1
|
Dominiak M, Niemczyk W, Pitułaj A, Świenc W, Matys J. Fatty Degenerative Osteonecrosis of the Jaw: Bridging Molecular Insights and Clinical Practice-A Scoping Review. Int J Mol Sci 2025; 26:1853. [PMID: 40076479 PMCID: PMC11899097 DOI: 10.3390/ijms26051853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Fatty degenerative osteonecrosis of the jaw (FDOJ) is a chronic, aseptic inflammatory condition that is characterized by molecular disruptions in bone metabolism and necrotic bone marrow within the jawbone cavities. In contrast to the overt clinical signs typically observed in osteopathies, FDOJ frequently presents with a "silent inflammation" phenotype. The electronic databases PubMed, Scopus, and Embase were searched using appropriate search terms, and the methodology was performed according to PRISMA-ScR guidelines. The elevated expression of inflammatory mediators, particularly C-C motif Chemokine Ligand-5/Regulated on Activation, Normal T Cell Expressed and Secreted (CCL5/RANTES), fibroblast growth factor-2, and interleukin-1 receptor antagonist, distinguishes FDOJ at the molecular level and links it to systemic inflammatory and autoimmune diseases. These immunohistochemical markers play a pivotal role in the pathogenesis of chronic inflammation, immune response regulation, and abnormal bone remodeling. Advanced diagnostic tools, such as conebeam computed tomography and trans-alveolar ultrasonography, facilitate the detection of pathological changes that are not easily discernible with conventional radiography. Surgical intervention remains the primary treatment modality, often complemented by therapies that target these molecular pathways to modulate chronic inflammation. This article underscores the importance of integrating molecular diagnostics, advanced imaging, and clinical data for effective FDOJ detection and management.
Collapse
Affiliation(s)
- Marzena Dominiak
- Department of Dental Surgery, Faculty of Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (M.D.); (A.P.)
| | - Wojciech Niemczyk
- Medical Center of Innovation, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Artur Pitułaj
- Department of Dental Surgery, Faculty of Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (M.D.); (A.P.)
| | - Witold Świenc
- Medical Center of Innovation, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jacek Matys
- Department of Dental Surgery, Faculty of Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (M.D.); (A.P.)
| |
Collapse
|
2
|
Papadopoulos S, Hardy D, Vernel-Pauillac F, Tichit M, Boneca IG, Werts C. Myocarditis and neutrophil-mediated vascular leakage but not cytokine storm associated with fatal murine leptospirosis. EBioMedicine 2025; 112:105571. [PMID: 39889371 PMCID: PMC11830356 DOI: 10.1016/j.ebiom.2025.105571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Leptospirosis is a globally neglected re-emerging zoonosis affecting all mammals, albeit with variable outcomes. Humans are susceptible to leptospirosis; infection with Leptospira interrogans species can cause severe disease in humans, with multi-organ failure, mainly affecting kidney, lung and liver function, leading to death in 10% of cases. Mice and rats are more resistant to acute disease and can carry leptospires asymptomatically in the kidneys and act as reservoirs, shedding leptospires into the environment. The incidence of leptospirosis is higher in tropical countries, and countries with poor sanitation, where heavy rainfall and flooding favour infection. Diagnosis of leptospirosis is difficult because of the many different serovars and the variety of clinical symptoms that can be confused with viral infections. The physiopathology is poorly understood, and leptospirosis is often regarded as an inflammatory disease, like sepsis. METHODS To investigate the causes of death in lethal leptospirosis, we compared intraperitoneal infection of male and female C57BL6/J mice with 108Leptospira of two strains of pathogenic L. interrogans. One strain, L. interrogans Manilae L495, killed the mice 4 days after infection, whereas the other strain, L. interrogans Icterohaemorrhagiae Verdun, did not induce any major symptoms in the mice. On day 3 post infection, the mice were humanely euthanised and blood and organs were collected. Bacterial load, biochemical parameters, cytokine production and leucocyte population were assessed by qPCR, ELISA, cytometry and immunohistochemistry. FINDINGS Neither lung, liver, pancreas or kidney damage nor massive necroptosis or cytokine storm could explain the lethality. Although we did not find pro-inflammatory cytokines, we did find elevated levels of the anti-inflammatory cytokine IL-10 and the chemokine RANTES in the serum and organs of Leptospira-infected mice. In contrast, severe leptospirosis was associated with neutrophilia and vascular permeability, unexpectedly due to neutrophils and not only due to Leptospira infection. Strikingly, the main cause of death was myocarditis, an overlooked complication of human leptospirosis. INTERPRETATION Despite clinical similarities between bacterial sepsis and leptospirosis, striking differences were observed, in particular a lack of cytokine storm in acute leptospirosis. The fact that IL-10 was increased in infected mice may explain the lack of pro-inflammatory cytokines, emphasising the covert nature of Leptospira infections. Neutrophilia is a hallmark of human leptospirosis. Our findings confirm the ineffective control of infection by neutrophils and highlight their deleterious role in vascular permeability, previously only attributed to the ability of leptospires to damage and cross endothelial junctions. Finally, the identification of death due to myocarditis rather than kidney, liver or liver failure may reflect an overlooked but common symptom associated with poor prognosis in human leptospirosis. These features of neutrophilia and myocarditis are also seen in patients, making this mouse model a paradigm for better understanding human leptospirosis and designing new therapeutic strategies. FUNDING The Boneca laboratory was supported by the following programmes: Investissement d'Avenir program, Laboratoire d'Excellence "Integrative Biology of Emerging Infectious Diseases" (ANR-10-LABX-62-IBEID) and by R&D grants from Danone and MEIJI. CW received an ICRAD/ANR grant (S-CR23012-ANR 22 ICRD 0004 01). SP received a scholarship by Université Paris Cité (formerly Université Paris V - Descartes) through Doctoral School BioSPC (ED562, BioSPC). SP has additionally received a scholarship "Fin de Thèse de Science" number FDT202404018322 granted by "Fondation pour la Recherche Médicale (FRM)". The funders had no implication in the design, analysis and reporting of the study.
Collapse
Affiliation(s)
- Stylianos Papadopoulos
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - David Hardy
- Institut Pasteur, Université Paris Cité, Histopathology Core Facility, Paris, F-75015, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - Magali Tichit
- Institut Pasteur, Université Paris Cité, Histopathology Core Facility, Paris, F-75015, France
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France
| | - Catherine Werts
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, F-75015, France.
| |
Collapse
|
3
|
Kavaka V, Mutschler L, de la Rosa Del Val C, Eglseer K, Gómez Martínez AM, Flierl-Hecht A, Ertl-Wagner B, Keeser D, Mortazavi M, Seelos K, Zimmermann H, Haas J, Wildemann B, Kümpfel T, Dornmair K, Korn T, Hohlfeld R, Kerschensteiner M, Gerdes LA, Beltrán E. Twin study identifies early immunological and metabolic dysregulation of CD8 + T cells in multiple sclerosis. Sci Immunol 2024; 9:eadj8094. [PMID: 39331727 DOI: 10.1126/sciimmunol.adj8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory neurological disease of the central nervous system with a subclinical phase preceding frank neuroinflammation. CD8+ T cells are abundant within MS lesions, but their potential role in disease pathology remains unclear. Using high-throughput single-cell RNA sequencing and single-cell T cell receptor analysis, we compared CD8+ T cell clones from the blood and cerebrospinal fluid (CSF) of monozygotic twin pairs in which the cotwin had either no or subclinical neuroinflammation (SCNI). We identified peripheral MS-associated immunological and metabolic alterations indicative of an enhanced migratory, proinflammatory, and activated CD8+ T cell phenotype, which was also evident in cotwins with SCNI and in an independent validation cohort of people with MS. Together, our in-depth single-cell analysis indicates a disease-driving proinflammatory role of infiltrating CD8+ T cells and identifies potential immunological and metabolic therapeutic targets in both prodromal and definitive stages of the disease.
