1
|
Cesca BA, Pellicer San Martin K, Caverzan MD, Oliveda PM, Ibarra LE. State-of-the-art photodynamic therapy for malignant gliomas: innovations in photosensitizers and combined therapeutic approaches. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002303. [PMID: 40177536 PMCID: PMC11964779 DOI: 10.37349/etat.2025.1002303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma (GBM), the most aggressive and lethal primary brain tumor, poses a significant therapeutic challenge due to its highly invasive nature and resistance to conventional therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in standard treatments, patient survival remains limited, requiring the exploration of innovative strategies. Photodynamic therapy (PDT) has emerged as a promising approach, leveraging light-sensitive photosensitizers (PSs), molecular oxygen, and specific light wavelengths to generate reactive oxygen species (ROS) that selectively induce tumor cell death. Originally developed for skin cancer, PDT has evolved to target more complex malignancies, including GBM. The refinement of second- and third-generation PS, coupled with advancements in nanotechnology, has significantly improved PDT's selectivity, bioavailability, and therapeutic efficacy. Moreover, the combination of PDT with chemotherapy, targeted therapy, and immunotherapy, among other therapeutic modalities, has shown potential in enhancing therapeutic outcomes. This review provides a comprehensive analysis of the preclinical and clinical applications of PDT in GBM, detailing its mechanisms of action, the evolution of PS, and novel combinatory strategies that optimize treatment efficacy. However, several challenges remain, including overcoming GBM-associated hypoxia, enhancing PS delivery across the blood-brain barrier, and mitigating tumor resistance mechanisms. The integration of PDT with molecular and genetic insight, alongside cutting-edge nanotechnology-based delivery systems, may revolutionize GBM treatment, offering new prospects for improved patient survival and quality of life.
Collapse
Affiliation(s)
- Bruno A. Cesca
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Kali Pellicer San Martin
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Matías D. Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Paula M. Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - Luis E. Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| |
Collapse
|
2
|
Langley A, Sweeney A, Shethia RT, Bednarke B, Wulandana F, Xavierselvan M, Mallidi S. In vivo, online label-free monitoring of heterogenous oxygen utilization during phototherapy with real-time ultrasound-guided photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625759. [PMID: 39677615 PMCID: PMC11642742 DOI: 10.1101/2024.11.27.625759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding the tumor microenvironment, particularly the vascular density and the availability of oxygen, is key in individualizing treatment approaches and determining their efficacy. While there are many therapies including radiotherapy that are ineffective in hypoxic tumor microenvironments, here we demonstrate the heterogeneous oxygen consumption during photodynamic therapy (PDT), a non-invasive treatment method using localized light to activate a photosensitive drug in the presence of oxygen that has shown high effectiveness in the treatment of various types of tumors, including those presented in head and neck cancer (HNC) patients. While our previous work has demonstrated that blood oxygen saturation (StO2) mapped before and after treatment with ultrasound-guided photoacoustic imaging (US-PAI) can be used as a surrogate marker for the regionalized long-term efficacy of PDT, real-time monitoring of StO2 during PDT could provide additional insights on oxygen consumption and inform dose design for "on the spot" treatment decisions. Specifically, in this work, we integrated the US-PAI transducer probe with PDT light delivery fibers. We tested the setup on murine tumor models intravenously injected with liposomal benzoporphyrin derivative (BPD) photosensitizer at 0.5 mg/kg dose and photodynamic illumination at 100 and 400 mW/cm2 fluence rate. As expected, we observed with our US-PAI StO2 images that the rate of oxygen utilization increases when using a high fluence rate (HFR) light dose. Particularly in the higher fluence rate group, we observed StO2 reaching a minimum mid-light dose, followed by some degree of reoxygenation. US-PAI added the advantage of spatial information to StO2 monitoring, which allowed us to match regions of re-oxygenation during therapy to retained vascular function with immunohistochemistry. Overall, our results have demonstrated the potential of US-PAI for applications in online dosimetry for cancer therapies such as PDT, using oxygen changes to detect regionalized physiological vascular response in the tumor microenvironment.
Collapse
Affiliation(s)
- Andrew Langley
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Allison Sweeney
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Ronak T Shethia
- Department of Biomedical Engineering, Tufts University, MA, USA
| | - Brooke Bednarke
- Department of Biomedical Engineering, Tufts University, MA, USA
| | | | | | | |
Collapse
|
3
|
Zahid MU, Waguespack M, Harman RC, Kercher EM, Nath S, Hasan T, Rizvi I, Spring BQ, Enderling H. Fractionated photoimmunotherapy stimulates an anti-tumour immune response: an integrated mathematical and in vitro study. Br J Cancer 2024; 131:1378-1386. [PMID: 39261715 PMCID: PMC11473784 DOI: 10.1038/s41416-024-02844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Advanced epithelial ovarian cancer (EOC) has high recurrence rates due to disseminated initial disease presentation. Cytotoxic phototherapies, such as photodynamic therapy (PDT) and photoimmunotherapy (PIT, cell-targeted PDT), have the potential to treat disseminated malignancies due to safe intraperitoneal delivery. METHODS We use in vitro measurements of EOC tumour cell and T cell responses to chemotherapy, PDT, and epidermal growth factor receptor targeted PIT as inputs to a mathematical model of non-linear tumour and immune effector cell interaction. The model outputs were used to calculate how photoimmunotherapy could be utilised for tumour control. RESULTS In vitro measurements of PIT dose responses revealed that although low light doses (<10 J/cm2) lead to limited tumour cell killing they also increased proliferation of anti-tumour immune effector cells. Model simulations demonstrated that breaking up a larger light dose into multiple lower dose fractions (vis-à-vis fractionated radiotherapy) could be utilised to effect tumour control via stimulation of an anti-tumour immune response. CONCLUSIONS There is promise for applying fractionated PIT in the setting of EOC. However, recommending specific fractionated PIT dosimetry and timing will require appropriate model calibration on tumour-immune interaction data in human patients and subsequent validation of model predictions in prospective clinical trials.
