1
|
Sun Y, Wang X, Chen Y, Luan Z, Hao R. The impact of exogenous Oxytocin on visual cortex plasticity across different stages of visual development. Sci Rep 2025; 15:12137. [PMID: 40204929 PMCID: PMC11982226 DOI: 10.1038/s41598-025-96573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
The plasticity of ocular dominance is most prominent during the critical period of visual development, influenced by the balance of excitatory and inhibitory synaptic transmission in the visual cortex. Astrocytes play a crucial role in regulating synaptic plasticity through phagocytosis of synapses. However, the ability of astrocytes to modulate synaptic plasticity after the critical period remains unclear. Oxytocin (OT), a neuropeptide involved in neural circuit formation, has shown potential in enhancing synaptic plasticity. This study explores the role of OT in restoring visual cortical plasticity during and after the critical period of visual development. We performed monocular deprivation (MD) on mice during the critical period and extended the deprivation until adulthood. Visual cortical plasticity was evaluated using pattern visual evoked potentials (PVEPs), immunofluorescence staining, and western blotting. Excitatory synaptic markers (VGLUT1, PSD- 95) and inhibitory synaptic markers (VGAT, Gephyrin) were analyzed. The effects of OT administration, alone or combined with reverse occlusion (RO), on ocular dominance plasticity and astrocyte activity were assessed. During the critical period, MD induced a significant ocular dominance shift with reduced cortical response from the deprived eye, primarily through decreased excitatory synaptic markers (VGLUT1: P < 0.05; PSD- 95: P < 0.05). OT administration further enhanced this shift by reducing GFAP expression and decreasing astrocytic phagocytosis of excitatory synapses. After the critical period, prolonged MD reduced excitatory synaptic marker expression in the visual cortex (P < 0.05), and RO alone did not restore cortical plasticity. However, the combination of OT and RO increased excitatory synaptic marker expression (VGLUT1: P < 0.05; PSD- 95: P < 0.05 and restored ocular dominance plasticity. Our findings demonstrate that OT can modulate astrocyte activity and enhance excitatory synaptic plasticity, facilitating the recovery of visual cortical plasticity both during and after the critical period. These results highlight the potential of OT as a therapeutic intervention for visual impairments caused by disrupted sensory experiences during development.
Collapse
Affiliation(s)
- Yifan Sun
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Xiao Wang
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Yamin Chen
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Zichen Luan
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, 300020, Tianjin, PR China.
- Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin Eye Institute, 300020, Tianjin, PR China.
- Nankai University Affiliated Eye Hospital, Nankai University, 300020, Tianjin, PR China.
| |
Collapse
|
2
|
Santos DE, Silva Lima SA, Moreira LS, Lima Costa S, de Sampaio Schitine C. New perspectives on heterogeneity in astrocyte reactivity in neuroinflammation. Brain Behav Immun Health 2025; 44:100948. [PMID: 40028234 PMCID: PMC11871470 DOI: 10.1016/j.bbih.2025.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
The inflammatory response is a fundamental aspect of all insults to the central nervous system (CNS), which includes acute trauma, infections, and chronic neurodegenerative conditions. As methods for investigating astrocytes have progressed, recent findings indicate that astrocytes can react to a diverse spectrum of insults affecting the central nervous system. Astrocytes respond to external and internal stimuli from the nervous system in a process called glial reactivity. Astrocyte reactivity, previously considered uniform and functionally inactive, is currently a very diverse event in different inflammatory processes. These differences can occur due to the nature, the intensity of the stimulus, the brain region involved and can range from subtle changes in astrocytic morphology to protein expression alteration, gene transcription profile shifts, and variations in the secretory pattern of molecules. The elucidation of the diverse roles of astrocytes in both normal and pathological conditions has led to increased interest in the notion that various astrocyte subtypes may exist, each contributing with distinct functions. Our study will prioritize the characterization of astrocytic response patterns in the context of the development and progression of neurodegenerative diseases, particularly Alzheimer's and Parkinson's. In addition, we will investigate the astrocyte's response during bacterial and viral infections, given the potential to enhance specific therapeutic interventions based on the reactivity profiles of astrocytes.
Collapse
Affiliation(s)
| | | | - Leticia Santos Moreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| | - Clarissa de Sampaio Schitine
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, Brazil
| |
Collapse
|
3
|
Kompier NF, Siemonsmeier G, Meyer N, Kettenmann H, Rathjen FG. Visualization of Gap Junction-Mediated Astrocyte Coupling in Acute Mouse Brain Slices. Bio Protoc 2025; 15:e5220. [PMID: 40028015 PMCID: PMC11865822 DOI: 10.21769/bioprotoc.5220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 03/05/2025] Open
Abstract
Gap junctions are transmembrane protein channels that enable the exchange of small molecules such as ions, second messengers, and metabolites between adjacent cells. Gap junctions are found in various mammalian organs, including skin, endothelium, liver, pancreas, muscle, and central nervous system (CNS). In the CNS, they mediate coupling between neural cells including glial cells, and the resulting panglial networks are vital for brain homeostasis. Tracers of sufficiently small molecular mass can diffuse across gap junctions and are used to visualize the extent of cell-to-cell coupling in situ by delivering them to a single cell through sharp electrodes or patch-clamp micropipettes. Here, we describe a protocol for pre-labeling and identification of astrocytes in acute mouse forebrain slices using Sulforhodamine 101 (SR101). Fluorescent cells can then be targeted for whole-cell patch-clamp, which allows for further confirmation of astroglial identity by assessing their electrophysiological properties, as well as for passive dialysis with a tracer such as biocytin. Slices can then be subjected to chemical fixation and immunostaining to detect dye-coupled networks. This protocol provides a method for the identification of astrocytes in live tissue through SR101 labeling. Alternatively, transgenic reporter mice can also be used to identify astrocytes. While we illustrate the use of this protocol for the study of glial networks in the mouse brain, the general principles are applicable to other species, tissues, and cell types. Key features • Pre-labeling of live astrocytes in acute adult mouse brain slices using the dye Sulforhodamine 101. • Dialysis of biocytin into individual astrocytes using whole-cell patch-clamp electrophysiology. • Staining of biocytin by streptavidin and immunostaining of GFAP, imaging, and analysis of dye-coupled astrocytic networks. • Can be used for other glial cell types and might be adapted to other tissues and species.
Collapse
Affiliation(s)
- Nine F. Kompier
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Niklas Meyer
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fritz G. Rathjen
- Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
4
|
Morrey WJ, Ceyzériat K, Amossé Q, Badina AM, Dickie B, Schiessl I, Tsartsalis S, Millet P, Boutin H, Tournier BB. Early metabolic changes in the brain of Alzheimer's disease rats are driven by GLAST+ cells. J Cereb Blood Flow Metab 2025:271678X251318923. [PMID: 39917849 PMCID: PMC11806453 DOI: 10.1177/0271678x251318923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/27/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025]
Abstract
Glucose metabolic dysfunction is a hallmark of Alzheimer's disease (AD) pathology and is used to diagnose the disease or predict imminent cognitive decline. The main method to measure brain metabolism in vivo is positron emission tomography with 2-Deoxy-2-[18F]fluoroglucose ([18F]FDG-PET). The cellular origin of changes in the [18F]FDG-PET signal in AD is controversial. We addressed this by combining [18F]FDG-PET with subsequent cell-sorting and γ-counting of [18F]FDG-accumulation in sorted cell populations. 7-month-old male TgF344-AD rats and wild-type controls (n = 24/group) received sham or ceftriaxone (200 mg/kg) injection prior to [18F]FDG-PET imaging to increase glutamate uptake and glucose utilisation. The same animals were injected again one week later, and radiolabelled brains were dissected, with hippocampi taken for magnetically-activated cell sorting of radioligand-treated tissues (MACS-RTT). Radioactivity in sorted cell populations was measured to quantify cell-specific [18F]FDG uptake. Transcriptional analyses of metabolic enzymes/transporters were also performed. Hypometabolism in the frontal association cortex of TgF344-AD rats was identified using [18F]FDG-PET, whereas hypermetabolism was identified in the hippocampus using MACS-RTT. Hypermetabolism was primarily driven by GLAST+ cells. This was supported by transcriptional analyses which showed alteration to metabolic apparatus, including upregulation of hexokinase 2 and altered expression of glucose/lactate transporters. See Figure 1 for summary.
Collapse
Affiliation(s)
- William J Morrey
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Kelly Ceyzériat
- CIBM Center for BioMedical Imaging, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Quentin Amossé
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Ben Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ingo Schiessl
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Stergios Tsartsalis
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Millet
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Hervé Boutin
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Imaging Brain & Neuropsychiatry iBraiN U1253, Université de Tours, Inserm, Tours, France
| | - Benjamin B Tournier
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Marullo C, Croci L, Giupponi I, Rivoletti C, Zuffetti S, Bettegazzi B, Cremona O, Giunti P, Ambrosi A, Casoni F, Consalez GG, Codazzi F. Altered Ca2+ responses and antioxidant properties in Friedreich's ataxia-like cerebellar astrocytes. J Cell Sci 2025; 138:jcs263446. [PMID: 39648860 PMCID: PMC11828468 DOI: 10.1242/jcs.263446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disorder characterized by severe neurological signs, affecting the peripheral and central nervous system, caused by reduced frataxin protein (FXN) levels. Although several studies have highlighted cellular dysfunctions in neurons, there is limited information on the effects of FXN depletion in astrocytes and on the potential non-cell autonomous mechanisms affecting neurons in FRDA. In this study, we generated a model of FRDA cerebellar astrocytes to unveil phenotypic alterations that might contribute to cerebellar atrophy. We treated primary cerebellar astrocytes with an RNA interference-based approach, to achieve a reduction of FXN comparable to that observed in individuals with FRDA. These FRDA-like astrocytes display some typical features of the disease, such as an increase of oxidative stress and a depletion of glutathione content. Moreover, FRDA-like astrocytes exhibit decreased Ca2+ responses to purinergic stimuli. Our findings shed light on cellular changes caused by FXN downregulation in cerebellar astrocytes, likely impairing their complex interaction with neurons. The potentially impaired ability to provide neuronal cells with glutathione or to release neuromodulators in a Ca2+-dependent manner could affect neuronal function, contributing to neurodegeneration.
