1
|
Agrawal N, Afzal M, Almalki WH, Ballal S, Sharma GC, Krithiga T, Panigrahi R, Saini S, Ali H, Goyal K, Rana M, Abida Khan. Longevity mechanisms in cardiac aging: exploring calcium dysregulation and senescence. Biogerontology 2025; 26:94. [PMID: 40259024 DOI: 10.1007/s10522-025-10229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025]
Abstract
Cardiac aging is a multistep process that results in a loss of various structural and functional heart abilities, increasing the risk of heart disease. Since its remarkable discovery in the early 1800s, when limestone is heated, calcium's importance has been defined in numerous ways. It can help stiffen shells and bones, function as a reducing agent in chemical reactions, and play a central role in cellular signalling. The movement of calcium ions in and out of cells and between those is referred to as calcium signalling. It influences the binding of the ligand, enzyme activity, electrochemical gradients, and other cellular processes. Calcium signalling is critical for both contraction and relaxation under the sliding filament model of heart muscle. However, with age, the heart undergoes changes that lead to increases in cardiac dysfunction, such as myocardial fibrosis, decreased cardiomyocyte function, and noxious disturbances in calcium homeostasis. Additionally, when cardiac tissues age, cellular senescence, a state of irreversible cell cycle arrest, accumulates and begins to exacerbate tissue inflammation and fibrosis. This review explores the most recent discoveries regarding the role of senescent cell accumulation and calcium signalling perturbances in cardiac aging. Additionally, new treatment strategies are used to reduce aged-related heart dysfunction by targeting senescent cells and modulating calcium homeostasis.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Abida Khan
- Center For Health Research, Northern Border University, Arar 73213, Saudi Arabia
| |
Collapse
|
2
|
Bukhari SA, Sadia H, Chauhdary Z. The neuroprotective potential of Gerbera Jamesonii in a neuronal demyelination rat model through the modulation of interleukins, cyclooxygenase and tumor necrosis factor-α. Inflammopharmacology 2025:10.1007/s10787-025-01742-w. [PMID: 40244489 DOI: 10.1007/s10787-025-01742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Multiple sclerosis is characterized by the demyelination of neurons, which is a chronic inflammatory disease of the central nervous system. This autoimmune disorder occurs due to an imbalance in the body's immune system as a result of uncontrolled oxidative stress. The B and T lymphocytes cross the blood-brain barrier and destroy the myelin sheath. Multiple sclerosis is one of the most common causes of disability in young adults affecting approximately 3 million individuals worldwide. Among them, females are considered at higher risk than males. It disrupts the normal functioning of life badly and major symptoms include loss of sensation, poor vision, impaired hearing, and cognitive abnormalities. Several treatments and drugs have been used to treat this medical condition, but they pose serious side effects also. So, the need of the hour is to explore such natural bioactive compounds that have neuroprotective properties, thus leading to the treatment of neurodegenerative disorders. Among various plants with medicinal properties, Gerbera jamesonii is a plant that exhibits antioxidant, anti-inflammatory, and neuroprotective properties. To enhance its therapeutic potential, this study aimed to load its ethanolic extract into solid-lipid nanoparticle formulations (SLNs), which is an innovative approach for treatment because nanoparticles provide effective targeted drug delivery due to their extremely small size. Solid-lipid nanoparticles were prepared using the emulsification-solvent evaporation method. For experimental design, 30 Wistar rats were randomly divided into seven groups (n = 10): normal, demyelination disease model, standard drugs, dimethyl fumarate and fingolimod (FTY 720) 15 mg/kg, and three treatment groups: GJ-NPs 250 mg/kg, 500 mg/kg, and 750 mg/kg. Prior to treatment, 0.2% cuprizone solution was prepared for the induction of multiple sclerosis in all groups except the normal group for 42 days. Biochemical analyses such as determination of inflammatory biomarkers and antioxidant enzymes were performed. The plant extract was subjected to HPLC to examine its phenolic compounds which are active in healing neurodegeneration. Physiological changes in rats were observed such as motor dysfunction and anxiety-like behavior caused by cuprizone. Behavioral tests showed significant improvement of motor function, muscular coordination, and enhanced cognitive abilities in the treatment groups as compared to the demyelination disease model. Histopathology of the rat brain regions showed significant differences in the normal and demyelinated areas. The results showed that GJ-NPs treated demyelination, modulating oxidative stress manifested by pro-inflammatory cytokines TNF-α, IL-6, AβPP, α-synuclein, NF-KB, etc., thus restoring the levels of antioxidant enzymes to normal range.
Collapse
Affiliation(s)
- Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, , Faisalabad, Pakistan
| | - Haleema Sadia
- Department of Biochemistry, Government College University Faisalabad, , Faisalabad, Pakistan
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
3
|
Katopodi V, Marino A, Pateraki N, Verheyden Y, Cinque S, Jimenez EL, Adnane S, Demesmaeker E, Scomparin A, Derua R, Groaz E, Leucci E. The long non-coding RNA ROSALIND protects the mitochondrial translational machinery from oxidative damage. Cell Death Differ 2025; 32:397-415. [PMID: 39294440 PMCID: PMC11894192 DOI: 10.1038/s41418-024-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
Upregulation of mitochondrial respiration coupled with high ROS-scavenging capacity is a characteristic shared by drug-tolerant cells in several cancers. As translational fidelity is essential for cell fitness, protection of the mitochondrial and cytosolic ribosomes from oxidative damage is pivotal. While mechanisms for recognising and repairing such damage exist in the cytoplasm, the corresponding process in the mitochondria remains unclear.By performing Ascorbate PEroXidase (APEX)-proximity ligation assay directed to the mitochondrial matrix followed by isolation and sequencing of RNA associated to mitochondrial proteins, we identified the nuclear-encoded lncRNA ROSALIND as an interacting partner of ribosomes. ROSALIND is upregulated in recurrent tumours and its expression can discriminate between responders and non-responders to immune checkpoint blockade in a melanoma cohort of patients. Featuring an unusually high G content, ROSALIND serves as a substrate for oxidation. Consequently, inhibiting ROSALIND leads to an increase in ROS and protein oxidation, resulting in severe mitochondrial respiration defects. This, in turn, impairs melanoma cell viability and increases immunogenicity both in vitro and ex vivo in preclinical humanised cancer models. These findings underscore the role of ROSALIND as a novel ROS buffering system, safeguarding mitochondrial translation from oxidative stress, and shed light on potential therapeutic strategies for overcoming cancer therapy resistance.
Collapse
Affiliation(s)
- Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Alessandro Marino
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Nikoleta Pateraki
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yvessa Verheyden
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Elena Lara Jimenez
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Adnane
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ewout Demesmaeker
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Alice Scomparin
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory for Protein Phosphorylation and Proteomics, Leuven, Belgium
| | - Elisabetta Groaz
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
- Trace, Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
McCreery CV, Alessi D, Mollo K, Fasano A, Zomorrodi AR. Investigating intestinal epithelium metabolic dysfunction in celiac disease using personalized genome-scale models. BMC Med 2025; 23:95. [PMID: 39984962 PMCID: PMC11846356 DOI: 10.1186/s12916-025-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Celiac disease (CeD) is an autoimmune condition characterized by an aberrant immune response triggered by the ingestion of gluten, which damages epithelial cells lining the small intestine. Small intestinal epithelial cells (sIECs) play key roles in the enzymatic digestion and absorption of nutrients, maintaining gut barrier integrity, and regulating immune response. Chronic inflammation and tissue damage associated with CeD disrupt the intricate network of metabolic processes in sIECs that support these functions, impairing their ability to perform their essential roles. However, the specific disrupted metabolic processes underlying sIECs dysfunction in CeD remain largely undefined. METHODS To address this knowledge gap, personalized, sex-specific genome-scale models of sIECs metabolism were constructed using transcriptional data from intestinal biopsies of 42 subjects with active CeD, CeD in remission (on a gluten-free diet), and non-CeD controls. These models were computationally simulated under relevant dietary conditions for each group of subjects to assess the activity of several metabolic tasks essential for sIECs function and to profile metabolite secretion into the bloodstream and intestinal lumen. RESULTS Significant alterations in the activity of 28 essential metabolic tasks were observed in active CeD and remission CeD, impacting critical processes integral to sIECs function such as oxidative stress regulation, nucleotide synthesis and DNA repair, energy production, and polyamine and amino acid metabolism. Additionally, altered secretion profiles of several metabolites, encompassing amino acids, vitamins, polyamines, lipids, and fatty acids, into the bloodstream were detected in active CeD and remission CeD patients. These findings were partially supported by comparisons with independent external datasets and further corroborated through extensive review of existing literature. Furthermore, a drug target analysis was performed, identifying 22 FDA-approved drugs that target genes encoding impaired sIECs metabolic functions in CeD, potentially helping to restore their normal activity. CONCLUSIONS This study unveils new insights into the metabolic reprogramming of sIECs in CeD, highlighting specific dysregulated metabolic processes that compromise cellular functions essential for gut health. These findings offer a foundation for developing therapeutic interventions targeting impaired metabolic processes in CeD.