Collapse
Affiliation(s)
- Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Luisa Mutschler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Clara de la Rosa Del Val
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Ana M Gómez Martínez
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Andrea Flierl-Hecht
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Medical Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Martin Mortazavi
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Klaus Seelos
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanna Zimmermann
- Institute of Neuroradiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Korn
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, Munich, Germany
- Department of Neurology, Technical University of Munich School of Medicine, Munich, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University of Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
4
|
Ding Q, Xu Q, Hong Y, Zhou H, He X, Niu C, Tian Z, Li H, Zeng P, Liu J. Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis. Front Immunol 2024; 15:1399856. [PMID: 38962008 PMCID: PMC11219584 DOI: 10.3389/fimmu.2024.1399856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Rheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy. Methods scRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features. Results By analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients. Conclusion Our findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.
Collapse
Affiliation(s)
- Qiang Ding
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Qingyuan Xu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Yini Hong
- Gynecology Department, The First People’s Hospital of Guangzhou, Guangzhou, China
| | - Honghai Zhou
- Faculty of Orthopedics and Traumatology, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyu He
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Chicheng Niu
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Zhao Tian
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Hao Li
- The First School of Clinical Medicine, Guangxi Traditional Chinesen Medical University, Nanning, China
| | - Ping Zeng
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Jinfu Liu
- Department of Orthopedics and Traumatology, The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Guangxi, China
| |
Collapse
|
5
|
Luo H, Li L, Han S, Liu T. The role of monocyte/macrophage chemokines in pathogenesis of osteoarthritis: A review. Int J Immunogenet 2024; 51:130-142. [PMID: 38462560 DOI: 10.1111/iji.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.
Collapse
Affiliation(s)
- Hao Luo
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Linfeng Li
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Song Han
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Xue L, Wang B, Li X, Zhu J, Wang W, Huang F, Wang X, Jin Y, Xiong C, Tao L, Xu K, Wang J, Guo Y, Xu J, Yang X, Wang N, Gao N, Wang Y, Li K, Li M, Geng Y. Comprehensive analysis of serum exosome-derived lncRNAs and mRNAs from patients with rheumatoid arthritis. Arthritis Res Ther 2023; 25:201. [PMID: 37845777 PMCID: PMC10577909 DOI: 10.1186/s13075-023-03174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Serum exosomes play important roles in intercellular communication and are promising biomarkers of several autoimmune diseases. However, the biological functions and potential clinical importance of long non-coding RNAs (lncRNAs) and mRNAs from serum exosomes in rheumatoid arthritis (RA) have not yet been studied. METHODS Serum exosomal lncRNAs and mRNAs were isolated from patients with RA and osteoarthritis (OA) and healthy controls. The differentially expressed lncRNAs (DE-lncRNAs) and mRNA profiles in the serum exosomes of patients with RA were analysed using high-throughput sequencing, and their functions were predicted using Gene Ontologyenrichment, Kyoto Encyclopedia of Genes and Genomes pathway, and gene set enrichment analysis. We constructed a DE-lncRNA-mRNA network and a protein-protein interaction network of differentially expressed mRNAs (DE-mRNAs) in RA using the Cytoscape software. The expression of several candidate a DE-lncRNAs and DE-mRNAs in the serum of patients with RA, patients with OA, and healthy controls was confirmed by qRT-PCR. We assessed the diagnostic ability of DE-lncRNAs and DE-mRNAs in patients with RA using receiver operating characteristic analysis. Furthermore, we analysed the characteristics of immune cell infiltration in RA by digital cytometry using the CIBERSORT algorithm and determined the correlation between immune cells and several DE-lncRNAs or DE-mRNAs in RA. RESULTS The profiles of serum exosomal lncRNAs and mRNAs in patients with RA were different from those in healthy controls and patients with OA. The functions of both DE-lncRNAs and DE-mRNAs in RA are associated with the immune response and cellular metabolic processes. The RT-PCR results show that NONHSAT193357.1, CCL5, and MPIG6B were downregulated in patients with RA. The combination of three DE-mRNAs, CCL5, MPIG6B, and PFKP, had an area under the curve of 0.845 for differentiating RA from OA. Digital cytometry using the CIBERSORT algorithm showed that the neutrophil counts were higher in patients with RA than those in healthy controls and patients with OA. CONCLUSIONS These findings help to elucidate the role of serum exosomal lncRNAs and mRNAs in the specific mechanisms underlying RA.
Collapse
Affiliation(s)
- Li Xue
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London, NW3 2PF, UK
- Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, 710004, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xueyi Li
- Department of Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jianhong Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, 710004, China
| | - Wei Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaofei Wang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Cell Biology and Genetics, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yaofeng Jin
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Li Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Guo
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xin Yang
- Department of Rheumatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Na Wang
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ke Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Ming Li
- Department of Emergency, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
7
|
Abd El-Karim SS, Mahmoud AH, Al-Mokaddem AK, Ibrahim NE, Alkahtani HM, Zen AA, Anwar MM. Development of a New Benzofuran-Pyrazole-Pyridine-Based Molecule for the Management of Osteoarthritis. Molecules 2023; 28:6814. [PMID: 37836657 PMCID: PMC10574112 DOI: 10.3390/molecules28196814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis is a substantial burden for patients with the disease. The known medications for the disease target the mitigation of the disease's symptoms. So, drug development for the management of osteoarthritis represents an important challenge in the medical field. This work is based on the development of a new benzofuran-pyrazole-pyridine-based compound 8 with potential anti-inflammatory and anti-osteoarthritis properties. Microanalytical and spectral data confirmed the chemical structure of compound 8. The biological assays indicated that compound 8 produces multifunctional activity as an anti-osteoarthritic candidate via inhibition of pro-inflammatory mediators, including RANTES, CRP, COMP, CK, and LPO in OA rats. Histopathological and pharmacokinetic studies confirmed the safety profile of the latter molecule. Accordingly, compound 8 is considered a promising anti-osteoarthritis agent and deserves deeper investigation in future trials.
