates obesity-induced adipose tissue-resident macrophage inflammation. By contrast, MDM2 haplodeletion induces higher mortality, tissue damage and bacterial burden, and also suppresses M1 macrophage response, in the cecal ligation and puncture-induced sepsis mouse model. Our findings thus identify MDM2 as an activator of glycolytic and inflammatory responses in M1 macrophages by connecting the iNOS-NO and HIF-1α pathways.
Collapse
Affiliation(s)
- Kelvin Ka-Lok Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaofan Xu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Manyin Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital Fudan University, Shanghai, China
| | - Moinul Hoque
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gloria Hoi Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tongxi Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hailong Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Beijing, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
34
|
Huang Y, Tian Z, Bi J. Intracellular checkpoints for NK cell cancer immunotherapy. Front Med 2024; 18:763-777. [PMID: 39340588 DOI: 10.1007/s11684-024-1090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/17/2024] [Indexed: 09/30/2024]
Abstract
Natural killer (NK) cells are key innate immune lymphocytes, which play important roles against tumors. However, tumor-infiltrating NK cells are always hypofunctional/exhaustive. On the one hand, this state is contributed by context-dependent interactions between inhibitory NK cell checkpoint receptors and their ligands, which usually vary in different tumor types and stages during tumor development. On the other hand, the inhibitory functions of intracellular checkpoint molecules of NK cells are more similar across different tumor types, representing common mechanisms limiting the potential of NK cell therapy. In this review, representative NK cell intracellular checkpoint molecules in different aspects of NK cell biology were reviewed, and therapeutic potentials were discussed by targeting these molecules to promote antitumor NK cell therapy.
Collapse
Affiliation(s)
- Yingying Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, 530021, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, 530021, China
- Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, 530021, China
| | - Zhigang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Beijing, 100864, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
36
|
Kang M, Jia H, Feng M, Ren H, Gao J, Liu Y, Zhang L, Zhou MS. Cardiac macrophages in maintaining heart homeostasis and regulating ventricular remodeling of heart diseases. Front Immunol 2024; 15:1467089. [PMID: 39372400 PMCID: PMC11449765 DOI: 10.3389/fimmu.2024.1467089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Macrophages are most important immune cell population in the heart. Cardiac macrophages have broad-spectrum and heterogeneity, with two extreme polarization phenotypes: M1 pro-inflammatory macrophages (CCR2-ly6Chi) and M2 anti-inflammatory macrophages (CCR2-ly6Clo). Cardiac macrophages can reshape their polarization states or phenotypes to adapt to their surrounding microenvironment by altering metabolic reprogramming. The phenotypes and polarization states of cardiac macrophages can be defined by specific signature markers on the cell surface, including tumor necrosis factor α, interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), C-C chemokine receptor type (CCR)2, IL-4 and arginase (Arg)1, among them, CCR2+/- is one of most important markers which is used to distinguish between resident and non-resident cardiac macrophage as well as macrophage polarization states. Dedicated balance between M1 and M2 cardiac macrophages are crucial for maintaining heart development and cardiac functional and electric homeostasis, and imbalance between macrophage phenotypes may result in heart ventricular remodeling and various heart diseases. The therapy aiming at specific target on macrophage phenotype is a promising strategy for treatment of heart diseases. In this article, we comprehensively review cardiac macrophage phenotype, metabolic reprogramming, and their role in maintaining heart health and mediating ventricular remodeling and potential therapeutic strategy in heart diseases.