Collapse
Affiliation(s)
- Chiara Marullo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Iris Giupponi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Rivoletti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sofia Zuffetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Barbara Bettegazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Ottavio Cremona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Filippo Casoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Gian Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| | - Franca Codazzi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Di Palma M, Koh W, Lee CJ, Conti F. A quantitative analysis of bestrophin 1 cellular localization in mouse cerebral cortex. Acta Physiol (Oxf) 2025; 241:e14245. [PMID: 39466647 DOI: 10.1111/apha.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
AIM Calcium-activated ligand-gated chloride channels, beyond their role in maintaining anion homeostasis, modulate neuronal excitability by facilitating nonvesicular neurotransmitter release. BEST1, a key member of this family, is permeable to γ-aminobutyric acid (GABA) and glutamate. While astrocytic BEST1 is well-studied and known to regulate neurotransmitter levels, its distribution and role in other brain cell types remain unclear. This study aimed to reassess the localization of BEST1 in the mouse cerebral cortex. METHODS We examined the localization and distribution of BEST1 in the mouse parietal cortex using light microscopy, confocal double-labeling with markers for astrocytes, neurons, microglia, and oligodendrocyte precursor cells, and 3D reconstruction techniques. RESULTS In the cerebral cortex, BEST1 is more broadly distributed than previously thought. Neurons are the second most abundant BEST1+ cell type in the cerebral cortex, following astrocytes. BEST1 is diffusely expressed in neuronal somatic and neuropilar domains and is present at glutamatergic and GABAergic terminals, with a prevalence at GABAergic terminals. We also confirmed that BEST1 is expressed in cortical microglia and identified it in oligodendrocyte precursor cells, albeit to a lesser extent. CONCLUSIONS Together, these findings suggest that BEST1's role in controlling neurotransmission may extend beyond astrocytes to include other brain cells. Understanding BEST1's function in these cells could offer new insights into the molecular mechanisms shaping cortical circuitry. Further research is needed to clarify the diverse roles of BEST1 in both normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Michael Di Palma
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
7
|
Sanz-Gálvez R, Falardeau D, Kolta A, Inglebert Y. The role of astrocytes from synaptic to non-synaptic plasticity. Front Cell Neurosci 2024; 18:1477985. [PMID: 39493508 PMCID: PMC11527691 DOI: 10.3389/fncel.2024.1477985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Information storage and transfer in the brain require a high computational power. Neuronal network display various local or global mechanisms to allow information storage and transfer in the brain. From synaptic to intrinsic plasticity, the rules of input-output function modulation have been well characterized in neurons. In the past years, astrocytes have been suggested to increase the computational power of the brain and we are only just starting to uncover their role in information processing. Astrocytes maintain a close bidirectional communication with neurons to modify neuronal network excitability, transmission, axonal conduction, and plasticity through various mechanisms including the release of gliotransmitters or local ion homeostasis. Astrocytes have been significantly studied in the context of long-term or short-term synaptic plasticity, but this is not the only mechanism involved in memory formation. Plasticity of intrinsic neuronal excitability also participates in memory storage through regulation of voltage-gated ion channels or axonal morphological changes. Yet, the contribution of astrocytes to these other forms of non-synaptic plasticity remains to be investigated. In this review, we summarized the recent advances on the role of astrocytes in different forms of plasticity and discuss new directions and ideas to be explored regarding astrocytes-neuronal communication and regulation of plasticity.
Collapse
Affiliation(s)
- Rafael Sanz-Gálvez
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Dominic Falardeau
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Arlette Kolta
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Yanis Inglebert
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| |
Collapse
|
8
|
Canepa CR, Kara JA, Lee CC. Cell-Type-Specific Expression of Leptin Receptors in the Mouse Forebrain. Int J Mol Sci 2024; 25:9854. [PMID: 39337341 PMCID: PMC11432612 DOI: 10.3390/ijms25189854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Leptin is a hormone produced by the small intestines and adipose tissue that promotes feelings of satiety. Leptin receptors (LepRs) are highly expressed in the hypothalamus, enabling central neural control of hunger. Interestingly, LepRs are also expressed in several other regions of the body and brain, notably in the cerebral cortex and hippocampus. These brain regions mediate higher-order sensory, motor, cognitive, and memory functions, which can be profoundly altered during periods of hunger and satiety. However, LepR expression in these regions has not been fully characterized on a cell-type-specific basis, which is necessary to begin assessing their potential functional impact. Consequently, we examined LepR expression on neurons and glia in the forebrain using a LepR-Cre transgenic mouse model. LepR-positive cells were identified using a 'floxed' viral cell-filling approach and co-labeling immunohistochemically for cell-type-specific markers, i.e., NeuN, VGlut2, GAD67, parvalbumin, somatostatin, 5-HT3R, WFA, S100β, and GFAP. In the cortex, LepR-positive cells were localized to lower layers (primarily layer 6) and exhibited non-pyramidal cellular morphologies. The majority of cortical LepR-positive cells were neurons, while the remainder were identified primarily as astrocytes or other glial cells. The majority of cortical LepR-positive neurons co-expressed parvalbumin, while none expressed somatostatin or 5-HT3R. In contrast, all hippocampal LepR-positive cells were neuronal, with none co-expressing GFAP. These data suggest that leptin can potentially influence neural processing in forebrain regions associated with sensation and limbic-related functions.
Collapse
Affiliation(s)
| | | | - Charles C. Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
9
|
Villareal JAB, Bathe T, Hery GP, Phillips JL, Tsering W, Prokop S. Deterioration of neuroimmune homeostasis in Alzheimer's Disease patients who survive a COVID-19 infection. J Neuroinflammation 2024; 21:202. [PMID: 39154174 PMCID: PMC11330027 DOI: 10.1186/s12974-024-03196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Growing evidence has implicated systemic infection as a significant risk factor for the development and advancement of Alzheimer's disease (AD). With the emergence of SARS-CoV-2 (COVID-19) and the resultant pandemic, many individuals from the same aging population vulnerable to AD suffered a severe systemic infection with potentially unidentified long-term consequences for survivors. To study the impact of COVID-19 survival on the brain's intrinsic immune system in a population also suffering from AD, we profiled post-mortem brain tissue from patients in the UF Neuromedicine Human Brain and Tissue Bank with a diagnosis of AD who survived a COVID-19 infection (COVID-AD) and contrasted our findings with AD patients who did not experience a COVID-19 infection, including a group of brain donors who passed away before arrival of SARS-CoV-2 in the United States. We assessed disease-relevant protein pathology and microglial and astrocytic markers by quantitative immunohistochemistry and supplemented these data with whole tissue gene expression analysis performed on the NanoString nCounter® platform. COVID-AD patients showed slightly elevated Aβ burden in the entorhinal, fusiform, and inferior temporal cortices compared to non-COVID-AD patients, while tau pathology burden did not differ between groups. Analysis of microglia revealed a significant loss of microglial homeostasis as well as exacerbated microgliosis in COVID-AD patients compared to non-COVID-AD patients in a brain region-dependent manner. Furthermore, COVID-AD patients showed reduced cortical astrocyte numbers, independent of functional subtype. Transcriptomic analysis supported these histological findings and, in addition, identified a dysregulation of oligodendrocyte and myelination pathways in the hippocampus of COVID-AD patients. In summary, our data demonstrate a profound impact of COVID-19 infection on neuroimmune and glial pathways in AD patients persisting for months post-infection, highlighting the importance of peripheral to central neuroimmune crosstalk in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan A B Villareal
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Tim Bathe
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jennifer L Phillips
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Wangchen Tsering
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
10
|
Hernández-Ortega K, Canul-Euan AA, Solis-Paredes JM, Borboa-Olivares H, Reyes-Muñoz E, Estrada-Gutierrez G, Camacho-Arroyo I. S100B actions on glial and neuronal cells in the developing brain: an overview. Front Neurosci 2024; 18:1425525. [PMID: 39027325 PMCID: PMC11256909 DOI: 10.3389/fnins.2024.1425525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The S100B is a member of the S100 family of "E" helix-loop- "F" helix structure (EF) hand calcium-binding proteins expressed in diverse glial, selected neuronal, and various peripheral cells, exerting differential effects. In particular, this review compiles descriptions of the detection of S100B in different brain cells localized in specific regions during the development of humans, mice, and rats. Then, it summarizes S100B's actions on the differentiation, growth, and maturation of glial and neuronal cells in humans and rodents. Particular emphasis is placed on S100B regulation of the differentiation and maturation of astrocytes, oligodendrocytes (OL), and the stimulation of dendritic development in serotoninergic and cerebellar neurons during embryogenesis. We also summarized reports that associate morphological alterations (impaired neurite outgrowth, neuronal migration, altered radial glial cell morphology) of specific neural cell groups during neurodevelopment and functional disturbances (slower rate of weight gain, impaired spatial learning) with changes in the expression of S100B caused by different conditions and stimuli as exposure to stress, ethanol, cocaine and congenital conditions such as Down's Syndrome. Taken together, this evidence highlights the impact of the expression and early actions of S100B in astrocytes, OL, and neurons during brain development, which is reflected in the alterations in differentiation, growth, and maturation of these cells. This allows the integration of a spatiotemporal panorama of S100B actions in glial and neuronal cells in the developing brain.
Collapse
Affiliation(s)
- Karina Hernández-Ortega
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - Arturo Alejandro Canul-Euan
- Department of Developmental Neurobiology, National Institute of Perinatology Isidro Espinosa de los Reyes (INPer), Mexico City, Mexico
| | | | | | | | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
11
|
Barbaresi P, Fabri M, Lorenzi T, Sagrati A, Morroni M. Intrinsic organization of the corpus callosum. Front Physiol 2024; 15:1393000. [PMID: 39035452 PMCID: PMC11259024 DOI: 10.3389/fphys.2024.1393000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/16/2024] [Indexed: 07/23/2024] Open
Abstract
The corpus callosum-the largest commissural fiber system connecting the two cerebral hemispheres-is considered essential for bilateral sensory integration and higher cognitive functions. Most studies exploring the corpus callosum have examined either the anatomical, physiological, and neurochemical organization of callosal projections or the functional and/or behavioral aspects of the callosal connections after complete/partial callosotomy or callosal lesion. There are no works that address the intrinsic organization of the corpus callosum. We review the existing information on the activities that take place in the commissure in three sections: I) the topographical and neurochemical organization of the intracallosal fibers, II) the role of glia in the corpus callosum, and III) the role of the intracallosal neurons.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Mara Fabri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Teresa Lorenzi
- Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Marche Polytechnic University, Ancona, Italy
| | - Andrea Sagrati
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Manrico Morroni
- Electron Microscopy Unit, Azienda Ospedaliero-Universitaria, Ancona, Italy
| |
Collapse
|
12
|
Roy A, Segond von Banchet G, Gimeno-Ferrer F, König C, Eitner A, Ebersberger A, Ebbinghaus M, Leuchtweis J, Schaible HG. Impact of Interleukin-6 Activation and Arthritis on Epidermal Growth Factor Receptor (EGFR) Activation in Sensory Neurons and the Spinal Cord. Int J Mol Sci 2024; 25:7168. [PMID: 39000275 PMCID: PMC11241234 DOI: 10.3390/ijms25137168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In tumor cells, interleukin-6 (IL-6) signaling can lead to activation of the epidermal growth factor receptor (EGFR), which prolongs Stat3 activation. In the present experiments, we tested the hypothesis that IL-6 signaling activates EGFR signaling in peripheral and spinal nociception and examined whether EGFR localization and activation coincide with pain-related behaviors in arthritis. In vivo in anesthetized rats, spinal application of the EGFR receptor blocker gefitinib reduced the responses of spinal cord neurons to noxious joint stimulation, but only after spinal pretreatment with IL-6 and soluble IL-6 receptor. Using Western blots, we found that IL-6-induced Stat3 activation was reduced by gefitinib in microglial cells of the BV2 cell line, but not in cultured DRG neurons. Immunohistochemistry showed EGFR localization in most DRG neurons from normal rats, but significant downregulation in the acute and most painful arthritis phase. In the spinal cord of mice, EGFR was highly activated mainly in the chronic phase of inflammation, with localization in neurons. These data suggest that spinal IL-6 signaling may activate spinal EGFR signaling. Downregulation of EGFR in DRG neurons in acute arthritis may limit nociception, but pronounced delayed activation of EGFR in the spinal cord may be involved in chronic inflammatory pain.
