1
|
Wang X, Chen J, Hu H, Gong M, Wu M, Ye B, Hu H, Du Z, Liu A, Huang S, Jing T, Liu Z. The resveratrol attenuates reactive oxygen species mediated DNA damage in cardiac malformations caused by 4-tert-octylphenol. Toxicol Appl Pharmacol 2025; 498:117284. [PMID: 40023230 DOI: 10.1016/j.taap.2025.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
4-tert-octylphenol (4-t-OP) is an alkylphenolic environmental endocrine disruptor extensively distributed in the environment, posing potential hazards to living organisms. Research has demonstrated that 4-t-OP induces cardiac injury and abnormalities in embryonic development, which can adversely affect heart development. The excessive production of reactive oxygen species (ROS) triggered by 4-t-OP may result in DNA damage. Hence, we hypothesized that ROS-mediated DNA damage plays a crucial role in abnormal cardiac development in zebrafish embryos exposed to 4-t-OP, while resveratrol (RSV), a common antioxidant found in natural foods, may provide protection. In this study, we exposed zebrafish embryos at 2 h post-fertilization (hpf) to various doses of 4-t-OP in combination with relevant inhibitor/agonist therapies. Using microscopy, we observed morphological alterations in the cardiac structure of zebrafish embryos at 72 hpf. The underlying molecular mechanisms were assessed through immunofluorescence, DCFH-DA probe, MitoSOX™ staining, Quantitative polymerase chain reaction, and other methods. Our findings revealed that 4-t-OP caused dose-dependent cardiac defects in zebrafish embryos. The overexpression of ROS/mitochondrial ROS (mtROS) induced by 4-t-OP was significantly reduced by the addition of RSV or the ROS inhibitor N-acetyl-L-cysteine (NAC). Furthermore, the inclusion of RSV or NAC significantly mitigated cardiac deformities, cardiac apoptosis, and DNA damage. Additionally, the apoptosis inhibitor Ac-DEVD-CHO and the Wnt/β-catenin agonist CHIR99021 decreased 4-t-OP-induced cardiac abnormalities. Moreover, the naturally occurring small molecule chemical RSV provided protection against 4-t-OP-induced heart developmental injury. This study elucidates the molecular mechanisms by which 4-t-OP induces oxidative stress, DNA damage, and cardiac defects in the heart of zebrafish larvae through the ROS/Wnt/β-catenin signaling pathway. These findings present novel molecular targets for the prevention and therapy of congenital heart disease, as well as enhance our understanding of the cardiotoxic effects of 4-t-OP.
Collapse
Affiliation(s)
- Xin Wang
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Jin Chen
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Hanwen Hu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Mingxue Gong
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Mengqin Wu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Bofu Ye
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Han Hu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Zuo Du
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Anfei Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Shaoxin Huang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332005, Jiangxi, China
| | - Tao Jing
- School of Public Health, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China.
| |
Collapse
|
2
|
Divvela SSK, Gallorini M, Gellisch M, Patel GD, Saso L, Brand-Saberi B. Navigating redox imbalance: the role of oxidative stress in embryonic development and long-term health outcomes. Front Cell Dev Biol 2025; 13:1521336. [PMID: 40206404 PMCID: PMC11979171 DOI: 10.3389/fcell.2025.1521336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/19/2025] [Indexed: 04/11/2025] Open
Abstract
Embryonic development is a complex process of concurrent events comprising cell proliferation, differentiation, morphogenesis, migration, and tissue remodeling. To cope with the demands arising from these developmental processes, cells increase their nutrient uptake, which subsequently increases their metabolic activity. Mitochondria play a key role in the maintenance of metabolism and production of reactive oxygen species (ROS) as a natural byproduct. Regulation of ROS by antioxidants is critical and tightly regulated during embryonic development, as dysregulation results in oxidative stress that damages essential cellular components such as DNA, proteins, and lipids, which are crucial for cellular maintenance and in extension development. However, during development, exposure to certain exogenous factors or damage to cellular components can result in an imbalance between ROS production and its neutralization by antioxidants, leading to detrimental effects on the developmental process. In this review article, we highlight the crucial role of redox homeostasis in normal development and how disruptions in redox balance may result in developmental defects.
Collapse
Affiliation(s)
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Morris Gellisch
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Gaurav Deepak Patel
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Hanna AD, Chang T, Ho KS, Yee RSZ, Walker WC, Agha N, Hsu CW, Jung SY, Dickinson ME, Samee MAH, Ward CS, Lee CS, Rodney GG, Hamilton SL. Mechanisms underlying dilated cardiomyopathy associated with FKBP12 deficiency. J Gen Physiol 2025; 157:e202413583. [PMID: 39661086 PMCID: PMC11633665 DOI: 10.1085/jgp.202413583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a highly prevalent and genetically heterogeneous condition that results in decreased contractility and impaired cardiac function. The FK506-binding protein FKBP12 has been implicated in regulating the ryanodine receptor in skeletal muscle, but its role in cardiac muscle remains unclear. To define the effect of FKBP12 in cardiac function, we generated conditional mouse models of FKBP12 deficiency. We used Cre recombinase driven by either the α-myosin heavy chain, (αMHC) or muscle creatine kinase (MCK) promoter, which are expressed at embryonic day 9 (E9) and E13, respectively. Both conditional models showed an almost total loss of FKBP12 in adult hearts compared with control animals. However, only the early embryonic deletion of FKBP12 (αMHC-Cre) resulted in an early-onset and progressive DCM, increased cardiac oxidative stress, altered expression of proteins associated with cardiac remodeling and disease, and sarcoplasmic reticulum Ca2+ leak. Our findings indicate that FKBP12 deficiency during early development results in cardiac remodeling and altered expression of DCM-associated proteins that lead to progressive DCM in adult hearts, thus suggesting a major role for FKBP12 in embryonic cardiac muscle.
Collapse
Affiliation(s)
- Amy D. Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Kevin S. Ho
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Nadia Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, USA
| | - Mary E. Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Christopher S. Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - George G. Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Susan L. Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Liu X, Wang K, Wei L, Wang Y, Liu C, Rong X, Yan T, Shu W, Zhu B. A highly sensitive Golgi-targeted fluorescent probe for the simultaneous detection of malondialdehyde and formaldehyde in living systems and foods. Talanta 2024; 278:126427. [PMID: 38955101 DOI: 10.1016/j.talanta.2024.126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.
Collapse
Affiliation(s)
- Xueting Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Tingyi Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
5
|
Erdal İ, Yıldız Y, Kuseyri Hübschmann O, Haas D, Günbey C, Ertuğrul İ, Yalnızoğlu D. Dihydropyrimidinase deficiency with atrioventricular septal defect: a case report. J Pediatr Endocrinol Metab 2024; 37:741-744. [PMID: 38958169 DOI: 10.1515/jpem-2023-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVES Dihydropyrimidinase deficiency is a rare autosomal recessive disorder of the pyrimidine degradation pathway, with fewer than 40 patients published. Clinical findings are variable and some patients may remain asymptomatic. Global developmental delay and increased susceptibility to 5-fluorouracil are commonly reported. Here we present atrioventricular septal defect as a novel feature in dihydropyrimidinase deficiency. CASE PRESENTATION A four-year-old male with global developmental delay, dysmorphic facies, autistic features and a history of seizures was diagnosed with dihydropyrimidinase deficiency based on strikingly elevated urinary dihydrouracil and dihydrothymine and a homozygous pathogenic nonsense variant in DPYS gene. He had a history of complete atrioventricular septal defect corrected surgically in infancy. CONCLUSIONS This is the second report of congenital heart disease in dihydropyrimidinase deficiency, following a single patient with a ventricular septal defect. The rarity of the disease and the variability of the reported findings make it difficult to describe a disease-specific clinical phenotype. The mechanism of neurological and other systemic findings is unclear. Dihydropyrimidinase deficiency should be considered in patients with microcephaly, developmental delay, epilepsy and autistic traits. We suggest that congenital heart disease may also be a rare phenotypic feature.
Collapse
Affiliation(s)
- İzzet Erdal
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children's Hospital, Ankara, Türkiye
- Clinic of Pediatric Metabolic Diseases, Etlik City Hospital, Ankara, Türkiye
| | - Yılmaz Yıldız
- Division of Pediatric Metabolism, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - Oya Kuseyri Hübschmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Ceren Günbey
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - İlker Ertuğrul
- Division of Pediatric Cardiology, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - Dilek Yalnızoğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| |
Collapse
|
6
|
Jin H, Liu J, Wang D. Antioxidant Potential of Exosomes in Animal Nutrition. Antioxidants (Basel) 2024; 13:964. [PMID: 39199210 PMCID: PMC11351667 DOI: 10.3390/antiox13080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the advantages of exosomes as novel antioxidants in animal nutrition and their potential for regulating oxidative stress. Although traditional nutritional approaches promote oxidative stress defense systems in mammalian animals, several issues remain to be solved, such as low bioavailability, targeted tissue efficiency, and high-dose by-effect. As an important candidate offering regulation opportunities concerned with cellular communication, disease prevention, and physiology regulation in multiple biological systems, the potential of exosomes in mediating redox status in biological systems has not been well described. A previously reported relationship between redox system regulation and circulating exosomes suggested exosomes as a fundamental candidate for both a regulator and biomarker for a redox system. Herein, we review the effects of oxidative stress on exosomes in animals and the potential application of exosomes as antioxidants in animal nutrition. Then, we highlight the advantages of exosomes as redox regulators due to their higher bioavailability and physiological heterogeneity-targeted properties, providing a theoretical foundation and feed industry application. Therefore, exosomes have shown great potential as novel antioxidants in the field of animal nutrition. They can overcome the limitations of traditional antioxidants in terms of dosage and side effects, which will provide unprecedented opportunities in nutritional management and disease prevention, and may become a major breakthrough in the field of animal nutrition.