Collapse
Affiliation(s)
- Mohammad U Zahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Eric M Kercher
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan Q Spring
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| | - Heiko Enderling
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Alekseeva P, Makarov V, Efendiev K, Shiryaev A, Reshetov I, Loschenov V. Devices and Methods for Dosimetry of Personalized Photodynamic Therapy of Tumors: A Review on Recent Trends. Cancers (Basel) 2024; 16:2484. [PMID: 39001546 PMCID: PMC11240380 DOI: 10.3390/cancers16132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Significance: Despite the widespread use of photodynamic therapy in clinical practice, there is a lack of personalized methods for assessing the sufficiency of photodynamic exposure on tumors, depending on tissue parameters that change during light irradiation. This can lead to different treatment results. Aim: The objective of this article was to conduct a comprehensive review of devices and methods employed for the implicit dosimetric monitoring of personalized photodynamic therapy for tumors. Methods: The review included 88 peer-reviewed research articles published between January 2010 and April 2024 that employed implicit monitoring methods, such as fluorescence imaging and diffuse reflectance spectroscopy. Additionally, it encompassed computer modeling methods that are most often and successfully used in preclinical and clinical practice to predict treatment outcomes. The Internet search engine Google Scholar and the Scopus database were used to search the literature for relevant articles. Results: The review analyzed and compared the results of 88 peer-reviewed research articles presenting various methods of implicit dosimetry during photodynamic therapy. The most prominent wavelengths for PDT are in the visible and near-infrared spectral range such as 405, 630, 660, and 690 nm. Conclusions: The problem of developing an accurate, reliable, and easily implemented dosimetry method for photodynamic therapy remains a current problem, since determining the effective light dose for a specific tumor is a decisive factor in achieving a positive treatment outcome.
Collapse
Affiliation(s)
- Polina Alekseeva
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
| | - Vladimir Makarov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Kanamat Efendiev
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Artem Shiryaev
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Igor Reshetov
- Department of Oncology and Radiotherapy, Levshin Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Victor Loschenov
- Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia; (V.M.)
- Department of Laser Micro-Nano and Biotechnologies, Institute of Engineering Physics for Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
5
|
Szczygieł M, Kalinowska B, Szczygieł D, Krzykawska-Serda M, Fiedor L, Murzyn AA, Sopel J, Matuszak Z, Elas M. EPR Monitoring of Oxygenation Levels in Tumors After Chlorophyllide-Based Photodynamic Therapy May Allow for Early Prediction of Treatment Outcome. Mol Imaging Biol 2024; 26:411-423. [PMID: 38296885 PMCID: PMC11211189 DOI: 10.1007/s11307-023-01886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Molecular oxygen, besides a photosensitizer and light of appropriate wavelength, is one of the three factors necessary for photodynamic therapy (PDT). In tumor tissue, PDT leads to the killing of tumor cells, destruction of endothelial cells and vasculature collapse, and the induction of strong immune responses. All these effects may influence the oxygenation levels, but it is the vasculature changes that have the main impact on pO2. The purpose of our study was to monitor changes in tumor oxygenation after PDT and explore its significance for predicting long-term treatment response. PROCEDURES Electron paramagnetic resonance (EPR) spectroscopy enables direct, quantitative, and sequential measurements of partial pressure of oxygen (pO2) in the same animal. The levels of chlorophyll derived photosensitizers in tumor tissue were determined by transdermal emission measurements. RESULTS The noninvasive monitoring of pO2 in the tumor tissue after PDT showed that the higher ΔpO2 (pO2 after PDT minus pO2 before PDT), the greater the inhibition of tumor growth. ΔpO2 also correlated with higher levels of the photosensitizers in the tumor and with the occurrence of a severe edema/erythema after PDT. CONCLUSION Monitoring of PDT-induced changes in tumor oxygenation is a valuable prognostic factor and could be also used to identify potentially resistant tumors, which is important in predicting long-term treatment response.
Collapse
Affiliation(s)
- Małgorzata Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Barbara Kalinowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dariusz Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Anna Murzyn
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sopel
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zenon Matuszak
- Department of Biophysics and Medical Physics, Faculty of Physics and Computer Science, AGH University of Science and Technology, Krakow, Poland
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Chou W, Sun T, Peng N, Wang Z, Chen D, Qiu H, Zhao H. Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics 2023; 15:2617. [PMID: 38004595 PMCID: PMC10675361 DOI: 10.3390/pharmaceutics15112617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Photodynamic therapy (PDT) is an approved therapeutic procedure that exerts cytotoxic activity towards tumor cells by activating photosensitizers (PSs) with light exposure to produce reactive oxygen species (ROS). Compared to traditional treatment strategies such as surgery, chemotherapy, and radiation therapy, PDT not only kills the primary tumors, but also effectively suppresses metastatic tumors by activating the immune response. However, the anti-tumor immune effects induced by PDT are influenced by several factors, including the localization of PSs in cells, PSs concentration, fluence rate of light, oxygen concentration, and the integrity of immune function. In this review, we systematically summarize the influence factors of anti-tumor immune effects mediated by PDT. Furthermore, an update on the combination of PDT and other immunotherapy strategies are provided. Finally, the future directions and challenges of anti-tumor immunity induced by PDT are discussed.