Collapse
Affiliation(s)
- Anutosh Roy
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Gisela Segond von Banchet
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Fátima Gimeno-Ferrer
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Annett Eitner
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany;
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Matthias Ebbinghaus
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Johannes Leuchtweis
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| | - Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany; (A.R.); (G.S.v.B.); (F.G.-F.); (C.K.); (A.E.); (M.E.); (J.L.)
| |
Collapse
|
13
|
Santhosh S, Zanoletti L, Stamp LA, Hao MM, Matteoli G. From diversity to disease: unravelling the role of enteric glial cells. Front Immunol 2024; 15:1408744. [PMID: 38957473 PMCID: PMC11217337 DOI: 10.3389/fimmu.2024.1408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Enteric glial cells (EGCs) are an essential component of the enteric nervous system (ENS) and play key roles in gastrointestinal development, homeostasis, and disease. Derived from neural crest cells, EGCs undergo complex differentiation processes regulated by various signalling pathways. Being among the most dynamic cells of the digestive system, EGCs react to cues in their surrounding microenvironment and communicate with various cell types and systems within the gut. Morphological studies and recent single cell RNA sequencing studies have unveiled heterogeneity among EGC populations with implications for regional functions and roles in diseases. In gastrointestinal disorders, including inflammatory bowel disease (IBD), infections and cancer, EGCs modulate neuroplasticity, immune responses and tumorigenesis. Recent evidence suggests that EGCs respond plastically to the microenvironmental cues, adapting their phenotype and functions in disease states and taking on a crucial role. They exhibit molecular abnormalities and alter communication with other intestinal cell types, underscoring their therapeutic potential as targets. This review delves into the multifaceted roles of EGCs, particularly emphasizing their interactions with various cell types in the gut and their significant contributions to gastrointestinal disorders. Understanding the complex roles of EGCs in gastrointestinal physiology and pathology will be crucial for the development of novel therapeutic strategies for gastrointestinal disorders.
Collapse
Affiliation(s)
- Sneha Santhosh
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Zanoletti
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Leuven Institute for Single-cell Omics (LISCO), KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Kostin A, Alam MA, Saevskiy A, Alam MN. Chronic Astrocytic TNFα Production in the Preoptic-Basal Forebrain Causes Aging-like Sleep-Wake Disturbances in Young Mice. Cells 2024; 13:894. [PMID: 38891027 PMCID: PMC11171867 DOI: 10.3390/cells13110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Sleep disruption is a frequent problem of advancing age, often accompanied by low-grade chronic central and peripheral inflammation. We examined whether chronic neuroinflammation in the preoptic and basal forebrain area (POA-BF), a critical sleep-wake regulatory structure, contributes to this disruption. We developed a targeted viral vector designed to overexpress tumor necrosis factor-alpha (TNFα), specifically in astrocytes (AAV5-GFAP-TNFα-mCherry), and injected it into the POA of young mice to induce heightened neuroinflammation within the POA-BF. Compared to the control (treated with AAV5-GFAP-mCherry), mice with astrocytic TNFα overproduction within the POA-BF exhibited signs of increased microglia activation, indicating a heightened local inflammatory milieu. These mice also exhibited aging-like changes in sleep-wake organization and physical performance, including (a) impaired sleep-wake functions characterized by disruptions in sleep and waking during light and dark phases, respectively, and a reduced ability to compensate for sleep loss; (b) dysfunctional VLPO sleep-active neurons, indicated by fewer neurons expressing c-fos after suvorexant-induced sleep; and (c) compromised physical performance as demonstrated by a decline in grip strength. These findings suggest that inflammation-induced dysfunction of sleep- and wake-regulatory mechanisms within the POA-BF may be a critical component of sleep-wake disturbances in aging.
Collapse
Affiliation(s)
- Andrey Kostin
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
| | - Md. Aftab Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Psychiatry, University of California, Los Angeles, CA 90025, USA
| | - Anton Saevskiy
- Scientific Research and Technology Center for Neurotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Md. Noor Alam
- Research Service (151A3), Veterans Affairs Greater Los Angeles Healthcare System, Sepulveda, CA 91343, USA; (A.K.); (M.A.A.)
- Department of Medicine, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
15
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
16
|
Czyżewski W, Mazurek M, Sakwa L, Szymoniuk M, Pham J, Pasierb B, Litak J, Czyżewska E, Turek M, Piotrowski B, Torres K, Rola R. Astroglial Cells: Emerging Therapeutic Targets in the Management of Traumatic Brain Injury. Cells 2024; 13:148. [PMID: 38247839 PMCID: PMC10813911 DOI: 10.3390/cells13020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic Brain Injury (TBI) represents a significant health concern, necessitating advanced therapeutic interventions. This detailed review explores the critical roles of astrocytes, key cellular constituents of the central nervous system (CNS), in both the pathophysiology and possible rehabilitation of TBI. Following injury, astrocytes exhibit reactive transformations, differentiating into pro-inflammatory (A1) and neuroprotective (A2) phenotypes. This paper elucidates the interactions of astrocytes with neurons, their role in neuroinflammation, and the potential for their therapeutic exploitation. Emphasized strategies encompass the utilization of endocannabinoid and calcium signaling pathways, hormone-based treatments like 17β-estradiol, biological therapies employing anti-HBGB1 monoclonal antibodies, gene therapy targeting Connexin 43, and the innovative technique of astrocyte transplantation as a means to repair damaged neural tissues.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Michał Szymoniuk
- Student Scientific Association, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Jennifer Pham
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Barbara Pasierb
- Department of Dermatology, Radom Specialist Hospital, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Michał Turek
- Student Scientific Society, Medical University of Lublin, 20-954 Lublin, Poland; (J.P.); (M.T.)
| | - Bartłomiej Piotrowski
- Institute of Automatic Control and Robotics, Warsaw University of Technology, 00-661 Warsaw, Poland;
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.M.); (R.R.)
| |
Collapse
|
17
|
Tayler HM, MacLachlan R, Güzel Ö, Fisher RA, Skrobot OA, Abulfadl MA, Kehoe PG, Miners JS. Altered Gene Expression Within the Renin-Angiotensin System in Normal Aging and Dementia. J Gerontol A Biol Sci Med Sci 2024; 79:glad241. [PMID: 37813091 PMCID: PMC10733177 DOI: 10.1093/gerona/glad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 10/11/2023] Open
Abstract
The renin-angiotensin system (RAS) is dysregulated in Alzheimer's disease (AD). In this study, we have explored the hypothesis that an -age--related imbalance in brain RAS is a trigger for RAS dysregulation in AD. We characterized RAS gene expression in the frontal cortex from (i) a cohort of normal aging (n = 99, age range = 19-96 years) and (ii) a case-control cohort (n = 209) including AD (n = 66), mixed dementia (VaD + AD; n = 50), pure vascular dementia (VaD; n = 42), and age-matched controls (n = 51). The AD, mixed dementia, and age-matched controls were further stratified by Braak tangle stage (BS): BS0-II (n = 48), BSIII-IV (n = 44), and BSV-VI (n = 85). Gene expression was calculated by quantitative PCR (qPCR) for ACE1, AGTR1, AGTR2, ACE2, LNPEP, and MAS1 using the 2-∆∆Cq method, after adjustment for reference genes (RPL13 and UBE2D2) and cell-specific calibrator genes (NEUN, GFAP, PECAM). ACE1 and AGTR1, markers of classical RAS signaling, and AGTR2 gene expression were elevated in normal aging and gene expression in markers of protective downstream regulatory RAS signaling, including ACE2, MAS1, and LNPEP, were unchanged. In AD and mixed dementia, AGTR1 and AGTR2 gene expression were elevated in BSIII-IV and BSV-VI, respectively. MAS1 gene expression was reduced at BSV-VI and was inversely related to parenchymal Aβ and tau load. LNPEP gene expression was specifically elevated in VaD. These data provide novel insights into RAS signaling in normal aging and dementia.