Collapse
Affiliation(s)
- Somaia S. Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Asmaa K. Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt;
| | - Noha E. Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Manal M. Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), El Bohouth St., Dokki, Cairo 12622, Egypt;
| |
Collapse
|
8
|
Murayama MA, Shimizu J, Miyabe C, Yudo K, Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front Immunol 2023; 14:1100869. [PMID: 36860872 PMCID: PMC9968812 DOI: 10.3389/fimmu.2023.1100869] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that commonly causes inflammation and bone destruction in multiple joints. Inflammatory cytokines, such as IL-6 and TNF-α, play important roles in RA development and pathogenesis. Biological therapies targeting these cytokines have revolutionized RA therapy. However, approximately 50% of the patients are non-responders to these therapies. Therefore, there is an ongoing need to identify new therapeutic targets and therapies for patients with RA. In this review, we focus on the pathogenic roles of chemokines and their G-protein-coupled receptors (GPCRs) in RA. Inflamed tissues in RA, such as the synovium, highly express various chemokines to promote leukocyte migration, tightly controlled by chemokine ligand-receptor interactions. Because the inhibition of these signaling pathways results in inflammatory response regulation, chemokines and their receptors could be promising targets for RA therapy. The blockade of various chemokines and/or their receptors has yielded prospective results in preclinical trials using animal models of inflammatory arthritis. However, some of these strategies have failed in clinical trials. Nonetheless, some blockades showed promising results in early-phase clinical trials, suggesting that chemokine ligand-receptor interactions remain a promising therapeutic target for RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazuo Yudo
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
9
|
Guerrero S, Sánchez-Tirado E, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Development of an Electrochemical CCL5 Chemokine Immunoplatform for Rapid Diagnosis of Multiple Sclerosis. BIOSENSORS 2022; 12:bios12080610. [PMID: 36005006 PMCID: PMC9406078 DOI: 10.3390/bios12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Serum level of CCL5 chemokine is considered an emerging biomarker for multiple sclerosis (MS). Due to the lack of specific assays for this disease, the development of a point-of-care test for rapid detection of MS could lead to avoiding diagnostics delays. In this paper, we report the first electrochemical immunoplatform for quantification of the CCL5 biomarker at the clinically required levels, able to discriminate between patients diagnosed with MS and healthy individuals. The immunosensing device involves protein capture from biological samples by complexation with biotinylated specific antibodies immobilized onto neutravidin-functionalized microparticles and sandwich assay with anti-CCL5 antibody and IgG labelled with horseradish peroxidase (HRP) for the enzyme-catalyzed amperometric detection of H2O2 using hydroquinone (HQ) as the redox mediator. The method shows excellent analytical performance for clinical application with a wide linear range of concentrations (0.1–300 ng·mL−1 CCL5, R2 = 0.998) and a low detection limit (40 pg·mL−1 CCL5). The biosensing platform was applied to the determination of the CCL5 endogenous content in 100-fold diluted sera both from healthy individuals and patients diagnosed with MS, with no further sample treatment in just two hours. The results were successfully compared with those obtained by the ELISA methodology.
Collapse
|
10
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Baruah V, Tiwari D, Hazam RK, Bose M, Bujarbaruah D, Saikia AK, Kar P, Dutta S, Bose S. Prognostic, clinical, and therapeutic importance of RANTES-CCR5 axis in hepatitis A infection: A multiapproach study. J Med Virol 2021; 93:3656-3665. [PMID: 32975838 DOI: 10.1002/jmv.26557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022]
Abstract
Fulminant hepatic failure (FHF) is a lethal manifestation of hepatitis A virus (HAV) infection, whose underlying mechanisms are poorly understood. We aimed to evaluate the importance of the modulation of the RANTES-chemokine receptor type 5 (CCR5) signaling axis and its immunomodulatory effects in directing hepatitis A disease pathogenesis using an in silico, in vitro and patient cohort-based approach. In silico interaction studies were performed using computation approaches with suitable software. Differential expression of relevant cytokines and immune cell markers were studied using real-time quantitative reverse transcription PCR (qRT-PCR), enzyme-linked immunosorbent assay, and flow-cytometry-based methods. In the HepG2 cell line, we studied inflammatory responses and susceptibility to HAV infection following RANTES stimulation and antibody blockade of CCR5. The HAV-VP3 region exhibited high interaction in CCR5: HAV complexes. RANTES levels were significantly increased in FHF cases. Reduced monocyte and T-cell activation were observed in FHF cases. RANTES expression inversely correlated with viremia but positively correlated with proinflammatory responses. Hyper Th1-biased immune responses, marked by high interleukin (IL)-12/IL-10 ratio were observed in FHF cases, which were also characterized by upregulated tumor necrosis factor-alpha (TNF-α) expression and reduced interferon-gamma expression. In vitro, RANTES was protective against HAV infection but resulted in upregulated TNF-α expression. Although viral load increased upon the regulation of inflammatory responses by CCR5 blocking, it was still significantly lower compared to control HAV-infected cells. Our study suggests the importance of RANTES-CCR5 signaling and linked-immunomodulation in HAV disease pathogenesis, as well as highlights the utility of CCR5 antagonists as a risk-reduction strategy in FHF patients. Our findings, therefore, have important implications for the management of high-risk HAV infections.
Collapse
Affiliation(s)
- Vargab Baruah
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Diptika Tiwari
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Moumita Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | | | - Anjan Kumar Saikia
- Department of Gastroenterology and Hepatology, GNRC Hospital, Guwahati, Assam, India
| | - Premashish Kar
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Sangit Dutta
- Department of Gastroenterology, GMCH Hospital, Guwahati, Assam, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
12
|
Wang S, Xu J, Guo Y, Cai Y, Ren X, Zhu W, Geng M, Meng L, Jiang C, Lu S. MicroRNA-497 Reduction and Increase of Its Family Member MicroRNA-424 Lead to Dysregulation of Multiple Inflammation Related Genes in Synovial Fibroblasts With Rheumatoid Arthritis. Front Immunol 2021; 12:619392. [PMID: 33841401 PMCID: PMC8034293 DOI: 10.3389/fimmu.2021.619392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 01/26/2023] Open
Abstract
Objectives Mounting evidence has demonstrated that microRNAs (miRNAs) participate in rheumatoid arthritis (RA). The role of highly conserved miR-15/107 family in RA has not been clarified yet, and hence investigated in this study. Methods Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the expression of miRNAs and genes. Cell counting kit 8 (CCK-8) and FACS were used to detect proliferation and apoptosis. Protein expression was detected by using Western blotting. mRNA deep sequencing and cytokine antibody array were used to analyze differentially expressed genes, signaling pathways and cytokines. Results The expression of miR-15a, miR-103, miR-497, and miR-646 was found decreased, while miR-424 increased in RA patients. MiR-424 and miR-497 were further investigated and the results showed that they could regulate the expression of multiple genes in rheumatoid arthritis synovial fibroblast (RASF) and affect signaling pathways. At the protein level, miR-497 mimic altered all the selected inflammation-related genes while miR-424 inhibitor only affected part of genes. MiR-497 mimic, rather than miR-424 inhibitor, had significant effects on proliferation and apoptosis of RASF. DICER1 was found to positively regulate the expression of miR-424 and miR-497, while DICER1 was also negatively regulated by miR-424. The increase of miR-424 could reduce miR-497 expression, thus forming a loop, which facilitated explaining the dysregulated miR-424 and miR-497 in RA. Conclusion The miR-424 and miR-497 of miR-15/107 family affect cell proliferation and apoptosis in RA, and the proposed miR-424-DICER1-miR-497 feedback loop provides a novel insight into regulating miRNA expression and a candidate target for controlling RA.
Collapse
Affiliation(s)
- Si Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyu Ren
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Manman Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Institute of Molecular and Translational Medicine (IMTM), Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| |
Collapse
|
13
|
Chirathaworn C, Chansaenroj J, Pongsuchart P, Poovorawan Y. IL-18: a suggested target for immunomodulation in chikungunya virus infection. Arch Virol 2021; 166:219-223. [PMID: 33073324 DOI: 10.1007/s00705-020-04849-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic joint pain is the most common pathology found in chikungunya virus (CHIKV)-infected patients. Eight cytokines were compared in CHIKV patients with and without joint pain. IL-4 and IL-13 levels were significantly lower in patients with joint pain (p = 0.006 and p < 0.0001, respectively). IL-18 levels were higher in the group of patients with joint pain (p < 0.0001) and were significantly higher on days 3 and 4 after onset (p = 0.0012 and p = 0.003, respectively). Moreover, TNF-α levels were significantly higher in patients with joint pain on day 3 (p = 0.028). This study demonstrated that cytokines, particularly IL-18, may be candidates for immunomodulation.