Collapse
Affiliation(s)
- Wenxin Chou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Tianzhen Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Nian Peng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Zixuan Wang
- Department of Laser Medicine, the First Medical Center, PLA General Hospital, Beijing 100853, China;
| | - Defu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| | - Haixia Qiu
- Department of Laser Medicine, the First Medical Center, PLA General Hospital, Beijing 100853, China;
| | - Hongyou Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (W.C.); (T.S.); (N.P.); (D.C.)
| |
Collapse
|
7
|
Kaur R, Bhardwaj A, Gupta S. Cancer treatment therapies: traditional to modern approaches to combat cancers. Mol Biol Rep 2023; 50:9663-9676. [PMID: 37828275 DOI: 10.1007/s11033-023-08809-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
As far as health issues are concerned, cancer causes one out of every six deaths around the globe. As potent therapeutics are still awaited for the successful treatment of cancer, some unconventional treatments like radiotherapy, surgery, and chemotherapy and some advanced technologies like gene therapy, stem cell therapy, natural antioxidants, targeted therapy, photodynamic therapy, nanoparticles, and precision medicine are available to diagnose and treat cancer. In the present scenario, the prime focus is on developing efficient nanomedicines to treat cancer. Although stem cell therapy has the capability to target primary as well as metastatic cancer foci, it also has the ability to repair and regenerate injured tissues. However, nanoparticles are designed to have such novel therapeutic capabilities. Targeted therapy is also now available to arrest the growth and development of cancer cells without damaging healthy tissues. Another alternative approach in this direction is photodynamic therapy (PDT), which has more potential to treat cancer as it does minimal damage and does not limit other technologies, as in the case of chemotherapy and radiotherapy. The best possible way to treat cancer is by developing novel therapeutics through translational research. In the present scenario, an important event in modern oncology therapy is the shift from an organ-centric paradigm guiding therapy to complete molecular investigations. The lacunae in anticancer therapy may be addressed through the creation of contemporary and pertinent cancer therapeutic techniques. In the meantime, the growth of nanotechnology, material sciences, and biomedical sciences has revealed a wide range of contemporary therapies with intelligent features, adaptable functions, and modification potential. The development of numerous therapeutic techniques for the treatment of cancer is summarized in this article. Additionally, it can serve as a resource for oncology and immunology researchers.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Alok Bhardwaj
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, 281406, Uttar Pradesh, India.
| |
Collapse
|
8
|
Luo H, Gao S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J Control Release 2023; 362:425-445. [PMID: 37660989 DOI: 10.1016/j.jconrel.2023.08.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Phototherapy (including photothermal therapy, PTT; and photodynamic therapy, PDT) has been widely used for cancer treatment, but conventional PTT/PDT show limited therapeutic effects due to the lack of disease recognition ability. The integration of fluorescence imaging with PTT/PDT can reveal tumor locations in a real-time manner, holding great potential in early diagnosis and precision treatment of cancers. However, the traditional fluorescence imaging in the visible and near-infrared-I regions (VIS/NIR-I, 400-900 nm) might be interfered by the scattering and autofluorescence from tissues, leading to a low imaging resolution and high false positive rate. The deeper near-infrared-II (NIR-II, 1000-1700 nm) fluorescence imaging can address these interferences. Combining NIR-II fluorescence imaging with PTT/PDT can significantly improve the accuracy of tumor theranostics and minimize damages to normal tissues. This review summarized recent advances in tumor PTT/PDT and NIR-II fluorophores, especially discussed achievements, challenges and prospects around NIR-II fluorescence imaging-guided PTT/PDT for cancers.
Collapse
Affiliation(s)
- Hangqi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Shuai Gao
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Luo D, Wang X, Ramamurthy G, Walker E, Zhang L, Shirke A, Naidu NG, Burda C, Shakya R, Hostnik E, Joseph M, Ponsky L, Ponomarev V, Rosol TJ, Tweedle MF, Basilion JP. Evaluation of a photodynamic therapy agent using a canine prostate cancer model. Prostate 2023; 83:1176-1185. [PMID: 37211857 PMCID: PMC11135201 DOI: 10.1002/pros.24560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Male dogs can develop spontaneous prostate cancer, which is similar physiologically to human disease. Recently, Tweedle and coworkers have developed an orthotopic canine prostate model allowing implanted tumors and therapeutic agents to be tested in a more translational large animal model. We used the canine model to evaluate prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles as a theranostic approach for fluorescence (FL) imaging and photodynamic therapy (PDT) of early stage prostate cancer. METHODS Dogs (four in total) were immunosuppressed with a cyclosporine-based immunosuppressant regimen and their prostate glands were injected with Ace-1-hPSMA cells using transabdominal ultrasound (US) guidance. Intraprostatic tumors grew in 4-5 weeks and were monitored by ultrasound (US). When tumors reached an appropriate size, dogs were injected intravenously (iv) with PSMA-targeted nano agents (AuNPs-Pc158) and underwent surgery 24 h later to expose the prostate tumors for FL imaging and PDT. Ex vivo FL imaging and histopathological studies were performed to confirm PDT efficacy. RESULTS All dogs had tumor growth in the prostate gland as revealed by US. Twenty-four hours after injection of PSMA-targeted nano agents (AuNPs-Pc158), the tumors were imaged using a Curadel FL imaging device. While normal prostate tissue had minimal fluorescent signal, the prostate tumors had significantly increased FL. PDT was activated by irradiating specific fluorescent tumor areas with laser light (672 nm). PDT bleached the FL signal, while fluorescent signals from the other unexposed tumor tissues were unaffected. Histological analysis of tumors and adjacent prostate revealed that PDT damaged the irradiated areas to a depth of 1-2 mms with the presence of necrosis, hemorrhage, secondary inflammation, and occasional focal thrombosis. The nonirradiated areas showed no visible damages by PDT. CONCLUSION We have successfully established a PSMA-expressing canine orthotopic prostate tumor model and used the model to evaluate the PSMA-targeted nano agents (AuNPs-Pc158) in the application of FL imaging and PDT. It was demonstrated that the nano agents allowed visualization of the cancer cells and enabled their destruction when they were irradiated with a specific wavelength of light.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Aditi Shirke
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Naraen G. Naidu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Reena Shakya
- Target Validation Shared Resource, James Comprehensive Cancer Center, The Ohio State University, Columbus Ohio, USA
| | - Eric Hostnik