Collapse
Affiliation(s)
- Hannah M Tayler
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert MacLachlan
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Özge Güzel
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert A Fisher
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Olivia A Skrobot
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mohamed A Abulfadl
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Patrick G Kehoe
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
20
|
Liu T, Zuo H, Ma D, Song D, Zhao Y, Cheng O. Cerebrospinal fluid GFAP is a predictive biomarker for conversion to dementia and Alzheimer's disease-associated biomarkers alterations among de novo Parkinson's disease patients: a prospective cohort study. J Neuroinflammation 2023; 20:167. [PMID: 37475029 PMCID: PMC10357612 DOI: 10.1186/s12974-023-02843-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Dementia is a prevalent non-motor manifestation among individuals with advanced Parkinson's disease (PD). Glial fibrillary acidic protein (GFAP) is an inflammatory marker derived from astrocytes. Research has demonstrated the potential of plasma GFAP to forecast the progression to dementia in PD patients with mild cognitive impairment (PD-MCI). However, the predictive role of cerebrospinal fluid (CSF) GFAP on future cognitive transformation and alterations in Alzheimer's disease (AD)-associated CSF biomarkers in newly diagnosed PD patients has not been investigated. METHODS 210 de novo PD patients from the Parkinson's Progression Markers Initiative were recruited. Cognitive progression in PD participants was evaluated using Cox regression. Cross-sectional and longitudinal associations between baseline CSF GFAP and cognitive function and AD-related CSF biomarkers were evaluated using multiple linear regression and generalized linear mixed model. RESULTS At baseline, the mean age of PD participants was 60.85 ± 9.78 years, including 142 patients with normal cognition (PD-NC) and 68 PD-MCI patients. The average follow-up time was 6.42 ± 1.69 years. A positive correlation was observed between baseline CSF GFAP and age (β = 0.918, p < 0.001). There was no statistically significant difference in baseline CSF GFAP levels between PD-NC and PD-MCI groups. Higher baseline CSF GFAP predicted greater global cognitive decline over time in early PD patients (Montreal Cognitive Assessment, β = - 0.013, p = 0.014). Furthermore, Cox regression showed that high baseline CSF GFAP levels were associated with a high risk of developing dementia over an 8-year period in the PD-NC group (adjusted HR = 3.070, 95% CI 1.119-8.418, p = 0.029). In addition, the baseline CSF GFAP was positively correlated with the longitudinal changes of not only CSF α-synuclein (β = 0.313, p < 0.001), but also CSF biomarkers associated with AD, namely, amyloid-β 42 (β = 0.147, p = 0.034), total tau (β = 0.337, p < 0.001) and phosphorylated tau (β = 0.408, p < 0.001). CONCLUSIONS CSF GFAP may be a valuable prognostic tool that can predict the severity and progression of cognitive deterioration, accompanied with longitudinal changes in AD-associated pathological markers in early PD.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Hongzhou Zuo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Di Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Dan Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Yuying Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| |
Collapse
|
21
|
Gondáš E, Kráľová Trančíková A, Šofranko J, Majerová P, Lučanský V, Dohál M, Kováč A, Murín R. The presence of pyruvate carboxylase in the human brain and its role in the survival of cultured human astrocytes. Physiol Res 2023; 72:403-414. [PMID: 37449752 PMCID: PMC10669001 DOI: 10.33549/physiolres.935026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/28/2023] [Indexed: 08/26/2023] Open
Abstract
Pyruvate carboxylase (PC) is a mitochondrial, biotin-containing enzyme catalyzing the ATP-dependent synthesis of oxaloacetate from pyruvate and bicarbonate, with a critical anaplerotic role in sustaining the brain metabolism. Based on the studies performed on animal models, PC expression was assigned to be glia-specific. To study PC distribution among human neural cells, we probed the cultured human astrocytes and brain sections with antibodies against PC. Additionally, we tested the importance of PC for the viability of cultured human astrocytes by applying the PC inhibitor 3-chloropropane-1,2-diol (CPD). Our results establish the expression of PC in mitochondria of human astrocytes in culture and brain tissue and also into a subpopulation of the neurons in situ. CPD negatively affected the viability of astrocytes in culture, which could be partially reversed by supplementing media with malate, 2-oxoglutarate, citrate, or pyruvate. The provided data estimates PC expression in human astrocytes and neurons in human brain parenchyma. Furthermore, the enzymatic activity of PC is vital for sustaining the viability of cultured astrocytes.
Collapse
Affiliation(s)
- E Gondáš
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Vrapciu AD, Rusu MC, Jianu AM, Motoc AGM, Nicolescu MI. Astrocytes - friends or foes in neurodegenerative disorders. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:305-309. [PMID: 37867348 PMCID: PMC10720932 DOI: 10.47162/rjme.64.3.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
Astrocytes (AS) are the most abundant glial cells in the central nervous system (CNS). They have various morphologies and numerous (50-60) branching prolongations, with roles in the maintenance of the CNS function and homeostasis. AS in the optic nerve head (ONH) have specific distribution and function and are involved in the pathogenesis of glaucoma and other neural diseases, modify their morphologies, location, immune phenotype, and ultrastructure, thus being the key players in the active remodeling processes of the ONH.
Collapse
Affiliation(s)
- Alexandra Diana Vrapciu
- Discipline of Anatomy, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | | | | | | | | |
Collapse
|
23
|
Santos-García I, Rodríguez-Cueto C, Villegas P, Piscitelli F, Lauritano A, Shen CKJ, Di Marzo V, Fernández-Ruiz J, de Lago E. Preclinical investigation in FAAH inhibition as a neuroprotective therapy for frontotemporal dementia using TDP-43 transgenic male mice. J Neuroinflammation 2023; 20:108. [PMID: 37149645 PMCID: PMC10163746 DOI: 10.1186/s12974-023-02792-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a heterogeneous group of early onset and progressive neurodegenerative disorders, characterized by degeneration in the frontal and temporal lobes, which causes deterioration in cognition, personality, social behavior and language. Around 45% of the cases are characterized by the presence of aggregates of the RNA-binding protein TDP-43. METHODS In this study, we have used a murine model of FTD that overexpresses this protein exclusively in the forebrain (under the control of the CaMKIIα promoter) for several biochemical, histological and pharmacological studies focused on the endocannabinoid system. RESULTS These mice exhibited at postnatal day 90 (PND90) important cognitive deficits, signs of emotional impairment and disinhibited social behaviour, which were, in most of cases, maintained during the first year of life of these animals. Motor activity was apparently normal, but FTD mice exhibited higher mortality. Their MRI imaging analysis and their ex-vivo histopathological evaluation proved changes compatible with atrophy (loss of specific groups of pyramidal neurons: Ctip2- and NeuN-positive cells) and inflammatory events (astroglial and microglial reactivities) in both cortical (medial prefrontal cortex) and subcortical (hippocampus) structures at PND90 and also at PND365. The analysis of the endocannabinoid system in these mice proved a decrease in the hydrolysing enzyme FAAH in the prefrontal cortex and the hippocampus, with an increase in the synthesizing enzyme NAPE-PLD only in the hippocampus, responses that were accompanied by modest elevations in anandamide and related N-acylethanolamines. The potentiation of these elevated levels of anandamide after the pharmacological inactivation of FAAH with URB597 resulted in a general improvement in behaviour, in particular in cognitive deterioration, associated with the preservation of pyramidal neurons of the medial prefrontal cortex and the CA1 layer of the hippocampus, and with the reduction of gliosis in both structures. CONCLUSIONS Our data confirmed the potential of elevating the endocannabinoid tone as a therapy against TDP-43-induced neuropathology in FTD, limiting glial reactivity, preserving neuronal integrity and improving cognitive, emotional and social deficits.
Collapse
Affiliation(s)
- Irene Santos-García
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Villegas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
| | - Che-Kun J Shen
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, QC, G1V 0A6, Canada
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Eva de Lago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
24
|
Goenaga J, Araque A, Kofuji P, Herrera Moro Chao D. Calcium signaling in astrocytes and gliotransmitter release. Front Synaptic Neurosci 2023; 15:1138577. [PMID: 36937570 PMCID: PMC10017551 DOI: 10.3389/fnsyn.2023.1138577] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Glia are as numerous in the brain as neurons and widely known to serve supportive roles such as structural scaffolding, extracellular ionic and neurotransmitter homeostasis, and metabolic support. However, over the past two decades, several lines of evidence indicate that astrocytes, which are a type of glia, play active roles in neural information processing. Astrocytes, although not electrically active, can exhibit a form of excitability by dynamic changes in intracellular calcium levels. They sense synaptic activity and release neuroactive substances, named gliotransmitters, that modulate neuronal activity and synaptic transmission in several brain areas, thus impacting animal behavior. This "dialogue" between astrocytes and neurons is embodied in the concept of the tripartite synapse that includes astrocytes as integral elements of synaptic function. Here, we review the recent work and discuss how astrocytes via calcium-mediated excitability modulate synaptic information processing at various spatial and time scales.
Collapse
Affiliation(s)
| | | | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
25
|
Kawauchi S, Mizoguchi T, Horibe S, Tanaka T, Sasaki N, Ikeda K, Emoto N, Hirata KI, Rikitake Y. Gliovascular interface abnormality in mice with endothelial cell senescence. Glia 2023; 71:467-479. [PMID: 36286494 DOI: 10.1002/glia.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
In the brain, neurons, glial cells, vascular endothelial cells (ECs), and mural cells form a functional structure referred to as the neurovascular unit (NVU). The functions of the NVU become impaired with aging. To gain insight into the mechanism underlying the aging-related changes in the NVU, we characterized in the present study the gliovascular interface in transgenic mice expressing a dominant-negative form of the telomeric repeat-binding factor 2 (TERF2) specifically in ECs using the Tie2 promoter. In these transgenic mice, senescence occurred in the cerebral ECs and was accompanied by upregulation of the mRNAs of proinflammatory cell adhesion molecules and cytokines. It is noteworthy that in the deep layers of the cerebral cortex, astrocytes exhibited an increase in the signals for S100β as well as a decrease in the polarization of the water channel aquaporin-4 (AQP4) to the perivascular endfeet of the astrocytes. Mechanistically, the perivascular localization of dystroglycan and its ligand, laminin α2, was decreased, and their localization correlated well with the perivascular localization of AQP4, which supports the notion that their interaction regulates the perivascular localization of AQP4. The diminished perivascular localization of laminin α2 may be attributed to its proteolytic degradation by the matrix metalloproteinase-2 released by senescent ECs. Pericyte coverage was increased and negatively correlated with the decrease in the perivascular localization of AQP4. We propose that aging-related changes in ECs induce a mild morphological alteration of astrocytes and affect the localization of AQP4 at the gliovascular interface.
Collapse
Affiliation(s)
- Shoji Kawauchi
- Comprehensive Education and Research Center, Kobe Pharmaceutical University, Kobe, Japan
| | - Taiji Mizoguchi
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Sayo Horibe
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
26
|
Dhungana A, Becchi S, Leake J, Morris G, Avgan N, Balleine BW, Vissel B, Bradfield LA. Goal-Directed Action Is Initially Impaired in a hAPP-J20 Mouse Model of Alzheimer's Disease. eNeuro 2023; 10:ENEURO.0363-22.2023. [PMID: 36650070 PMCID: PMC9927544 DOI: 10.1523/eneuro.0363-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Cognitive-behavioral testing in preclinical models of Alzheimer's disease has failed to capture deficits in goal-directed action control. Here, we provide the first comprehensive investigation of goal-directed action in a transgenic mouse model of Alzheimer's disease. Specifically, we tested outcome devaluation performance in male and female human amyloid precursor protein (hAPP)-J20 mice. Mice were first trained to press left and right levers for pellet and sucrose outcomes, respectively (counterbalanced), over 4 d. On test, mice were prefed one of the outcomes to satiety and given a choice between levers. Devaluation performance was intact for 36-week-old wild-types of both sexes, who responded more on the valued relative to the devalued lever (Valued > Devalued). By contrast, devaluation was impaired (Valued = Devalued) for J20 mice of both sexes, and for 52-week-old male mice regardless of genotype. After additional lever press training (i.e., 8-d lever pressing in total), devaluation was intact for all mice, demonstrating that the initial deficits were not a result of a nonspecific impairment in reward processing, depression, or locomotor activity in J20 or aging mice. Follow-up analyses revealed that microglial expression in the dorsal CA1 region of the hippocampus was associated with poorer outcome devaluation performance on initial, but not later tests. Together, these data demonstrate that goal-directed action is initially impaired in J20 mice of both sexes and in aging male mice regardless of genotype, and that this impairment is related to neuroinflammation in the dorsal CA1 hippocampal region.