Collapse
Affiliation(s)
| | | | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.L.)
| |
Collapse
|
7
|
Durom EG, Aneesha VA, Kumar NVP, Bin Azeez A, Karikalan M, Lingaraju MC, Parida S, Telang AG, Singh TU. Prenatal exposure to ethion caused maternal and foetal toxicity in rats. Reprod Toxicol 2024; 126:108607. [PMID: 38734317 DOI: 10.1016/j.reprotox.2024.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Ethion is a class II moderately toxic organothiophosphate pesticide. The main objective of this study was to evaluate the maternal and foetal toxicity of ethion in rats. Pregnant rats were divided into 5 groups. Group I served as control. Group II, III, IV, and V were orally administered with 0.86, 1.71, 3.43, and 6.9 mg/kg of ethion respectively, from gestational day (GD) 6-19. Dams were sacrificed on GD 20. Maternal toxicity was assessed by body weight gain, foetal resorptions, oxidative stress, liver and kidney function tests, and histopathology. Foetal toxicity was assessed by physical status, gross, teratological and histopathological examination. Ethion caused dose-dependent reduction in maternal body weight gain, increased resorptions, and reduced gravid uterine weights. Elevated MDA levels and altered levels of GSH, SOD and catalase were recorded in pregnant dam serum and tissues. SGOT, SGPT, total bilirubin, urea, uric acid, and creatinine were elevated in ethion groups indicating liver and kidney toxicity. Histology of uterus revealed myometrial degeneration and mucosal gland atrophy in uterus of pregnant dams and degenerative changes in placenta. It showed histological alterations in liver, kidney, and lungs. There was reduction in the foetal body weights and placental weights, and degenerative changes in the foetal liver and kidney. Gross evaluation of foetuses showed subcutaneous hematoma. Skeletal evaluation showed partial ossification of skull bones, costal separation, and agenesis of tail vertebrae, sternebrae, metacarpals and metatarsals. The findings reveal that prenatal exposure to ethion caused maternal and foetal toxicity in rats.
Collapse
Affiliation(s)
- Elizabeth Glanet Durom
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India
| | - V A Aneesha
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India.
| | - Nerella Venkata Pavan Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India
| | - Ajmi Bin Azeez
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India
| | - M Karikalan
- Centre for Wildlife Conservation, Management and Disease Surveillance, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India
| | - Avinash G Telang
- Centre for Animal Disease Research and Diagnosis (CADRAD), ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, UP, India
| |
Collapse
|
8
|
Lecoquierre F, Punt AM, Ebstein F, Wallaard I, Verhagen R, Studencka-Turski M, Duffourd Y, Moutton S, Tran Mau-Them F, Philippe C, Dean J, Tennant S, Brooks AS, van Slegtenhorst MA, Jurgens JA, Barry BJ, Chan WM, England EM, Martinez Ojeda M, Engle EC, Robson CD, Morrow M, Innes AM, Lamont R, Sanderson M, Krüger E, Thauvin C, Distel B, Faivre L, Elgersma Y, Vitobello A. A recurrent missense variant in the E3 ubiquitin ligase substrate recognition subunit FEM1B causes a rare syndromic neurodevelopmental disorder. Genet Med 2024; 26:101119. [PMID: 38465576 PMCID: PMC11257750 DOI: 10.1016/j.gim.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024] Open
Abstract
PURPOSE Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.
Collapse
Affiliation(s)
- François Lecoquierre
- Univ Rouen Normandie, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, Rouen, France; UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France.
| | - A Mattijs Punt
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany; Nantes Université, INSERM, CNRS, l'institut du thorax, Nantes Cedex 1, France
| | - Ilse Wallaard
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Rob Verhagen
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Yannis Duffourd
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France
| | - Sébastien Moutton
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France
| | - Frédédic Tran Mau-Them
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France; Laboratoire de Génétique, CHR Metz-Thionville, Hôpital Mercy, Metz, France
| | - John Dean
- Department of Medical Genetics, NHS Grampian, Aberdeen, United Kingdom
| | - Stephen Tennant
- NHS Grampian, Genetics & Molecular Pathology Laboratory Services, Aberdeen, United Kingdom
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Julie A Jurgens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brenda J Barry
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Wai-Man Chan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Eleina M England
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | | | - Elizabeth C Engle
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA; Department of Neurology, Boston Children's Hospital, Boston, MA; Department of Neurology, Harvard Medical School, Boston, MA; Broad Institute of MIT and Harvard, Cambridge, MA; Howard Hughes Medical Institute, Chevy Chase, MD; Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Caroline D Robson
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Boston, MA; Department of Radiology, Harvard Medical School, Boston, MA
| | | | - A Micheil Innes
- Alberta Children's Hospital Research Institute for Child and Maternal Health and Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ryan Lamont
- Alberta Children's Hospital Research Institute for Child and Maternal Health and Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthea Sanderson
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Christel Thauvin
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire-TRANSLAD, CHU Dijon Bourgogne, Dijon, France; Centre de référence maladies rares « Déficiences Intellectuelles de Causes Rares », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Ben Distel
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France; Centre de Référence maladies rares « Anomalies du Développement et Syndromes Malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Ype Elgersma
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, The Netherlands
| | - Antonio Vitobello
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
9
|
Schraps N, Tirre M, Pyschny S, Reis A, Schlierbach H, Seidl M, Kehl HG, Schänzer A, Heger J, Jux C, Drenckhahn JD. Cardiomyocyte maturation alters molecular stress response capacities and determines cell survival upon mitochondrial dysfunction. Free Radic Biol Med 2024; 213:248-265. [PMID: 38266827 DOI: 10.1016/j.freeradbiomed.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Cardiomyocyte maturation during pre- and postnatal development requires multiple intertwined processes, including a switch in energy generation from glucose utilization in the embryonic heart towards fatty acid oxidation after birth. This is accompanied by a boost in mitochondrial mass to increase capacities for oxidative phosphorylation and ATP generation required for efficient contraction. Whether cardiomyocyte differentiation is paralleled by augmented capacities to deal with reactive oxygen species (ROS), physiological byproducts of the mitochondrial electron transport chain (ETC), is less clear. Here we show that expression of genes and proteins involved in redox homeostasis and protein quality control within mitochondria increases after birth in the mouse and human heart. Using primary embryonic, neonatal and adult mouse cardiomyocytes in vitro we investigated how excessive ROS production induced by mitochondrial dysfunction affects cell survival and stress response at different stages of maturation. Embryonic and neonatal cardiomyocytes largely tolerate inhibition of ETC complex III by antimycin A (AMA) as well as ATP synthase (complex V) by oligomycin but are susceptible to complex I inhibition by rotenone. All three inhibitors alter the intracellular distribution and ultrastructure of mitochondria in neonatal cardiomyocytes. In contrast, adult cardiomyocytes treated with AMA undergo rapid morphological changes and cellular disintegration. At the molecular level embryonic cardiomyocytes activate antioxidative defense mechanisms, the integrated stress response (ISR) and ER stress but not the mitochondrial unfolded protein response upon complex III inhibition. In contrast, adult cardiomyocytes fail to activate the ISR and antioxidative proteins following AMA treatment. In conclusion, our results identified fundamental differences in cell survival and stress response in differentiated compared to immature cardiomyocytes subjected to mitochondrial dysfunction. The high stress tolerance of immature cardiomyocytes might allow outlasting unfavorable intrauterine conditions thereby preventing fetal or perinatal heart disease and may contribute to the regenerative capacity of the embryonic and neonatal mammalian heart.
Collapse
Affiliation(s)
- Nina Schraps
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany
| | - Michaela Tirre
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Simon Pyschny
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Anna Reis
- Institute of Physiology, Justus Liebig University, Gießen, Germany
| | | | - Matthias Seidl
- Institute of Pharmacology and Toxicology, Westfälische Wilhelms University, Münster, Germany
| | - Hans-Gerd Kehl
- Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Gießen, Germany
| | - Jacqueline Heger
- Institute of Physiology, Justus Liebig University, Gießen, Germany
| | - Christian Jux
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany
| | - Jörg-Detlef Drenckhahn
- Department of Pediatric Cardiology, Justus Liebig University, Gießen, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
10
|
Basso O, Shapiro GD, Gagnon R, Tamblyn R, Platt RW. Type of infertility and prevalence of congenital malformations. Paediatr Perinat Epidemiol 2024; 38:43-53. [PMID: 37859584 DOI: 10.1111/ppe.13012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Children conceived with assisted reproductive technologies (ART) or after a long waiting time have a higher prevalence of congenital malformations, but few studies have examined the contribution of type of infertility. OBJECTIVES To quantify the association between causes of infertility and prevalence of malformations. METHODS We compared the prevalence at birth of all and severe malformations diagnosed up to age 2 between 6656 children born in 1996-2017 to parents who had previously been assessed for infertility a an academic fertility clinic ("exposed") and 10,382 children born in the same period to parents with no recent medical history of infertility ("reference"). We estimated prevalence ratios (PR) and prevalence differences (PD), by infertility status, type of treatment (non-ART, ART), and infertility diagnosis, in all children and among singletons. RESULTS Compared with children of parents with no infertility, children of parents with infertility had a higher prevalence of malformations (both definitions), particularly following ART conceptions. After accounting for treatment, ovulatory disorders were associated with a higher prevalence of both all (PR 1.49, 95% confidence interval (CI) 1.15, 1.93; PD 3.8, 95% CI 1.0, 6.6) and severe (PR 1.53, 95% CI 1.02, 2.29; PD 1.8, 95% CI -0.2, 3.7) malformations (the estimates refer to exposed children conceived without treatment). Unexplained and male factor infertility were associated with all and severe malformations, respectively. Estimates among singletons were similar. A diagnosis of ovulatory disorders was associated with all malformations also in analyses restricted to exposed children, regardless of treatment (we did not examine severe malformations, due to limited power). CONCLUSIONS In this study, ovulatory disorders were consistently associated with a higher prevalence of congenital malformations (including severe malformations) among live births, regardless of mode of conception.