Collapse
Affiliation(s)
- Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornsuri Pongsuchart
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Lu X, Li Y, Chen H, Pan Y, Lin R, Chen S. miR-335-5P contributes to human osteoarthritis by targeting HBP1. Exp Ther Med 2020; 21:109. [PMID: 33335572 PMCID: PMC7739851 DOI: 10.3892/etm.2020.9541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNA (miR)-335-5P has the ability to regulate chondrogenic differentiation and promote chondrogenesis in mouse mesenchymal stem cells. It is also abnormally elevated in human osteoarthritic chondrocytes. However, the biological function of miR-335-5P in osteoarthritis (OA) is not well understood. The present study investigated the mechanism of miR-335-5P in the pathogenesis of OA. To investigate the effect of miR-335-5P on the pathogenesis of OA in vitro, a miR-335-5P mimic and inhibitor were transfected into chondrocytes. Cell Counting kit-8 assay and flow cytometry were used to observe the effects of miR-335-5P on chondrocyte apoptosis and the expression of cartilage-specific genes, such as aggrecan, collagen II, matrix metalloproteinase 13 and collagen X, were detected by reverse transcription-quantitative PCR and western blot analysis. Moreover, the current study assessed whether HMG-box transcription factor 1 (HBP1) is a novel target of miR-335-5P with dual luciferase reporter assays. Finally, a rescue experiment was used to prove the regulation between miR-335-5P and HBP1. The results revealed that HBP1 was a novel target of miR-335-5P, and that miR-335-5P mediated the apoptosis of chondrocytes and changes in cartilage-specific genes via targeting HBP1. Overall, the present study revealed that miR-335-5P mediated the development of OA by targeting the HBP1 gene and promoting chondrocyte apoptosis. These data suggested that miR-335-5P may be used to develop novel early-stage diagnostic and therapeutic strategies for OA.
Collapse
Affiliation(s)
- Xiaokun Lu
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Yu Li
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Huimin Chen
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Yuancheng Pan
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Ran Lin
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Shunyou Chen
- Department of Pediatric Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, P.R. China
| |
Collapse
|
15
|
Zhang Y, Qian X, Yang X, Niu R, Song S, Zhu F, Zhu C, Peng X, Chen F. ASIC1a induces synovial inflammation via the Ca 2+/NFATc3/ RANTES pathway. Theranostics 2020; 10:247-264. [PMID: 31903118 PMCID: PMC6929608 DOI: 10.7150/thno.37200] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Rationale: Synovial inflammation is one of the main pathological features of rheumatoid arthritis (RA) and is a key factor leading to the progression of RA. Understanding the regulatory mechanism of synovial inflammation is crucial for the treatment of RA. Acid-sensing ion channel 1a (ASIC1a) is an H+-gated cation channel that promotes the progression of RA, but the role of ASIC1a in synovial inflammation is unclear. This study aimed to investigate whether ASIC1a is involved in the synovial inflammation and explore the underlying mechanisms in vitro and in vivo. Methods: The expression of ASIC1a and nuclear factor of activated T cells (NFATs) were analyzed by Western blotting, immunofluorescence, and immunohistochemistry both in vitro and in vivo. The Ca2+ influx mediated by ASIC1a was detected by calcium imaging and flow cytometry. The role of ASIC1a in inflammation was studied in rats with adjuvant-induced arthritis (AA). Inflammatory cytokine profile was analyzed by protein chip in RA synovial fibroblasts (RASF) and verified by a magnetic multi-cytokine assay and ELISA. The NFATc3-regulated RANTES (Regulated upon activation, normal T cell expressed and secreted) gene transcription was investigated by ChIP-qPCR and dual-luciferase reporter assay. Results: The expression of ASIC1a was significantly increased in human RA synovial tissues and primary human RASF as well as in ankle synovium of AA rats. Activated ASIC1a mediated Ca2+ influx to increase [Ca2+]i in RASF. The activation/overexpression of ASIC1a in RASF up-regulated the expression of inflammatory cytokines RANTES, sTNF RI, MIP-1a, IL-8, sTNF RII, and ICAM-1 among which RANTES was increased most remarkably. In vivo, ASIC1a promoted inflammation, synovial hyperplasia, articular cartilage, and bone destruction, leading to the progression of AA. Furthermore, activation of ASIC1a upregulated the nuclear translocation of NFATc3, which bound to RANTES promoter and directly regulated gene transcription to enhance RANTES expression. Conclusion: ASIC1a induces synovial inflammation, which leads to the progression of RA. Our study reveals a novel RA inflammation regulatory mechanism and indicates that ASIC1a might be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Yihao Zhang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xuewen Qian
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiaojuan Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ruowen Niu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Sujing Song
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Fei Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Chuanjun Zhu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiaoqing Peng
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Feihu Chen
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| |
Collapse
|
16
|
Gruenwald J, Uebelhack R, Moré MI. Rosa canina - Rose hip pharmacological ingredients and molecular mechanics counteracting osteoarthritis - A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152958. [PMID: 31138475 DOI: 10.1016/j.phymed.2019.152958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND The successful use of rose hip for the treatment of osteoarthritis is well documented. Several randomized placebo controlled double-blind studies, as mono or combination therapy, have demonstrated treatment efficacy as well as excellent tolerability. PURPOSE This review focuses on the molecular mechanism underlying the clinical effects of rose hip in osteoarthritis (OA). METHODS The database Medline was screened - using the search term "Rosa canina" or "rose hip" - for publications on pharmacological or mechanistic studies with relevance to OA; in addition for findings on pharmacologically active constituents as well as clinical studies. The screening results were complemented by following-up on cited literature. RESULTS In particular, 24 pharmacological studies on Rosa canina or preparations thereof were considered relevant. Potent antioxidant radical scavenging effects are well documented for numerous rose hip constituents besides Vitamin C. Furthermore, anti-inflammatory activities include the reduction of pro-inflammatory cytokines and chemokines, reduction of NF-kB signaling, inhibition of pro-inflammatory enzymes, including COX1/2, 5-LOX and iNOS, reduction of C-reactive protein levels, reduction of chemotaxis and chemoluminescence of PMNs, and an inhibition of pro-inflammatory metalloproteases. CONCLUSION The antioxidant and anti-inflammatory effects of Rosa canina match its clinical action - especially considering new findings on the pharmacological disease pattern of OA. The entirety of several compounds including phenolics, terpenoids, galactolipids, carotenoids, fruit acids and fatty oils can be considered responsible for the observed pharmacological and clinical effects. Further research is needed to eludicate how and in which manner single rose hip compounds interact with their molecular pharmacological targets.
Collapse
Affiliation(s)
- Joerg Gruenwald
- Herbalist & Doc Gesundheitsgesellschaft mbH, Waldseeweg 6, D - 13467, Berlin, Germany
| | | | - Margret Irmgard Moré
- Herbalist & Doc Gesundheitsgesellschaft mbH, Waldseeweg 6, D - 13467, Berlin, Germany.
| |
Collapse
|
17
|
Clouet J, Fusellier M, Camus A, Le Visage C, Guicheux J. Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Rev 2019; 146:306-324. [PMID: 29705378 DOI: 10.1016/j.addr.2018.04.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP), frequently associated with intervertebral disc (IVD) degeneration, is a major public health concern. LBP is currently managed by pharmacological treatments and, if unsuccessful, by invasive surgical procedures, which do not counteract the degenerative process. Considering that IVD cell depletion is critical in the degenerative process, the supplementation of IVD with reparative cells, associated or not with biomaterials, has been contemplated. Recently, the discovery of reparative stem/progenitor cells in the IVD has led to increased interest in the potential of endogenous repair strategies. Recruitment of these cells by specific signals might constitute an alternative strategy to cell transplantation. Here, we review the status of cell-based therapies for treating IVD degeneration and emphasize the current concept of endogenous repair as well as future perspectives. This review also highlights the challenges of the mobilization/differentiation of reparative progenitor cells through the delivery of biologics factors to stimulate IVD regeneration.