Collapse
Affiliation(s)
- Chloe V McCreery
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Drew Alessi
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Katarina Mollo
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Ali R Zomorrodi
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Wu SK, Tsai CL, Mir A, Marcus SL, Hynynen K. Repeated 5-aminolevulinic acid mediated sonodynamic therapy using magnetic resonance guided focused ultrasound in rat brain tumour models. Sci Rep 2025; 15:1161. [PMID: 39775160 PMCID: PMC11707172 DOI: 10.1038/s41598-025-85314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
Sonodynamic therapy is an emerging therapeutic approach against brain tumours. However, the treatment scheme and ultrasound parameters have yet to be explored for clinical translation. Our study aimed to optimize ultrasound parameters for sonodynamic therapy (SDT) with 5-ALA as a sonosensitizing agent and to evaluate its therapeutic outcome on the rodent 9L gliosarcoma and the human U87 glioblastoma models. We stereotactically implanted brain tumour cells in rats and monitored tumour volume via MRI. SDT was conducted weekly using a 60 mg/kg dose of 5-ALA, injected intravenously 6 h before sonication. We used a driving frequency of 580 kHz with 0.75 MPa and evaluated the effect of different burst lengths to optimize ultrasound parameters. We also tested SDT against advanced-stage brain tumours to verify its efficacy further. Our results showed that a longer burst length could improve therapeutic outcomes. Tumour growth inhibition was established only in the first three weeks with 10 ms and 50 ms burst length sonication, but 86 ms burst length greatly improved the survival outcome. Therefore, the therapeutic efficacy is proportionate to the burst length and, thus, the total delivered energy. Repeated SDT using multiple targets to cover the entire tumour volume with optimal ultrasound parameters can achieve significant anti-tumour effects in both 9L and U87 models. Lastly, our results on late-stage tumour treatments showed that SDT can still provide prolonged survival. These promising findings demonstrate that repeated SDT using transcranial-focused ultrasound together with 5-ALA can optimize anti-tumour effects and even lead to complete clearance of the tumours. This weekly treatment with pulsed ultrasound sonication strategy is practical for future clinical translation.
Collapse
Affiliation(s)
- Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Chia-Lin Tsai
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Neurology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Aisha Mir
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Lee CW, Chiang YC, Vo TTT, Lin ZC, Chi MC, Fang ML, Peng KT, Tsai MH, Lee IT. Deciphering the Liaison Between Fine Particulate Matter Pollution, Oxidative Stress, and Prostate Cancer: Where Are We Now? Antioxidants (Basel) 2024; 13:1505. [PMID: 39765833 PMCID: PMC11672957 DOI: 10.3390/antiox13121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 01/03/2025] Open
Abstract
Prostate cancer (PCa), a highly prevalent cancer in men worldwide, is projected to rise in the coming years. As emerging data indicate the carcinogenic effects of fine particulate matter (PM2.5) in lung cancer and other site-specific cancers, there is an urgent need to evaluate the relationship between this environmental risk factor and PCa as a potential target for intervention. The present review provides up-to-date evidence about the impact of airborne PM2.5 pollution on the initiation and progression of PCa. Examining the composition and characteristics of PM2.5 reveals its ability to induce toxic effects, inflammatory injuries, and oxidative damages. Additionally, PM2.5 can attach to endocrine-disrupting chemicals implicated in prostatic carcinogenesis. Considering the potential significance of oxidative stress in the risk of the disease, our review underlines the protective strategies, such as antioxidant-based approaches, for individuals exposed to increased PM2.5 levels. Moreover, the findings call for further research to understand the associations and mechanisms linking PM2.5 exposure to PCa risk as well as to suggest appropriate measures by policymakers, scientific researchers, and healthcare professionals in order to address this global health issue.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (C.-W.L.); (M.-C.C.)
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Yao-Chang Chiang
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chiayi 613, Taiwan
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh 70000, Vietnam;
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
| | - Miao-Ching Chi
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (C.-W.L.); (M.-C.C.)
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613, Taiwan; (Y.-C.C.); (Z.-C.L.)
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
7
|
Soni D, Khan H, Chauhan S, Kaur A, Dhankhar S, Garg N, Singh TG. Exploring therapeutic potential: Targeting TRPM7 in neurodegenerative diseases. Int Immunopharmacol 2024; 142:113142. [PMID: 39298812 DOI: 10.1016/j.intimp.2024.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The ions Ca2+ and Mg2+, which are both present in the body, have been demonstrated to be crucial in the control of a variety of neuronal processes. Transient melastatin-7 (TRPM7) channel plays an important role in controlling Ca2+ and Mg2+ homeostasis, which is crucial for biological processes. The review will also examine how changes in TRPM7 function or expression can lead to neurodegeneration.Even though eight different TRPM channels have been found so far, the channel properties, activation mechanisms, and physiological responses exhibited by these channels can vary greatly from one another. Only TRPM6 and TRPM7 out of the eight TRPM channels were found to have a high permeability to both Ca2+ and Mg2+. In contrast to TRPM6 channels, which are not highly expressed in neuronal cells, TRPM7 channels are widely distributed throughout the nervous system, so they will be the sole focus of this article. It is possible that, in the future, for the treatment of neurodegenerative disorder new therapeutic drug targets will be developed as a direct result of research into the specific roles played by TRPM7 channels in several different neurodegenerative conditions as well as the factors that are responsible for TRPM7 channel regulation.
Collapse
Affiliation(s)
- Diksha Soni
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
8
|
Bilski R, Kupczyk D, Woźniak A. Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets. Molecules 2024; 29:5460. [PMID: 39598849 PMCID: PMC11597651 DOI: 10.3390/molecules29225460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Psoriasis and psoriatic arthritis (PsA) are chronic autoimmune diseases characterized by persistent inflammation and oxidative imbalance. Oxidative stress, caused by excessive production of reactive oxygen species (ROS) and dysfunction in antioxidant mechanisms, plays a critical role in the pathogenesis of both conditions, leading to increased inflammatory processes and tissue damage. This study aims to review current antioxidant-based therapeutic options and analyze oxidative stress biomarkers in the context of psoriasis and PsA. Based on available literature, key biomarkers, such as malondialdehyde (MDA), advanced glycation end-products (AGEs), and advanced oxidation protein products (AOPP), were identified as being elevated in patients with psoriasis and PsA. Conversely, antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), showed reduced activity, correlating with symptom severity. The study also examines the efficacy of various antioxidant therapies, including curcumin, resveratrol, coenzyme Q10, and vitamins C and E, which may aid in reducing oxidative stress and alleviating inflammation. The findings indicated that antioxidants can play a significant role in alleviating symptoms and slowing the progression of psoriasis and PsA through modulation of redox mechanisms and reduction of ROS levels. Antioxidant-based therapies offer a promising direction in treating autoimmune diseases, highlighting the need for further research on their efficacy and potential clinical application.
Collapse
Affiliation(s)
- Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland
| | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland
| |
Collapse
|
9
|
Firdous SM, Khan SA, Maity A. Oxidative stress-mediated neuroinflammation in Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8189-8209. [PMID: 38832985 DOI: 10.1007/s00210-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products that constitute an indispensable component of physiological processes, albeit their heightened presence may proffer substantial perils to biological entities. Such a proliferation gives rise to a gradual escalation of oxidative stress within the organism, thereby compromising mitochondrial functionality and inflicting harm upon various bodily systems, with a particular predilection for the central nervous system. In its nascent stages, it is plausible that inflammation has been a facilitator in the progression of the malady. The precise role of inflammation in Alzheimer's disease (AD) remains somewhat enigmatic, although it is conceivable that activated microglia and astrocytes might be implicated in the removal of amyloid-β (Aβ) deposits. Nonetheless, prolonged microglial activation is associated with Tau phosphorylation and Aβ aggregation. Research studies have indicated that AD brains upregulate complementary molecules, inflammatory cytokines, acute phase reacting agents, and other inflammatory mediators that may cause neurodegeneration. In this review, oxidative damage products will be discussed as potential peripheral biomarkers for AD and its early stages. The disordered excretion of pro-inflammatory cytokines, chemokines, oxygen, and nitrogen-reactive species, along with the stimulation of the complement system by glial cells, has the potential to disrupt the functionality of neuronal termini. This perturbation, in turn, culminates in compromised synaptic function, a phenomenon empirically linked to the manifestation of cognitive impairments. The management of neurodegenerative conditions in the context of dementia necessitates therapeutic interventions that specifically target the excessive production of inflammatory and oxidative agents. Furthermore, we shall deliberate upon the function of microglia and oxidative injury in the etiology of AD and the ensuing neurodegenerative processes.
Collapse
Affiliation(s)
- Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India.
| | - Sahabaj Ali Khan
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| | - Amritangshu Maity
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, 711316, West Bengal, India
| |
Collapse
|
10
|
Zheng J, Shang M, Dai G, Dong J, Wang Y, Duan B. Bioactive polysaccharides from Momordica charantia as functional ingredients: a review of their extraction, bioactivities, structural-activity relationships, and application prospects. Crit Rev Food Sci Nutr 2024; 64:12103-12126. [PMID: 37599638 DOI: 10.1080/10408398.2023.2248246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Momordica charantia L. is a well-known medicine and food homology plant with high pharmaceutical and nutritional values. Polysaccharides are carbohydrate polymers connected by glycosidic bonds, one of the key functional ingredients of M. charantia. Recently, M. charantia polysaccharides (MCPs) have attracted much attention from industries and researchers due to their anti-oxidant, anti-tumor, anti-diabetes, anti-bacteria, immunomodulatory, neuroprotection, and organ protection activities. However, the development and utilization of MCPs-based functional foods and medicines were hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of MCPs. Herein, we provide an overview of the extraction, purification, structural characterization, bioactivities, and mechanisms of MCPs. Besides, SAR, toxicities, application, and influences of the modification associated with bioactivities are spotlighted, and the potential development and future study direction are scrutinized. This review provides knowledge and research underpinnings for the further research and application of MCPs as therapeutic agents and functional food additives.