Collapse
Affiliation(s)
- Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Serena Becchi
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Jessica Leake
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Gary Morris
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
- School of Clinical Medicine, University of New South Wales Medicine & Health, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St. Vincent's Health Network, Sydney, New South Wales 2010, Australia
| |
Collapse
|
27
|
Maltsev A, Roshchin M, Bezprozvanny I, Smirnov I, Vlasova O, Balaban P, Borodinova A. Bidirectional regulation by "star forces": Ionotropic astrocyte's optical stimulation suppresses synaptic plasticity, metabotropic one strikes back. Hippocampus 2023; 33:18-36. [PMID: 36484471 DOI: 10.1002/hipo.23486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
The role of astrocytes in modulating synaptic plasticity is an important question that until recently was not addressed due to limitations of previously existing technology. In the present study, we took an advantage of optogenetics to specifically activate astrocytes in hippocampal slices in order to study effects on synaptic function. Using the AAV-based delivery strategy, we expressed the ionotropic channelrhodopsin-2 (ChR2) or the metabotropic Gq-coupled Opto-a1AR opsins specifically in hippocampal astrocytes to compare different modalities of astrocyte activation. In electrophysiological experiments, we observed a depression of basal field excitatory postsynaptic potentials (fEPSPs) in the CA1 hippocampal layer following light stimulation of astrocytic ChR2. The ChR2-mediated depression increased under simultaneous light and electrical theta-burst stimulation (TBS). Application of the type 2 purinergic receptor antagonist suramin prevented depression of basal synaptic transmission, and switched the ChR2-dependent depression into potentiation. The GABAB receptor antagonist, phaclofen, did not prevent the depression of basal fEPSPs, but switched the ChR2-dependent depression into potentiation comparable to the values for TBS in control slices. In contrast, light stimulation of Opto-a1AR expressed in astrocytes led to an increase in basal fEPSPs, as well as a potentiation of synaptic responses to TBS significantly. A specific blocker of the Gq protein downstream target, the phospholipase C, U73122, completely prevented the effects of Opto-a1AR stimulation on basal fEPSPs or Opto + TBS responses. To understand molecular basis for the observed effects, we performed an analysis of gene expression in these slices using quantitative PCR approach. We observed a significant upregulation of "immediate-early" gene expression in hippocampal slices after light activation of Opto-a1AR-expressing astrocytes alone (cRel, Arc, Fos, JunB, and Egr1) or paired with TBS (cRel, Fos, and Egr1). Activation of ChR2-expressing hippocampal astrocytes was insufficient to affect expression of these genes in our experimental conditions. Thus, we concluded that optostimulation of astrocytes with ChR2 and Opto-a1AR optogenetic tools enables bidirectional modulation of synaptic plasticity and gene expression in hippocampus.
Collapse
Affiliation(s)
- Alexander Maltsev
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Matvey Roshchin
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.,Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Ivan Smirnov
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Pavel Balaban
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Borodinova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
28
|
FOXG1 Contributes Adult Hippocampal Neurogenesis in Mice. Int J Mol Sci 2022; 23:ijms232314979. [PMID: 36499306 PMCID: PMC9735854 DOI: 10.3390/ijms232314979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Strategies to enhance hippocampal precursor cells efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. FOXG1 has been shown to play an important role in pattern formation, cell proliferation, and cell specification during embryonic and early postnatal neurogenesis. Thus far, the role of FOXG1 in adult hippocampal neurogenesis is largely unknown. Utilizing CAG-loxp-stop-loxp-Foxg1-IRES-EGFP (Foxg1fl/fl), a specific mouse line combined with CreAAV infusion, we successfully forced FOXG1 overexpressed in the hippocampal dentate gyrus (DG) of the genotype mice. Thereafter, we explored the function of FOXG1 on neuronal lineage progression and hippocampal neurogenesis in adult mice. By inhibiting p21cip1 expression, FOXG1-regulated activities enable the expansion of the precursor cell population. Besides, FOXG1 induced quiescent radial-glia like type I neural progenitor, giving rise to intermediate progenitor cells, neuroblasts in the hippocampal DG. Through increasing the length of G1 phase, FOXG1 promoted lineage-committed cells to exit the cell cycle and differentiate into mature neurons. The present results suggest that FOXG1 likely promotes neuronal lineage progression and thereby contributes to adult hippocampal neurogenesis. Elevating FOXG1 levels either pharmacologically or through other means could present a therapeutic strategy for disease related with neuronal loss.
Collapse
|
29
|
Holmes AD, White KA, Pratt MA, Johnson TB, Likhite S, Meyer K, Weimer JM. Sex-split analysis of pathology and motor-behavioral outcomes in a mouse model of CLN8-Batten disease reveals an increased disease burden and trajectory in female Cln8 mnd mice. Orphanet J Rare Dis 2022; 17:411. [PMID: 36369162 PMCID: PMC9652919 DOI: 10.1186/s13023-022-02564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND CLN8-Batten disease (CLN8 disease) is a rare neurodegenerative disorder characterized phenotypically by progressive deterioration of motor and cognitive abilities, visual symptoms, epileptic seizures, and premature death. Mutations in CLN8 results in characteristic Batten disease symptoms and brain-wide pathology including accumulation of lysosomal storage material, gliosis, and neurodegeneration. Recent investigations of other subforms of Batten disease (CLN1, CLN3, CLN6) have emphasized the influence of biological sex on disease and treatment outcomes; however, little is known about sex differences in the CLN8 subtype. To determine the impact of sex on CLN8 disease burden and progression, we utilized a Cln8mnd mouse model to measure the impact and progression of histopathological and behavioral outcomes between sexes. RESULTS Several notable sex differences were observed in the presentation of brain pathology, including Cln8mnd female mice consistently presenting with greater GFAP+ astrocytosis and CD68+ microgliosis in the somatosensory cortex, ventral posteromedial/ventral posterolateral nuclei of the thalamus, striatum, and hippocampus when compared to Cln8mnd male mice. Furthermore, sex differences in motor-behavioral assessments revealed Cln8mnd female mice experience poorer motor performance and earlier death than their male counterparts. Cln8mnd mice treated with an AAV9-mediated gene therapy were also examined to assess sex differences on therapeutics outcomes, which revealed no appreciable differences between the sexes when responding to the therapy. CONCLUSIONS Taken together, our results provide further evidence of biologic sex as a modifier of Batten disease progression and outcome, thus warranting consideration when conducting investigations and monitoring therapeutic impact.
Collapse
Affiliation(s)
- Andrew D. Holmes
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| | - Katherine A. White
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Melissa A. Pratt
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Tyler B. Johnson
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA
| | - Shibi Likhite
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Kathrin Meyer
- grid.240344.50000 0004 0392 3476The Research Institute at Nationwide Children’s Hospital, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University, Columbus, OH USA
| | - Jill M. Weimer
- grid.430154.70000 0004 5914 2142Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60Th St N, Sioux Falls, SD USA ,grid.267169.d0000 0001 2293 1795Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
30
|
Mu L, Xia D, Cai J, Gu B, Liu X, Friedman V, Liu QS, Zhao L. Treadmill Exercise Reduces Neuroinflammation, Glial Cell Activation and Improves Synaptic Transmission in the Prefrontal Cortex in 3 × Tg-AD Mice. Int J Mol Sci 2022; 23:12655. [PMID: 36293516 PMCID: PMC9604030 DOI: 10.3390/ijms232012655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Physical exercise improves memory and cognition in physiological aging and Alzheimer's disease (AD), but the mechanisms remain poorly understood. Here, we test the hypothesis that Aβ oligomer accumulation, neuroinflammation, and glial cell activation may lead to disruption of synaptic transmission in the prefrontal cortex of 3 × Tg-AD Mice, resulting in impairment of learning and memory. On the other hand, treadmill exercise could prevent the pathogenesis and exert neuroprotective effects. Here, we used immunohistochemistry, western blotting, enzyme-linked immunosorbent assay, and slice electrophysiology to analyze the levels of GSK3β, Aβ oligomers (Aβ dimers and trimers), pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), the phosphorylation of CRMP2 at Thr514, and synaptic currents in pyramidal neurons in the prefrontal cortex. We show that 12-week treadmill exercise beginning in three-month-old mice led to the inhibition of GSK3β kinase activity, decreases in the levels of Aβ oligomers, pro-inflammatory cytokines (IL-1β, IL-6, and TNFα), and the phosphorylation of CRMP2 at Thr514, reduction of microglial and astrocyte activation, and improvement of excitatory and inhibitory synaptic transmission of pyramidal neurons in the prefrontal cortex of 3 × Tg-AD Mice. Thus, treadmill exercise reduces neuroinflammation, glial cell activation and improves synaptic transmission in the prefrontal cortex in 3 × Tg-AD mice, possibly related to the inhibition of GSK3β kinase activity.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Exercise Physiology, Guangzhou Sport University, Guangzhou 510500, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Dongdong Xia
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
31
|
Piavchenko G, Soldatov V, Venediktov A, Kartashkina N, Novikova N, Gorbunova M, Boronikhina T, Yatskovskiy A, Meglinski I, Kuznetsov S. A combined use of silver pretreatment and impregnation with consequent Nissl staining for cortex and striatum architectonics study. Front Neuroanat 2022; 16:940993. [PMID: 36312299 PMCID: PMC9615244 DOI: 10.3389/fnana.2022.940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Despite a rapid growth in the application of modern techniques for visualization studies in life sciences, the classical methods of histological examination are yet to be outdated. Herein, we introduce a new approach that involves combining silver nitrate pretreatment and impregnation with consequent Nissl (cresyl violet) staining for cortex and striatum architectonics study on the same microscopy slide. The developed approach of hybrid staining provides a high-quality visualization of cellular and subcellular structures, including impregnated neurons (about 10%), Nissl-stained neurons (all the remaining ones), and astrocytes, as well as chromatophilic substances, nucleoli, and neuropil in paraffin sections. We provide a comparative study of the neuronal architectonics in both the motor cortex and striatum based on the differences in their tinctorial properties. In addition to a comparative study of the neuronal architectonics in both the motor cortex and striatum, the traditional methods to stain the cortex (motor and piriform) and the striatum are considered. The proposed staining approach compiles the routine conventional methods for thin sections, expanding avenues for more advanced examination of neurons, blood-brain barrier components, and fibers both under normal and pathological conditions. One of the main hallmarks of our method is the ability to detect changes in the number of glial cells. The results of astrocyte visualization in the motor cortex obtained by the developed technique agree well with the alternative studies by glial fibrillary acidic protein (GFAP) immunohistochemical reaction. The presented approach of combined staining has great potential in current histological practice, in particular for the evaluation of several neurological disorders in clinical, pre-clinical, or neurobiological animal studies.