Collapse
Affiliation(s)
- Olga Basso
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Gabriel D Shapiro
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Robert Gagnon
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Robyn Tamblyn
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert W Platt
- Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Pressman K, Kendle AM, Randis TM, Donda K, Salemi JL, Louis JM. Risk of birth defects in pregnant persons with sleep-disordered breathing during pregnancy. Birth Defects Res 2024; 116:e2268. [PMID: 37929317 DOI: 10.1002/bdr2.2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION As many as one in four pregnant women may experience sleep-disordered breathing (SDB) during pregnancy. The same sequelae of SDB, such as insulin resistance and inflammation, have been implicated in the development of certain birth defects. METHODS This is a secondary analysis of the SDB substudy of the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be study, which included 2106 participants who had a sufficiency sleep study at two visits at different time points in pregnancy. SDB was based on a self-administered home sleep apnea test with data scored by trained, blinded research polysomnologists. SDB was defined as an apnea-hypopnea index (AHI) ≥5. The primary outcome of this analysis was any of the 45 non-chromosomal birth defects included in the National Birth Defects Prevention Network Annual Report. RESULTS In this cohort, the overall rate of birth defects was 3.1%. The prevalence was similar between those without SDB (3.0%) and those with only mid-pregnancy SDB (3.4%), but was higher in those with early-pregnancy SDB (6.7%). After adjusting for maternal age, chronic hypertension, pregestational diabetes, and body mass index (BMI), there were no statistically significant differences in the risk of birth defects by subject SDB status. CONCLUSIONS Further studies to evaluate the effect of prepregnancy and early-pregnancy SDB on the fetus, as well as the risk of specific birth defects and neonatal outcomes in those with an objectively measured diagnosis of SDB, are still needed.
Collapse
Affiliation(s)
- Katherine Pressman
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anthony M Kendle
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Tara M Randis
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Keyur Donda
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jason L Salemi
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Judette M Louis
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
12
|
Hussein HA, Khazaeel K, Ranjbar R, Tabandeh MR, Alahmed JAS. Protective effect of quercetin on fetal development and congenital skeletal anomalies against exposure of pregnant Wistar rats to crude oil vapor. Birth Defects Res 2023; 115:1619-1629. [PMID: 37596818 DOI: 10.1002/bdr2.2240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Epidemiological evidence indicates a relationship between maternal exposure to crude oil vapors (COV) during pregnancy and adverse pregnancy outcomes. Quercetin (QUE) is a plant flavonoid with purported antioxidant and anti-inflammatory effects, which has been shown to prevent birth defects. This study was aimed to investigate the protective role of QUE on fetal development and congenital skeletal anomalies caused by exposure of pregnant rats to COV. METHODS Twenty-four pregnant Wistar rats were randomly categorized into four groups of control, COV, COV + QUE, and QUE (50 mg/kg). The inhalation method was used to expose pregnant rats to COV from day 0 to 20 of pregnancy, and QUE was administered orally during this period. On day 20 of gestation, the animals were anesthetized and a laparotomy was performed, and then the weight and crown rump length (CRL) of the fetuses were determined. Skeletal stereomicroscopic evaluations of fetuses were performed using Alcian blue/Alizarin red staining method, and the expression of osteogenesis-related genes (Runx2 and BMP-4) was evaluated using qPCR. RESULTS This study showed that prenatal exposure to COV significantly reduced fetal weight and CRL, and expression of Runx2 and BMP-4 genes. Moreover, COV significantly increased the incidence of congenital skeletal anomalies such as cleft palate, spina bifida and non-ossification of the fetal bones. However, administration of QUE with exposure to COV improved fetal bone development and reduced congenital skeletal anomalies. CONCLUSION QUE can ameliorate the teratogenic effects of prenatal exposure to COV by increasing the expression of osteogenesis-related genes.
Collapse
Affiliation(s)
- Haifa Ali Hussein
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Khazaeel
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Reza Ranjbar
- Department of Basic Sciences, Division of Anatomy and Embryology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Stem Cells and Transgenic Technology Research Center (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jala Amir Salman Alahmed
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
| |
Collapse
|
13
|
Burbank M, Gautier F, Hewitt N, Detroyer A, Guillet-Revol L, Carron L, Wildemann T, Bringel T, Riu A, Noel-Voisin A, De Croze N, Léonard M, Ouédraogo G. Advancing the use of new approach methodologies for assessing teratogenicity: Building a tiered approach. Reprod Toxicol 2023; 120:108454. [PMID: 37543254 DOI: 10.1016/j.reprotox.2023.108454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Many New Approach Methodologies (NAMs) have been developed for the safety assessment of new ingredients. Research into reproductive toxicity and teratogenicity is a particularly high priority, especially given their mechanistic complexity. Forty-six non-teratogenic and 39 teratogenic chemicals were screened for teratogenic potential using the in silico DART model from the OECD QSAR Toolbox; the devTox quickPredict™ (devTox assay) test and the Zebrafish Embryotoxicity Test (ZET). The sensitivity and specificity were 94.7% and 84.1%, respectively, for the DART tree (83 chemicals), 86.1% and 35.6% for the devTox (81 chemicals) and 77.8% and 76.7% for the ZET (57 chemicals). Fifty-three chemicals were tested in all three assays and when results were combined and based on a "2 out of 3 rule", the sensitivity and specificity were 96.0% and 71.4%, respectively. The specificity of the devTox assay for a sub-set of 43 chemicals was increased from 26.1% to 82.6% by incorporating human plasma concentrations into the assay interpretation. When all 85 chemicals were assessed in a decision tree approach, there was an excellent predictivity and assay robustness of 90%. In conclusion, all three models exhibited a good sensitivity and specificity, especially when outcomes from all three were combined or used in "2 out of 3" or a tiered decision tree approach. The latter is an interesting predictive approach for evaluating the teratogenic potential of new chemicals. Future investigations will extend the number of chemicals tested, as well as explore ways to refine the results and obtain a robust Integrated Testing Strategy to evaluate teratogenic potential.
Collapse
Affiliation(s)
- M Burbank
- L'Oréal Research & Innovation, France.
| | - F Gautier
- L'Oréal Research & Innovation, France
| | | | | | | | - L Carron
- L'Oréal Research & Innovation, France
| | | | - T Bringel
- L'Oréal Research & Innovation, France
| | - A Riu
- L'Oréal Research & Innovation, France
| | | | | | - M Léonard
- L'Oréal Research & Innovation, France
| | | |
Collapse
|
14
|
Pérez-Alvarez I, Islas-Flores H, Sánchez-Aceves LM, Gómez-Olivan LM, Chamorro-Cevallos G. Spirulina (Arthrospira maxima) mitigates the toxicity induced by a mixture of metal and NSAID in Xenopus laevis. Reprod Toxicol 2023; 120:108422. [PMID: 37330176 DOI: 10.1016/j.reprotox.2023.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is often detected in the environment due to its wide use in industry; also, NSAIDs are one of the most consumed pharmaceuticals, particularly diclofenac (DCF). Several studies have reported the presence of both contaminants in water bodies at concentrations ranging from ng L-1 to μg L-1; in addition, they have shown that they can induce oxidative stress in aquatic species and disturb signal transduction, cell proliferation, and intercellular communication, which could lead to teratogenesis. Spirulina has been consumed as a dietary supplement; its antioxidant, anti-inflammatory, neuroprotective, and nutritional properties are well documented. This work aimed to evaluate if Spirulina reduces the damage induced by Cd and DCF mixture in Xenopus laevis at early life stages. FETAX assay was carried out: 20 fertilized oocytes were exposed to seven different treatments on triplicate, control, Cd (24.5 μg L-1), DCF (149 μg L-1), Cd + DCF, Cd+DCF+Spirulina (2 mg L-1), Cd+DCF+Spirulina (4 mg L-1), Cd+DCF+Spirulina (10 mg L-1), malformations, mortality, and growth were evaluated after 96 h, also lipid peroxidation, superoxide dismutase and catalase activity were determined after 192 h. Cd increased DCF mortality, Cd and DCF mixture increased the incidence of malformations as well as oxidative damage; on the other hand, the results obtained show that Spirulina can be used to reduce the damage caused by the mixture of Cd and DCF since it promotes growth, reduce mortality, malformations, and oxidative stress in X. laevis.
Collapse
Affiliation(s)
- Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico.
| | - Livier Mireya Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Germán Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero, México DF CP 07738, Mexico
| |
Collapse
|
15
|
Li J, Pan L, Pan W, Li N, Tang B. Recent progress of oxidative stress associated biomarker detection. Chem Commun (Camb) 2023. [PMID: 37194341 DOI: 10.1039/d3cc00878a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oxidative stress denotes the imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses in living organisms, participating in various pathophysiological processes and mediating the occurrence of diseases. Typically, the excessive production of ROS under oxidative stress elicits oxidative modification of biomacromolecules, including lipids, proteins and nucleic acids, leading to cell dysfunction and damage. Therefore, the analysis and detection of oxidative stress-associated biomarkers are of considerable importance to accurately reflect and evaluate the oxidative stress status. This review comprehensively elucidates the recent advances and applications of imaging probes for tracking and detecting oxidative stress-related biomarkers such as lipid peroxidation, and protein and DNA oxidation. The existing challenges and future development directions in this field are also discussed.
Collapse
Affiliation(s)
- Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
16
|
Davies BM, Katayama JK, Monsivais JE, Adams JR, Dilts ME, Eberting AL, Hansen JM. Real-time analysis of dynamic compartmentalized GSH redox shifts and H 2O 2 availability in undifferentiated and differentiated cells. Biochim Biophys Acta Gen Subj 2023; 1867:130321. [PMID: 36870547 DOI: 10.1016/j.bbagen.2023.130321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Glutathione (GSH) is the most abundant, small biothiol antioxidant. GSH redox state (Eh) supports developmental processes, yet with disrupted GSH Eh, poor developmental outcomes may occur. The role of subcellular, compartmentalized redox environments in the context of redox regulation of differentiation is not well understood. Here, using the P19 neurogenesis model of cellular differentiation, kinetics of subcellular H2O2 availability and GSH Eh were evaluated following oxidant exposure. METHODS Stably transfected P19 cell lines expressing H2O2 availability or GSH Eh sensors, Orp1-roGFP or Grx1-roGFP, respectively, targeted to the cytosol, mitochondria, or nucleus were used. Dynamic, compartmentalized changes in H2O2 availability and GSH Eh were measured via spectrophotometric and confocal microscopy over 120 min following treatment with H2O2 (100 μM) in both differentiated and undifferentiated cells. RESULTS Generally, treated undifferentiated cells showed a greater degree and duration of both H2O2 availability and GSH Eh disruption than differentiated neurons. In treated undifferentiated cells, H2O2 availability was similar in all compartments. Interestingly, in treated undifferentiated cells, mitochondrial GSH Eh was most affected in both the initial oxidation and the rebound kinetics compared to other compartments. Pretreatment with an Nrf2 inducer prevented H2O2-induced effects in all compartments of undifferentiated cells. CONCLUSIONS Disruption of redox-sensitive developmental pathways is likely stage specific, where cells that are less differentiated and/or are actively differentiating are most affected. GENERAL SIGNIFICANCE Undifferentiated cells are more susceptible to oxidant-induced redox dysregulation but are protected by chemicals that induce Nrf2. This may preserve developmental programs and diminish the potential for poor developmental outcomes.