Collapse
Affiliation(s)
- Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Mingyue Shang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
11
|
Lee JE, Jayakody JTM, Kim JI, Jeong JW, Choi KM, Kim TS, Seo C, Azimi I, Hyun JM, Ryu BM. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024; 13:3151. [PMID: 39410186 PMCID: PMC11475975 DOI: 10.3390/foods13193151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
While the potential of Asteraceae plants as herbal remedies has been globally recognized, their widespread application in the food, cosmetic, and pharmaceutical industries requires a deeper understanding of how extraction methods influence bioactive compound yields and functionalities. Previous research has primarily focused on the physiological activities or chemical compositions of individual Asteraceae species, often overlooking the critical role of solvent selection in optimizing extraction. Additionally, the remarkable physiological activities observed in these plants have spurred a growing number of clinical trials, aiming to validate their efficacy and safety for potential therapeutic and commercial applications. This work aims to bridge these knowledge gaps by providing an integrated analysis of extraction techniques, the diverse range of bioactive compounds present in Asteraceae, and the influence of solvent choice on isolating these valuable substances. By elucidating the interplay between extraction methods, solvent properties, and bioactivity, we underscore the promising potential of Asteraceae plants and highlight the importance of continued research, including clinical trials, to fully unlock their potential in the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | | | - Jae-Il Kim
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Jin-Woo Jeong
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Kyung-Min Choi
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Tae-Su Kim
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Chan Seo
- Honam National Institute of Biological Resources, 99 Gohadoangil, Mokpo-si 587262, Republic of Korea; (J.-W.J.); (K.-M.C.); (T.-S.K.); (C.S.)
| | - Iman Azimi
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Melbourne, VIC 3168, Australia;
| | - Ji-Min Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
| | - Bo-Mi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (J.-E.L.); (J.-I.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Mehran HS, Nady S, Kassab RB, Ahmed-Farid OA, El-Hennamy RE. Recombinant Interleukin - 2 2 Immunotherapy Ameliorates Inflammation and Promotes the Release of Monoamine Neurotransmitters in the Gut-Brain Axis of Schistosoma mansoni-Infected Mice. J Neuroimmune Pharmacol 2024; 19:37. [PMID: 39052165 DOI: 10.1007/s11481-024-10133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Recombinant interleukin-22 (rIL-22) has been reported as a protective agent in murine models of diseases driven by epithelial injury. Parasites have a circadian rhythm and their sensitivity to a certain drug may vary during the day. Therefore, this work aimed to investigate the effect of rIL-22 administration at different times of the day on the inflammation, oxidative status, and neurotransmitter release in the gut-brain axis of the Schistosoma mansoni-infected mice. Sixty male BALB/c mice aged six weeks weighing 25-30 g were divided into a control group (injected intraperitoneally with PBS), mice infected with 80 ± 10 cercariae of S. mansoni (infected group) then injected intraperitoneally with PBS, and rIL-22 treated groups. rIL-22 was administrated intraperitoneally (400 ng/kg) either at the onset or offset of the light phase for 14 days. IL-22 administration reduced the levels of IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa beta (NF-κβ), and enhanced the production of IL-22 and IL-17. The treatment with IL-22 increased glutathione (GSH) and reduced malondialdehyde (MDA) and nitric oxide (NO) levels both in the ileum and brain. The B-cell lymphoma 2 (BCL2) protein level in the ileum was diminished after IL-22 administration. Brain-derived neurotrophic factor (BDNF) and neurotransmitter release (serotonin, 5HT, norepinephrine, NE, dopamine, DA, Glutamate, Glu, and -amino butyric acid, GABA) were improved by rIL-22. In conclusion, rIL-22 showed promising immunotherapy for inflammation, oxidative damage, and neuropathological signs associated with schistosomiasis. The efficacy of IL-22 increased significantly upon its administration at the time of light offset.
Collapse
Affiliation(s)
- Heba S Mehran
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soad Nady
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Rehab E El-Hennamy
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
14
|
Gao Y, Huang D, Huang S, Li H, Xia B. Rational design of ROS generation nanosystems to regulate innate immunity of macrophages, dendrtical and natural killing cells for immunotherapy. Int Immunopharmacol 2024; 139:112695. [PMID: 39024751 DOI: 10.1016/j.intimp.2024.112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Innate immunity serves as the first line of host defense in the body against pathogenic infections or malignant diseases. Reactive oxygen species (ROS), as vital signaling mediators, can efficiently elicit innate immune responses to oxidative-related stress or damage. In the era of nanomedicine, various immunostimulatory nanosystems have been extensively designed and synthesized to elicit immune responses for the immunotherapy of cancer or infectious diseases. In this review, we emphasize that ROS derived from nanosystems regulates innate immune cells to potentiate immunotherapeutic efficacy, such as primarily dendritic cells, macrophages, or natural killer cells. Meanwhile, we also summarize the pathway of ROS generation triggered by exogenous nanosystems in innate immune cells of DCs, macrophages, and NK cells.
Collapse
Affiliation(s)
- Yan Gao
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Di Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuodan Huang
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China
| | - Huiying Li
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| | - Bing Xia
- College of Science, State Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, PR China; Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China.
| |
Collapse
|
15
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Muñoz-Jurado A, Escribano BM, Túnez I. Animal model of multiple sclerosis: Experimental autoimmune encephalomyelitis. Methods Cell Biol 2024; 188:35-60. [PMID: 38880527 DOI: 10.1016/bs.mcb.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Multiple sclerosis (MS) is a very complex and heterogeneous disease, with an unknown etiology and which, currently, remains incurable. For this reason, animal models are crucial to investigate this disease, which has increased in prevalence in recent years, affecting 2.8 million people worldwide, and is the leading cause of non-traumatic disability in young adults between the ages of 20-30years. Of all the models developed to replicate MS, experimental autoimmune encephalomyelitis (EAE) best reflects the autoimmune pathogenesis of MS. There are different methods to induce it, which will give rise to different types of EAE, which will vary in clinical presentation and severity. Of the EAE models, the most widespread and used is the one induced in rodents due to its advantages over other species. Likewise, EAE has become a widely used model in the development of therapies for the treatment of MS. Likewise, it is very useful to define the cellular and molecular mechanisms involved in the pathogenesis of MS and to establish therapeutic targets for this disease. For all these reasons, the EAE model plays a key role in improving the understanding of MS.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain.
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain; Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Cordoba, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Cordoba, Spain.
| |
Collapse
|
17
|
D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid Redox Signal 2024; 40:691-714. [PMID: 37917110 DOI: 10.1089/ars.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Reactive oxygen species (ROS), the reactive oxygen-carrying chemicals moieties, act as pleiotropic signal transducers to maintain various biological processes/functions, including immune response. Increased ROS production leads to oxidative stress, which is implicated in xenobiotic-induced adverse effects. Understanding the immunoregulatory mechanisms and immunotoxicity is of interest to developing therapeutics against xenobiotic insults. Recent Advances: While developmental studies have established the essential roles of ROS in the establishment and proper functioning of the immune system, toxicological studies have demonstrated high ROS generation as one of the potential mechanisms of immunotoxicity induced by environmental chemicals, including heavy metals, pesticides, aromatic hydrocarbons (benzene and derivatives), plastics, and nanoparticles. Mitochondrial electron transport and various signaling components, including NADH oxidase, toll-like receptors (TLRs), NF-κB, JNK, NRF2, p53, and STAT3, are involved in xenobiotic-induced ROS generation and immunotoxicity. Critical Issues: With many studies demonstrating the role of ROS and oxidative stress in xenobiotic-induced immunotoxicity, rigorous and orthogonal approaches are needed to achieve in-depth and precise understanding. The association of xenobiotic-induced immunotoxicity with disease susceptibility and progression needs more data acquisition. Furthermore, the general methodology needs to be possibly replaced with high-throughput precise techniques. Future Directions: The progression of xenobiotic-induced immunotoxicity into disease manifestation is not well documented. Immunotoxicological studies about the combination of xenobiotics, age-related sensitivity, and their involvement in human disease incidence and pathogenesis are warranted. Antioxid. Redox Signal. 40, 691-714.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| |
Collapse
|
18
|
Byun MJ, Seo HS, Lee J, Ban K, Oh S, Lee YY, Lim J, Lee NK, Wang CPJ, Kim M, Han JH, Park J, Paik T, Park HH, Park TE, Park W, Kim SN, Park DH, Park CG. Biofunctional Inorganic Layered Double Hydroxide Nanohybrid Enhances Immunotherapeutic Effect on Atopic Dermatitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304862. [PMID: 38050931 DOI: 10.1002/smll.202304862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.
Collapse
Affiliation(s)
- Min Ji Byun
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Joonghak Lee
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kitae Ban
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Serim Oh
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Minjeong Kim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, 96813, USA
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- LANG SCIENCE Inc, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
19
|
Jang S, Kim S, Kim SJ, Kim JY, Gu DH, So BR, Ryu JA, Park JM, Yoon SR, Jung SK. Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation. J Microbiol Biotechnol 2024; 34:644-653. [PMID: 38213288 PMCID: PMC11016773 DOI: 10.4014/jmb.2309.09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.