Collapse
Affiliation(s)
- Mengjie Kang
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Hui Jia
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Mei Feng
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Haolin Ren
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjia Gao
- Department of Cardiology, Second Affiliated Hospital, Shenyang Medical College, Shenyang, China
| | - Yueyang Liu
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| |
Collapse
|
37
|
Kulakova K, Lawal TR, Mccarthy E, Floudas A. The Contribution of Macrophage Plasticity to Inflammatory Arthritis and Their Potential as Therapeutic Targets. Cells 2024; 13:1586. [PMID: 39329767 PMCID: PMC11430612 DOI: 10.3390/cells13181586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory arthritis are common chronic inflammatory autoimmune diseases characterised by progressive, destructive inflammation of the joints leading to a loss of function and significant comorbidities; importantly, there are no cures and only 20% of patients achieve drug-free remission for over 2 years. Macrophages play a vital role in maintaining homeostasis, however, under the wrong environmental cues, become drivers of chronic synovial inflammation. Based on the current "dogma", M1 macrophages secrete pro-inflammatory cytokines and chemokines, promoting tissue degradation and joint and bone erosion which over time lead to accelerated disease progression. On the other hand, M2 macrophages secrete anti-inflammatory mediators associated with wound healing, tissue remodelling and the resolution of inflammation. Currently, four subtypes of M2 macrophages have been identified, namely M2a, M2b, M2c and M2d. However, more subtypes may exist due to macrophage plasticity and the ability for repolarisation. Macrophages are highly plastic, and polarisation exists as a continuum with diverse intermediate phenotypes. This plasticity is achieved by a highly amenable epigenome in response to environmental stimuli and shifts in metabolism. Initiating treatment during the early stages of disease is important for improved prognosis and patient outcomes. Currently, no treatment targeting macrophages specifically is available. Such therapeutics are being investigated in ongoing clinical trials. The repolarisation of pro-inflammatory macrophages towards the anti-inflammatory phenotype has been proposed as an effective approach in targeting the M1/M2 imbalance, and in turn is a potential therapeutic strategy for IA diseases. Therefore, elucidating the mechanisms that govern macrophage plasticity is fundamental for the success of novel macrophage targeting therapeutics.
Collapse
Affiliation(s)
- Karina Kulakova
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
| | - Tope Remilekun Lawal
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
| | - Eoghan Mccarthy
- Department of Rheumatology, Beaumont Hospital, D09 V2N0 Dublin, Ireland
- Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Achilleas Floudas
- School of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland; (K.K.)
- Life Sciences Institute, Dublin City University, D09 V209 Dublin, Ireland
- Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
38
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
39
|
Wisitpongpun P, Buakaew W, Pongcharoen S, Apiratmateekul N, Potup P, Daowtak K, Krobthong S, Yingchutrakul Y, Brindley PJ, Usuwanthim K. Proteomic profiling of oleamide-mediated polarization in a primary human monocyte-derived tumor-associated macrophages (TAMs) model: a functional analysis. PeerJ 2024; 12:e18090. [PMID: 39308806 PMCID: PMC11416084 DOI: 10.7717/peerj.18090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) play a critical function in the development of tumors and are associated with protumor M2 phenotypes. Shifting TAMs towards antitumor M1 phenotypes holds promise for tumor immunotherapy. Oleamide, a primary fatty acid amide, has emerged as a potent anticancer and immunomodulatory compound. However, the regulatory effects of oleamide on TAM phenotypes remain unclear. METHODS We used real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) techniques to study the influence of oleamide on primary human monocyte-derived TAM phenotypes, and we investigated the protein expression profiles based on mass spectrometry to analyze the effect of oleamide on macrophage polarization. Moreover, the advantageous binding scores between oleamide and these target candidate proteins are examined using molecular docking. RESULTS Our study revealed that oleamide effectively suppressed the M2-like TAM phenotype by reducing interleukin (IL)-10 production and downregulating M2-like markers, including vascular endothelial growth factor A (VEGFA), MYC proto-oncogene, bHLH transcription factor (c-Myc), and mannose receptor C-type 1 (CD206). Moreover, the conditioned medium derived from oleamide-treated TAMs induces apoptosis of MDA-MB-231 breast cancer cells. Proteomic analysis identified 20 candidate up- and down-regulation proteins targeted by oleamide, showing modulation activity associated with the promotion of the M1-like phenotype. Furthermore, molecular docking demonstrated favorable binding scores between oleamide and these candidate proteins. Collectively, our findings suggest that oleamide exerts a potent antitumor effect by promoting the antitumor M1-like TAM phenotype. These novel insights provide valuable resources for further investigations into oleamide and macrophage polarization which inhibit the progression of breast cancer, which may provide insight into immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Prapakorn Wisitpongpun
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Watunyoo Buakaew
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Napaporn Apiratmateekul