Collapse
Affiliation(s)
- Brandon M Davies
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jenna K Katayama
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Joshua E Monsivais
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - James R Adams
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Miriam E Dilts
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Arielle L Eberting
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA
| | - Jason M Hansen
- Cell Biology and Physiology Department, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
17
|
Role of Mitophagy in Regulating Intestinal Oxidative Damage. Antioxidants (Basel) 2023; 12:antiox12020480. [PMID: 36830038 PMCID: PMC9952109 DOI: 10.3390/antiox12020480] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The mitochondrion is also a major site for maintaining redox homeostasis between reactive oxygen species (ROS) generation and scavenging. The quantity, quality, and functional integrity of mitochondria are crucial for regulating intracellular homeostasis and maintaining the normal physiological function of cells. The role of oxidative stress in human disease is well established, particularly in inflammatory bowel disease and gastrointestinal mucosal diseases. Oxidative stress could result from an imbalance between ROS and the antioxidative system. Mitochondria are both the main sites of production and the main target of ROS. It is a vicious cycle in which initial ROS-induced mitochondrial damage enhanced ROS production that, in turn, leads to further mitochondrial damage and eventually massive intestinal cell death. Oxidative damage can be significantly mitigated by mitophagy, which clears damaged mitochondria. In this review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and oxidative stress and their relationship in some intestinal diseases. We believe the reviews can provide new ideas and a scientific basis for researching antioxidants and preventing diseases related to oxidative damage.
Collapse
|
18
|
Lu Z, Guo Y, Xu D, Xiao H, Dai Y, Liu K, Chen L, Wang H. Developmental toxicity and programming alterations of multiple organs in offspring induced by medication during pregnancy. Acta Pharm Sin B 2023; 13:460-477. [PMID: 36873163 PMCID: PMC9978644 DOI: 10.1016/j.apsb.2022.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.
Collapse
Affiliation(s)
- Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disorder, Wuhan 430071, China
| |
Collapse
|
19
|
Diet, Polyphenols, and Human Evolution. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although diet has contributed significantly to the evolution of human beings, the composition of the diet that has most affected this phenomenon is still an open issue. Diet has undoubtedly participated in the acquisition of the skills that underlie the differentiation of humans from other animal species and in this context the development of the nervous system has played a primary role. This paper aimed to: (1) outline the relationship between diet and human evolution; (2) evaluate how a variation in food consumption may have contributed to the enhancement of cognitive and adaptive capacities. The most widespread diet among the ancient populations that showed the highest levels of civilization (that is well-organized societies, using advanced technical tools, and promoting art and science) was very close to what is now defined as the Mediterranean diet. This suggests that a dietary approach typical of the Mediterranean basin (little meat and some fish; abundant cereals, legumes, fruit, vegetables and wine) significantly increased the intake of antioxidant molecules, including polyphenols, which along with other factors may have modulated the cognitive evolution of humans.
Collapse
|
20
|
Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation. Animals (Basel) 2022; 12:ani12151925. [PMID: 35953914 PMCID: PMC9367577 DOI: 10.3390/ani12151925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 12/17/2022] Open
Abstract
We evaluated the effects of vitamin and mineral supplementation (from pre-breeding to day 83 of gestation) and two rates of gain (from breeding to day 83 of gestation) on trace mineral concentrations in maternal and fetal liver, fetal muscle, and allantoic (ALF) and amniotic (AMF) fluids. Crossbred Angus heifers (n = 35; BW = 359.5 ± 7.1 kg) were randomly assigned to one of two vitamin and mineral supplementation treatments (VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)). The VMSUP factor was initiated 71 to 148 d before artificial insemination (AI), allowing time for the mineral status of heifers to be altered in advance of breeding. The VTM supplement (113 g·heifer−1·d−1) provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM, and the NoVTM supplement was a pelleted product fed at a 0.45 kg·heifer−1·day−1 with no added vitamin and mineral supplement. At AI, heifers were assigned to one of two rates of gain treatments (GAIN; low gain (LG) 0.28 kg/d or moderate gain (MG) 0.79 kg/d) within their respective VMSUP groups. On d 83 of gestation fetal liver, fetal muscle, ALF, and AMF were collected. Liver biopsies were performed prior to VMSUP factor initiation, at the time of AI, and at the time of ovariohysterectomy. Samples were analyzed for concentrations of Se, Cu, Zn, Mo, Mn, and Co. A VMSUP × GAIN × day interaction was present for Se and Cu (p < 0.01 and p = 0.02, respectively), with concentrations for heifers receiving VTM being greater at AI and tissue collection compared with heifers not receiving VTM (p < 0.01). A VMSUP × day interaction (p = 0.01) was present for Co, with greater (p < 0.01) concentrations for VTM than NoVTM at the time of breeding. VTM-MG heifers had greater concentrations of Mn than all other treatments (VMSUP × GAIN, p < 0.01). Mo was greater (p = 0.04) for MG than LG, while Zn concentrations decreased throughout the experiment (p < 0.01). Concentrations of Se (p < 0.01), Cu (p = 0.01), Mn (p = 0.04), and Co (p = 0.01) were greater in fetal liver from VTM than NoVTM. Mo (p ≤ 0.04) and Co (p < 0.01) were affected by GAIN, with greater concentrations in fetal liver from LG than MG. In fetal muscle, Se (p = 0.02) and Zn (p < 0.01) were greater for VTM than NoVTM. Additionally, Zn in fetal muscle was affected by GAIN (p < 0.01), with greater concentrations in LG than MG. The ALF in VTM heifers (p < 0.01) had greater Se and Co than NoVTM. In AMF, trace mineral concentrations were not affected (p ≥ 0.13) by VMSUP, GAIN, or their interaction. Collectively, these data suggest that maternal nutrition pre-breeding and in the first trimester of gestation affects fetal reserves of some trace minerals, which may have long-lasting impacts on offspring performance and health.
Collapse
|
21
|
Hsieh HL, Liu SH, Chen YL, Huang CY, Wu SJ. Astragaloside IV suppresses inflammatory response via suppression of NF-κB, and MAPK signalling in human bronchial epithelial cells. Arch Physiol Biochem 2022; 128:757-766. [PMID: 32057253 DOI: 10.1080/13813455.2020.1727525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Astragaloside IV isolated from Astragalus membranaceus (Fisch.), which was reported to have anti-tumor, anti-asthma, and suppressed cigarette smoke-induced lung inflammation in mice. OBJECTIVES This study investigated whether astragaloside IV reduced the expression of inflammatory mediators and oxidative stress in BEAS-2B cells. METHODS BEAS-2B cells treated with astragaloside IV, and then stimulated with TNF-α or TNF-α/IL-4. The levels of cytokine and chemokine were analysed with ELISA and real-time PCR. RESULTS Astragaloside IV significantly inhibited the levels of CCL5, MCP-1, IL-6 and IL-8. Astragaloside IV also reduced ICAM-1 expression for blocked THP-1 monocyte adhesion to BEAS-2B cells. Furthermore, astragaloside IV attenuated the phosphorylation of MAPK, and reduced the translocation of p65 into the nucleus. Astragaloside IV could increase the expression of HO-1 and Nrf2 for promoting the oxidant protective effect. CONCLUSION Aastragaloside IV has an anti-inflammatory and oxidative effect via regulated NF-κB, MAPK and HO-1/Nrf2 signalling pathways in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Shih-Hai Liu
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yi Huang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
22
|
Wu SJ, Huang WC, Cheng CY, Wang MC, Cheng SC, Liou CJ. Fisetin Suppresses the Inflammatory Response and Oxidative Stress in Bronchial Epithelial Cells. Nutrients 2022; 14:nu14091841. [PMID: 35565807 PMCID: PMC9103812 DOI: 10.3390/nu14091841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Fisetin is isolated from many fruits and vegetables and has been confirmed to improve airway hyperresponsiveness in asthmatic mice. However, whether fisetin reduces inflammatory response and oxidative stress in bronchial epithelial cells is unclear. Here, BEAS-2B human bronchial epithelial cells were treated with various concentrations of fisetin and then stimulated with tumor necrosis factor-α (TNF-α) or TNF-α/interleukin-4. In addition, ovalbumin-sensitized mice were treated with fisetin to detect inflammatory mediators and oxidative stress expression. Fisetin significantly reduced the levels of inflammatory cytokines and chemokines in TNF-α-stimulated BEAS-2B cells. Fisetin also attenuated intercellular adhesion molecule-1 expression in TNF-α-stimulated BEAS-2B cells, suppressing THP-1 monocyte adhesion. Furthermore, fisetin significantly suppressed airway hyperresponsiveness in the lungs and decreased eosinophil numbers in the bronchoalveolar lavage fluid of asthmatic mice. Fisetin decreased cyclooxygenase-2 expression, promoted glutathione levels, and decreased malondialdehyde levels in the lungs of asthmatic mice. Our findings indicate that fisetin is a potential immunomodulator that can improve the pathological features of asthma by decreasing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan;
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33303, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (W.-C.H.); (C.-Y.C.)
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan 33303, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (W.-C.H.); (C.-Y.C.)
- Department of Pulmonary Infection and Immunology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33303, Taiwan
| | - Meng-Chun Wang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
| | - Shu-Chen Cheng
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; (W.-C.H.); (C.-Y.C.)
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan;
- Correspondence: (S.-C.C.); (C.-J.L.); Tel.: +886-3-2118293 (S.-C.C.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan 33303, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: (S.-C.C.); (C.-J.L.); Tel.: +886-3-2118293 (S.-C.C.); +886-3-2118999 (ext. 5607) (C.-J.L.)
| |
Collapse
|
23
|
Namoju R, Chilaka NK. Maternal supplementation of α-lipoic acid attenuates prenatal cytarabine exposure-induced oxidative stress, steroidogenesis suppression and testicular damage in F1 male rat fetus. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cytarabine (Ara-C) is an anticancer drug, which is considered as the mainstay in the treatment of hematological malignancies, known to cause various teratogenic effects. Alpha-lipoic acid (ALA) is a natural antioxidant and its supplementation proved to improve pregnancy outcomes in several pathological conditions. We aimed at exploring the benefits of maternal supplementation of ALA against in-utero Ara-C exposure-induced testicular toxicity in rat fetuses.