Collapse
Affiliation(s)
- Sehyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun Young Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da Hye Gu
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo Ram So
- COSMAX NBT, INC., Seongnam 13486, Republic of Korea
| | - Jung A Ryu
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Jeong Min Park
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Ran Yoon
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
20
|
Trinchese G, Cimmino F, Catapano A, Cavaliere G, Mollica MP. Mitochondria: the gatekeepers between metabolism and immunity. Front Immunol 2024; 15:1334006. [PMID: 38464536 PMCID: PMC10920337 DOI: 10.3389/fimmu.2024.1334006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Metabolism and immunity are crucial monitors of the whole-body homeodynamics. All cells require energy to perform their basic functions. One of the most important metabolic skills of the cell is the ability to optimally adapt metabolism according to demand or availability, known as metabolic flexibility. The immune cells, first line of host defense that circulate in the body and migrate between tissues, need to function also in environments in which nutrients are not always available. The resilience of immune cells consists precisely in their high adaptive capacity, a challenge that arises especially in the framework of sustained immune responses. Pubmed and Scopus databases were consulted to construct the extensive background explored in this review, from the Kennedy and Lehninger studies on mitochondrial biochemistry of the 1950s to the most recent findings on immunometabolism. In detail, we first focus on how metabolic reconfiguration influences the action steps of the immune system and modulates immune cell fate and function. Then, we highlighted the evidence for considering mitochondria, besides conventional cellular energy suppliers, as the powerhouses of immunometabolism. Finally, we explored the main immunometabolic hubs in the organism emphasizing in them the reciprocal impact between metabolic and immune components in both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Jacques C, Marchand F, Chatelais M, Floris I. Actives from the Micro-Immunotherapy Medicine 2LMIREG ® Reduce the Expression of Cytokines and Immune-Related Markers Including Interleukin-2 and HLA-II While Modulating Oxidative Stress and Mitochondrial Function. J Inflamm Res 2024; 17:1161-1181. [PMID: 38406323 PMCID: PMC10894519 DOI: 10.2147/jir.s445053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Micro-immunotherapy (MI) is a therapeutic option employing low doses (LD) and ultra-low doses (ULD) of cytokines and immune factors to help the organism at modulating the immune responses. In an overpowering inflammatory context, this strategy may support the restoration of the body's homeostasis, as the active ingredients of MI medicines' (MIM) could boost or slow down the physiological functions of the immune cells. The aim of the study is to evaluate for the first time the in vitro anti-inflammatory properties of some actives employed by the MIM of interest in several human immune cell models. Methods In the first part of the study, the effects of the actives from the MIM of interest were assessed from a molecular standpoint: the expression of HLA-II, interleukin (IL)-2, and the secretion of several other cytokines were evaluated. In addition, as mitochondrial metabolism is also involved in the inflammatory processes, the second part of the study aimed at assessing the effects of these actives on the mitochondrial reactive oxygen species (ROS) production and on the mitochondrial membrane potential. Results We showed that the tested actives decreased the expression of HLA-DR and HLA-DP in IFN-γ-stimulated endothelial cells and in LPS-treated-M1-macrophages. The tested MIM slightly reduced the intracellular expression of IL-2 in CD4+ and CD8+ T-cells isolated from PMA/Iono-stimulated human PBMCs. Additionally, while the secretion of IL-2, IL-10, and IFN-γ was diminished, the treatment increased IL-6, IL-9, and IL-17A, which may correspond to a "Th17-like" secretory pattern. Interestingly, in PMA/Iono-treated PBMCs, we reported that the treatment reduced the ROS production in B-cells. Finally, in PMA/Iono-treated human macrophages, we showed that the treatment slightly protected the cells from early cell death/apoptosis. Discussion Overall, these results provide data about the molecular and functional anti-inflammatory effects of several actives contained in the tested MIM in immune-related cells, and their impact on two mitochondria-related processes.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| | | | | | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, Moncoutant-sur-Sevre, 79320, France
| |
Collapse
|
22
|
Almeida AS, Neves BM, Duarte RMBO. Contribution of water-soluble extracts to the oxidative and inflammatory effects of atmospheric aerosols: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123121. [PMID: 38086505 DOI: 10.1016/j.envpol.2023.123121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Exposure to atmospheric particulate matter (PM) has been associated with heightened risks of lung cancer, cardiovascular and respiratory diseases. PM exposure also affects the immune system, leading to an increased susceptibility to infections, exacerbating pre-existent inflammatory and allergic lung diseases. Atmospheric PM can primarily impact human health through the generation of reactive oxygen species (ROS) that subsequently induce or exacerbate inflammation. These cytotoxic effects have been related with PM concentration, and its chemical constituents, including metals, solvent extractable organics (e.g., polycyclic aromatic hydrocarbons), and water-soluble ions. Although not receiving much attention, the fine aerosol water-soluble organic matter (WSOM) can account for a substantial portion of the overall fine PM mass and has been shown to present strong oxidative and immunomodulatory effects. Thus, the objective of this review is to provide a comprehensive analysis of the role of the water-soluble fraction of PM, with a specific focus on the contribution of the WSOM component to the cytotoxic properties of atmospheric PM. The chemical properties of the water-soluble PM fraction are briefly discussed, while emphasis is put on how PM size, composition, and temporal variations (e.g., seasonality) can impact the pro-oxidative activity, the modulation of inflammatory response, and the cytotoxicity of the water-soluble PM extracts.
Collapse
Affiliation(s)
- Antoine S Almeida
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Bruno M Neves
- Department of Medical Sciences and Institute of Biomedicine - IBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
23
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
24
|
Bagnol R, Siverino C, Barnier V, O'Mahony L, Grijpma DW, Eglin D, Moriarty TF. Physicochemical Characterization and Immunomodulatory Activity of Polyelectrolyte Multilayer Coatings Incorporating an Exopolysaccharide from Bifidobacterium longum. Biomacromolecules 2023; 24:5589-5604. [PMID: 37983925 DOI: 10.1021/acs.biomac.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Immunoregulatory polysaccharides from probiotic bacteria have potential in biomedical engineering. Here, a negatively charged exopolysaccharide from Bifidobacterium longum with confirmed immunoregulatory activity (EPS624) was applied in multilayered polyelectrolyte coatings with positively charged chitosan. EPS624 and coatings (1, 5, and 10 layers and alginate-substituted) were characterized by the zeta potential, dynamic light scattering, size exclusion chromatography, scanning electron microscopy, and atomic force microscopy. Peripheral blood mononuclear cells (hPBMCs) and fibroblasts were exposed for 1, 3, 7, and 10 days with cytokine secretion, viability, and morphology as observations. The coatings showed an increased rugosity and exponential growth mode with an increasing number of layers. A dose/layer-dependent IL-10 response was observed in hPBMCs, which was greater than EPS624 in solution and was stable over 7 days. Fibroblast culture revealed no toxicity or metabolic change after exposure to EPS624. The EPS624 polyelectrolyte coatings are cytocompatible, have immunoregulatory properties, and may be suitable for applications in biomedical engineering.
Collapse
Affiliation(s)
- Romain Bagnol
- AO Research Institute Davos, Davos Platz 7270, Switzerland
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | | | - Vincent Barnier
- UMR 5307 LGF, CNRS, Mines Saint-Etienne, Centre SMS, Saint-Etienne F-42023, France
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork TH12 HW58, Ireland
| | - Dirk W Grijpma
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - David Eglin
- Technical Medical Centre, Department of Advanced Organ Engineering and Therapeutics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
- Univ Jean Monnet, INSERM, Mines Saint-Étienne, U1059 Sainbiose, Saint-Étienne F-42023, France
| | | |
Collapse
|
25
|
Lin HY, Fu Q, Tseng TS, Zhu X, Reiss K, Joseph Su L, Hagensee ME. Impact of Dietary Quality on Genital Oncogenic Human Papillomavirus Infection in Women. J Infect Dis 2023; 228:1385-1393. [PMID: 37161924 PMCID: PMC10640770 DOI: 10.1093/infdis/jiad146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Most cervical cancers are directly linked to oncogenic or high-risk human papillomavirus (HR-HPV) infection. This study evaluates associations between diet quality and genital HPV infection in women. METHODS This study included 10 543 women from the 2003-2016 National Health and Nutrition Examination Survey. The outcome was the genital HPV infection status (HPV-negative, low-risk [LR] HPV, and HR-HPV). Dietary quality was evaluated using the Healthy Eating Index (HEI), in which a higher score indicates a better diet quality. RESULTS Women who did not consume total fruits (15.8%), whole fruits (27.5%), or green vegetables and beans (43%) had a significantly higher risk of HR-HPV infection than women who complied with the Dietary Guidelines for Americans (HR-HPV odds ratio = 1.76, 1.63, and 1.48 for a HEI score of 0 vs 5, respectively) after adjusting confounding factors. Similar results of these food components on LR-HPV infection were found. In addition, intake of whole grains and dairy was inversely associated with LR-HPV infection. CONCLUSIONS This study showed that women who did not eat fruits, dark-green vegetables, and beans had a higher risk of genital HR-HPV infection. Intake of these food components is suggested for women to prevent HPV carcinogenesis.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Qiufan Fu
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tung-sung Tseng
- Behavior and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Xiaodan Zhu
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Krzysztof Reiss
- Department of Hematology and Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - L Joseph Su
- School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael E Hagensee
- Section of Infection Diseases, Department of Medicine, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
26
|
Sawoo R, Dey R, Ghosh R, Bishayi B. Exogenous IL-10 posttreatment along with TLR4 and TNFR1 blockade improves tissue antioxidant status by modulating sepsis-induced macrophage polarization. J Appl Toxicol 2023; 43:1549-1572. [PMID: 37177863 DOI: 10.1002/jat.4496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Multi-organ dysfunction is one of the major reasons behind the high mortality of sepsis throughout the world. With the pathophysiology of sepsis remaining largely unknown, the uncontrolled reactive oxygen species (ROS) production along with the decreased antioxidants contributes to the progression toward septic shock. Being the effector cells of the innate immunity system, macrophages secrete both pro-inflammatory and anti-inflammatory mediators during inflammation. Lipopolysaccharide (LPS) binding to toll-like receptor 4 (TLR4) releases TNF-α, which initiates pro-inflammatory events through tumor necrosis factor receptor 1 (TNFR1) signaling. However, it is counteracted by the anti-inflammatory interleukin 10 (IL-10) causing decreased oxidative stress. Our study thus aimed to assess the effects of exogenous IL-10 treatment post-neutralization of TLR4 and TNFR1 (by anti-TLR4 antibody and anti-TNFR1 antibody, respectively) in an in vivo murine model of LPS-sepsis. We have also examined the tissue-specific antioxidant status in the spleen, liver, and lungs along with the serum cytokine levels in adult male Swiss albino mice to determine the functional association with the disease. The results showed that administration of recombinant IL-10 post-neutralization of the receptors was beneficial in shifting the macrophage polarization to the anti-inflammatory M2 phenotype. IL-10 treatment significantly downregulated the free radicals production resulting in diminished lipid peroxidase (LPO) levels. The increased antioxidant activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GRX ) conferred protection against LPS-induced sepsis. Western blot data further confirmed diminished expressions of TLR4 and TNFR1 along with suppressed stress-activated protein kinases/Jun amino-terminal kinases (SAPK/JNK) and increased SOD and CAT expressions, which altogether indicated that neutralization of TLR4 and TNFR1 along with IL-10 posttreatment might be a potential therapeutic measure for the treatment of sepsis.