Collapse
Affiliation(s)
- Gennadii Piavchenko
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Kartashkina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Novikova
- Laboratory of Pathophysiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Gorbunova
- Department of Histology, Cytology, and Embryology, Orel State University named after I.S. Turgenev, Orel, Russia
| | - Tatiana Boronikhina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Yatskovskiy
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland
- College of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
| | - Sergey Kuznetsov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
32
|
Naranjo O, Osborne O, Torices S, Toborek M. In Vivo Targeting of the Neurovascular Unit: Challenges and Advancements. Cell Mol Neurobiol 2022; 42:2131-2146. [PMID: 34086179 PMCID: PMC9056891 DOI: 10.1007/s10571-021-01113-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The blood-brain barrier (BBB) is essential for the homeostasis of the central nervous system (CNS). Functions of the BBB are performed by the neurovascular unit (NVU), which consists of endothelial cells, pericytes, astrocytes, microglia, basement membrane, and neurons. NVU cells interact closely and together are responsible for neurovascular coupling, BBB integrity, and transendothelial fluid transport. Studies have shown that NVU dysfunction is implicated in several acute and chronic neurological diseases, including Alzheimer's disease, multiple sclerosis, and stroke. The mechanisms of NVU disruption remain poorly understood, partially due to difficulties in selective targeting of NVU cells. In this review, we discuss the relative merits of available protein markers and drivers of the NVU along with recent advancements that have been made in the field to increase efficiency and specificity of NVU research.
Collapse
Affiliation(s)
- Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Olivia Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
33
|
Feng D, Zhou J, Liu H, Wu X, Li F, Zhao J, Zhang Y, Wang L, Chao M, Wang Q, Qin H, Ge S, Liu Q, Zhang J, Qu Y. Astrocytic NDRG2-PPM1A interaction exacerbates blood-brain barrier disruption after subarachnoid hemorrhage. SCIENCE ADVANCES 2022; 8:eabq2423. [PMID: 36179025 PMCID: PMC9524825 DOI: 10.1126/sciadv.abq2423] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Blood-brain barrier (BBB) injury critically exacerbates the poor prognosis of patients with subarachnoid hemorrhage (SAH). The massively increased matrix metalloproteinases 9 (MMP-9) plays a deleterious role in BBB. However, the main source and mechanism of MMP-9 production after SAH remain unclear. We reported that the increased MMP-9 was mainly derived from reactive astrocytes after SAH. Ndrg2 knockout in astrocytes inhibited MMP-9 expression after SAH and attenuated BBB damage. Astrocytic Ndrg2 knockout decreased the phosphorylation of Smad2/3 and the transcription of MMP-9. Notably, cytoplasmic NDRG2 bound to the protein phosphatase PPM1A and restricted the dephosphorylation of Smad2/3. Accordingly, TAT-QFNP12, a novel engineered peptide that could block the NDRG2-PPM1A binding and reduce Smad2/3 dephosphorylation, decreased astrocytic MMP-9 production and BBB disruption after SAH. In conclusion, this study identified NDRG2-PPM1A signaling in reactive astrocytes as a key switch for MMP-9 production and provided a novel therapeutic avenue for BBB protection after SAH.
Collapse
Affiliation(s)
- Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Jinpeng Zhou
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Junlong Zhao
- Department of Medical Genetics and Development Biology, Fourth Military Medical University, Xi’an 710032, China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lei Wang
- Department of Biological Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Qiang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Huaizhou Qin
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi’an 710032, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, International Cooperation Platform for Encephalopathy of Shaanxi Province, Xi’an 710038, China
| |
Collapse
|
34
|
Gorina YV, Salmina AB, Erofeev AI, Gerasimov EI, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Astrocyte Activation Markers. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:851-870. [PMID: 36180985 DOI: 10.1134/s0006297922090012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Astrocytes are the most common type of glial cells that provide homeostasis and protection of the central nervous system. Important specific characteristic of astrocytes is manifestation of morphological heterogeneity, which is directly dependent on localization in a particular area of the brain. Astrocytes can integrate into neural networks and keep neurons active in various areas of the brain. Moreover, astrocytes express a variety of receptors, channels, and membrane transporters, which underlie their peculiar metabolic activity, and, hence, determine plasticity of the central nervous system during development and aging. Such complex structural and functional organization of astrocytes requires the use of modern methods for their identification and analysis. Considering the important fact that determining the most appropriate marker for polymorphic and multiple subgroups of astrocytes is of decisive importance for studying their multifunctionality, this review presents markers, modern imaging techniques, and identification of astrocytes, which comprise a valuable resource for studying structural and functional properties of astrocytes, as well as facilitate better understanding of the extent to which astrocytes contribute to neuronal activity.
Collapse
Affiliation(s)
- Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia.
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
- Laboratory of Neurobiology and Tissue Engineering, Brain Institute, Research Center of Neurology, Moscow, 105064, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Evgeniy I Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Anastasia V Bolshakova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity, Moscow, 117485, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 194091, Russia
| |
Collapse
|
35
|
Salvadó G, Milà-Alomà M, Shekari M, Ashton NJ, Operto G, Falcon C, Cacciaglia R, Minguillon C, Fauria K, Niñerola-Baizán A, Perissinotti A, Benedet AL, Kollmorgen G, Suridjan I, Wild N, Molinuevo JL, Zetterberg H, Blennow K, Suárez-Calvet M, Gispert JD. Reactive astrogliosis is associated with higher cerebral glucose consumption in the early Alzheimer's continuum. Eur J Nucl Med Mol Imaging 2022; 49:4567-4579. [PMID: 35849149 DOI: 10.1007/s00259-022-05897-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([18F]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. METHODS We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-β (Aβ) positive. Associations between GFAP markers and [18F]FDG uptake were studied. We also investigated whether these associations were modified by Aβ and tau status (AT stages). RESULTS Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [18F]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of Aβ pathology but became negative in Aβ-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. CONCLUSIONS Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
Collapse
Affiliation(s)
- Gemma Salvadó
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Institute of Psychiatry, King's College London, Maurice Wohl Clinical Neuroscience Institute, Psychology & Neuroscience, London, UK.,NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Grégory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Niñerola-Baizán
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andrés Perissinotti
- Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.,Nuclear Medicine Department, Hospital Clínic Barcelona, Barcelona, Spain
| | - Andréa L Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | | | | | | | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain.,H. Lundbeck A/S, Copenhagen, Denmark
| | - Henrik Zetterberg
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Universitat Pompeu Fabra, Barcelona, Spain.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. .,Servei de Neurologia, Hospital del Mar, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30, 08005, Barcelona, Spain. .,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Bioingeniería, (CIBER-BBN), Biomateriales Y Nanomedicina, Barcelona, Spain.
| | | |
Collapse
|
36
|
Garcia-Hernandez R, Cerdán Cerdá A, Trouve Carpena A, Drakesmith M, Koller K, Jones DK, Canals S, De Santis S. Mapping microglia and astrocyte activation in vivo using diffusion MRI. SCIENCE ADVANCES 2022; 8:eabq2923. [PMID: 35622913 PMCID: PMC9140964 DOI: 10.1126/sciadv.abq2923] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
While glia are increasingly implicated in the pathophysiology of psychiatric and neurodegenerative disorders, available methods for imaging these cells in vivo involve either invasive procedures or positron emission tomography radiotracers, which afford low resolution and specificity. Here, we present a noninvasive diffusion-weighted magnetic resonance imaging (MRI) method to image changes in glia morphology. Using rat models of neuroinflammation, degeneration, and demyelination, we demonstrate that diffusion-weighted MRI carries a fingerprint of microglia and astrocyte activation and that specific signatures from each population can be quantified noninvasively. The method is sensitive to changes in glia morphology and proliferation, providing a quantitative account of neuroinflammation, regardless of the existence of a concomitant neuronal loss or demyelinating injury. We prove the translational value of the approach showing significant associations between MRI and histological microglia markers in humans. This framework holds the potential to transform basic and clinical research by clarifying the role of inflammation in health and disease.
Collapse
Affiliation(s)
| | | | | | - Mark Drakesmith
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Kristin Koller
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K. Jones
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Santiago Canals
- Instituto de Neurociencias, CSIC/UMH, San Juan de Alicante, Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias, CSIC/UMH, San Juan de Alicante, Alicante, Spain
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
37
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|
38
|
Time Course of Changes in the Neurovascular Unit after Hypoxic-Ischemic Injury in Neonatal Rats. Int J Mol Sci 2022; 23:ijms23084180. [PMID: 35456999 PMCID: PMC9027443 DOI: 10.3390/ijms23084180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023] Open
Abstract
Exposure to hypoxic-ischemic (HI) insults in newborns can predispose them to severe neurological sequela. The mechanisms underlying HI-related brain injury have not been completely elucidated. The neurovascular unit (NVU) is a composite of structures that protect the brain from the influx of detrimental molecules. Changes in the NVU after HI are important because they could reveal endogenous neuroprotective pathways in the cerebral microvasculature. Furthermore, the time course of changes in the NVU after exposure to HI in the newborn remains to be determined. In this study, we examined the effects of severe HI on the time course of changes in the NVU in neonatal rats. Brains were collected from rats exposed to right carotid artery ligation and 2 h of hypoxia on postnatal day 7 with recovery for 6 or 48 h after exposure to sham treatment (Sham) or HI. The right HI and left hypoxic alone sides of the brains were examined by quantitative immunohistochemistry for vascular density (laminin), pericyte vascular coverage (PDGFRβ), astrocyte vascular coverage (GFAP), and claudin-5 expression in the microvasculature of the cerebral cortex, white matter, and hippocampus. HI-related brain injury in neonatal rats was associated with increases in vascular density in the cortex and hippocampus 48 h after HI as well as neurovascular remodeling, including loss of pericyte coverage in the cortex and increases in claudin-5 in the hippocampus 6 h after HI. Astrocyte coverage was not affected by HI injury. The time course of the responses in the different components of the NVU varied after exposure to HI. There were also differential regional responses in the elements of the NVU in response to HI and hypoxia alone.