Collapse
Affiliation(s)
- Johann Clouet
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; CHU Nantes, Pharmacie Centrale, PHU 11, Nantes F-44093, France; Université de Nantes, UFR Sciences Biologiques et Pharmaceutiques, Nantes F-44035, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Marion Fusellier
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Department of Diagnostic Imaging, CRIP, National Veterinary School (ONIRIS), Nantes F-44307, France
| | - Anne Camus
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Catherine Le Visage
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - Jérôme Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France; CHU Nantes, PHU4 OTONN, Nantes, F-44093, France.
| |
Collapse
|
18
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
19
|
Abnormal lipid metabolism in a rat model of arthritis: one possible pathway. Mol Cell Biochem 2018; 448:107-124. [PMID: 29468503 DOI: 10.1007/s11010-018-3318-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Abstract
Collagen-induced arthritis (CIA) animal model is associated with systemic manifestations, including alteration of lipid metabolism. In the present study, one possible pathway of altered lipid metabolism is proposed. Specimens of joint tissue and plasma were collected from the CIA and control rats, and quantitative analysis of lipid components was performed by nuclear magnetic resonance (NMR) spectroscopy technique. Correlation analysis was performed between the level of lipid components and antioxidant enzymes, lactate dehydrogenase (LDH), lipid peroxidation (LP), and cytokines in joint tissue and plasma. Differentiation between the CIA and control rats was established on the basis of the quantity of lipid components in the joint tissue and plasma. Positive correlation was observed for all the enzymes vs. lipid components as well as LP vs. lipid components in plasma and joint tissue. Positive correlation was observed for enzymes in plasma and joint tissue. A negative correlation was observed in between the plasma and joint tissue with the level of lipid components. Cytokine levels were also correlated with the level of lipid components and ratios of saturated fatty acids/unsaturated fatty acids in plasma and joint tissue. Inflammatory disease activity in CIA rats with synovitis brought about a significant change in lipid metabolism. Taken together, the results of our study are delineating a possible pathway of altered lipid metabolism in the CIA rat model, thereby contributing further to an understanding of the pathophysiology of rheumatoid arthritis (RA).
Collapse
|
20
|
Guo Q, Zheng K, Fan D, Zhao Y, Li L, Bian Y, Qiu X, Liu X, Zhang G, Ma C, He X, Lu A. Wu-Tou Decoction in Rheumatoid Arthritis: Integrating Network Pharmacology and In Vivo Pharmacological Evaluation. Front Pharmacol 2017; 8:230. [PMID: 28515692 PMCID: PMC5414545 DOI: 10.3389/fphar.2017.00230] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Purpose: This study aimed to explore underlying action mechanism of Wu-Tou decoction (WTD) in rheumatoid arthritis (RA) through network pharmacology prediction and experimental verification. Methods: Chemical compounds and human target proteins of WTD as well as RA-related human genes were obtained from TCM Database @ Taiwan, PubChem and GenBank, respectively. Subsequently, molecular networks and canonical pathways presumably involved in the treatment of WTD on RA were generated by ingenuity pathway analysis (IPA) software. Furthermore, experimental validation was carried out with MIP-1β-induced U937 cell model and collagen induced arthritis (CIA) rat model. Results: CCR5 signaling pathway in macrophages was shown to be the top one shared signaling pathway associated with both cell immune response and cytokine signaling. In addition, protein kinase C (PKC) δ and p38 in this pathway were treated as target proteins of WTD in RA. In vitro experiments indicated that WTD inhibited MIP-1β-induced production of TNF-α, MIP-1α, and RANTES as well as phosphorylation of CCR5, PKC δ, and p38 in U937 cells. WTD treatment maintained the inhibitory effects on production of TNF-α and RANTES in MIP-1β-induced U937 cells after CCR5 knockdown. In vivo experiments demonstrated that WTD ameliorated symptoms in CIA rats, decreased the levels of IL-1β, IL-2, IL-6, TNF-α, MIP-1α, MIP-2, RANTES, and IP-10 in serum of CIA rats, as well as mRNA levels of MIP-1α, MIP-2, RANTES, and IP-10 in ankle joints of CIA rats. Furthermore, WTD also lowered the phosphorylation levels of CCR5, PKC δ and p38 in both ankle joints and macrophages in ankle joints from CIA rats. Conclusion: It was demonstrated in this research that WTD played a role in inhibiting inflammatory response in RA which was closely connected with the modulation effect of WTD on CCR5 signaling pathway in macrophages.
Collapse
Affiliation(s)
- Qingqing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Kang Zheng
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Danping Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Yukun Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China.,School of Basic Medical Sciences, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China
| | - Yanqin Bian
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Xuemei Qiu
- School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Xue Liu
- School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Chaoying Ma
- School of Life Science and Engineering, Southwest Jiaotong UniversityChengdu, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing, China.,Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist UniversityKowloon Tong, Hong Kong.,School of Basic Medical Sciences, Shanghai University of Traditional Chinese MedicineShanghai, China
| |
Collapse
|
21
|
Synthesis of some CC chemokines and their receptors in the synovium in rheumatoid arthritis. Bull Exp Biol Med 2014; 158:192-6. [PMID: 25430645 DOI: 10.1007/s10517-014-2720-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Indexed: 12/19/2022]
Abstract
We studied the expression of some CC chemokines and their receptors in the synovium of patients with rheumatoid arthritis, osteoarthrosis, and a history of joint injury. In patients with rheumatoid arthritis, the levels mRNA for some angiogenic and proinflammatory chemokines (CCL5/RANTES, CCL11/eotaxin, CCL24/eotaxin-2, and CCL26/eotaxin-3) and their receptors (CCR1, CCR2, CCR3, CCR4, and CCR5) was elevated. mRNA expression correlated with activity, stage, and serological status of rheumatoid arthritis. Obtained data confirm the importance of CC chemokines as mediators of angiogenesis and inflammation in the synovium in rheumatoid arthritis.
Collapse
|
22
|
Venkatesha SH, Astry B, Nanjundaiah SM, Yu H, Moudgil KD. Suppression of autoimmune arthritis by Celastrus-derived Celastrol through modulation of pro-inflammatory chemokines. Bioorg Med Chem 2012; 20:5229-34. [PMID: 22854193 DOI: 10.1016/j.bmc.2012.06.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/21/2012] [Accepted: 06/28/2012] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the synovial joints, deformities, and disability. The prolonged use of conventional anti-inflammatory drugs is associated with severe adverse effects. Therefore, there is an urgent need for safer and less expensive therapeutic products. Celastrol is a bioactive component of Celastrus, a traditional Chinese medicine, and it possesses anti-arthritic activity. However, the mechanism of action of Celastrol remains to be fully defined. In this study based on the rat adjuvant-induced arthritis (AA) model of RA, we examined the effect of Celastrol on two of the key mediators of arthritic inflammation, namely chemokines and their receptors, and related pro-inflammatory cytokines. We treated arthritic Lewis rats with Celastrol (200μg/rat) or its vehicle by daily intraperitoneal (ip) injection beginning at the onset of AA. At the peak phase of AA, the sera, the draining lymph node cells, spleen adherent cells, and synovial-infiltrating cells of these rats were harvested and tested. Celastrol-treated rats showed a significant reduction in the levels of chemokines (RANTES, MCP-1, MIP-1α, and GRO/KC) as well as cytokines (TNF-α and IL-1β) that induce them, compared to the vehicle-treated rats. However, Celastrol did not have much effect on cellular expression of chemokine receptors except for an increase in CCR1. Further, Celastrol inhibited the migration of spleen adherent cells in vitro. Thus, Celastrol-induced suppression of various chemokines that mediate cellular infiltration into the joints might contribute to its anti-arthritic activity. Our results suggest that Celastrol might offer a promising alternative/adjunct treatment for RA.