Collapse
Affiliation(s)
- Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, India
| |
Collapse
|
27
|
Assadian E, Jamali Z, Salimi A, Pourahmad J. Antioxidants and mitochondrial/lysosomal protective agents reverse toxicity induced by titanium dioxide nanoparticles on human lymphocytes. Toxicol Ind Health 2023; 39:594-602. [PMID: 37593903 DOI: 10.1177/07482337231196293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Most of the literature has focused on titanium dioxide (TiO2) nanoparticles (NPs) toxicity, showing the importance of oxidative stress, mitochondrial dysfunction, and cell death in TiO2-induced toxicity. For this purpose, in the current study, we investigated the protective role of antioxidant and mitochondrial/lysosomal protective agents to minimize TiO2 NPs-induced toxicity in human lymphocytes. Human lymphocytes were obtained from heathy individuals and treated with different concentrations (80, 160, and 320 µg/mL) of TiO2 NPs, and then human lymphocytes preincubated with butylated hydroxytoluene (BHT), cyclosporin A (CsA), and chloroquine separately were exposed to TiO2 NPs for 6 h. In all the above-mentioned treated groups, adverse parameters such as cytotoxicity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), lysosomal membrane destabilization, the levels of malondialdehyde (MDA), and glutathione (GSH) were measured. The results showed that TiO2 nanoparticles induced cytotoxicity through ROS formation, MMP collapse, lysosomal damages, depletion of GSH, and lipid peroxidation. However, BHT as an antioxidant, CsA as a mitochondrial permeability transition (MPT) pore sealing agent, and chloroquine as a lysosomotropic agent, significantly inhibited all the TiO2 NPs-induced cellular and organelle toxicities. Thus, it seems that antioxidant and mitochondrial/lysosomal protective agents are promising preventive strategies against TiO2 NPs-induced toxicity.
Collapse
Affiliation(s)
- Evelyn Assadian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Vahdatiraad L, Heidari B, Zarei S, Sohrabi T, Ghafouri H. Biological responses of stellate sturgeon fingerlings (Acipenser stellatus) immersed in HSP inducer to salinity changes. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106145. [PMID: 37595360 DOI: 10.1016/j.marenvres.2023.106145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Changes in salinity is a stressful and energy-consuming process in fish which give rise to mortalities, especially in fish fingerlings that are more sensitive during the early stages of their life. In the present study, the effects of three salinities, 3‰ (downstream of river), 8‰ (estuarine), and 13‰ (the maximum salinity in the Caspian Sea), on HSP70 gene expression, cortisol level, immune response (lysozyme, complement C3, IgM), and antioxidant enzyme activities (SOD, CAT, T-AOC) of the stellate sturgeon fingerlings in the presence of HSP inducer compound (TEX-OE®) were evaluated. Our results showed that levels of plasma cortisol and heat shock protein (HSP70) in Acipenser stellatus fingerlings increased due to salinity changes. In the presence of the HSP inducer, HSP70 expression in both gill and liver was significantly increased, whereas cortisol level was notably decreased. Exposure to salinity changes resulted in an increase in antioxidant defense activities (SOD, CAT, and T-AOC) and immune response (lysozyme, IgM, and C3) in the presence of an HSP inducer. In conclusion, an HSP-inducing compounds can have a positive effect in strengthening the immunity and antioxidant system of sturgeon fingerlings by increasing the expression of the HSP70 gene against salinity fluctuations and generally increase the body's physiological tolerance.
Collapse
Affiliation(s)
- Leila Vahdatiraad
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Behrooz Heidari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Sevda Zarei
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Tooraj Sohrabi
- International Caspian Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
29
|
Evans JA, Mendonca P, Soliman KFA. Involvement of Nrf2 Activation and NF-kB Pathway Inhibition in the Antioxidant and Anti-Inflammatory Effects of Hesperetin in Activated BV-2 Microglial Cells. Brain Sci 2023; 13:1144. [PMID: 37626501 PMCID: PMC10452655 DOI: 10.3390/brainsci13081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder leading to cognitive decline and memory loss. The incidence of this disease continues to increase due to the limited number of novel therapeutics that prevent or slow down its progression. Flavonoids have been investigated for their potential effects on cellular damage triggered by excessive reactive oxygen species (ROS) and neuroinflammatory conditions. This study investigated the effect of the flavonoid hesperetin on LPS-activated murine BV-2 microglial cells. Results show that hesperetin reduced nitric oxide levels and increased catalase, glutathione, and superoxide dismutase levels, suggesting its potential to reduce neuroinflammation and oxidative stress. Moreover, RT-PCR arrays showed that hesperetin modulated multiple genes that regulate oxidative stress. Hesperetin downregulated the mRNA expression of ERCC6, NOS2, and NCF1 and upregulated HMOX1 and GCLC. RT-PCR results showed that hesperetin-induced Nrf2 mRNA and protein expression in LPS-activated BV-2 microglial cells is involved in the transcription of several antioxidant genes, suggesting that hesperetin's antioxidant effects may be exerted via the Keap1/Nrf2 signaling pathway. Furthermore, the data demonstrated that hesperetin reduced the gene expression of PD-L1, which is upregulated as an individual ages and during chronic inflammatory processes, and inhibited the expression of genes associated with NF-kB signaling activation, which is overactivated during chronic inflammation. It was concluded from this investigation that hesperetin may have therapeutic potential to prevent or slow down the progression of neurodegenerative diseases, such as Alzheimer's disease, by reducing chronic oxidative stress and modulating neuroinflammation.
Collapse
Affiliation(s)
- Jasmine A. Evans
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
30
|
Moon S, Hong J, Go S, Kim BS. Immunomodulation for Tissue Repair and Regeneration. Tissue Eng Regen Med 2023; 20:389-409. [PMID: 36920675 PMCID: PMC10219918 DOI: 10.1007/s13770-023-00525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 03/16/2023] Open
Abstract
Various immune cells participate in repair and regeneration following tissue injury or damage, orchestrating tissue inflammation and regeneration processes. A deeper understanding of the immune system's involvement in tissue repair and regeneration is critical for the development of successful reparatory and regenerative strategies. Here we review recent technologies that facilitate cell-based and biomaterial-based modulation of the immune systems for tissue repair and regeneration. First, we summarize the roles of various types of immune cells in tissue repair. Second, we review the principle, examples, and limitations of regulatory T (Treg) cell-based therapy, a representative cell-based immunotherapy. Finally, we discuss biomaterial-based immunotherapy strategies that aim to modulate immune cells using various biomaterials for tissue repair and regeneration.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Smit C, De Wet S, Barron T, Loos B. Rooibos tea-in the cross fire of ROS, mitochondrial dysfunction and loss of proteostasis-positioned for healthy aging. Biogerontology 2023; 24:149-162. [PMID: 36781516 DOI: 10.1007/s10522-022-10012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
Impaired mitochondrial function and loss of cellular proteostasis control are key hallmarks of aging and are implicated in the development of neurodegenerative diseases. A common denominator is the cell's inability to handle reactive oxygen species (ROS), leading to major downstream oxidative damage that exacerbates neuronal dysfunction. Although we have progressed in understanding the molecular defects associated with neuronal aging, many unanswered questions remain. How much ROS is required to serve cellular function before it becomes detrimental and how does the cell's oxidative status impact mitochondrial function and protein degradation through autophagy? How does ROS regulate autophagy? Aspalathus linearis, also commonly known as rooibos, is an endemic South African plant that is gaining globally acclaim for its antioxidant properties and its role as functional medicinal beverage. In this article we dissect the role of rooibos in the context of the cell's ROS handling capacity, mitochondrial function and autophagy activity. By addressing the dynamic relationship between these critical interconnected systems, and by evaluating the functional properties of rooibos, we unravel its position for preserving cell viability and promoting healthy aging.