- Reference Material and Medical Laboratory Innovation Research Unit, Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Krai Daowtak
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, NSTDA, Pathum Thani, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, District of Columbia, WA, United States of America
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit (CMIRU), Faculty of Allied Health Sciences, Naresuan University, Mueang, Phitsanulok, Thailand
| |
Collapse
|
40
|
Zhang J, Ji H, Liu M, Zheng M, Wen Z, Shen H. Mitochondrial DNA Programs Lactylation of cGAS to Induce IFN Responses in Patients with Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:795-807. [PMID: 39093026 DOI: 10.4049/jimmunol.2300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Mitochondrial DNA (mtDNA) is frequently released from mitochondria, activating cGAS-STING signaling and inducing type I IFNs (IFN-Is) in systemic lupus erythematosus (SLE). Meanwhile, whether and how the glycolytic pathway was involved in such IFN-I responses in human SLE remain unclear. In this study, we found that monocytes from SLE patients exerted robust IFN-I generation and elevated level of cytosolic mtDNA. Transfection of mtDNA into THP-1 macrophages was efficient in inducing IFN-I responses, together with the strong glycolytic pathway that promoted lactate production, mimicking the SLE phenotype. Blockade of lactate generation abrogated such IFN-I responses and, vice versa, exogenous lactate enhanced the IFN-I generation. Mechanistically, lactate promoted the lactylation of cGAS, which inhibited its binding to E3 ubiquitination ligase MARCHF5, blocking cGAS degradation and leading to strong IFN-I responses. In accordance, targeting lactate generation alleviated disease development in humanized SLE chimeras. Collectively, cytosolic mtDNA drives metabolic adaption toward the glycolytic pathway, promoting lactylation of cGAS for licensing IFN-I responses in human SLE and thereby assigning the glycolytic pathway as a promising therapeutic target for SLE.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Huiyan Ji
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengdi Liu
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
41
|
Becker A, Filipp M, Lantz C, Glinton K, Thorp EB. HIF-1α is required to differentiate the neonatal Macrophage protein secretome from adults. Cell Immunol 2024; 403-404:104861. [PMID: 39098245 DOI: 10.1016/j.cellimm.2024.104861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
The immune response to stress diverges with age, with neonatal macrophages implicated in tissue regeneration versus tissue scarring and maladaptive inflammation in adults. Integral to the macrophage stress response is the recognition of hypoxia and pathogen-associated molecular patterns (PAMPs), which are often coupled. The age-specific, cell-intrinsic nature of this stress response remains vague. To uncover age-defined divergences in macrophage crosstalk potential after exposure to hypoxia and PAMPs, we interrogated the secreted proteomes of neonatal versus adult macrophages via non-biased mass spectrometry. Through this approach, we newly identified age-specific signatures in the secretomes of neonatal versus adult macrophages in response to hypoxia and the prototypical PAMP, lipopolysaccharide (LPS). Neonatal macrophages secreted proteins most consistent with an anti-inflammatory, regenerative phenotype protective against apoptosis and oxidative stress, dependent on hypoxia inducible transcription factor-1α (HIF-1α). In contrast, adult macrophages secreted proteins consistent with a pro-inflammatory, glycolytic phenotypic signature consistent with pathogen killing. Taken together, these data uncover fundamental age and HIF-1α dependent macrophage responses that may be targeted to calibrate the innate immune response during stress and inflammation.
Collapse
Affiliation(s)
- Amanda Becker
- Department of Pediatrics, Division of Critical Care Medicine, Northwestern Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611 USA.
| | - Mallory Filipp
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Connor Lantz
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Kristofor Glinton
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Edward B Thorp
- Department of Pathology, Northwestern Feinberg School of Medicine, Chicago, IL 60611 USA.
| |
Collapse
|
42
|
Liu S, Wang H, Li J, Gao J, Yu L, Wei X, Cui M, Zhao Y, Liang Y, Wang H. Loss of Bcl-3 regulates macrophage polarization by promoting macrophage glycolysis. Immunol Cell Biol 2024; 102:605-617. [PMID: 38804132 DOI: 10.1111/imcb.12785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/27/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
M1/M2 macrophage polarization plays an important role in regulating the balance of the microenvironment within tissues. Moreover, macrophage polarization involves the reprogramming of metabolism, such as glucose and lipid metabolism. Transcriptional coactivator B-cell lymphoma-3 (Bcl-3) is an atypical member of the IκB family that controls inflammatory factor levels in macrophages by regulating nuclear factor kappa B pathway activation. However, the relationship between Bcl-3 and macrophage polarization and metabolism remains unclear. In this study, we show that the knockdown of Bcl-3 in macrophages can regulate glycolysis-related gene expression by promoting the activation of the nuclear factor kappa B pathway. Furthermore, the loss of Bcl-3 was able to promote the interferon gamma/lipopolysaccharide-induced M1 macrophage polarization by accelerating glycolysis. Taken together, these results suggest that Bcl-3 may be a candidate gene for regulating M1 polarization in macrophages.