Methods
Pregnant rats (dams) received normal saline (control group), ALA 200 mg/kg (ALA group), Ara-C 12.5 mg/kg (Ara-C 12.5 group), Ara-C 25 mg/kg (Ara-C 25 group), and Ara-C 25 mg/kg + ALA 200 mg/kg (protection group) from gestational day (GD)8 to GD21. Ara-C and ALA were administered via the intraperitoneal and oral routes, respectively. The day of parturition was considered as postnatal day (PND)1. On PND1, all the live male pups were collected. The maternal parameters evaluated include (a) food intake, (b) bodyweight, and (c) oxidative stress (OS) markers. The fetal parameters evaluated include (a) bodyweight, (b) anogenital distances (AGD), (c) testicular weight (d) testicular testosterone levels (e) testicular histopathology, and (f) morphometrical parameters.
Results
A significant and dose-dependent decrease in maternal food intake, weight gain, and an increase in oxidative stress (OS) were observed in the pregnant rats of the Ara-C groups as compared to pregnant rats of the control group. Further, a significant and dose-dependent (a) reduction in bodyweight, AGD, testicular weight, and testosterone levels, (b) increase in OS, and (c) structural and morphometrical anomalies in fetal testes were observed in fetuses of Ara-C groups as compared to fetuses of the control rats. These deleterious effects observed in the Ara-C groups were found to be diminished in the pregnant rats and fetuses of the Protection group as compared to the pregnant rats and fetuses of the Ara-C 25 group.
Conclusions
From the results of this study, we conclude that the maternal supplementation of ALA may ameliorate the Ara-C exposure-induced impairment in prenatal development and function of the testes in the rat fetuses. However, future experimental and clinical studies are warranted to explore the possible mechanisms involved in the protection offered by maternal supplementation of ALA against Ara-C induced testicular toxicity.
Graphical Abstract
Collapse
|
24
|
Chen H, Zhong K, Zhang Y, Xie L, Chen P. Bisphenol A Interferes with Redox Balance and the Nrf2 Signaling Pathway in Xenopus tropicalis during Embryonic Development. Animals (Basel) 2022; 12:ani12070937. [PMID: 35405925 PMCID: PMC8996838 DOI: 10.3390/ani12070937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Toxicological studies of the effects of BPA on tropical clawed frog (Xenopus tropicalis) early embryos show that temporary exposure to BPA during early embryonic development can result in dramatic teratogenesis, DNA damage, and abnormal gene expression. The overall results of this study provide valuable insights for a more holistic assessment of the environmental risks related to BPA in aquatic ecosystems. Abstract Bisphenol A (BPA), an environmental estrogen, is widely used and largely released into the hydrosphere, thus inducing adverse effects in aquatic organisms. Here, Xenopus tropicalis was used as an animal model to investigate the oxidative effects of BPA on early embryonic development. BPA exposure prevalently caused development delay and shortened body length. Furthermore, BPA exposure significantly increased the levels of reactive oxygen species (ROS) and DNA damage in embryos. Thus, the details of BPA interference with antioxidant regulatory pathways during frog early embryonic development should be further explored.
Collapse
Affiliation(s)
- Hongjun Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
| | - Keke Zhong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
| | - Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
| | - Lei Xie
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
- Correspondence: (L.X.); (P.C.)
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.C.); (K.Z.); (Y.Z.)
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Harvard Medical School, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
- Correspondence: (L.X.); (P.C.)
| |
Collapse
|
25
|
Muhammad H, Bakar TASTA, Yusery MFA, Awang N, Saad WMM, Ibnu Rasid EN, Mahomoodally MF, Omar MH. Oxidative Stress and DNA Damage Effect of Dioscorea hispida Dennst. on Placental Tissues of Rats. Molecules 2022; 27:molecules27072190. [PMID: 35408588 PMCID: PMC9000815 DOI: 10.3390/molecules27072190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dioscorea hispida Dennst. locally known as “ubi gadung” has been used as a traditional remedy and source of carbohydrate among Malaysians. To assess the effect of Dioscorea hispida aqueous extract (DHAE) on the production of reactive oxygen species (ROS) and their effects on DNA damage in Sprague Dawley rat’s placental tissues, pregnant rats were randomly divided into four groups. The animals were orally treated with distilled water (negative control) and three different concentrations of DHAE (250, 500 and 1000 mg/kg body weight (BW)) from gestation day 6 until 20. The oxidative stress in placental tissues was evaluated at day 21 by measuring the level of ROS, superoxide dismutase (SOD) and lipid peroxidation biomarker, malondialdehyde (MDA) while comet assay was used for DNA damage. There was no significant production of ROS and SOD activities in all groups. Significant changes were observed in the MDA level at 1000 mg/kg BW DHAE. Comet assay revealed a significant increase (p < 0.05) of DNA damage on animals treated with 250 and 500 mg/kg BW DHAE but not at the highest concentration. It was postulated that the placental cells could have undergone necrosis which destroys all components including DNA. This occurrence simultaneously reduces the levels of DNA damage which can be represented by lower level of tail moments. This finding correlates with our histopathological examination where necrotic cells of spongiotrophoblast were observed in the basal zone of placental tissue. The high amount of hydrogen cyanide and other compounds in 1000 mg/kg BW DHAE could elevate the lipid peroxidation and directly induce cell necrosis which requires further investigation.
Collapse
Affiliation(s)
- Hussin Muhammad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam 40170, Selangor, Malaysia; (N.A.); (M.H.O.)
- Correspondence: (H.M.); (E.N.I.R.)
| | - Tengku Aideed Syah Tg Abu Bakar
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA UiTM Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia; (T.A.S.T.A.B.); (M.F.A.Y.); (W.M.M.S.)
| | - Muhamad Faizul Adhzim Yusery
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA UiTM Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia; (T.A.S.T.A.B.); (M.F.A.Y.); (W.M.M.S.)
| | - Norizah Awang
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam 40170, Selangor, Malaysia; (N.A.); (M.H.O.)
| | - Wan Mazlina Md. Saad
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA UiTM Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia; (T.A.S.T.A.B.); (M.F.A.Y.); (W.M.M.S.)
| | - Elda Nurafnie Ibnu Rasid
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam 40170, Selangor, Malaysia; (N.A.); (M.H.O.)
- Correspondence: (H.M.); (E.N.I.R.)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Science, University of Mauritius, Réduit 80837, Mauritius;
| | - Maizatul Hasyima Omar
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, Shah Alam 40170, Selangor, Malaysia; (N.A.); (M.H.O.)
| |
Collapse
|
26
|
Buczyńska A, Sidorkiewicz I, Hameed A, Krętowski AJ, Zbucka-Krętowska M. Future Perspectives in Oxidative Stress in Trisomy 13 and 18 Evaluation. J Clin Med 2022; 11:jcm11071787. [PMID: 35407395 PMCID: PMC8999694 DOI: 10.3390/jcm11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Autosomal aneuploidies are the most frequently occurring congenital abnormalities and are related to many metabolic disorders, hormonal dysfunctions, neurotransmitter abnormalities, and intellectual disabilities. Trisomies are generated by an error of chromosomal segregation during cell division. Accumulating evidence has shown that deregulated gene expression resulting from the triplication of chromosomes 13 and 18 is associated with many disturbed cellular processes. Moreover, a disturbed oxidative stress status may be implicated in the occurrence of fetal malformations. Therefore, a literature review was undertaken to provide novel insights into the evaluation of trisomy 13 (T13) and 18 (T18) pathogeneses, with a particular concern on the oxidative stress. Corresponding to the limited literature data focused on factors leading to T13 and T18 phenotype occurrence, the importance of oxidative stress evaluation in T13 and T18 could enable the determination of subsequent disturbed metabolic pathways, highlighting the related role of mitochondrial dysfunction or epigenetics. This review illustrates up-to-date T13 and T18 research and discusses the strengths, limitations, and possible directions for future studies. The progressive unification of trisomy-related research protocols might provide potential medical targets in the future along with the implementation of the foundation of modern prenatal medicine.
Collapse
Affiliation(s)
- Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Ahsan Hameed
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
| | - Adam Jacek Krętowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland; (I.S.); (A.H.); (A.J.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, 15-276 Bialystok, Poland
- Correspondence: (A.B.); (M.Z.-K.); Tel.: +48-85-746-85-13 (A.B.); +48-85-746-83-36 (M.Z.-K.)
| |
Collapse
|
27
|
Perveen S, Frigeni M, Benveniste H, Kurepa D. Cellular, molecular, and metabolic aspects of developing lungs in congenital diaphragmatic hernia. Front Pediatr 2022; 10:932463. [PMID: 36458148 PMCID: PMC9706094 DOI: 10.3389/fped.2022.932463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shahana Perveen
- Department Pediatrics, Feinstein Institute for Medical Research, New York, NY, United States.,Department of pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States.,Department Pediatrics/Neonatal Perinatal Medicine, Cohen Children's Medical Center, New Hyde Park, NY, United States
| | - Marta Frigeni
- Department of pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | | | - Dalibor Kurepa
- Department Pediatrics/Neonatal Perinatal Medicine, Cohen Children's Medical Center, New Hyde Park, NY, United States
| |
Collapse
|
28
|
Impact of Oxidative Stress on Embryogenesis and Fetal Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:221-241. [PMID: 36472825 DOI: 10.1007/978-3-031-12966-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple cellular processes are regulated by oxygen radicals or reactive oxygen species (ROS) where they play crucial roles as primary or secondary messengers, particularly during cell proliferation, differentiation, and apoptosis. Embryogenesis and organogenesis encompass all these processes; therefore, their role during these crucial life events cannot be ignored, more so when there is an imbalance in redox homeostasis. Perturbed redox homeostasis is responsible for damaging the biomolecules such as lipids, proteins, and nucleic acids resulting in leaky membrane, altered protein, enzyme function, and DNA damage which have adverse impact on the embryo and fetal development. In this article, we attempt to summarize the available data in literature for an in-depth understanding of redox regulation during development that may help in optimizing the pregnancy outcome both under natural and assisted conditions.