Collapse
Affiliation(s)
- Catherine Smit
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Sholto De Wet
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Tamryn Barron
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa.
| |
Collapse
|
32
|
Khosravi-Nezhad S, Hassanpour S, Hesaraki S. L-Theanine Improves Locomotor Function in a Model of Multiple Sclerosis Mice. ARCHIVES OF RAZI INSTITUTE 2023; 78:195-203. [PMID: 37312698 PMCID: PMC10258260 DOI: 10.22092/ari.2022.360066.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/01/2022] [Indexed: 06/15/2023]
Abstract
This study designed to investigate the protective effects of L-theanine on experimental Multiple sclerosis in mice. Frothy Male C57BL/6 mice were allocated into 4 experimental groups: control no treatment received a regular chew pellet, and the cuprizone (CPZ) group received a standard chew pellet containing 0.2% (w/w) CPZ. In group 3, mice were fed a regular diet and administered p.o. with L-theanine (50mg/kg). In group 4, mice received a diet containing CPZ and were administered p.o. with L-theanine (50mg/kg). Finally, reflexive motor behavior and serum antioxidant levels were determined. Based on findings, CPZ significantly decreased ambulation score, hind-limb suspension, front limb suspension, and grip strength (P<0.05). The CPZ + L-theanine reduced the adverse effect of the CPZ on ambulation score, hind-limb foot angle, surface righting, and negative geotaxis (P<0.05). The CPZ + L-theanine increased front and hind-limb suspension, grip strength, number of the cross, and duration of a stay on the rotarod compared to the control animal (P<0.05). CPZ administration significantly elevated serum malondialdehyde (MDA) while superoxide dismutase (SOD) and glutathione peroxidase (GPx) and total antioxidant status (TAS) levels decreased compared to control mice (P<0.05). The CPZ + L-theanine leads to the cessation of MDA production while increasing SOD, GPx, and TAS levels (P<0.05). These results suggested L-theanine has a protective effect against CPZ-induced MS in mice.
Collapse
Affiliation(s)
- Sh Khosravi-Nezhad
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sh Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S Hesaraki
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Tavassolifar MJ, Aghdaei HA, Sadatpour O, Maleknia S, Fayazzadeh S, Mohebbi SR, Montazer F, Rabbani A, Zali MR, Izad M, Meyfour A. New insights into extracellular and intracellular redox status in COVID-19 patients. Redox Biol 2023; 59:102563. [PMID: 36493512 PMCID: PMC9715463 DOI: 10.1016/j.redox.2022.102563] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.
Collapse
Affiliation(s)
- Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Department of Pathology, Firoozabadi Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amirhassan Rabbani
- Department of Transplant & Hepatobiliary Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Baranova A, Cao H, Teng S, Su K, Zhang F. Shared genetics and causal associations between COVID-19 and multiple sclerosis. J Med Virol 2023; 95:e28431. [PMID: 36571271 PMCID: PMC9880714 DOI: 10.1002/jmv.28431] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Neuroinflammation caused by COVID-19 negatively impacts brain metabolism and function, while pre-existing brain pathology may contribute to individuals' vulnerability to the adverse consequences of COVID-19. We used summary statistics from genome-wide association studies (GWAS) to perform Mendelian randomization (MR) analyses, thus assessing potential associations between multiple sclerosis (MS) and two COVID-19 outcomes (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infection and COVID-19 hospitalization). Genome-wide risk genes were compared between the GWAS datasets on hospitalized COVID-19 and MS. Literature-based analysis was conducted to construct molecular pathways connecting MS and COVID-19. We found that genetic liability to MS confers a causal effect on hospitalized COVID-19 (odd ratio [OR]: 1.09, 95% confidence interval: 1.03-1.16) but not on SARS-CoV-2 infection (1.03, 1.00-1.05). Genetic liability to hospitalized COVID-19 confers a causal effect on MS (1.15, 1.02-1.30). Hospitalized COVID-19 and MS share five risk genes within two loci, including TNFAIP8, HSD17B4, CDC37, PDE4A, and KEAP1. Pathway analysis identified a panel of immunity-related genes that may mediate the links between MS and COVID-19. Our study suggests that MS was associated with a 9% increased risk for COVID-19 hospitalization, while hospitalized COVID-19 was associated with a 15% increased risk for MS. Immunity-related pathways may underlie the link between MS on COVID-19.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems BiologyGeorge Mason UniversityManassasUSA,Research Centre for Medical GeneticsMoscowRussia
| | - Hongbao Cao
- School of Systems BiologyGeorge Mason UniversityManassasUSA
| | - Shaolei Teng
- Department of BiologyHoward UniversityWashingtonUSA
| | - Kuan‐Pin Su
- Mind‐Body Interface Laboratory (MBI‐Lab), Department of PsychiatryChina Medical University HospitalTaichungTaiwan,College of MedicineChina Medical University HospitalTaichungTaiwan,An‐Nan HospitalChina Medical University HospitalTainanTaiwan
| | - Fuquan Zhang
- Institute of NeuropsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina,Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
35
|
Nanavati K, Rutherfurd-Markwick K, Lee SJ, Bishop NC, Ali A. Effect of curcumin supplementation on exercise-induced muscle damage: a narrative review. Eur J Nutr 2022; 61:3835-3855. [PMID: 35831667 PMCID: PMC9596560 DOI: 10.1007/s00394-022-02943-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Curcumin, a natural polyphenol extracted from turmeric, is a potent antioxidant and anti-inflammatory agent. In the past few decades, curcumin's ability to impact chronic inflammatory conditions such as metabolic syndrome, arthritis, and cancer has been widely researched, along with growing interest in understanding its role in exercise-induced muscle damage (EIMD). EIMD impacts individuals differently depending on the type (resistance exercise, high-intensity interval training, and running), intensity, and duration of the exercise. Exercise disrupts the muscles' ultrastructure, raises inflammatory cytokine levels, and can cause swelling in the affected limb, a reduction in range of motion (ROM), and a reduction in muscular force-producing capacity. This review focuses on the metabolism, pharmacokinetics of various brands of curcumin supplements, and the effect of curcumin supplementation on EIMD regarding muscle soreness, activity of creatine kinase (CK), and production of inflammatory markers. Curcumin supplementation in the dose range of 90-5000 mg/day can decrease the subjective perception of muscle pain intensity, increase antioxidant capacity, and reduce CK activity, which reduces muscle damage when consumed close to exercise. Consumption of curcumin also improves muscle performance and has an anti-inflammatory effect, downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-8. Curcumin may also improve oxidative capacity without hampering training adaptations in untrained and recreationally active individuals. The optimal curcumin dose to ameliorate EIMD is challenging to assess as its effect depends on the curcumin concentration in the supplement and its bioavailability.
Collapse
Affiliation(s)
- K. Nanavati
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| | | | - S. J. Lee
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - N. C. Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - A. Ali
- School of Sport, Exercise, and Nutrition, Massey University, Auckland, New Zealand
| |
Collapse
|
36
|
Skupnevskii S, Pukhaeva E, Badtiev A, Rurua F, Batagova F, Farnieva Z. THE FEATURES OF DEVELOPING RAT AUTOIMMUNE PATHOLOGY WITH MITOCHONDRIAL DYSFUNCTION. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-tfo-2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The central role of the mitochondria in energy supply and cell death determines highlight these organelles as one of the promising objects for investigating pathogenesis of immune-mediated inflammatory disorders. The aim: to study features of pathogenesis in rat adjuvant-induced autoimmune pathology separately and in combination with mitochondrial disorders. Materials and methods: Wistar rats were divided into groups of negative control (solvent), positive control (single subcutaneous injection of complete Freund's adjuvant (CAF) at dose of 0.1 ml/200 g body weight), experimental (CAF 0.1 ml/ 200 g body weight and 5 weeks later with cuprizone 0.2% per feed weight). At the end of experiment (7 weeks), animals were tested in the "open field" model, euthanized, and biomaterial was collected to measure the relative mass coefficients of internal organs, hematological and histological studies. We calculated the mean, standard error of the mean; comparison of hypotheses was carried out by paired Student's t-test. Results: in case of impaired immunological tolerance there was detected reduced rat body weight gain during the study period (negative control +74.7 g, positive control +10.3 g) along with modelled mitochondrial dysfunction, a general decrease in weight by 6.7 g was noted. The magnitude of mass coefficients indicate a relative reduction in mass of liver, kidneys, spleen and thymus in experimental animals. The leukocyte counts (x109/L) are as follows: negative control 8.680.37, positive control 10.981.03 (p0.05), experimental group 12.280.63 (p0.001). No significant changes were found in the leukocyte formula and the red cell lineage. During modelled autoimmune pathology, platelet count increased by 22.5% (p0.05), whereas after cuprizone was administered it decreased by 6.3% (relative to the negative control). Mitochondrial dysfunction caused an abrupt decrease in motor activity in rats: the number of crossed sectors in positive control animals was 55.506.91, experimental group 44.503.60 (inter-group comparison, p0.001). Positive control: enlarged lymphatic nodules were found in the spleen, germinal center clarification, wall thickening of the pulpal and central arteries; single foci of hemorrhages in the red pulp. Experimental group: atrophy of lymphoid follicles of varying severity (relative to the groups of negative and positive controls), numerous foci of hemorrhages with hemosiderosis in the red pulp. Conclusion: mitochondrial dysfunction is accompanied by augmented pathogenetic signs of autoimmune pathology, which can serve as one of the keys to understanding the mechanisms of human autoimmunity.