Collapse
Affiliation(s)
- Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite-380, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
23
|
Dominical VM, Bértolo MB, Almeida CB, Garrido VT, Miguel LI, Costa FF, Conran N. Neutrophils of rheumatoid arthritis patients on anti-TNF-α therapy and in disease remission present reduced adhesive functions in association with decreased circulating neutrophil-attractant chemokine levels. Scand J Immunol 2011; 73:309-18. [PMID: 21208248 DOI: 10.1111/j.1365-3083.2011.02503.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neutrophils participate in the initiation and progression of rheumatoid arthritis (RA) although the exact mechanisms responsible for neutrophil accumulation in rheumatoid joints are not understood. This study compared the adhesive and chemotactic functions of neutrophils from RA patients in activity (DAS28 > 3.2) and not in activity (DAS28 < 2.6) and observed the effects of different treatment approaches on these functions. Neutrophils were isolated from healthy controls (CON), and patients with active or inactive RA in use of therapy not specific for RA (NSAIDs), in use of DMARDs and in use of anti-TNF-α therapy. Adhesive and chemotactic properties were evaluated using in vitro assays; adhesion molecule expression was assessed by flow cytometry and real-time PCR and circulating chemokines were determined by ELISA. No significant alterations in the adhesive and chemotactic properties of neutrophils from active RA were observed when compared to CON neutrophils, independently of treatment regimen. In contrast, neutrophils from RA patients in disease remission presented reduced adhesive properties and a lower spontaneous chemotactic capacity, in association with decreased adhesion molecule expression, although profiles of alterations differed for those patients on DMARDs and those on anti-TNF-α therapy. Circulating levels of the major neutrophilic chemokines, IL-8 and epithelial neutrophil activating peptide-78, were also significantly decreased in those patients demonstrating a clinical response. Remission of RA appears to be associated with ameliorations in aspects important for neutrophil adhesion and chemotaxis; whether these alterations contribute to decrease neutrophil migration to the synovial fluid, with consequent improvements in the clinical manifestations of RA, remains to be determined.
Collapse
Affiliation(s)
- V M Dominical
- Hematology and Hemotherapy Center, INCTS, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Ji JD, Kim TH, Lee B, Na KS, Choi SJ, Lee YH, Song GG. Integrated Analysis of MicroRNA and mRNA Expression Profiles in Rheumatoid Arthritis Synovial Monocytes. JOURNAL OF RHEUMATIC DISEASES 2011. [DOI: 10.4078/jrd.2011.18.4.253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jong Dae Ji
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| | - Tae-Hwan Kim
- The Hospital for Rheumatic Diseases, College of Medicine, Hanyang University, Seoul, Korea
| | - Bitnara Lee
- The Hospital for Rheumatic Diseases, College of Medicine, Hanyang University, Seoul, Korea
| | | | - Sung Jae Choi
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| | - Young Ho Lee
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| | - Gwan Gyu Song
- Division of Rheumatology, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
25
|
Abstract
IMPORTANCE OF THE FIELD To date cancer immunotherapy has only achieved limited clinical efficacy, thus more efficient immunotherapeutic approaches need to be explored. The CC chemokine CCL5 plays a role in chemoattraction and activation of immune cells implying its potential clinical application as an adjuvant for boosting anti-tumor immunity, although an effect on carcinogenesis and tumor cell invasiveness is also reported to be associated with CCL5. AREAS COVERED IN THIS REVIEW Recent progress in exploiting CCL5 as an adjuvant for cancer prevention and treatment, and updated understanding on how CCL5 is involved in tumor invasiveness and carcinogenesis. WHAT THE READER WILL GAIN CCL5 represents a natural adjuvant for enhancing anti-tumor immune responses. However, animal experiments and clinical reports suggest that CCL5 plays a role in carcinogenesis and invasiveness of tumor cells. Therefore, a CCL5-based cancer therapeutic approach needs to avoid the CCL5-associated potential detrimental effects. TAKE HOME MESSAGE CCL5 has a pre-eminent role in chemotaxis and activation of a wide spectrum of immune cells. CCL5 functions as an adjuvant to boost anti-tumor immunity by diverse protocols such as co-immunization of recombinant CCL5 protein with tumor-associated antigen, vaccination with CCL-5-expressing tumor cells, or viral vector delivery of CCL5 cDNA into growing tumor. CCL5 may also promote tumor cell survival, proliferation and invasion by different mechanisms.
Collapse
Affiliation(s)
- Natalia Lapteva
- Department Molecular Microbiology & Immunology, 1450 Biggy Street, NRT 7506, Los Angeles, CA 90033, USA
| | | |
Collapse
|
26
|
Konda VR, Desai A, Darland G, Bland JS, Tripp ML. META060 inhibits osteoclastogenesis and matrix metalloproteinases in vitro and reduces bone and cartilage degradation in a mouse model of rheumatoid arthritis. ACTA ACUST UNITED AC 2010; 62:1683-92. [PMID: 20201075 DOI: 10.1002/art.27441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The multikinase inhibitor META060 has been shown to inhibit NF-kappaB activation and expression of markers of inflammation. This study was undertaken to investigate the effect of META060 on biomarkers associated with bone and cartilage degradation in vitro and its antiinflammatory efficacy in vivo in both acute and chronic inflammation models. METHODS Glycogen synthase kinase 3beta (GSK3beta)-dependent beta-catenin phosphorylation was evaluated in RAW 264.7 macrophages to assess kinase inhibition. The inhibition of osteoclastogenesis and tartrate-resistant acid phosphatase (TRAP) activity was evaluated in RANKL-treated RAW 264.7 cells. The inhibition of interleukin-1beta (IL-1beta)-mediated markers of inflammation was analyzed in human rheumatoid arthritis synovial fibroblasts (RASFs). Mice with carrageenan-induced acute inflammation and collagen-induced arthritis (CIA) were used to assess efficacy. RESULTS META060 inhibited the activity of kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], phosphatidylinositol 3-kinase [PI 3-kinase], and GSK3) associated with RA and inhibited beta-catenin phosphorylation. META060 inhibited osteoclastogenesis, as indicated by decreased transformation of RAW 264.7 cells to osteoclasts and reduced TRAP activity, and inhibited IL-1beta-activated prostaglandin E(2), matrix metalloproteinase 3, IL-6, IL-8, and monocyte chemotactic protein 1 in RASFs. In mice with acute inflammation, oral administration of META060 reduced paw swelling similar to the effect of aspirin. In mice with CIA, META060 significantly reduced the arthritis index and decreased bone, joint, and cartilage degradation. Serum IL-6 concentrations in these mice were inhibited in a dose-dependent manner. CONCLUSION Our findings indicate that META060 reduces swelling in a model of acute inflammation and inhibits bone and cartilage destruction in a model of chronic inflammation. Its efficacy is associated with the inhibition of multiple protein kinases, including Syk, Btk, PI 3-kinase, and GSK3. These results warrant further clinical testing of META060 for its therapeutic potential in the treatment of inflammatory diseases.