Collapse
|
39
|
Aldabbagh Y, Islam A, Zhang W, Whiting P, Ali AB. Alzheimer’s Disease Enhanced Tonic Inhibition is Correlated With Upregulated Astrocyte GABA Transporter-3/4 in a Knock-In APP Mouse Model. Front Pharmacol 2022; 13:822499. [PMID: 35185574 PMCID: PMC8850407 DOI: 10.3389/fphar.2022.822499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022] Open
Abstract
Cognitive decline is a major symptom in Alzheimer’s disease (AD), which is strongly associated with synaptic excitatory-inhibitory imbalance. Here, we investigated whether astrocyte-specific GABA transporter 3/4 (GAT3/4) is altered in APP knock-in mouse model of AD and whether this is correlated with changes in principal cell excitability. Using the APPNL-F/NL-F knock-in mouse model of AD, aged-matched to wild-type mice, we performed in vitro electrophysiological whole-cell recordings combined with immunohistochemistry in the CA1 and dentate gyrus (DG) regions of the hippocampus. We observed a higher expression of GAD67, an enzyme that catalyses GABA production, and GAT3/4 in reactive astrocytes labelled with GFAP, which correlated with an enhanced tonic inhibition in the CA1 and DG of 12–16 month-old APPNL-F/NL-F mice compared to the age-matched wild-type animals. Comparative neuroanatomy experiments performed using post-mortem brain tissue from human AD patients, age-matched to healthy controls, mirrored the results obtained using mice tissue. Blocking GAT3/4 associated tonic inhibition recorded in CA1 and DG principal cells resulted in an increased membrane input resistance, enhanced firing frequency and synaptic excitation in both wild-type and APPNL-F/NL-F mice. These effects exacerbated synaptic hyperactivity reported previously in the APPNL-F/NL-F mice model. Our data suggest that an alteration in astrocyte GABA homeostasis is correlated with increased tonic inhibition in the hippocampus, which probably plays an important compensatory role in restoring AD-associated synaptic hyperactivity. Therefore, reducing tonic inhibition through GAT3/4 may not be a good therapeutic strategy for AD
Collapse
Affiliation(s)
| | - Anam Islam
- UCL School of Pharmacy, London, United Kingdom
| | | | - Paul Whiting
- Alzheimer’s Research UK Drug Discovery Institute, Queen Square Institute of Neurology, London, United Kingdom
| | - Afia B. Ali
- UCL School of Pharmacy, London, United Kingdom
- *Correspondence: Afia B. Ali,
| |
Collapse
|
40
|
Cui QN, Stein LM, Fortin SM, Hayes MR. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: implications for obesity, diabetes, neurodegeneration and glaucoma. Br J Pharmacol 2022; 179:715-726. [PMID: 34519040 PMCID: PMC8820182 DOI: 10.1111/bph.15683] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022] Open
Abstract
The medical applications of glucagon-like peptide-1 receptor (GLP-1R) agonists is evergrowing in scope, highlighting the urgent need for a comprehensive understanding of the mechanisms through which GLP-1R activation impacts physiology and behaviour. A new area of research aims to elucidate the role GLP-1R signalling in glia, which play a role in regulating energy balance, glycemic control, neuroinflammation and oxidative stress. Once controversial, existing evidence now suggests that subsets of glia (e.g. microglia, tanycytes and astrocytes) and infiltrating macrophages express GLP-1Rs. In this review, we discuss the implications of these findings, with particular focus on the effectiveness of both clinically available and novel GLP-1R agonists for treating metabolic and neurodegenerative diseases, enhancing cognition and combating substance abuse. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Qi N. Cui
- Scheie Eye InstitutePhiladelphiaPennsylvaniaUSA
| | - Lauren M. Stein
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Samantha M. Fortin
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
41
|
Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T. Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases. Int J Mol Sci 2022; 23:ijms23031435. [PMID: 35163359 PMCID: PMC8836133 DOI: 10.3390/ijms23031435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
The integrin family is involved in various biological functions, including cell proliferation, differentiation and migration, and also in the pathogenesis of disease. Integrins are multifunctional receptors that exist as heterodimers composed of α and β subunits and bind to various ligands, including extracellular matrix (ECM) proteins; they are found in many animals, not only vertebrates (e.g., mouse, rat, and teleost fish), but also invertebrates (e.g., planarian flatworm, fruit fly, nematodes, and cephalopods), which are used for research on genetics and social behaviors or as models for human diseases. In the present paper, we describe the results of a phylogenetic tree analysis of the integrin family among these species. We summarize integrin signaling in teleost fish, which serves as an excellent model for the study of regenerative systems and possesses the ability for replacing missing tissues, especially in the central nervous system, which has not been demonstrated in mammals. In addition, functions of astrocytes and reactive astrocytes, which contain neuroprotective subpopulations that act in concert with the ECM proteins tenascin C and osteopontin via integrin are also reviewed. Drug development research using integrin as a therapeutic target could result in breakthroughs for the treatment of neurodegenerative diseases and brain injury in mammals.
Collapse
Affiliation(s)
- Hiroko Ikeshima-Kataoka
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence:
| | - Chikatoshi Sugimoto
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| | - Tatsuya Tsubokawa
- Department of Biology, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama-shi 223-8521, Japan; (C.S.); (T.T.)
| |
Collapse
|
42
|
Kofoed RH, Heinen S, Silburt J, Dubey S, Dibia CL, Maes M, Simpson EM, Hynynen K, Aubert I. Transgene distribution and immune response after ultrasound delivery of rAAV9 and PHP.B to the brain in a mouse model of amyloidosis. Mol Ther Methods Clin Dev 2021; 23:390-405. [PMID: 34761053 PMCID: PMC8560718 DOI: 10.1016/j.omtm.2021.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/12/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023]
Abstract
Efficient disease-modifying treatments for Alzheimer disease, the most common form of dementia, have yet to be established. Gene therapy has the potential to provide the long-term production of therapeutic in the brain following a single administration. However, the blood-brain barrier poses a challenge for gene delivery to the adult brain. We investigated the transduction efficiency and immunological response following non-invasive gene-delivery strategies to the brain of a mouse model of amyloidosis. Two emerging technologies enabling gene delivery across the blood-brain barrier were used to establish the minimal vector dosage required to reach the brain: (1) focused ultrasound combined with intravenous microbubbles, which increases the permeability of the blood-brain barrier at targeted sites and (2) the recombinant adeno-associated virus (rAAV)-based capsid named rAAV-PHP.B. We found that equal intravenous dosages of rAAV9 combined with focused ultrasound, or rAAV-PHP.B, were required for brain gene delivery. In contrast to rAAV9, focused ultrasound did not decrease the rAAV-PHP.B dosage required to transduce brain cells in a mouse model of amyloidosis. The non-invasive rAAV delivery to the brain using rAAV-PHP.B or rAAV9 with focused ultrasound triggered an immune reaction including major histocompatibility complex class II expression, complement system and microglial activation, and T cell infiltration.
Collapse
Affiliation(s)
- Rikke Hahn Kofoed
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stefan Heinen
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph Silburt
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sonam Dubey
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chinaza Lilian Dibia
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Miriam Maes
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children’s Hospital, Department of Medical Genetics, The University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
43
|
Alshebib YA, Hori T, Kashiwagi T. HOP protein expression in the hippocampal dentate gyrus is acutely downregulated in a status epilepticus mouse model. IBRO Neurosci Rep 2021; 11:183-193. [PMID: 34766103 PMCID: PMC8569711 DOI: 10.1016/j.ibneur.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Status epilepticus (SE) is a neurological emergency, and delayed management can lead to higher morbidity and mortality. It is thought that prolonged seizures stimulate stem cells in the hippocampus and that epileptogenesis may arise from aberrant connections formed by newly born cells, while others have suggested that the acute neuroinflammation and gliosis often seen in epileptic hippocampi contribute to hyperexcitability and epilepsy development. Previous studies have identified the expression of homeodomain-only protein (HOP) in the hippocampal dentate gyrus (HDG) and the heart. HOP was found to be a regulator of cell proliferation and differentiation during heart development, while it maintains the 'heart conduction system' in adulthood. However, little is known about HOP function in the adult HDG, particularly in the SE setting. Here, a HOP immunohistochemical profile in an SE mouse model was established. A total of 24 adult mice were analyzed 3-10 days following the SE episode, the 'acute phase'. Our findings demonstrate a significant downregulation of HOP and BLBP protein expression in the SE group following SE episodes, while HOP/Ki67 coexpression did not remarkably differ. Furthermore, coexpression of HOP/S100β and HOP/Prox1 was not observed, although we noticed insignificant HOP/DCX coexpression level. The findings of this study show no compelling evidence of proliferation, and newly added neurons were not identified during the acute phase following SE, although HOP protein expression was significantly decreased in the HDG. Similar to its counterpart in the adult heart, this suggests that HOP seems to play a key role in regulating signal conduction in adult hippocampus. Moreover, acute changes in HOP expression following SE could be part of an inflammatory response that could subsequently influence epileptogenicity.
Collapse
Key Words
- BLBP, Brain lipid-binding protein
- BrdU, 5-Bromo-2′-deoxyuridine
- Ctrl, control tissue
- DCX, Doublecortin
- EGFP, enhanced green fluorescent protein
- Epileptogenicity
- GCL, granule cell layer
- GFAP, Glial fibrillary acidic protein
- GFP, green fluorescent protein
- HDG, Hippocampal Dentate Gyrus
- HF, Hippocampus Formation
- HOP
- HOP, Homeodomain Only Protein
- Hippocampal Formation
- Homeodomain-Only Protein
- IHC, Immunohistochemistry
- NSC, Neural stem cells
- Neurocardiology
- Prox1, Prospero Homeobox 1
- RGL cell, Radial glia-like cell
- S100β, S100 calcium-binding protein B
- SE, Status Epilepticus
- SGZ, subgranular zone
- SVZ, subventricular zone
- Seizure-induced neuroinflammation
- Status Epileptics
Collapse
Affiliation(s)
- YA Alshebib
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134-0088, Japan
| | - Tomokatsu Hori
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134-0088, Japan
| | - Taichi Kashiwagi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
44
|
Mannino G, Cristaldi M, Giurdanella G, Perrotta RE, Lo Furno D, Giuffrida R, Rusciano D. ARPE-19 conditioned medium promotes neural differentiation of adipose-derived mesenchymal stem cells. World J Stem Cells 2021; 13:1783-1796. [PMID: 34909123 PMCID: PMC8641022 DOI: 10.4252/wjsc.v13.i11.1783] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/25/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) have been increasingly explored for cell-based medicine because of their numerous advantages in terms of easy availability, high proliferation rate, multipotent differentiation ability and low immunogenicity. In this respect, they have been widely investigated in the last two decades to develop therapeutic strategies for a variety of human pathologies including eye disease. In ocular diseases involving the retina, various cell types may be affected, such as Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), which plays a fundamental role in the homeostasis of retinal tissue, by secreting a variety of growth factors that support retinal cells. AIM To test ASC neural differentiation using conditioned medium (CM) from an RPE cell line (ARPE-19). METHODS ASCs were isolated from adipose tissue, harvested from the subcutaneous region of healthy donors undergoing liposuction procedures. Four ASC culture conditions were investigated: ASCs cultured in basal Dulbecco's Modified Eagle Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously arising cell line with a normal karyotype derived from a human RPE. Cell proliferation rate and viability were assessed by crystal violet and MTT assays at 1, 4 and 8 d of culture. At the same time points, ASC neural differentiation was evaluated by immunocytochemistry and western blot analysis for typical neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene product (PGP) 9.5, and glial fibrillary acidic protein (GFAP). RESULTS Depending on the culture medium, ASC proliferation rate and viability showed some significant differences. Overall, less dense populations were observed in serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. Moreover, a different cell morphology was seen in these cultures after 8 d of treatment, with more elongated cells, often showing cytoplasmic ramifications. Immunofluorescence results and western blot analysis were indicative of ASC neural differentiation. In fact, basal levels of neural markers detected under control conditions significantly increased when cells were cultured in ARPE-19 CM. Specifically, neural marker overexpression was more marked at 8 d. The most evident increase was observed for NSE and GFAP, a modest increase was observed for nestin, and less relevant changes were observed for PGP9.5. CONCLUSION The presence of growth factors produced by ARPE-19 cells in tissue culture induces ASCs to express neural differentiation markers typical of the neuronal and glial cells of the retina.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | | | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | - Rosario Emanuele Perrotta
- Department of General Surgery and Medical-Surgery Specialties, University of Catania, Catania 95100, CT, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, CT, Italy
| | - Dario Rusciano
- Research Center, SOOFT-Italia S.p.A., Catania 95123, CT, Italy
| |
Collapse
|
45
|
Ebert T, Heinz DE, Almeida-Corrêa S, Cruz R, Dethloff F, Stark T, Bajaj T, Maurel OM, Ribeiro FM, Calcagnini S, Hafner K, Gassen NC, Turck CW, Boulat B, Czisch M, Wotjak CT. Myo-Inositol Levels in the Dorsal Hippocampus Serve as Glial Prognostic Marker of Mild Cognitive Impairment in Mice. Front Aging Neurosci 2021; 13:731603. [PMID: 34867270 PMCID: PMC8633395 DOI: 10.3389/fnagi.2021.731603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023] Open
Abstract
Dementia is a devastating age-related disorder. Its therapy would largely benefit from the identification of susceptible subjects at early, prodromal stages of the disease. To search for such prognostic markers of cognitive impairment, we studied spatial navigation in male BALBc vs. B6N mice in combination with in vivo magnetic resonance spectroscopy (1H-MRS). BALBc mice consistently showed higher escape latencies than B6N mice, both in the Water Cross Maze (WCM) and the Morris water maze (MWM). These performance deficits coincided with higher levels of myo-inositol (mIns) in the dorsal hippocampus before and after training. Subsequent biochemical analyses of hippocampal specimens by capillary immunodetection and liquid chromatography mass spectrometry-based (LC/MS) metabolomics revealed a higher abundance of glial markers (IBA-1, S100B, and GFAP) as well as distinct alterations in metabolites including a decrease in vitamins (pantothenic acid and nicotinamide), neurotransmitters (acetylcholine), their metabolites (glutamine), and acetyl-L-carnitine. Supplementation of low abundant acetyl-L-carnitine via the drinking water, however, failed to revert the behavioral deficits shown by BALBc mice. Based on our data we suggest (i) BALBc mice as an animal model and (ii) hippocampal mIns levels as a prognostic marker of mild cognitive impairment (MCI), due to (iii) local changes in microglia and astrocyte activity, which may (iv) result in decreased concentrations of promnesic molecules.