Collapse
|
29
|
Chełchowska M, Gajewska J, Ambroszkiewicz J, Mazur J, Ołtarzewski M, Maciejewski TM. Influence of Oxidative Stress Generated by Smoking during Pregnancy on Glutathione Status in Mother-Newborn Pairs. Antioxidants (Basel) 2021; 10:antiox10121866. [PMID: 34942969 PMCID: PMC8698311 DOI: 10.3390/antiox10121866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Glutathione plays a key role in maintaining a physiological balance between prooxidants and antioxidants in the human body. Therefore, we examined the influence of maternal smoking as a source of oxidative stress measured by total oxidant capacity (TOC) on reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx-3), and reductase (GR) amount in maternal and umbilical cord blood in 110 (45 smoking and 65 non-smoking) mother-newborn pairs. Concentrations of glutathione status markers and TOC were evaluated by competitive inhibition enzyme immunoassay technique. Plasma TOC levels were significantly higher and the GSH/GSSG ratio, which is considered an index of the cell’s redox status, were significantly lower in smoking women and their offspring than in non-smoking pairs. Decreased GR levels were found in smoking mothers and their newborns compared with similar non-smoking groups. Although plasma GPx-3 concentrations were similar in both maternal groups, in the cord blood of newborns exposed to tobacco smoke in utero they were reduced compared with the levels observed in children of tobacco abstinent mothers. Oxidative stress generated by tobacco smoke impairs glutathione homeostasis in both the mother and the newborn. The severity of oxidative processes in the mother co-existing with the reduced potential of antioxidant systems may have a negative effect on the oxidative-antioxidant balance in the newborn.
Collapse
Affiliation(s)
- Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
- Correspondence: ; Tel./Fax: +48-2-2327-7260
| | - Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
| | - Joanna Mazur
- Department of Humanization in Medicine and Sexology, Collegium Medicum University of Zielona Góra, 65-729 Zielona Góra, Poland;
| | - Mariusz Ołtarzewski
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
| | - Tomasz M. Maciejewski
- Clinic of Obstetrics and Gynaecology, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland;
| |
Collapse
|
30
|
Pérez-Alvarez I, Islas-Flores H, Gómez-Oliván LM, Sánchez-Aceves LM, Chamorro-Cevallos G. Protective effects of Spirulina (Arthrospira maxima) against toxicity induced by cadmium in Xenopus laevis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109099. [PMID: 34102331 DOI: 10.1016/j.cbpc.2021.109099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Spirulina (Arthrospira maxima) has been recognized as a superfood and nutraceutical by its high nutritional value and the benefits of its consumption; it is an important source of lipids, proteins, vitamins, minerals, and antioxidants. It is known that spirulina has positive effects on the toxicity induced by pharmaceuticals and metals. Heavy metals such as cadmium, frequently used in industrial activities, are continuously detected in water bodies and can generate adverse effects on aquatic organisms even at low concentrations. This study aimed to evaluate the protective effect of spirulina (Arthrospira maxima) against the toxic effects induced by cadmium in the early life stages of Xenopus laevis. Twenty Xenopus laevis embryos were exposed to five different treatments on triplicate, control, cadmium (CdCl2 24.5 μg L-1) and three spirulina mixtures Cd + S 1 (24.5 μg L-1 CdCl2 + 2 mg L-1 spirulina), Cd + S 2 (24.5 μg L-1 CdCl2 + 2 mg L-1 spirulina), Cd + S 3 (24.5 μg L-1 CdCl2 + 10 mg L-1 spirulina); after 96 h of exposure: Malformations, mortality and length were evaluated; also, after 192 h, lipid peroxidation (LPX), superoxide dismutase (SOD) and catalase (CAT) were determined. All spirulina treatments decreased mortality from 34 to 50% and reduced malformations on incidence from 36 to 68%. Treatment Cd + S 3 decreased growth inhibition significantly. Spirulina treatment Cd + S 2 decreased lipidic peroxidation and antioxidant activity; these results suggest that spirulina (Arthrospira maxima) can decrease the mortality, frequency of malformations, the severity of malformations, growth inhibition, and oxidative damage induced by cadmium in Xenopus laevis embryos.
Collapse
Affiliation(s)
- Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Livier Mireya Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Germán Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero, México, DF C.P. 07738, Mexico
| |
Collapse
|
31
|
Kuleshova ON, Teply DL, Teply DD, Semenova AS. Dependence of Free Radical Homeostasis of the Central Nervous System of Mature Male Rats on the Duration of Prenatal Stress. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Farella I, Panza R, Capozza M, Laforgia N. Lecithinized superoxide dismutase in the past and in the present: Any role in the actual pandemia of COVID-19? Biomed Pharmacother 2021; 141:111922. [PMID: 34323703 PMCID: PMC8277551 DOI: 10.1016/j.biopha.2021.111922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus disease 19 (Covid-19) pandemic is devastating the public health: it is urgent to find a viable therapy to reduce the multiorgan damage of the disease. A validated therapeutic protocol is still missing. The most severe forms of the disease are related to an exaggerated inflammatory response. The pivotal role of reactive oxygen species (ROS) in the amplification of inflammation makes the antioxidants a potential therapy, but clinical trials are needed. The lecitinized superoxide dismutase (PC-SOD) could represent a possibility because of bioaviability, safety, and its modulatory effect on the innate immune response in reducing the harmful consequences of oxidative stress. In this review we summarize the evidence on lecitinized superoxide dismutase in animal and human studies, to highlight the rationale for using the PC-SOD to treat COVID-19.
Collapse
Affiliation(s)
- Ilaria Farella
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
33
|
Neural crest metabolism: At the crossroads of development and disease. Dev Biol 2021; 475:245-255. [PMID: 33548210 PMCID: PMC10171235 DOI: 10.1016/j.ydbio.2021.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The neural crest is a migratory stem cell population that contributes to various tissues and organs during vertebrate embryonic development. These cells possess remarkable developmental plasticity and give rise to many different cell types, including chondrocytes, osteocytes, peripheral neurons, glia, melanocytes, and smooth muscle cells. Although the genetic mechanisms underlying neural crest development have been extensively studied, many facets of this process remain unexplored. One key aspect of cellular physiology that has gained prominence in the context of embryonic development is metabolic regulation. Recent discoveries in neural crest biology suggest that metabolic regulation may play a central role in the formation, migration, and differentiation of these cells. This possibility is further supported by clinical studies that have demonstrated a high prevalence of neural crest anomalies in babies with congenital metabolic disorders. Here, we examine why neural crest development is prone to metabolic disruption and discuss how carbon metabolism regulates developmental processes like epithelial-to-mesenchymal transition (EMT) and cell migration. Finally, we explore how understanding neural crest metabolism may inform upon the etiology of several congenital birth defects.
Collapse
|
34
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Baldassarre ME, Antonucci LA, Castoro G, Di Mauro A, Fanelli M, Grosso FM, Cassibba R, Laforgia N. Maternal Psychological Factors and Onset of Functional Gastrointestinal Disorders in Offspring: A Prospective Study. J Pediatr Gastroenterol Nutr 2021; 73:30-36. [PMID: 33633078 DOI: 10.1097/mpg.0000000000003107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Functional gastrointestinal disorders (FGIDs) are a heterogeneous group of conditions of unclear etiology. The biopsychosocial model approach to FGIDs posits that early-life stressors may trigger a cascade of complex interactions between genetic predisposition and risk factors eventually leading to the occurrence of FGIDs. The relationship between the psychological disposition of the mother and FGIDs occurrence is poorly understood. We conducted a study to investigate if parental psychological factors may contribute to the onset of FGIDs in offspring. METHODS We performed a prospective cohort study of parent-infant pairs who completed a battery of self-reported psychological questionnaires and a validated Rome III questionnaire for the diagnosis of infant and toddler FGIDs. The Edinburgh Postpartum Depression Scale (EPDS) was used to examine postpartum depression (PPD) symptoms; the Maternity Blues Questionnaire (MBQ) was applied to measure maternity blues severity; the Symptoms Checklist-Revised (SCL90-R) was used to assess the presence of relevant psychiatric symptoms; adult attachment style in mothers was assessed in a continuous way through the five dimensions of the Attachment Style Questionnaire (ASQ). RESULTS Out of the 360 eligible mothers, 200 were enrolled, 113 completed the 3-month follow-up and were included in the final analysis. PPD symptoms prevalence was 20.4%, 20%, 13.2%, and 13.1% respectively at 3 days, 1 week, 1 month, and 3 months after delivery. 40.4% of mothers suffered from severe blues according to the MBQ. Relevant psychiatric symptoms (SCL90-R) were present in 7.8% and 10.9% of mothers, respectively at 1 week and 3 months after delivery. 48.7% of mothers showed a secure attachment pattern measured through the RQ. At 1-month follow-up, infant regurgitation was diagnosed in 26 (23%) of infants, infantile colic in 31 (27.4%), dyschezia in 17 (15%), and functional constipation in 9 (8%). At 3-month follow-up, FGIDs prevalence was respectively 16 (19.3%), 11 (13.3%), 4 (4.8%), and 11 (13.3%). A significant positive association between PPD symptoms starting 3 days after delivery and the presence of infantile colic on setting 1 month after birth was found (P = 0.028), as well as between PPD symptoms occurrence 7 days after delivery and infantile regurgitation beginning 1 month after birth (P = 0.042). A higher prevalence of infantile colic was found in the offspring of mothers suffering from PPD symptoms from 3 days after delivery (54.5 vs 19.8; P = 0.001). No significant association was found between FGIDs and psychiatric symptoms and maternity blues at any timepoint. On the other hand, mothers of infants with regurgitation with an onset 1 month after birth have higher insecurity score in avoidant and fearful ASQ-related attachment dimensions (respectively, P = 0.03, P = 0.042, P = 0.03). CONCLUSIONS Maternal psychological factors might contribute to the onset of infant FGIDs in offspring. Early screening of postpartum depression symptoms and early implementation of psychological interventions within the postpartum period might promote the health of the mother-infant dyad.