Collapse
|
27
|
Øvlisen K, Kristensen AT, Jensen AL, Tranholm M. IL-1 beta, IL-6, KC and MCP-1 are elevated in synovial fluid from haemophilic mice with experimentally induced haemarthrosis. Haemophilia 2010; 15:802-10. [PMID: 19444976 DOI: 10.1111/j.1365-2516.2008.01973.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hallmark of haemophilia is the joint morbidity resulting from haemarthrosis that accounts for the majority of the bleeds. The exact mechanisms underlying changes are not fully elucidated. Cytokines are speculated to be involved in the progression and in vitro studies have confirmed the presence of elevated levels of cytokines in synovial tissue and cartilage from patients with haemophilic synovitis. In this study, the presence of selected cytokines in synovial fluid from haemophilia A mice with experimentally induced haemarthroses treated with rFVIII, rFVIIa and an rFVIIa analogue were investigated. Ten cytokines previously shown to be involved in arthritic syndromes were evaluated. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6, IL-10, IL-17, Tumor Necrosis Factor-alpha (TNF- alpha), keratinocyte-derived chemokine (KC), Regulated upon Activation, Normal T cell Expressed and Secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) were included. In this article, we demonstrate, for the first time, that bleeding in knee joints of haemophilia A mice resulted in correlated increased levels of the pro-inflammatory cytokines: IL-1 beta, IL-6, KC and the MCP-1 in synovial fluid. These results suggest an important role of MCP-1 in the recruitment of monocytes and furthermore that the inflamed synovium releases IL-1 beta, IL-6 and KC, which in turn might contribute to further progression of the inflammatory process.
Collapse
Affiliation(s)
- K Øvlisen
- Haemostasis Pharmacology, Novo Nordisk A/S, Novo Nordisk Park, Dk-2760 Måløv, Denmark.
| | | | | | | |
Collapse
|
28
|
Toncheva A, Remichkova M, Ikonomova K, Dimitrova P, Ivanovska N. Inflammatory response in patients with active and inactive osteoarthritis. Rheumatol Int 2009; 29:1197-203. [PMID: 19184030 DOI: 10.1007/s00296-009-0864-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 01/09/2009] [Indexed: 01/21/2023]
Abstract
In the present study, we have investigated comparatively the inflammatory response of patients with active and inactive osteoarthritis. The sera from 31 healthy individuals, 37 patients with active OA, and 19 patients with inactive OA were assayed for TNF-alpha, IL-6, sRANKL, RANTES, and MRP8 using ELISA in order to evaluate their potential as markers of disease activity. Also, the spontaneous and LSP-induced release of TNF-alpha and IL-6 by peripheral blood neutrophils was determined. The activation of OA is associated with elevated TNF-alpha, IL-6, and RANTES serum levels while sRANKL and MRP8 appeared to be increased in both active and inactive OA. The neutrophil spontaneous and up-regulated by LPS cytokine release can contribute to the exacerbation of OA.
Collapse
Affiliation(s)
- Antoaneta Toncheva
- Clinic of Internal Diseases, National Transport Hospital, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
29
|
Zimmermann GR, Avery W, Finelli AL, Farwell M, Fraser CC, Borisy AA. Selective amplification of glucocorticoid anti-inflammatory activity through synergistic multi-target action of a combination drug. Arthritis Res Ther 2009; 11:R12. [PMID: 19171052 PMCID: PMC2688244 DOI: 10.1186/ar2602] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/01/2008] [Accepted: 01/26/2009] [Indexed: 02/01/2023] Open
Abstract
Introduction Glucocorticoids are a mainstay of anti-inflammatory therapy, but significant adverse effects ultimately limit their utility. Previous efforts to design glucocorticoid structures with an increased therapeutic window have focused on dissociating anti-inflammatory transcriptional repression from adverse effects primarily driven by transcriptional activation. An alternative to this medicinal chemistry approach is a systems biology based strategy that seeks to amplify selectively the anti-inflammatory activity of very low dose glucocorticoid in immune cells without modulating alternative cellular networks that mediate glucocorticoid toxicity. Methods The combination of prednisolone and the antithrombotic drug dipyridamole was profiled using in vitro and in vivo models of anti-inflammatory activity and glucocorticoid-induced adverse effects to demonstrate a dissociated activity profile. Results The combination synergistically suppresses release of proinflammatory mediators, including tumour necrosis factor-α, IL-6, chemokine (C-C motif) ligand 5 (RANTES), matrix metalloproteinase-9, and others, from human peripheral blood mononuclear cells and mouse macrophages. In rat models of acute lipopolysaccharide-induced endotoxemia and delayed-type hypersensitivity, and in chronic models of collagen-induced and adjuvant-induced arthritis, the combination produced anti-inflammatory activity that required only a subtherapeutic dose of prednisolone. The immune-specific amplification of prednisolone anti-inflammatory activity by dipyridamole did not extend to glucocorticoid-mediated adverse effects, including corticosterone suppression or increased expression of tyrosine aminotransferase, in vivo after repeat dosing in rats. After 8 weeks of oral dosing in mice, treatment with the combination did not alter prednisolone-induced reduction in osteocalcin and mid-femur bone density, which are markers of steroid-induced osteoporosis. Additionally, amplification was not observed in the cellular network of corticotroph AtT-20/D16v-F2 cells in vitro, as measured by pro-opiomelanocortin expression and adrenocorticotropic hormone secretion. Conclusions These data suggest that the multi-target mechanism of low-dose prednisolone and dipyridamole creates a dissociated activity profile with an increased therapeutic window through cellular network selective amplification of glucocorticoid-mediated anti-inflammatory signaling.
Collapse
|
30
|
Increased responsiveness to toll-like receptor 4 stimulation in peripheral blood mononuclear cells from patients with recent onset rheumatoid arthritis. Mediators Inflamm 2008; 2008:132732. [PMID: 18584044 PMCID: PMC2435281 DOI: 10.1155/2008/132732] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 03/28/2008] [Indexed: 12/30/2022] Open
Abstract
Background. Cell signaling via Toll-like receptors (TLRs) leads to synovial inflammation in rheumatoid arthritis (RA). We aimed to assess effects of TLR2 and TLR4 stimulation on proinflammatory cytokine production by peripheral blood mononuclear cells (PBMCs) from patients with recent-onset RA, osteoarthrosis (OA), and healthy control (HC).
Methods. PBMCs were stimulated with LPS, biglycan and cytokine mix. Cytokines were analyzed in supernatants with ELISA. Expression of toll-like receptors mRNA in leukocytes was analyzed using real-time qPCR.
Results. PBMCs from RA patients spontaneously produced less IL-6 and TNFα than cells from OA and HC subjects.
LPS increased cytokines' production in all groups. In RA patients increase was dramatic (30 to 48-fold and 17 to 31-fold, for respective cytokines) compared to moderate (2 to 8-fold) in other groups. LPS induced 15-HETE generation in PBMCs from RA (mean 251%) and OA patients (mean 43%), although only in OA group, the increase was significant. TLR2 and TLR4 gene expressions decreased in response to cytokine mix, while LPS enhanced TLR2 expression in HC and depressed TLR4 expression in OA patients.
Conclusion. PBMCs from recent-onset RA patients are overresponsive to stimulation with bacterial lipopolysaccharide.
TLR expression is differentially regulated in healthy and arthritic subjects.
Collapse
|
31
|
Jayasinghe MM, Golden JM, Nair P, O'Donnell CM, Werner MT, Kurt RA. Tumor-derived CCL5 does not contribute to breast cancer progression. Breast Cancer Res Treat 2007; 111:511-21. [PMID: 17978871 DOI: 10.1007/s10549-007-9802-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 10/18/2007] [Indexed: 11/30/2023]
Abstract
Besides functioning as a chemotactic factor, CCL5 has been associated with progression of disease in women with breast cancer, immune modulation and metastasis. Here we asked whether CCL5 produced by tumor cells contributed to growth or metastasis of breast cancer. For this purpose, we used two murine mammary carcinomas, the 4T1 tumor which is metastatic and constitutively expresses CCL5, and the 168 tumor which is not metastatic and does not constitutively express CCL5. RNA interference was used to inhibit CCL5 expression from the 4T1 tumor, and a CCL5 transgene was used to express CCL5 by the 168 tumor. Six different clones of 4T1 that exhibited stable reduction in CCL5 expression, and three different clones of 168 that exhibited stable CCL5 expression were compared to the parental tumors and vector transfected controls. Significantly, in both models, tumor-derived CCL5 expression did not correlate with MHC expression, growth rate, or metastatic ability of the tumors. These results show that tumor-derived CCL5 expression alone does not make a significant contribution to breast cancer progression.