Collapse
|
37
|
Waheed TO, Hahn O, Sridharan K, Mörke C, Kamp G, Peters K. Oxidative Stress Response in Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2022; 23:13435. [PMID: 36362223 PMCID: PMC9654835 DOI: 10.3390/ijms232113435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Reactive oxygen species (ROS) can irreversibly damage biological molecules, a process known as oxidative stress. Elevated ROS levels are associated with immune cell activation. Sustained immune system activation can affect many different cells in the environment. One cell type that has been detected in almost all tissues of the body is mesenchymal stem/stromal cells (MSC). MSC possess proliferation and differentiation potential, thus facilitating regeneration processes. However, the regenerative capacity of MSC might be impaired by oxidative stress, and the effects of long-term oxidative stress on MSC functions are sparsely described. The examination of oxidative stress is often performed by exposure to H2O2. Since H2O2 is rapidly degraded, we additionally exposed the cell cultures to glucose oxidase (GOx), resulting in sustained exposure to H2O2. Using these model systems, we have focused on the effects of short- and long-term oxidative stress on viability, migration, differentiation, and signaling. All cellular functions examined were affected by the applied oxidative stress. The differences that occur between pulsed and sustained oxidative stress indicated higher oxidative stress in MSC upon direct H2O2 exposure, whereas the GOx-induced prolonged exposure to H2O2 seems to allow for better cellular adaptation. The mechanisms underlying these different responses are currently unknown.
Collapse
Affiliation(s)
- Tawakalitu Okikiola Waheed
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Olga Hahn
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Kaarthik Sridharan
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Caroline Mörke
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Günter Kamp
- AMP-Lab GmbH, Mendelstr. 11, 48149 Münster, Germany
| | - Kirsten Peters
- Department of Cell Biology, University Medical Centre Rostock, Schillingallee 69, 18057 Rostock, Germany
| |
Collapse
|
38
|
Chemical Composition, Antioxidant and Antiproliferative Activities of Taraxacum officinale Essential Oil. Molecules 2022; 27:molecules27196477. [PMID: 36235013 PMCID: PMC9572089 DOI: 10.3390/molecules27196477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Taraxacum officinale (TO) has been historically used for medicinal purposes due to its biological activity against specific disorders. To investigate the antioxidant and the antiproliferativepotential of TO essential oil in vitro and in vivo, the chemical composition of the essential oil was analyzed by GC-MS. The in vivo antioxidant capacity was assessed on liver and kidney homogenate samples from mice subjected to acetaminophen-induced oxidative stress and treated with TO essential oil (600 and 12,000 mg/kg BW) for 14 days. The in vitro scavenging activity was assayed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the reducing power methods. The cytotoxic effects against the HeLa cancer cell line were analyzed. The GC-MS analysis showed the presence of 34 compounds, 8 of which were identified as major constituents. The TO essential oil protected mice’s liver and kidneys from acetaminophen-induced oxidative stress by enhancing antioxidant enzymes (catalase, superoxide dismutase, and glutathione) and lowering malondialdehyde levels. In vitro, the TO essential oil demonstrated low scavenging activity against DPPH (IC50 = 2.00 ± 0.05 mg/mL) and modest reducing power (EC50 = 0.963 ± 0.006 mg/mL). The growth of the HeLa cells was also reduced by the TO essential oil with an inhibition rate of 83.58% at 95 µg/mL. Current results reveal significant antioxidant and antiproliferative effects in a dose-dependent manner and suggest that Taraxacum officinale essential oil could be useful in formulations for cancer therapy.
Collapse
|
39
|
Irnawati I, Idroes R, Akmal M, Suhartono E, Rusyana A, Seriana I. The Effect and Activity of Free Radical Enzymes Due to Arsenic Exposure Through the Vulva and Vagina. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND OF THE STUDY: Geogenic arsenic is ubiquitous, found in water and soil that is used daily, can be exposed to the female body through the genital organs. The vulva and vagina are open channels that allow toxic agents to enter the internal genitalia and distributed throughout the body.
AIM OF THE STUDY: This study investigated the effects of vaginal arsenic exposure via vulvar immersion and vaginal douching in Rattus norvegicus on the damage of uterus and ovaries through oxidative mechanisms (MDA, SOD, and H₂O₂).
METHODOLOGY: The experimental animals were divided into three treatment groups, i.e., K0 (control group), K1 (group treated with vulvar immersion in 0.8 mg/L arsenic solution), and K2 (group treated with vaginal douching using 0.5-mL of 0.8 mg/L arsenic solution). For each group, the treatment was repeated six times and carried out for fourteen days. Before the study, a seven-day acclimatization period was conducted for adaptation purposes. The experimental animals were euthanized using ketamine xylazine. The uterus and ovaries were collected for MDA, SOD, and H₂O analysis, as well as histopathology examination.
RESULTS: The vaginal douching group had the highest MDA level both on the uterus (210.66±4.92μM) and the ovaries (214.67±2.50 μM). The immersion group also experienced an increase in MDA in the uterus (198.66±3.33μM) and ovaries (206.33± .21μM). However, a higher level of MDA was found in the ovaries. The highest H₂O₂ level was also found in the uterine and ovarian organs in the douching group. In contrast, the lowest SOD levels of uterine and ovarian were identified in the vaginal douching group. Arsenic exposure through vaginal immersion and douching affected the uterine MDA, SOD, and H₂O levels (Ρ<0.05). Arsenic exposure through vaginal douching also affected the ovarian MDA, SOD, and H₂O levels (Ρ<0.05). There was a significant difference in the mean of inflammatory cells (infiltrated neutrophils, macrophages, and lymphocytes) in the uterus and ovaries in the control, immersion, and vaginal douching groups (Ρ<0.05).
CONCLUSION: Exposure to 0.8 mg/L arsenic solution through vulvar immersion and vaginal douching can cause oxidative stress and trigger inflammation of the uterine and ovarian tissue.
Collapse
|
40
|
Davies TC. The position of geochemical variables as causal co-factors of diseases of unknown aetiology. SN APPLIED SCIENCES 2022; 4:236. [PMID: 35909942 PMCID: PMC9326422 DOI: 10.1007/s42452-022-05113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract The term diseases of unknown aetiology (DUA) or idiopathic diseases is used to describe diseases that are of uncertain or unknown cause or origin. Among plausible geoenvironmental co-factors in causation of DUA, this article focusses on the entry of trace elements, including metals and metalloids into humans, and their involvement in humoral and cellular immune responses, representing potentially toxic agents with implications as co-factors for certain DUA. Several trace elements/metals/metalloids (micronutrients) play vital roles as co-factors for essential enzymes and antioxidant molecules, thus, conferring protection against disease. However, inborn errors of trace element/metal/metalloid metabolisms can occur to produce toxicity, such as when there are basic defects in the element transport mechanism. Ultimately, it is the amount of trace element, metal or metalloid that is taken up, its mode of accumulation in human tissues, and related geomedical attributes such as the chemical form and bioavailability that decisively determine whether the exerted effects are toxic or beneficial. Several case descriptions of DUA that are common worldwide are given to illustrate our knowledge so far of how trace element/metal/metalloid interactions in the immune system may engender its dysregulation and be implicated as causal co-factors of DUA. Article highlights The importance of a proper understanding of geochemical perturbations in human metabolisms is emphasisedIt is proferred that such an understanding would aid greatly in the decipherment of diseases of unknown aetiology (DUA)The thesis presented may pave the way towards better diagnosis and therapy of DUA.
Collapse
Affiliation(s)
- Theophilus C. Davies
- Present Address: Faculty of Natural Sciences, Mangosuthu University of Technology, 511 Mangosuthu Highway, 4031, KwaZulu Natal, South Africa
| |
Collapse
|
41
|
Mohammadi MJ, Zarea K, Hatamzadeh N, Salahshouri A, Sharhani A. Toxic Air Pollutants and Their Effect on Multiple Sclerosis: A Review Study. Front Public Health 2022; 10:898043. [PMID: 35875044 PMCID: PMC9299435 DOI: 10.3389/fpubh.2022.898043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Toxic air pollutants are one of the main factors that have the effect of synergism to increase the incidence of multiple sclerosis (MS). This review aims to investigate the effects of toxic air pollutants on the occurrence of multiple sclerosis (MS). A narrative review of the literature was done from 2000 to 2022 based on various databases such as Google Scholar, Web of Science, Springer, PubMed, and Science Direct. In this study, according to the databases, three hundred and sixty articles were retrieved. Of these, 28 studies were screened after review and 14 full-text articles entered into the analysis process. Finally, 9 articles were selected in this study. According to the finding of this study, toxic air pollutants including polycyclic aromatic hydrocarbons (PAHs), heavy metals (HM), volatile organic compounds (VOCs), particulate matter (PM), and gases are the main agents that cause the development and spread of chronic diseases such as respiratory and cardiovascular diseases, chronic obstructive pulmonary disease (COPD), and multiple sclerosis. The result of this study showed that the main sources of emission of toxic air pollutants include industries, cars, power plants, and the excessive consumption of fossil fuels. In general, the inhalation of high concentration of toxic air pollutants can increase the risk of chronic diseases and multiple sclerosis.