Collapse
Affiliation(s)
- Shengnan Liu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hao Wang
- The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Jiaoyang Li
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jingtao Gao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Li Yu
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaofei Wei
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengchao Cui
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yuxin Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
43
|
Chen Y, Zhang S, Ye L, Chen H, Ma P, Wu D. High-intensity interval training improves hypothalamic inflammation by suppressing HIF-1α signaling in microglia of male C57BL/6J mice. FASEB J 2024; 38:e23770. [PMID: 38995817 DOI: 10.1096/fj.202400289r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024]
Abstract
Repeated bouts of high-intensity interval training (HIIT) induce an improvement in metabolism via plasticity of melanocortin circuits and attenuated hypothalamic inflammation. HIF-1α, which plays a vital role in hypothalamus-mediated regulation of peripheral metabolism, is enhanced in the hypothalamus by HIIT. This study aimed to investigate the effects of HIIT on hypothalamic HIF-1α expression and peripheral metabolism in obese mice and the underlying molecular mechanisms. By using a high-fat diet (HFD)-induced obesity mouse model, we determined the effect of HIIT on energy balance and the expression of the hypothalamic appetite-regulating neuropeptides, POMC and NPY. Moreover, hypothalamic HIF-1α signaling and its downstream glycolytic enzymes were explored after HIIT intervention. The state of microglia and microglial NF-κB signaling in the hypothalamus were also examined in vivo. In vitro by using an adenovirus carrying shRNA-HIF1β, we explored the impact of HIF-1 signaling on glycolysis and NF-κB inflammatory signaling in BV2 cells. Food intake was suppressed and whole-body metabolism was improved in exercised DIO mice, accompanied by changes in the expression of POMC and NPY. Moreover, total and microglial HIF-1α signaling were obviously attenuated in the hypothalamus, consistent with the decreased levels of glycolytic enzymes. Both HFD-induced microglial activation and hypothalamic NF-κB signaling were significantly suppressed following HIIT in vivo. In BV2 cells, after HIF-1 complex knockdown, glycolysis and NF-κB inflammatory signaling were significantly attenuated. The data indicate that HIIT improves peripheral metabolism probably via attenuated HFD-induced microglial activation and microglial NF-κB signaling in the hypothalamus, which could be mediated by suppressed microglial HIF-1α signaling.
Collapse
Affiliation(s)
- Yi Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyan Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Ye
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandong Wu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Ge Z, Chen Y, Ma L, Hu F, Xie L. Macrophage polarization and its impact on idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1444964. [PMID: 39131154 PMCID: PMC11310026 DOI: 10.3389/fimmu.2024.1444964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.
Collapse
Affiliation(s)
- Zhouling Ge
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Yong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Leikai Ma
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangjun Hu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
| | - Lubin Xie
- Department of Respiratory Medicine, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, China
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
An L, Zhai Q, Tao K, Xiong Y, Ou W, Yu Z, Yang X, Ji J, Lu M. Quercetin induces itaconic acid-mediated M1/M2 alveolar macrophages polarization in respiratory syncytial virus infection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155761. [PMID: 38797031 DOI: 10.1016/j.phymed.2024.155761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Quercetin has received extensive attention for its therapeutic potential treating respiratory syncytial virus (RSV) infection diseases. Recent studies have highlighted quercetin's ability of suppressing alveolar macrophages (AMs)-derived lung inflammation. However, the anti-inflammatory mechanism of quercetin against RSV infection still remains elusive. PURPOSE This study aims to elucidate the mechanism about quercetin anti-inflammatory effect on RSV infection. METHODS BALB/c mice were intranasally infected with RSV and received quercetin (30, 60, 120 mg/kg/d) orally for 3 days. Additionally, an in vitro infection model utilizing mouse alveolar macrophages (MH-S cells) was employed to validate the proposed mechanism. RESULTS Quercetin exhibited a downregulatory effect on glycolysis and tricarboxylic acid (TCA) cycle metabolism in RSV-infected AMs. However, it increased itaconic acid production, a metabolite derived from citrate through activating immune responsive gene 1 (IRG1), and further inhibiting succinate dehydrogenase (SDH) activity. While the suppression of SDH activity orchestrated a cascading downregulation of Hif-1α/NLRP3 signaling, ultimately causing AMs polarization from M1 to M2 phenotypes. CONCLUSION Our study demonstrated quercetin stimulated IRG1-mediated itaconic acid anabolism and further inhibited SDH/Hif-1α/NLRP3 signaling pathway, which led to M1 to M2 polarization of AMs so as to ameliorate RSV-induced lung inflammation.