Collapse
Affiliation(s)
- Tim Ebert
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniel E. Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | | | - Renata Cruz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Frederik Dethloff
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tibor Stark
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Oriana M. Maurel
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabiola M. Ribeiro
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Silvio Calcagnini
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C. Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Benoit Boulat
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carsten T. Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
46
|
Brown D, Altermatt M, Dobreva T, Chen S, Wang A, Thomson M, Gradinaru V. Deep Parallel Characterization of AAV Tropism and AAV-Mediated Transcriptional Changes via Single-Cell RNA Sequencing. Front Immunol 2021; 12:730825. [PMID: 34759919 PMCID: PMC8574206 DOI: 10.3389/fimmu.2021.730825] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Engineered variants of recombinant adeno-associated viruses (rAAVs) are being developed rapidly to meet the need for gene-therapy delivery vehicles with particular cell-type and tissue tropisms. While high-throughput AAV engineering and selection methods have generated numerous variants, subsequent tropism and response characterization have remained low throughput and lack resolution across the many relevant cell and tissue types. To fully leverage the output of these large screening paradigms across multiple targets, we have developed an experimental and computational single-cell RNA sequencing (scRNA-seq) pipeline for in vivo characterization of barcoded rAAV pools at high resolution. Using this platform, we have both corroborated previously reported viral tropisms and discovered unidentified AAV capsid targeting biases. As expected, we observed that the tropism profile of AAV.CAP-B10 in mice was shifted toward neurons and away from astrocytes when compared with AAV-PHP.eB. Transcriptomic analysis revealed that this neuronal bias is due mainly to increased targeting efficiency for glutamatergic neurons, which we confirmed by RNA fluorescence in situ hybridization. We further uncovered cell subtype tropisms of AAV variants in vascular and glial cells, such as low transduction of pericytes and Myoc+ astrocytes. Additionally, we have observed cell-type-specific transitory responses to systemic AAV-PHP.eB administration, such as upregulation of genes involved in p53 signaling in endothelial cells three days post-injection, which return to control levels by day twenty-five. The presented experimental and computational approaches for parallel characterization of AAV tropism will facilitate the advancement of safe and precise gene delivery vehicles, and showcase the power of understanding responses to gene therapies at the single-cell level.
Collapse
Affiliation(s)
- David Brown
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Michael Altermatt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Tatyana Dobreva
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sisi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alexander Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, United States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
47
|
Andoh NE, Gyan BA. The Potential Roles of Glial Cells in the Neuropathogenesis of Cerebral Malaria. Front Cell Infect Microbiol 2021; 11:741370. [PMID: 34692564 PMCID: PMC8529055 DOI: 10.3389/fcimb.2021.741370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Cerebral malaria (CM) is a severe neurological complication of malaria caused by the Plasmodium falciparum parasite. It is one of the leading causes of death in children under 5 years of age in Sub-Saharan Africa. CM is associated with blood-brain barrier disruption and long-term neurological sequelae in survivors of CM. Despite the vast amount of research on cerebral malaria, the cause of neurological sequelae observed in CM patients is poorly understood. In this article, the potential roles of glial cells, astrocytes, and microglia, in cerebral malaria pathogenesis are reviewed. The possible mechanisms by which glial cells contribute to neurological damage in CM patients are also examined.
Collapse
Affiliation(s)
- Nana Efua Andoh
- Noguchi Memorial Institute for Medical Research, Department of Parasitology, University of Ghana, Accra, Ghana
| | - Ben Adu Gyan
- Noguchi Memorial Institute for Medical Research, Department of Immunology, University of Ghana, Accra, Ghana
| |
Collapse
|
48
|
Aryal SP, Neupane KR, Masud AA, Richards CI. Characterization of Astrocyte Morphology and Function Using a Fast and Reliable Tissue Clearing Technique. Curr Protoc 2021; 1:e279. [PMID: 34694747 PMCID: PMC8550103 DOI: 10.1002/cpz1.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytic processes interact with synapses throughout the brain modulating neurotransmitter signaling and synaptic communication. During conditions such as exposure to drugs of abuse and neurological diseases, astrocytes respond by altering their morphological and functional properties. Reactive astrocyte phenotypes exhibit a bushy morphology with altered soma volume and an increased number of processes compared to resting astrocytes. The reactive astrocytic phenotype also overexpresses proteins one of which can be glial fibrillary acidic protein (GFAP). Fluorescence microscopy on thin tissue sections (<20 µm) requires reconstruction, often through multiple sections, to delineate the full astrocytic morphology. In contrast, tissue clearing methods have been developed that enable imaging of larger sections including the whole brain, providing an opportunity to see in-depth changes in single cell structure. In this article, a detailed protocol for studying astrocyte morphology using tissue clearing and subsequent imaging of whole brains as well as region-specific slices is provided. This method is ideal for understanding the effect of different physiological conditions on astrocyte morphology. A standard biochemistry laboratory has the resources to accomplish tissue clearing using this protocol and most universities have the required imaging facilities. Protocols to study brains from both genetically modified mice that contain an astrocyte-specific marker and from wild-type mice using antibody labeling steps after tissue clearing are provided. We also describe general protocols to conduct fluorescence imaging of astrocytes in cleared tissue to characterize their morphology. This protocol could be useful for researchers working in the rapidly growing field of astrocyte biology. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Brain perfusion, fixation, and tissue clearing Alternate Protocol: Clearing brain tissue with passive clarity Basic Protocol 2: Antibody labeling and refractive index matching Basic Protocol 3: Fluorescence imaging and characterization of astrocyte morphology.
Collapse
Affiliation(s)
- Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Khaga R Neupane
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Abdullah A Masud
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
49
|
Parkitny L, Maletic-Savatic M. Glial PAMPering and DAMPening of Adult Hippocampal Neurogenesis. Brain Sci 2021; 11:1299. [PMID: 34679362 PMCID: PMC8533961 DOI: 10.3390/brainsci11101299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Adult neurogenesis represents a mature brain's capacity to integrate newly generated neurons into functional circuits. Impairment of neurogenesis contributes to the pathophysiology of various mood and cognitive disorders such as depression and Alzheimer's Disease. The hippocampal neurogenic niche hosts neural progenitors, glia, and vasculature, which all respond to intrinsic and environmental cues, helping determine their current state and ultimate fate. In this article we focus on the major immune communication pathways and mechanisms through which glial cells sense, interact with, and modulate the neurogenic niche. We pay particular attention to those related to the sensing of and response to innate immune danger signals. Receptors for danger signals were first discovered as a critical component of the innate immune system response to pathogens but are now also recognized to play a crucial role in modulating non-pathogenic sterile inflammation. In the neurogenic niche, viable, stressed, apoptotic, and dying cells can activate danger responses in neuroimmune cells, resulting in neuroprotection or neurotoxicity. Through these mechanisms glial cells can influence hippocampal stem cell fate, survival, neuronal maturation, and integration. Depending on the context, such responses may be appropriate and on-target, as in the case of learning-associated synaptic pruning, or excessive and off-target, as in neurodegenerative disorders.
Collapse
Affiliation(s)
- Luke Parkitny
- Baylor College of Medicine and Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA;
| | | |
Collapse
|
50
|
Szczepkowska A, Harazin A, Barna L, Deli MA, Skipor J. Identification of Reference Genes for Circadian Studies on Brain Microvessels and Choroid Plexus Samples Isolated from Rats. Biomolecules 2021; 11:biom11081227. [PMID: 34439891 PMCID: PMC8394446 DOI: 10.3390/biom11081227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers: the blood–brain barrier located in the endothelium of the brain microvessels (BrMV) and the blood–cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21). Gene evaluations were performed by qPCR, analyzed by RefFinder tool, and verified by analyzing the expression of the brain and muscle ARNT-like 1 (Bmal1) using the qPCR and digital PCR methods. We identified as the most stable genes for circadian studies tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and apolipoprotein E (Apoe) for BrMV, and beta actin (Actb) and hypoxanthine-guanine phosphoribosyltransferase (Hprt1) for ChP. After verification, ribosomal protein (Rps18) was also included as a sufficient reference gene. Additionally, the observed gender difference in the Bmal1 oscillations in both BrMV and ChP suggests that separate studies for each gender are recommended.
Collapse
Affiliation(s)
- Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|