- College of Veterinary Medicine- Veterinary Medical Center, The Ohio State University, Columbus, OH, USA
| | - Mathew Joseph
- Interventional Cardiology Cath Core Lab, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lee Ponsky
- Department of Urology, University Hospitals, Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | | | - Thomas J. Rosol
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Michael F. Tweedle
- Deptartment of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Ohio State University, Columbus, OH, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Zhang Y, Doan BT, Gasser G. Metal-Based Photosensitizers as Inducers of Regulated Cell Death Mechanisms. Chem Rev 2023; 123:10135-10155. [PMID: 37534710 DOI: 10.1021/acs.chemrev.3c00161] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Over the last few decades, various forms of regulated cell death (RCD) have been discovered and were found to improve cancer treatment. Although there are several reviews on RCD induced by photodynamic therapy (PDT), a comprehensive summary covering metal-based photosensitizers (PSs) as RCD inducers has not yet been presented. In this review, we systematically summarize the works on metal-based PSs that induce different types of RCD, including ferroptosis, immunogenic cell death (ICD), and pyroptosis. The characteristics and mechanisms of each RCD are explained. At the end of each section, a summary of the reported commonalities between different metal-based PSs inducing the same RCD is emphasized, and future perspectives on metal-based PSs inducing novel forms of RCD are discussed at the end of the review. Considering the essential roles of metal-based PSs and RCD in cancer therapy, we hope that this review will provide the stage for future advances in metal-based PSs as RCD inducers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| | - Bich-Thuy Doan
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory of Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| |
Collapse
|
11
|
Baydoun M, Boidin L, Leroux B, Vignion-Dewalle AS, Quilbe A, Grolez GP, Azaïs H, Frochot C, Moralès O, Delhem N. Folate Receptor Targeted Photodynamic Therapy: A Novel Way to Stimulate Anti-Tumor Immune Response in Intraperitoneal Ovarian Cancer. Int J Mol Sci 2023; 24:11288. [PMID: 37511049 PMCID: PMC10378870 DOI: 10.3390/ijms241411288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Photodynamic therapy (PDT) has shown improvements in cancer treatment and in the induction of a proper anti-tumor immune response. However, current photosensitizers (PS) lack tumor specificity, resulting in reduced efficacy and side effects in patients with intraperitoneal ovarian cancer (OC). In order to target peritoneal metastases of OC, which overexpress folate receptor (FRα) in 80% of cases, we proposed a targeted PDT using a PS coupled with folic acid. Herein, we applied this targeted PDT in an in vivo mouse model of peritoneal ovarian carcinomatosis. The efficacy of the treatment was evaluated in mice without and with human peripheral blood mononuclear cell (PBMC) reconstitution. When mice were reconstituted, using a fractionized PDT protocol led to a significantly higher decrease in the tumor growth than that obtained in the non-reconstituted mice (p = 0.0469). Simultaneously, an immune response was reflected by an increase in NK cells, and both CD4+ and CD8+ T cells were activated. A promotion in cytokines IFNγ and TNFα and an inhibition in cytokines TGFβ, IL-8, and IL-10 was also noticed. Our work showed that a fractionized FRα-targeted PDT protocol is effective for the treatment of OC and goes beyond local induction of tumor cell death, with the promotion of a subsequent anti-tumor response.
Collapse
Affiliation(s)
- Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Léa Boidin
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Anne-Sophie Vignion-Dewalle
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Alexandre Quilbe
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Guillaume Paul Grolez
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Henri Azaïs
- Department of Gynecological and Breast Surgery and Oncology, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Céline Frochot
- Laboratoire des Réactions et Génie des Procédés (LRGP), CNRS-Université de Lorraine, 1 Rue Grandville, 54000 Nancy, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
- INSERM UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCOTHAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| |
Collapse
|
12
|
Prejanò M, Alberto ME, De Simone BC, Marino T, Toscano M, Russo N. Sulphur- and Selenium-for-Oxygen Replacement as a Strategy to Obtain Dual Type I/Type II Photosensitizers for Photodynamic Therapy. Molecules 2023; 28:molecules28073153. [PMID: 37049916 PMCID: PMC10095929 DOI: 10.3390/molecules28073153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The effect on the photophysical properties of sulfur- and selenium-for-oxygen replacement in the skeleton of the oxo-4-dimethylaminonaphthalimide molecule (DMNP) has been explored at the density functional (DFT) level of theory. Structural parameters, excitation energies, singlet–triplet energy gaps (ΔES-T), and spin–orbit coupling constants (SOC) have been computed. The determined SOCs indicate an enhanced probability of intersystem crossing (ISC) in both the thio- and seleno-derivatives (SDMNP and SeDMNP, respectively) and, consequently, an enhancement of the singlet oxygen quantum yields. Inspection of Type I reactions reveals that the electron transfer mechanisms leading to the generation of superoxide is feasible for all the compounds, suggesting a dual Type I/Type II activity.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Marta Erminia Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Bruna Clara De Simone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
13
|
Li M, Huo L, Zeng J, Zhu G, Liu X, Zhu X, Huang G, Wang Y, Ni K, Zhao Z. Switchable ROS Scavenger/Generator for MRI-Guided Anti-Inflammation and Anti-Tumor Therapy with Enhanced Therapeutic Efficacy and Reduced Side Effects. Adv Healthc Mater 2023; 12:e2202043. [PMID: 36367363 DOI: 10.1002/adhm.202202043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Photosensitizer in photodynamic therapy (PDT) accumulates in both tumor and adjacent normal tissue due to low selective biodistribution, results in undesirable side effect with limited clinic application. Herein, an intelligent nanoplatform is reported that selectively acts as reactive oxygen species (ROS) scavenger in normal tissue but as ROS generator in tumor microenvironment (TME) to differentially control ROS level in tumor and surrounding normal tissue during PDT. By down-regulating the produced ROS with dampened cytokine wave in normal tissue after PDT, the nanoplatform reduces the inflammatory response of normal tissue in PDT, minimizing the side effect and tumor metastasis in PDT. Alternatively, the nanoplatform switches from ROS scavenger to generator through the glutathione (GSH) responsive degradation in TME, which effectively improves the PDT efficacy with reduced GSH level and amplified oxidative stress in tumor. Simultaneously, the released Mn ions provide real-time and in situ signal change of magnetic resonance imaging (MRI) to monitor the reversal process of catalysis activity and achieve accurate tumor diagnosis. This TME-responsive ROS scavenger/generator with activable MRI contrast may provide a new dimension for design of next-generation PDT agents with precise diagnosis, high therapeutic efficacy, and low side effect.