Collapse
Affiliation(s)
- Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kourosh Zarea
- Department of Nursing, Nursing Care Research Center in Chronic Diseases, School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasser Hatamzadeh
- Department of Health Promotion and Education, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Salahshouri
- Department of Health Promotion and Education, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asaad Sharhani
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
43
|
Essential Protective Role of Catalytically Active Antibodies (Abzymes) with Redox Antioxidant Functions in Animals and Humans. Int J Mol Sci 2022; 23:ijms23073898. [PMID: 35409256 PMCID: PMC8999700 DOI: 10.3390/ijms23073898] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
During the life of aerobic organisms, the oxygen resulting from numerous reactions is converted into reactive oxygen species (ROS). Many ROS are dangerous due to their high reactivity; they are strong oxidants, and react with various cell components, leading to their damage. To protect against ROS overproduction, enzymatic and non-enzymatic systems are evolved in aerobic cells. Several known non-enzymatic antioxidants have a relatively low specific antioxidant activity. Superoxide dismutases, catalase, glutathione peroxidase, glutathione S-transferase, thioredoxin, and the peroxiredoxin families are the most important enzyme antioxidants. Artificial antibodies catalyzing redox reactions using different approaches have been created. During the past several decades, it has been shown that the blood and various biological fluids of humans and animals contain natural antibodies that catalyze different redox reactions, such as classical enzymes. This review, for the first time, summarizes data on existing non-enzymatic antioxidants, canonical enzymes, and artificial or natural antibodies (abzymes) with redox functions. Comparing abzymes with superoxide dismutase, catalase, peroxide-dependent peroxidase, and H2O2-independent oxidoreductase activities with the same activities as classical enzymes was carried out. The features of abzymes with the redox activities are described, including their exceptional diversity in the optimal pH values, dependency and independence on various metal ions, and the reaction rate constants for healthy donors and patients with different autoimmune diseases. The entire body of evidence indicates that abzymes with redox antioxidant activities existing in the blood for a long time compared to enzymes are an essential part of the protection system of humans and animals from oxidative stress.
Collapse
|
44
|
Goretzki A, Zimmermann J, Lin YJ, Schülke S. Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases? FRONTIERS IN ALLERGY 2022; 3:825931. [PMID: 35386646 PMCID: PMC8974690 DOI: 10.3389/falgy.2022.825931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023] Open
|
45
|
Balakrishnan V, Ganapathy S, Veerasamy V, Duraisamy R, Sathiavakoo VA, Krishnamoorthy V, Lakshmanan V. Anticancer and antioxidant profiling effects of Nerolidol against DMBA induced oral experimental carcinogenesis. J Biochem Mol Toxicol 2022; 36:e23029. [PMID: 35243731 DOI: 10.1002/jbt.23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022]
Abstract
The objective of this study is to examine the chemopreventive effects of Nerolidol (NER) on hamster buccal pouch carcinogenesis (HBC) induced by 7,12-dimethylbenz(a)anthracene (DMBA) in male golden Syrian hamsters. In this study, oral squamous cell carcinoma was developed in the buccal pouch of an oral painted hamster with 0.5% DMBA in liquid paraffin three times weekly for 12 weeks. To assess DMBA-induced hamster buccal tissue carcinogenesis, biochemical endpoints such as Phase I and II detoxification enzymes, antioxidants, lipid peroxidation (LPO) by-products, and renal function markers, as well as histopathological examinations, were used. Furthermore, the immunohistochemical studies of interleukin-6 were investigated to find the inflammatory link in the HBC carcinogenesis. In our results, DMBA alone exposed hamsters showed 100% tumor growth, altered levels of antioxidants, detoxification agents, LPO, and renal function identifiers as compared to the control hamsters. The outcome in present biochemical, histopathological, and immunohistochemistry studies has been found a reverse in NER-treated hamsters against the tumor. This study concluded that NER modulated the biochemical profiles (antioxidants, detoxification, LPO, and renal function markers) and inhibited tumor development in DMBA induced oral carcinogenesis.
Collapse
Affiliation(s)
- Vaitheeswari Balakrishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Sindhu Ganapathy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India.,Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Ramachandhiran Duraisamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| | - Vigil Anbiah Sathiavakoo
- Central Animal House, Rajah Muthiah Medical College, Annamalai University, Chidambaram, Tamilnadu, India
| | | | - Vennila Lakshmanan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, Tamilnadu, India
| |
Collapse
|
46
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
47
|
Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions. BMC Cancer 2022; 22:39. [PMID: 34991504 PMCID: PMC8734242 DOI: 10.1186/s12885-021-09151-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Background Lactic acid produced by tumors has been shown to overcome immune surveillance, by suppressing the activation and function of T cells in the tumor microenvironment. The strategies employed to impair tumor cell glycolysis could improve immunosurveillance and tumor growth regulation. Dichloroacetate (DCA) limits the tumor-derived lactic acid by altering the cancer cell metabolism. In this study, the effects of lactic acid on the activation and function of T cells, were analyzed by assessing T cell proliferation, cytokine production and the cellular redox state of T cells. We examined the redox system in T cells by analyzing the intracellular level of reactive oxygen species (ROS), superoxide and glutathione and gene expression of some proteins that have a role in the redox system. Then we co-cultured DCA-treated tumor cells with T cells to examine the effect of reduced tumor-derived lactic acid on proliferative response, cytokine secretion and viability of T cells. Result We found that lactic acid could dampen T cell function through suppression of T cell proliferation and cytokine production as well as restrain the redox system of T cells by decreasing the production of oxidant and antioxidant molecules. DCA decreased the concentration of tumor lactic acid by manipulating glucose metabolism in tumor cells. This led to increases in T cell proliferation and cytokine production and also rescued the T cells from apoptosis. Conclusion Taken together, our results suggest accumulation of lactic acid in the tumor microenvironment restricts T cell responses and could prevent the success of T cell therapy. DCA supports anti-tumor responses of T cells by metabolic reprogramming of tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09151-2.
Collapse
|
48
|
Exercise Cuts Both Ways with ROS in Remodifying Innate and Adaptive Responses: Rewiring the Redox Mechanism of the Immune System during Exercise. Antioxidants (Basel) 2021; 10:antiox10111846. [PMID: 34829717 PMCID: PMC8615250 DOI: 10.3390/antiox10111846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nearly all cellular functions depend on redox reactions, including those of immune cells. However, how redox reactions are rearranged to induce an immune response to the entry of pathogens into the host is a complex process. Understanding this scenario will facilitate identification of the roles of specific types of reactive oxygen species (ROS) in the immune system. Although the detrimental effect of ROS could support the innate immune system, the adaptive immune system also requires a low level of ROS in order to stimulate various molecular functions. The requirements and functions of ROS vary in different cells, including immune cells. Thus, it is difficult to understand the specific ROS types and their targeting functions. Incomplete transfer of electrons to a specific target, along with failure of the antioxidant response, could result in oxidative-damage-related diseases, and oxidative damage is a common phenomenon in most immune disorders. Exercise is a noninvasive means of regulating ROS levels and antioxidant responses. Several studies have shown that exercise alone boosts immune functions independent of redox reactions. Here, we summarize how ROS target various signaling pathways of the immune system and its functions, along with the possible role of exercise in interfering with immune system signaling.
Collapse
|
49
|
Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 2021; 5:NS20200080. [PMID: 34497718 PMCID: PMC8385185 DOI: 10.1042/ns20200080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
Collapse
|
50
|
Li C, Zhang Y, Yan S, Zhang G, Wei W, Qi Z, Li B. Alternol triggers immunogenic cell death via reactive oxygen species generation. Oncoimmunology 2021; 10:1952539. [PMID: 34350063 PMCID: PMC8296969 DOI: 10.1080/2162402x.2021.1952539] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Alternol is a naturally occurring compound that exerts antitumor activity in several cancers. However, whether Alternol induces antitumor immune response remains unknown. In this study, we investigated whether Alternol induced immunogenic cell death (ICD) in prostate cancer cells. Alternol triggered ICD in prostate cancer cells, as evidenced by the release of damage-associated molecular patterns (DAMPs) (i.e., calreticulin, CALR; high mobility group protein B1, HMGB1; and adenosine triphosphate, ATP) and pro-inflammatory cytokine (i.e., interleukin [IL]-1α, IL-1β, IL-6, and IL-8) expression. Alternol facilitated tumor-associated antigen uptake and cross-presentation, CD8 + T-cell priming, and T-cell infiltration in tumor-draining lymph nodes (LNs) and tumors. The presence of Alternol fostered antitumor immune response in vivo, resulting in delayed tumor growth and prolonged survival. Moreover, inhibition of reactive oxygen species (ROS) generation blocked Alternol-induced upregulation of pre-inflammation cytokines, endoplasmic reticulum (ER) stress, and consequent antitumor immune response. Overall, our data indicate that Alternol triggers ICD in prostate cancer cells, which is mediated by ROS generation.
Collapse
Affiliation(s)
- Changlin Li
- Institute of Precision Medicine, Jining Medical University, JiningChina
- Department of Urology, The University of Kansas Medical Center, Kansas City, KSUSA
| | - Ying Zhang
- Institute of Precision Medicine, Jining Medical University, JiningChina
| | - Siyuan Yan
- Institute of Precision Medicine, Jining Medical University, JiningChina
| | - Guoan Zhang
- Institute of Cancer Pathology Research, Jining Medical University, Jining, China
| | - Wei Wei
- Center for Experimental Medicine, School of Public Health, Jining Medical University, Jining, China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KSUSA
| |
Collapse
|