Collapse
Affiliation(s)
| | | | | | | | - Margherita Fanelli
- Interdisciplinary Department of Medicine, University "Aldo Moro" of Bari, Aldo Moro University of Bari, Bari
| | - Francesca Maria Grosso
- Postgraduate School in Public Health, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | |
Collapse
|
36
|
Romero-Lopez MDM, Oria M, Watanabe-Chailland M, Varela MF, Romick-Rosendale L, Peiro JL. Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats. Metabolites 2021; 11:177. [PMID: 33803572 PMCID: PMC8003001 DOI: 10.3390/metabo11030177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is characterized by the herniation of abdominal contents into the thoracic cavity during the fetal period. This competition for fetal thoracic space results in lung hypoplasia and vascular maldevelopment that can generate severe pulmonary hypertension (PH). The detailed mechanisms of CDH pathogenesis are yet to be understood. Acknowledgment of the lung metabolism during the in-utero CDH development can help to discern the CDH pathophysiology changes. Timed-pregnant dams received nitrofen or vehicle (olive oil) on E9.5 day of gestation. All fetal lungs exposed to nitrofen or vehicle control were harvested at day E21.5 by C-section and processed for metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. The three groups analyzed were nitrofen-CDH (NCDH), nitrofen-control (NC), and vehicle control (VC). A total of 64 metabolites were quantified and subjected to statistical analysis. The multivariate analysis identified forty-four metabolites that were statistically different between the three groups. The highest Variable importance in projection (VIP) score (>2) metabolites were lactate, glutamate, and adenosine 5'-triphosphate (ATP). Fetal CDH lungs have changes related to oxidative stress, nucleotide synthesis, amino acid metabolism, glycerophospholipid metabolism, and glucose metabolism. This work provides new insights into the molecular mechanisms behind the CDH pathophysiology and can explore potential novel treatment targets for CDH patients.
Collapse
Affiliation(s)
- Maria del Mar Romero-Lopez
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
- Perinatal Institute, Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc Oria
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Miki Watanabe-Chailland
- NMR-based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.W.-C.); (L.R.-R.)
| | - Maria Florencia Varela
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
| | - Lindsey Romick-Rosendale
- NMR-based Metabolomics Core, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (M.W.-C.); (L.R.-R.)
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (M.d.M.R.-L.); (M.O.); (M.F.V.)
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
37
|
Fazekas-Pongor V, Csáky-Szunyogh M, Fekete M, Mészáros Á, Cseh K, Pénzes M. Congenital heart diseases and parental occupational exposure in a Hungarian case-control study in 1997 to 2002. Congenit Anom (Kyoto) 2021; 61:55-62. [PMID: 33140474 DOI: 10.1111/cga.12401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/01/2022]
Abstract
The etiology of congenital heart diseases is not fully understood yet, however, endocrine disrupting chemicals may have a causative role in their development. The purpose of our study was to examine the association between congenital heart diseases and periconceptional parental occupational exposure to endocrine disrupting chemicals. In our Hungarian population-based case-control study, we examined 2263 live born cases with any congenital heart disease and 6789 matched controls selected between years 1997 to 2002. Occupational exposure was assessed with a job-exposure matrix developed for endocrine disrupting chemicals. Conditional multiple logistic regression analyses were performed to test associations between parental occupational exposure to endocrine disrupting chemicals and congenital heart diseases of the offspring as a whole and by congenital heart disease subtypes. The prevalence of exposure to endocrine disrupting chemicals was 4.5% for both case and control mothers and 19.1% and 19.4% for case and control fathers, respectively. We found a positive association between paternal pesticide (adjusted odds ratio = 1.66, 95% confidence interval: 1.03-2.69) and alkylphenolic compound exposure (adjusted odds ratio = 1.95, 95% confidence interval: 1.30-2.93) and the development of patent ductus arteriosus in the offspring. Alkylphenolic compound exposure occurred among painters, famers, and those working in the food service industry, while pesticide exposure occurred predominantly among farm workers. We identified that certain occupations may increase the occurrence of certain congenital heart disease phenotypes in the offspring. By paying closer attention to those working in these areas, antenatal detection rates of congenital heart diseases may be improved.
Collapse
Affiliation(s)
- Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Csáky-Szunyogh
- Hungarian Congenital Abnormalities Registry, National Public Health Center, Budapest, Hungary
| | - Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágota Mészáros
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Károly Cseh
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Pénzes
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
38
|
Namoju R, Chilaka NK. Alpha-lipoic acid ameliorates cytarabine-induced developmental anomalies in rat fetus. Hum Exp Toxicol 2020; 40:851-868. [PMID: 33225757 DOI: 10.1177/0960327120975114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytarabine (Ara-C) is a nucleoside analogue used in the treatment of cancers and viral infections. It has teratogenic potential and causes a variety of birth defects in fetuses. Alpha-lipoic acid (ALA) is a natural antioxidant offers protection against the developmental toxicity induced by drug- or toxicant-exposure or pathological conditions. This study was aimed at evaluating the protective effect of ALA against Ara-C induced developmental toxicity in rat fetus. Pregnant rats divided into five groups and received normal saline, ALA200 mg/kg, Ara-C12.5 mg/kg, Ara-C25 mg/kg and, Ara-C25 mg/kg plus ALA200 mg/kg respectively from gestational day (GD) 8 to GD14 and sacrificed on GD21. Ara-C treatment led to a significant and dose-dependent decrease in food intake, weight gain, placental weight, and an increase in oxidative stress in pregnant rats. Further, the in-utero exposure to Ara-C led to an increase in fetal mortality, resorptions, oxidative stress, external morphological anomalies and limb abnormalities, and impaired ossification. Co-administration of ALA resulted in amelioration of the footprints of Ara-C induced toxicity in pregnant rats as well as the fetus. These findings indicate that the ALA supplementation offers protection against developmental toxicity caused by Ara-C prenatal exposure in rats.
Collapse
Affiliation(s)
- Ramanachary Namoju
- Department of Pharmacology, 78997GITAM Institute of Pharmacy, GITAM Deemed to be University, Vishakhapatnam, Andhra Pradesh, India.,Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, India
| | - Naga Kavitha Chilaka
- Department of Pharmacology, 78997GITAM Institute of Pharmacy, GITAM Deemed to be University, Vishakhapatnam, Andhra Pradesh, India
| |
Collapse
|
39
|
Association of Oxidative Stress on Pregnancy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6398520. [PMID: 33014274 PMCID: PMC7512072 DOI: 10.1155/2020/6398520] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 02/02/2023]
Abstract
The pathophysiological mechanism underlying pregnancy complications such as congenital malformations, miscarriage, preeclampsia, or fetal growth restriction is not entirely known. However, the negative impact of the mother's body oxidative imbalance on the fetus and the course of gestation is increasingly discussed. This article is an integrative review of some original studies and review papers on the effects of oxidative stress on the adverse pregnancy outcomes mainly birth defects in fetuses. A systematic search for English language articles published from 2010 until 2020 was made, using MEDLINE data. Additionally, we analyzed the Cochrane and Scopus databases, discussions with experts, and a review of bibliography of articles from scientifically relevant and valuable sources. The main purposes are to assess the contribution of the existing literature of associations of oxidative stress on the etiology of the abovementioned conditions and to identify relevant information and outline existing knowledge. Furthermore, the authors aim to find any gaps in the research, thereby providing grounds for our own research. The key search terms were "oxidative stress in pregnancy," "oxidative stress and congenital malformations," and "oxidative stress and adverse pregnancy outcomes." Studies have confirmed that oxidative stress has a significant impact on pregnancy and is involved in the pathomechanism of adverse pregnancy outcomes.
Collapse
|
40
|
Pursuing the Elixir of Life: In Vivo Antioxidative Effects of Manganosalen Complexes. Antioxidants (Basel) 2020; 9:antiox9080727. [PMID: 32785017 PMCID: PMC7465912 DOI: 10.3390/antiox9080727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Manganosalen complexes are coordination compounds that possess a chelating salen-type ligand, a class of bis-Schiff bases obtained by condensation of salicylaldehyde and a diamine. They may act as catalytic antioxidants mimicking both the structure and the reactivity of the native antioxidant enzymes active site. Thus, manganosalen complexes have been shown to exhibit superoxide dismutase, catalase, and glutathione peroxidase activities, and they could potentially facilitate the scavenging of excess reactive oxygen species (ROS), thereby restoring the redox balance in damaged cells and organs. Initial catalytic studies compared the potency of these compounds as antioxidants in terms of rate constants of the chemical reactivity against ROS, giving catalytic values approaching and even exceeding that of the native antioxidative enzymes. Although most of these catalytic studies lack of biological relevance, subsequent in vitro studies have confirmed the efficiency of many manganosalen complexes in oxidative stress models. These synthetic catalytic scavengers, cheaper than natural antioxidants, have accordingly attracted intensive attention for the therapy of ROS-mediated injuries. The aim of this review is to focus on in vivo studies performed on manganosalen complexes and their activity on the treatment of several pathological disorders associated with oxidative damage. These disorders, ranging from the prevention of fetal malformations to the extension of lifespan, include neurodegenerative, inflammatory, and cardiovascular diseases; tissue injury; and other damages related to the liver, kidney, or lungs.
Collapse
|
41
|
Baldassarre ME, Di Mauro A, Salvatore S, Tafuri S, Bianchi FP, Dattoli E, Morando L, Pensabene L, Meneghin F, Dilillo D, Mancini V, Talarico V, Tandoi F, Zuccotti G, Agosti M, Laforgia N. Birth Weight and the Development of Functional Gastrointestinal Disorders in Infants. Pediatr Gastroenterol Hepatol Nutr 2020; 23:366-376. [PMID: 32704497 PMCID: PMC7354866 DOI: 10.5223/pghn.2020.23.4.366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess the association between birth weight and the development of functional gastrointestinal disorders (FGIDs) in the first year of life. METHODS This is a secondary analysis of a prospective cohort multicenter study including neonates, consecutively enrolled at birth, and followed up for one year. At birth all infants were classified by birth weight as extremely low (ELBW), very low, or low when <1,000, <1,500, and <2,500 g, respectively, and by birth weight for gestational age as appropriate (AGA, weight in the 10-90th percentile), small (SGA, weight <10th percentile), and large (LGA, weight >90th percentile) for gestational age. FGIDs were classified according to the Rome III criteria and assessed at 1, 3, 6, and 12 months of life. RESULTS Among 1,152 newborns enrolled, 934 (81.1%) completed the study: 302 (32.3%) were preterm, 35 (3.7%) were ELBW, 104 (11.1%) were SGA, 782 (83.7%) were AGA, and 48 (5.1%) were LGA infants. Overall, throughout the first year of life, 718 (76.9%) reported at least one FGID. The proportion of infants presenting with at least one FGID was significantly higher in ELBW (97%) compared to LBW (74%) (p=0.01) and in LGA (85.4%) and SGA (85.6%) compared to AGA (75.2%) (p=0.0001). On multivariate analysis, SGA was significantly associated with infantile colic. CONCLUSION We observed an increased risk of FGIDs in ELBW, SGA, and LGA neonates. Our results suggest that prenatal factors determining birth weight may influence the development of FGIDs in infants. Understanding the role of all potential risk factors may provide new insights and targeted approaches for FGIDs.