Collapse
Affiliation(s)
- Li An
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qianwen Zhai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Keyu Tao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingcai Xiong
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiying Ou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziwei Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xingyu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Mengjiang Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
46
|
Ting KKY. Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism. Front Cell Infect Microbiol 2024; 14:1403915. [PMID: 39119289 PMCID: PMC11306205 DOI: 10.3389/fcimb.2024.1403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
47
|
Vassileff N, Spiers JG, Juliani J, Lowe RGT, Datta KK, Hill AF. Acute neuroinflammation promotes a metabolic shift that alters extracellular vesicle cargo in the mouse brain cortex. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e165. [PMID: 38947878 PMCID: PMC11212288 DOI: 10.1002/jex2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Neuroinflammation is initiated through microglial activation and cytokine release which can be induced through lipopolysaccharide treatment (LPS) leading to a transcriptional cascade culminating in the differential expression of target proteins. These differentially expressed proteins can then be packaged into extracellular vesicles (EVs), a form of cellular communication, further propagating the neuroinflammatory response over long distances. Despite this, the EV proteome in the brain, following LPS treatment, has not been investigated. Brain tissue and brain derived EVs (BDEVs) isolated from the cortex of LPS-treated mice underwent thorough characterisation to meet the minimal information for studies of extracellular vesicles guidelines before undergoing mass spectrometry analysis to identify the differentially expressed proteins. Fourteen differentially expressed proteins were identified in the LPS brain tissue samples compared to the controls and 57 were identified in the BDEVs isolated from the LPS treated mice compared to the controls. This included proteins associated with the initiation of the inflammatory response, epigenetic regulation, and metabolism. These results allude to a potential link between small EV cargo and early inflammatory signalling.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Jereme G. Spiers
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Juliani Juliani
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Olivia Newton‐John Cancer Research InstituteHeidelbergVictoriaAustralia
- School of Cancer MedicineLa Trobe UniversityBundooraVictoriaAustralia
| | - Rohan G. T. Lowe
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Keshava K. Datta
- La Trobe University Proteomics and Metabolomics PlatformLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- The Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityFootscrayVictoriaAustralia
| |
Collapse
|
48
|
Zhao L, Tang S, Chen F, Ren X, Han X, Zhou X. Regulation of macrophage polarization by targeted metabolic reprogramming for the treatment of lupus nephritis. Mol Med 2024; 30:96. [PMID: 38914953 PMCID: PMC11197188 DOI: 10.1186/s10020-024-00866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Lupus nephritis (LN) is a severe and common manifestation of systemic lupus erythematosus (SLE) that is frequently identified with a poor prognosis. Macrophages play an important role in its pathogenesis. Different macrophage subtypes have different effects on lupus-affected kidneys. Based on their origin, macrophages can be divided into monocyte-derived macrophages (MoMacs) and tissue-resident macrophages (TrMacs). During nephritis, TrMacs develop a hybrid pro-inflammatory and anti-inflammatory functional phenotype, as they do not secrete arginase or nitric oxide (NO) when stimulated by cytokines. The infiltration of these mixed-phenotype macrophages is related to the continuous damage caused by immune complexes and exposure to circulating inflammatory mediators, which is an indication of the failure to resolve inflammation. On the other hand, MoMacs differentiate into M1 or M2 cells under cytokine stimulation. M1 macrophages are pro-inflammatory and secrete pro-inflammatory cytokines, while the M2 main phenotype is essentially anti-inflammatory and promotes tissue repair. Conversely, MoMacs