Collapse
Affiliation(s)
- Muyao Li
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Linlin Huo
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Guifen Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiangqing Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xianglong Zhu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
14
|
Repeated photodynamic therapy mediates the abscopal effect through multiple innate and adaptive immune responses with and without immune checkpoint therapy. Biomaterials 2023; 292:121918. [PMID: 36442438 DOI: 10.1016/j.biomaterials.2022.121918] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
In combination with immune checkpoint inhibitors, photodynamic therapy can induce robust immune responses capable of preventing local tumor recurrence and delaying the growth of distant, untreated disease (ie. the abscopal effect). Previously, we found that repeated photodynamic therapy (R-PDT) using porphyrin lipoprotein (PLP) as a photosensitizer, without the addition of an immune checkpoint inhibitor, can induce the abscopal effect. To understand why PLP mediated R-PDT alone can induce the abscopal effect, and how the addition of an immune checkpoint inhibitor can further strengthen the abscopal effect, we investigated the broader immune mechanisms facilitated by R-PDT and combination R-PDT + anti-PD-1 monoclonal antibody (αPD-1) in a highly aggressive, subcutaneous AE17-OVA mesothelioma dual tumor-bearing C57BL/6 mice. We found a 46.64-fold and 61.33-fold increase in interleukin-6 (IL-6) after R-PDT and combination R-PDT + αPD-1 relative to PBS respectively, suggesting broad innate immune activation. There was a greater propensity for antigen presentation in the spleen and distal, non-irradiated tumor draining lymph nodes, as dendritic cells and macrophages had increased expression of MHC class II, CD80, and CD86, after R-PDT and combination R-PDT + αPD-1. Concurrently, there was a shift in the proportions of CD4+ T cell subsets in the spleen, and an increase in the frequency of CD8+ T cells in the distal, non-irradiated tumor draining lymph nodes. While R-PDT had an acceptable safety profile, combination R-PDT + αPD-1 induced 1.26-fold higher serum potassium and 1.33-fold phosphorus, suggestive of mild laboratory tumor lysis syndrome. Histology revealed an absence of gross inflammation in critical organs after R-PDT and combination R-PDT + αPD-1 relative to PBS-treated mice. Taken together, our findings shed light on how the abscopal effect can be induced by PDT and strengthened by combination R-PDT + αPD-1, and suggests minimal toxicities after R-PDT.
Collapse
|
15
|
Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy-Induced Cyclooxygenase 2 Expression in Tumor-Draining Lymph Nodes Regulates B-Cell Expression of Interleukin 17 and Neutrophil Infiltration. Photochem Photobiol 2022; 98:1207-1214. [PMID: 35103990 PMCID: PMC9484206 DOI: 10.1111/php.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
Abstract
Photodynamic therapy (PDT) is an effective anticancer modality approved by the U.S. Food and Drug Administration (FDA). Antitumor immunity can be augmented during PDT by inducing sterile inflammation in an acute manner, and this process is characterized by interleukin 17 (IL-17)-mediated neutrophil infiltration to tumor-draining lymph nodes (TDLNs). However, the inflammatory factors that influence IL-17 expression in TDLNs are poorly understood. Prior studies have linked the cyclooxygenase 2 (COX2)-driven prostaglandin E2 (PGE2) pathway to IL-17 expression. Here, we report that an immune-activating PDT regimen (imPDT) induces COX2/PGE2 expression in TDLNs, whereby IL-17 expression is facilitated without corresponding effects on the expression of RORγt, the transcriptional driver of the canonical IL-17 pathway. Pharmacologic inhibition with NS398, a COX2 inhibitor, was utilized to demonstrate that imPDT-induced COX2 regulates RORγt-independent expression of IL-17 by B cells and neutrophil entry into TDLNs. Depletion of B cells prior to imPDT significantly reduced neutrophil entry into TDLNs following treatment, and diminishes the efficacy of imPDT, which is dependent upon antitumor immunity. These findings are suggestive of a novel role for B cells in the augmentation of antitumor immunity by imPDT.