Collapse
Affiliation(s)
| | - Antonio Di Mauro
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Silvia Salvatore
- Unit of Pediatrics and Neonatology, "F. Del Ponte" Hospital, Dipartimento di Medicina e Chirurgia University of Insubria, Varese, Italy
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Francesco Paolo Bianchi
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Enzo Dattoli
- Unit of Pediatrics and Neonatology, "F. Del Ponte" Hospital, Dipartimento di Medicina e Chirurgia University of Insubria, Varese, Italy
| | - Lucia Morando
- Unit of Pediatrics and Neonatology, "F. Del Ponte" Hospital, Dipartimento di Medicina e Chirurgia University of Insubria, Varese, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Fabio Meneghin
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Dario Dilillo
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | | | - Valentina Talarico
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Tandoi
- Unit of Pediatrics and Neonatology, "F. Del Ponte" Hospital, Dipartimento di Medicina e Chirurgia University of Insubria, Varese, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Massimo Agosti
- Unit of Pediatrics and Neonatology, "F. Del Ponte" Hospital, Dipartimento di Medicina e Chirurgia University of Insubria, Varese, Italy
| | - Nicola Laforgia
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| |
Collapse
|
42
|
Silvestro S, Calcaterra V, Pelizzo G, Bramanti P, Mazzon E. Prenatal Hypoxia and Placental Oxidative Stress: Insights from Animal Models to Clinical Evidences. Antioxidants (Basel) 2020; 9:E414. [PMID: 32408702 PMCID: PMC7278841 DOI: 10.3390/antiox9050414] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common form of intrauterine stress characterized by exposure to low oxygen concentrations. Gestational hypoxia is associated with the generation of reactive oxygen species. Increase in oxidative stress is responsible for damage to proteins, lipids and DNA with consequent impairment of normal cellular functions. The purpose of this review is to propose a summary of preclinical and clinical evidences designed to outline the correlation between fetal hypoxia and oxidative stress. The results of the studies described show that increases of oxidative stress in the placenta is responsible for changes in fetal development. Specifically, oxidative stress plays a key role in vascular, cardiac and neurological disease and reproductive function dysfunctions. Moreover, the different finding suggests that the prenatal hypoxia-induced oxidative stress is associated with pregnancy complications, responsible for changes in fetal programming. In this way, fetal hypoxia predisposes the offspring to congenital anomalies and chronic diseases in future life. Several antioxidant agents, such as melatonin, erythropoietin, vitamin C, resveratrol and hydrogen, shown potential protective effects in prenatal hypoxia. However, future investigations will be needed to allow the implementation of these antioxidants in clinical practice for the promotion of health in early intrauterine life, in fetuses and children.
Collapse
Affiliation(s)
- Serena Silvestro
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Valeria Calcaterra
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Gloria Pelizzo
- Department of Biomedical and Clinical Science “L. Sacco”, and Pediatric Surgery Department “V. Buzzi” Children’s Hospital, University of Milano, 20100 Milano, Italy;
| | - Placido Bramanti
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Emanuela Mazzon
- Departmnent of Experimental Neurology, IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| |
Collapse
|
43
|
Bhattacharya D, Azambuja AP, Simoes-Costa M. Metabolic Reprogramming Promotes Neural Crest Migration via Yap/Tead Signaling. Dev Cell 2020; 53:199-211.e6. [PMID: 32243782 PMCID: PMC7236757 DOI: 10.1016/j.devcel.2020.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/05/2020] [Accepted: 03/04/2020] [Indexed: 02/04/2023]
Abstract
The Warburg effect is one of the metabolic hallmarks of cancer cells, characterized by enhanced glycolysis even under aerobic conditions. This physiological adaptation is associated with metastasis , but we still have a superficial understanding of how it affects cellular processes during embryonic development. Here we report that the neural crest, a migratory stem cell population in vertebrate embryos, undergoes an extensive metabolic remodeling to engage in aerobic glycolysis prior to delamination. This increase in glycolytic flux promotes Yap/Tead signaling, which activates the expression of a set of transcription factors to drive epithelial-to-mesenchymal transition. Our results demonstrate how shifts in carbon metabolism can trigger the gene regulatory circuits that control complex cell behaviors. These findings support the hypothesis that the Warburg effect is a precisely regulated developmental mechanism that is anomalously reactivated during tumorigenesis and metastasis.
Collapse
Affiliation(s)
| | - Ana Paula Azambuja
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
44
|
Batiha GE, El-Far AH, El-Mleeh AA, Alsenosy AA, Abdelsamei EK, Abdel-Daim MM, El-Sayed YS, Shaheen HM. In vitro study of ivermectin efficiency against the cattle tick, Rhipicephalus ( Boophilus) annulatus, among cattle herds in El-Beheira, Egypt. Vet World 2019; 12:1319-1326. [PMID: 31641314 PMCID: PMC6755390 DOI: 10.14202/vetworld.2019.1319-1326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIM Ivermectin (IVM) has been used in veterinary practice to control different parasitic infestations over the past two decades. This study aimed to re-assess the acaricidal effects of IVM, as well as to evaluate its efficacy against Rhipicephalus (Boophilus) annulatus by determining the mortality rate, γ-aminobutyric acid (GABA) level, and oxidative/antioxidative homeostasis (malondialdehyde [MDA] levels and glutathione S-transferase [GST] activities). MATERIALS AND METHODS Adult female Rhipicephalus (Boophilus) annulatus were picked from cattle farms in El-Beheira Governorate, Egypt. Ticks were equally allocated to seven experimental groups to assess the acaricidal potential of IVM chemotherapeutics in controlling R. (B.) annulatus. IVM was prepared at three concentrations (11.43, 17.14, and 34.28 µM of IVM). RESULTS Mortality rate was calculated among the treated ticks. In addition, GABA, GST, and MDA biomarker levels were monitored. The data revealed a noticeable change in GST activity, a detoxification enzyme found in R. (B.) annulatus, through a critical elevation in mortality percentage. CONCLUSION IVM-induced potent acaricidal effects against R. (B.) annulatus by repressing GST activity for the initial 24 h after treatment. Collectively, this paper reports the efficacy of IVM in a field population of R. (B.) annulatus in Egypt.
Collapse
Affiliation(s)
- Gaber E. Batiha
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Amany A. El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Egypt
| | | | - Eman K. Abdelsamei
- Department of Parasitology, Faculty of Veterinary Medicine, Menoufia University, Egypt
| | - Mohamed M. Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser S. El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Egypt
| | - Hazem M. Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Egypt
| |
Collapse
|
45
|
Protective Effects of Licochalcone A Improve Airway Hyper-Responsiveness and Oxidative Stress in a Mouse Model of Asthma. Cells 2019; 8:cells8060617. [PMID: 31226782 PMCID: PMC6628120 DOI: 10.3390/cells8060617] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Licochalcone A was isolated from Glycyrrhiza uralensis and previously reported to have antitumor and anti-inflammatory effects. Licochalcone A has also been found to inhibit the levels of Th2-associated cytokines in the bronchoalveolar lavage fluid (BALF) of asthmatic mice. However, the molecular mechanism underlying airway inflammation and how licochalcone A regulates oxidative stress in asthmatic mice are elusive. In this study, we investigated whether licochalcone A could attenuate inflammatory and oxidative responses in tracheal epithelial cells, and whether it could ameliorate oxidative stress and airway inflammation in asthmatic mice. Inflammatory human tracheal epithelial (BEAS-2B) cells were treated with licochalcone A to evaluate oxidative responses and inflammatory cytokine levels. In addition, BALB/c mice were sensitized with ovalbumin (OVA) and injected intraperitoneally with licochalcone A (5 or 10 mg/kg). Licochalcone A significantly inhibited reactive oxygen species, eotaxin, and proinflammatory cytokines in BEAS-2B cells. Licochalcone A also decreased intercellular adhesion molecule 1 levels in inflammatory BEAS-2B cells, blocking monocyte cell adherence. We also found that licochalcone A significantly decreased oxidative responses, reduced malondialdehyde levels, and increased glutathione levels in the lungs of OVA-sensitized mice. Furthermore, licochalcone A decreased airway hyper-responsiveness, eosinophil infiltration, and Th2 cytokine production in the BALF. These findings suggest that licochalcone A alleviates oxidative stress, inflammation, and pathological changes by inhibiting Th2-associated cytokines in asthmatic mice and human tracheal epithelial cells. Thus, licochalcone A demonstrated therapeutic potential for improving asthma.
Collapse
|
46
|
Baldassarre ME, Di Mauro A, Capozza M, Rizzo V, Schettini F, Panza R, Laforgia N. Dysbiosis and Prematurity: Is There a Role for Probiotics? Nutrients 2019; 11:E1273. [PMID: 31195600 PMCID: PMC6627287 DOI: 10.3390/nu11061273] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Healthy microbiota is a critical mediator in maintaining health and it is supposed that dysbiosis could have a role in the pathogenesis of a number of diseases. Evidence supports the hypothesis that maternal dysbiosis could act as a trigger for preterm birth; aberrant colonization of preterm infant gut might have a role in feeding intolerance and pathogenesis of necrotizing enterocolitis. Despite several clinical trials and meta-analyses, it is still not clear if modulation of maternal and neonatal microbiota with probiotic supplementation decreases the risk of preterm birth and its complications.
Collapse
Affiliation(s)
- Maria Elisabetta Baldassarre
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Antonio Di Mauro
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Valentina Rizzo
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Federico Schettini
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and Human Oncology, "Aldo Moro" University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy.
| |
Collapse
|