Collapse
|
32
|
Castellani ML, Shanmugham LN, Petrarca C, Simeonidou I, Frydas S, De Colli M, Vecchiet J, Falasca K, Tetè S, Salini V, Conti P. Expression and secretion of RANTES (CCL5) in granulomatous calcified tissue before and after lipopolysaccharide treatment in vivo. Calcif Tissue Int 2007; 80:60-7. [PMID: 17164972 DOI: 10.1007/s00223-006-0115-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 07/23/2006] [Indexed: 01/12/2023]
Abstract
RANTES (regulated on activation, normal T cell-expressed and secreted) is a CC chemokine appearing to be involved in the recruitment of leukocytes at inflammation sites. RANTES is produced by CD8(+) T cells, epithelial cells, fibroblasts, and platelets. It acts in vitro in leukocyte activation and human immunodeficiency virus suppression, but its role in vivo is still uncertain. In our study, we established the involvement of RANTES in an in vivo model of chronic inflammation induced by potassium permanganate, leading to calcified granulomas. In our rat model, RANTES expression (mRNA and protein) was significantly upregulated in granulomatous tissue; RANTES expression was further increased upon i.p. injection of lipopolysaccharide (LPS), while it was kept at basal levels by dexamethasone (Dex) given 18 hours before sacrifice. LPS and Dex increased and decreased, respectively, the recruitment of mononuclear cells in granulomatous tissue compared with control granulomas from phosphate-buffered saline (PBS)-treated animals. In granuloma tissue, levels of RANTES were higher in LPS-treated rats and lower in the Dex group compared to controls. RANTES was also found in the conditioned medium of granuloma tissue from treated (LPS or Dex) and untreated (PBS) rats. When LPS was added in vitro for 18 hours, RANTES was further increased, except in the Dex group (P > 0.05). On serum analysis, RANTES levels were higher in the LPS group and lower in the Dex group compared to controls. This study shows for the first time that RANTES is produced in vivo in chronic, experimental inflammatory states, an effect increased by LPS and inhibited by Dex.
Collapse
Affiliation(s)
- M L Castellani
- Department of Medicine and Aging, Medical School, University of Chieti-Pescara, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease that causes significant morbidity and mortality. The pathogenesis outlined to date in RA consists of a cascade of pro-inflammatory cytokines and chemokines leading to the recruitment of inflammatory cells and the self perpetuation of inflammation, ultimately leading to cartilage and bone destruction. The dramatic progress in understanding the molecular immunology in RA has led to a transition from conventional treatment with aggressive immune suppression to targeted biological-based therapies that control the inflammatory pathways associated with RA. This article reviews the current biological and small-molecule therapies approved for the treatment of RA and those in development, including antibodies, tolerising agents and vaccines.
Collapse
Affiliation(s)
- Adriana H Tremoulet
- University of California, Department of Pediatrics, 9500 Gilman Drive, MC 0731, La Jolla, CA 92093, USA
| | | |
Collapse
|
34
|
Shahrara S, Park CC, Temkin V, Jarvis JW, Volin MV, Pope RM. RANTES Modulates TLR4-Induced Cytokine Secretion in Human Peripheral Blood Monocytes. THE JOURNAL OF IMMUNOLOGY 2006; 177:5077-87. [PMID: 17015691 DOI: 10.4049/jimmunol.177.8.5077] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocytes are the key regulators of joint inflammation and destruction in rheumatoid arthritis; hence, suppression of their recruitment into the joint may be therapeutically beneficial. Chemokines, including RANTES, are highly expressed in the joints of patient with rheumatoid arthritis, and they promote leukocyte trafficking into the synovial tissue. Because endogenous TLR4 ligands are expressed in the rheumatoid joint, the TLR4 ligand LPS was used to characterize the effects of RANTES on the TLR4-mediated induction of TNF-alpha and IL-6. Using peripheral blood (PB) monocytes, RANTES decreased LPS-induced IL-6 transcriptionally, whereas TNF-alpha was suppressed at the posttranscriptional level. RANTES signaled through p38 MAPK, and this signaling was further enhanced by LPS stimulation in PB monocytes, resulting in the earlier and increased secretion of IL-10. Inhibition of p38 by short-interfering RNA or a chemical inhibitor, as well as neutralization of IL-10, reversed the RANTES-mediated suppression of LPS-induced IL-6 and TNF-alpha. Further, when rheumatoid arthritis synovial fluid was added to PB monocytes, the neutralization of RANTES in fluid reduced the LPS-induced IL-10 and increased TNF-alpha. In conclusion, the results of this study suggest that RANTES down-regulates TLR4 ligation-induced IL-6 and TNF-alpha secretion by enhancing IL-10 production in PB monocytes. These observations suggest that the therapeutic neutralization of RANTES, in addition to decreasing the trafficking of leukocytes, may have a proinflammatory effect at the site of established chronic inflammation.
Collapse
Affiliation(s)
- Shiva Shahrara
- Department of Medicine, Division of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Huebner JL, Kraus VB. Assessment of the utility of biomarkers of osteoarthritis in the guinea pig. Osteoarthritis Cartilage 2006; 14:923-30. [PMID: 16679035 DOI: 10.1016/j.joca.2006.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/11/2006] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To identify biochemical markers of osteoarthritis (OA) in the guinea pig, we characterized four biomarkers and 17 cytokines for age- and strain-related differences. METHODS Two guinea pig strains were examined in this study: (1) the Hartley (OA-prone) and (2) Strain 13 (OA-resistant). Levels of synovial fluid keratan sulfate (KS) and cartilage oligomeric matrix protein (COMP), as well as levels of serum C2C, CPII, and a panel of cytokines and chemokines were quantified in both guinea pig strains. These included: IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-12p70, IL-17, G-CSF, GM-CSF, IFN-gamma, KC, MIP-1 alpha, RANTES, and TNF-alpha. RESULTS Synovial fluid concentrations of KS and COMP increased coincident with histological OA and correlated positively with the severity of histological damage in both strains. Synovial fluid concentrations of these biomarkers were elevated in the knees of the Hartley compared to the Strain 13 animals, as early as 2 months of age. From as early as 4 months of age, the levels of serum C2C/CPII, representing the ratio of type II collagen degradation and synthesis, were elevated in the OA-prone Hartley compared with Strain 13 animals. Also, at 12 months of age, strain-related differences were apparent for 11 of the 16 cytokines and chemokines. Using multiple linear regression, serum IL-6 and TNF-alpha concentrations were each strongly associated with strain, weight, and their interaction (r2 = 0.80, P = 0.0002 for IL-6; r2 = 0.55, P = 0.02 for TNF-alpha). CONCLUSIONS Biomarkers derived from synovial fluid are reflective of histological severity in the spontaneous model of OA in the guinea pig. The synovial fluid biomarker profiles indicated accelerated cartilage matrix turnover in the Hartley strain as early as 2 months of age, prior to evidence of histological damage. The Hartley strain also exemplified an imbalance in type II collagen metabolism and a serum cytokine/chemokine profile indicative of a pro-inflammatory state. These findings elucidate additional disease-related features in the guinea pig that have relevance to OA in humans.
Collapse
Affiliation(s)
- J L Huebner
- Department of Medicine, Division of Rheumatology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|