Collapse
Affiliation(s)
- Riddhi Falk-Mahapatra
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA
| | - Sandra O. Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Sts, Buffalo, NY 14263, USA,Corresponding author: (Sandra O. Gollnick)
| |
Collapse
|
17
|
Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 2022; 13:455. [PMID: 35562364 PMCID: PMC9106666 DOI: 10.1038/s41419-022-04851-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago. Since then, many protocols and agents for PDT have been proposed for the treatment of several types of cancer. Traditionally, cell death induced by PDT was categorized into three types: apoptosis, cell death associated with autophagy, and necrosis. However, with the discovery of several other regulated cell death modalities in recent years, it has become clear that this is a rather simple understanding of the mechanisms of action of PDT. New observations revealed that cancer cells exposed to PDT can pass through various non-conventional cell death pathways, such as paraptosis, parthanatos, mitotic catastrophe, pyroptosis, necroptosis, and ferroptosis. Nowadays, immunogenic cell death (ICD) has become one of the most promising ways to eradicate tumor cells by activation of the T-cell adaptive immune response and induction of long-term immunological memory. ICD can be triggered by many anti-cancer treatment methods, including PDT. In this review, we critically discuss recent findings on the non-conventional cell death mechanisms triggered by PDT. Next, we emphasize the role and contribution of ICD in these PDT-induced non-conventional cell death modalities. Finally, we discuss the obstacles and propose several areas of research that will help to overcome these challenges and lead to the development of highly effective anti-cancer therapy based on PDT.
Collapse
Affiliation(s)
- Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina Balalaeva
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Anastasia Gorokhova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium ,grid.448878.f0000 0001 2288 8774Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
18
|
Roque JA, Cole HD, Barrett PC, Lifshits LM, Hodges RO, Kim S, Deep G, Francés-Monerris A, Alberto ME, Cameron CG, McFarland SA. Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. J Am Chem Soc 2022; 144:8317-8336. [PMID: 35482975 PMCID: PMC9098688 DOI: 10.1021/jacs.2c02475] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(II) complexes that undergo photosubstitution reactions from triplet metal-centered (3MC) excited states are of interest in photochemotherapy (PCT) due to their potential to produce cytotoxic effects in hypoxia. Dual-action systems that incorporate this stoichiometric mode to complement the oxygen-dependent photosensitization pathways that define photodynamic therapy (PDT) are poised to maintain antitumor activity regardless of the oxygenation status. Herein, we examine the way in which these two pathways influence photocytotoxicity in normoxia and in hypoxia using the [Ru(dmp)2(IP-nT)]2+ series (where dmp = 2,9-dimethyl-1,10-phenanthroline and IP-nT = imidazo[4,5-f][1,10]phenanthroline tethered to n = 0-4 thiophene rings) to switch the dominant excited state from the metal-based 3MC state in the case of Ru-phen-Ru-1T to the ligand-based 3ILCT state for Ru-3T and Ru-4T. Ru-phen-Ru-1T, having dominant 3MC states and the largest photosubstitution quantum yields, are inactive in both normoxia and hypoxia. Ru-3T and Ru-4T, with dominant 3IL/3ILCT states and long triplet lifetimes (τTA = 20-25 μs), have the poorest photosubstitution quantum yields, yet are extremely active. In the best instances, Ru-4T exhibit attomolar phototoxicity toward SKMEL28 cells in normoxia and picomolar in hypoxia, with phototherapeutic index values in normoxia of 105-1012 and 103-106 in hypoxia. While maximizing excited-state deactivation through photodissociative 3MC states did not result in bonafide dual-action PDT/PCT agents, the study has produced the most potent photosensitizer we know of to date. The extraordinary photosensitizing capacity of Ru-3T and Ru-4T may stem from a combination of very efficient 1O2 production and possibly complementary type I pathways via 3ILCT excited states.
Collapse
Affiliation(s)
- John A. Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Patrick C. Barrett
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Liubov M. Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Rachel O. Hodges
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina 27402, USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, 27157 USA
| | | | - Marta E. Alberto
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Italy
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, 76019-0065 United States
| |
Collapse
|
19
|
Guo R, Liu Y, Xu N, Ling G, Zhang P. Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment. Eur J Pharm Biopharm 2022; 173:103-120. [DOI: 10.1016/j.ejpb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 12/07/2022]
|
20
|
Lou J, Aragaki M, Bernards N, Kinoshita T, Mo J, Motooka Y, Ishiwata T, Gregor A, Chee T, Chen Z, Chen J, Kaga K, Wakasa S, Zheng G, Yasufuku K. Repeated porphyrin lipoprotein-based photodynamic therapy controls distant disease in mouse mesothelioma via the abscopal effect. NANOPHOTONICS 2021; 10:3279-3294. [PMID: 36405502 PMCID: PMC9646247 DOI: 10.1515/nanoph-2021-0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/15/2021] [Indexed: 05/05/2023]
Abstract
While photodynamic therapy (PDT) can induce acute inflammation in the irradiated tumor site, a sustained systemic, adaptive immune response is desirable, as it may control the growth of nonirradiated distant disease. Previously, we developed porphyrin lipoprotein (PLP), a ∼20 nm nanoparticle photosensitizer, and observed that it not only efficiently eradicated irradiated primary VX2 buccal carcinomas in rabbits, but also induced regression of nonirradiated metastases in a draining lymph node. We hypothesized that PLP-mediated PDT can induce an abscopal effect and we sought to investigate the immune mechanism underlying such a response in a highly aggressive, dual subcutaneous AE17-OVA+ mesothelioma model in C57BL/6 mice. Four cycles of PLP-mediated PDT was sufficient to delay the growth of a distal, nonirradiated tumor four-fold relative to controls. Serum cytokine analysis revealed high interleukin-6 levels, showing a 30-fold increase relative to phosphate-buffered solution (PBS) treated mice. Flow cytometry revealed an increase in CD4+ T cells and effector memory CD8+ T cells in non-irradiated tumors. Notably, PDT in combination with PD-1 antibody therapy prolonged survival compared to monotherapy and PBS. PLP-mediated PDT shows promise in generating a systemic immune response that can complement other treatments, improving prognoses for patients with metastatic cancers.