undergo differentiation into M1 or M2 cells in response to cytokine stimulation. M1 macrophages are considered pro-inflammatory cells and secrete pro-inflammatory mediators, whereas the M2 main phenotype is primarily anti-inflammatory and promotes tissue repair. Moreover, based on cytokine expression, M2 macrophages can be further divided into M2a, M2b, and M2c phenotypes. M2a and M2c have anti-inflammatory effects and participate in tissue repair, while M2b cells have immunoregulatory and pro-inflammatory properties. Further, memory macrophages also have a role in the advancement of LN. Studies have demonstrated that the polarization of macrophages is controlled by multiple metabolic pathways, such as glycolysis, the pentose phosphate pathway, fatty acid oxidation, sphingolipid metabolism, the tricarboxylic acid cycle, and arginine metabolism. The changes in these metabolic pathways can be regulated by substances such as fish oil, polyenylphosphatidylcholine, taurine, fumaric acid, metformin, and salbutamol, which inhibit M1 polarization of macrophages and promote M2 polarization, thereby alleviating LN.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Fahui Chen
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Xinjian South Road No. 56, Yingze District, Taiyuan, Shanxi, 030001, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Shuangta East Street No. 29, Yingze District, Taiyuan, Shanxi, 030012, China.
| |
Collapse
|
49
|
Liu H, Yao M, Ren J. Codonopsis pilosula-derived glycopeptide dCP1 promotes the polarization of tumor-associated macrophage from M2-like to M1 phenotype. Cancer Immunol Immunother 2024; 73:128. [PMID: 38743074 PMCID: PMC11093951 DOI: 10.1007/s00262-024-03694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
The majority of the immune cell population in the tumor microenvironment (TME) consists of tumor-associated macrophages (TAM), which are the main players in coordinating tumor-associated inflammation. TAM has a high plasticity and is divided into two main phenotypes, pro-inflammatory M1 type and anti-inflammatory M2 type, with tumor-suppressive and tumor-promoting functions, respectively. Considering the beneficial effects of M1 macrophages for anti-tumor and the high plasticity of macrophages, the conversion of M2 TAM to M1 TAM is feasible and positive for tumor treatment. This study sought to evaluate whether the glycopeptide derived from simulated digested Codonopsis pilosula extracts could regulate the polarization of M2-like TAM toward the M1 phenotype and the potential regulatory mechanisms. The results showed that after glycopeptide dCP1 treatment, the mRNA relative expression levels of some M2 phenotype marker genes in M2-like TAM in simulated TME were reduced, and the relative expression levels of M1 phenotype marker genes and inflammatory factor genes were increased. Analysis of RNA-Seq of M2-like TAM after glycopeptide dCP1 intervention showed that the gene sets such as glycolysis, which is associated with macrophage polarization in the M1 phenotype, were significantly up-regulated, whereas those of gene sets such as IL-6-JAK-STAT3 pathway, which is associated with polarization in the M2 phenotype, were significantly down-regulated. Moreover, PCA analysis and Pearson's correlation also indicated that M2-like TAM polarized toward the M1 phenotype at the transcriptional level after treatment with the glycopeptide dCP1. Lipid metabolomics was used to further explore the efficacy of the glycopeptide dCP1 in regulating the polarization of M2-like TAM to the M1 phenotype. It was found that the lipid metabolite profiles in dCP1-treated M2-like TAM showed M1 phenotype macrophage lipid metabolism profiles compared with blank M2-like TAM. Analysis of the key differential lipid metabolites revealed that the interconversion between phosphatidylcholine (PC) and diacylglycerol (DG) metabolites may be the central reaction of the glycopeptide dCP1 in regulating the conversion of M2-like TAM to the M1 phenotype. The above results suggest that the glycopeptide dCP1 has the efficacy to regulate the polarization of M2-like TAM to M1 phenotype in simulated TME.
Collapse
Affiliation(s)
- Hongxu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China
| | - Maojin Yao
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, Guangdong, People's Republic of China.
| |
Collapse
|
50
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|