Collapse
Affiliation(s)
- Jenny Lou
- Department of Medical Biophysics, University of Toronto, PMCRT 5-354, 101 College Street, Toronto, OntarioM5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
| | - Masato Aragaki
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty and School of Medicine, Sapporo, Hokkaido060-8638, Japan
| | - Nicholas Bernards
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Tomonari Kinoshita
- Division of Thoracic Surgery, Tachikawa Hospital, 4-2-22 Nishikicho, Tachikawa, Tokyo, 190-8531, Japan
| | - Jessica Mo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, OntarioM5S 1A8Canada
| | - Yamoto Motooka
- Department of Thoracic Surgery, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tsukasa Ishiwata
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Alexander Gregor
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Tess Chee
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Zhenchian Chen
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty and School of Medicine, Sapporo, Hokkaido060-8638, Japan
| | - Satoru Wakasa
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty and School of Medicine, Sapporo, Hokkaido060-8638, Japan
| | - Gang Zheng
- Department of Medical Biophysics, University of Toronto, PMCRT 5-354, 101 College Street, Toronto, OntarioM5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, Toronto, OntarioM5G 1L7, Canada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, 200 Elizabeth Street, EN 9N‐957, Toronto, OntarioM5G 2C4, Canada
| |
Collapse
|
21
|
Hamblin MR, Abrahamse H. Factors Affecting Photodynamic Therapy and Anti-Tumor Immune Response. Anticancer Agents Med Chem 2021; 21:123-136. [PMID: 32188394 DOI: 10.2174/1871520620666200318101037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
Photodynamic Therapy (PDT) is a cancer therapy involving the systemic injection of a Photosensitizer (PS) that localizes to some extent in a tumor. After an appropriate time (ranging from minutes to days), the tumor is irradiated with red or near-infrared light either as a surface spot or by interstitial optical fibers. The PS is excited by the light to form a long-lived triplet state that can react with ambient oxygen to produce Reactive Oxygen Species (ROS) such as singlet oxygen and/or hydroxyl radicals, that kill tumor cells, destroy tumor blood vessels, and lead to tumor regression and necrosis. It has long been realized that in some cases, PDT can also stimulate the host immune system, leading to a systemic anti-tumor immune response that can also destroy distant metastases and guard against tumor recurrence. The present paper aims to cover some of the factors that can affect the likelihood and efficiency of this immune response. The structure of the PS, drug-light interval, rate of light delivery, mode of cancer cell death, expression of tumor-associated antigens, and combinations of PDT with various adjuvants all can play a role in stimulating the host immune system. Considering the recent revolution in tumor immunotherapy triggered by the success of checkpoint inhibitors, it appears that the time is ripe for PDT to be investigated in combination with other approaches in clinical scenarios.
Collapse
Affiliation(s)
- Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
22
|
Cavin S, Gkasti A, Faget J, Hao Y, Letovanec I, Reichenbach M, Gonzalez M, Krueger T, Dyson PJ, Meylan E, Perentes JY. Low-dose photodynamic therapy promotes a cytotoxic immunological response in a murine model of pleural mesothelioma. Eur J Cardiothorac Surg 2021; 58:783-791. [PMID: 32372095 DOI: 10.1093/ejcts/ezaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Malignant pleural mesothelioma (MPM) is a deadly disease with limited treatment options. Approaches to enhance patient immunity against MPM have been tested but shown variable results. Previously, we have demonstrated interesting vascular modulating properties of low-dose photodynamic therapy (L-PDT) on MPM. Here, we hypothesized that L-PDT vascular modulation could favour immune cell extravasation in MPM and improve tumour control in combination with immune checkpoint inhibitors. METHODS First, we assessed the impact of L-PDT on vascular endothelial E-selectin expression, a key molecule for immune cell extravasation, in vitro and in a syngeneic murine model of MPM. Second, we characterized the tumour immune cell infiltrate by 15-colour flow cytometry analysis 2 and 7 days after L-PDT treatment of the murine MPM model. Third, we determined how L-PDT combined with immune checkpoint inhibitor anti-CTLA4 affected tumour growth in a murine MPM model. RESULTS L-PDT significantly enhanced E-selectin expression by endothelial cells in vitro and in vivo. This correlated with increased CD8+ T cells and activated antigen-presenting cells (CD11b+ dendritic cells and macrophages) infiltration in MPM. Also, compared to anti-CTLA4 that only affects tumour growth, the combination of L-PDT with anti-CTLA4 caused complete MPM regression in 37.5% of animals. CONCLUSIONS L-PDT enhances E-selectin expression in the MPM endothelium, which favours immune infiltration of tumours. The combination of L-PDT with immune checkpoint inhibitor anti-CTLA4 allows best tumour control and regression.
Collapse
Affiliation(s)
- Sabrina Cavin
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Aspasia Gkasti
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julien Faget
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yameng Hao
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Igor Letovanec
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Maxime Reichenbach
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel Gonzalez
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thorsten Krueger
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean Y Perentes
- Division of Thoracic Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
23
|
Wen Z, Liu F, Liu G, Sun Q, Zhang Y, Muhammad M, Xu Y, Li H, Sun S. Assembly of multifunction dyes and heat shock protein 90 inhibitor coupled to bovine serum albumin in nanoparticles for multimodal photodynamic/photothermal/chemo-therapy. J Colloid Interface Sci 2021; 590:290-300. [DOI: 10.1016/j.jcis.2021.01.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/27/2022]
|
24
|
Hong SH, Koo MA, Lee MH, Seon GM, Park YJ, Jeong H, Kim D, Park JC. An effective method to generate controllable levels of ROS for the enhancement of HUVEC proliferation using a chlorin e6-immobilized PET film as a photo-functional biomaterial. Regen Biomater 2021; 8:rbab005. [PMID: 33738119 PMCID: PMC7955709 DOI: 10.1093/rb/rbab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of cellular metabolism; they play a significant role as secondary messengers in cell signaling. In cells, high concentrations of ROS induce apoptosis, senescence, and contact inhibition, while low concentrations of ROS result in angiogenesis, proliferation, and cytoskeleton remodeling. Thus, controlling ROS generation is an important factor in cell biology. We designed a chlorin e6 (Ce6)-immobilized polyethylene terephthalate (PET) film (Ce6-PET) to produce extracellular ROS under red-light irradiation. The application of Ce6-PET films can regulate the generation of ROS by altering the intensity of light-emitting diode sources. We confirmed that the Ce6-PET film could effectively promote cell growth under irradiation at 500 μW/cm2 for 30 min in human umbilical vein endothelial cells. We also found that the Ce6-PET film is more efficient in generating ROS than a Ce6-incorporated polyurethane film under the same conditions. Ce6-PET fabrication shows promise for improving the localized delivery of extracellular ROS and regulating ROS formation through the optimization of irradiation intensity.
Collapse
Affiliation(s)
- Seung Hee Hong
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Min-Ah Koo
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Mi Hee Lee
- Cellbiocontrol Laboratory, Department of Medical Engineering
| | - Gyeung Mi Seon
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
| | - Ye Jin Park
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - HaKyeong Jeong
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Dohyun Kim
- Cellbiocontrol Laboratory, Department of Medical Engineering
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering
- Department of Medical Engineering, Graduate School of Medical Science, Brain Korea 21 Project
- Department of Medical Device Engineering and Management, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer 2021; 9:e001926. [PMID: 33431631 PMCID: PMC7802670 DOI: 10.1136/jitc-2020-001926] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
The past decade has witnessed major breakthroughs in cancer immunotherapy. This development has been largely motivated by cancer cell evasion of immunological control and consequent tumor resistance to conventional therapies. Immunogenic cell death (ICD) is considered one of the most promising ways to achieve total tumor cell elimination. It activates the T-cell adaptive immune response and results in the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT). In this review, we first discuss the role of PDT based on several classes of photosensitizers, including porphyrins and non-porphyrins, and critically evaluate their potential role in ICD induction. We emphasize the emerging trend of ICD induction by PDT in combination with nanotechnology, which represents third-generation photosensitizers and involves targeted induction of ICD by PDT. However, PDT also has some limitations, including the reduced efficiency of ICD induction in the hypoxic tumor microenvironment. Therefore, we critically evaluate strategies for overcoming this limitation, which is essential for increasing PDT efficiency. In the final part, we suggest several areas for future research for personalized cancer immunotherapy, including strategies based on oxygen-boosted PDT and nanoparticles. In conclusion, the insights from the last several years increasingly support the idea that PDT is a powerful strategy for inducing ICD in experimental cancer therapy. However, most studies have focused on mouse models, but it is necessary to validate this strategy in clinical settings, which will be a challenging research area in the future.
Collapse
Affiliation(s)
- Razan Alzeibak
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Tatiana A Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Natalia Y Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V Krysko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
26
|
De Silva P, Saad MA, Thomsen HC, Bano S, Ashraf S, Hasan T. Photodynamic therapy, priming and optical imaging: Potential co-conspirators in treatment design and optimization - a Thomas Dougherty Award for Excellence in PDT paper. J PORPHYR PHTHALOCYA 2020; 24:1320-1360. [PMID: 37425217 PMCID: PMC10327884 DOI: 10.1142/s1088424620300098] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Photodynamic therapy is a photochemistry-based approach, approved for the treatment of several malignant and non-malignant pathologies. It relies on the use of a non-toxic, light activatable chemical, photosensitizer, which preferentially accumulates in tissues/cells and, upon irradiation with the appropriate wavelength of light, confers cytotoxicity by generation of reactive molecular species. The preferential accumulation however is not universal and, depending on the anatomical site, the ratio of tumor to normal tissue may be reversed in favor of normal tissue. Under such circumstances, control of the volume of light illumination provides a second handle of selectivity. Singlet oxygen is the putative favorite reactive molecular species although other entities such as nitric oxide have been credibly implicated. Typically, most photosensitizers in current clinical use have a finite quantum yield of fluorescence which is exploited for surgery guidance and can also be incorporated for monitoring and treatment design. In addition, the photodynamic process alters the cellular, stromal, and/or vascular microenvironment transiently in a process termed photodynamic priming, making it more receptive to subsequent additional therapies including chemo- and immunotherapy. Thus, photodynamic priming may be considered as an enabling technology for the more commonly used frontline treatments. Recently, there has been an increase in the exploitation of the theranostic potential of photodynamic therapy in different preclinical and clinical settings with the use of new photosensitizer formulations and combinatorial therapeutic options. The emergence of nanomedicine has further added to the repertoire of photodynamic therapy's potential and the convergence and co-evolution of these two exciting tools is expected to push the barriers of smart therapies, where such optical approaches might have a special niche. This review provides a perspective on current status of photodynamic therapy in anti-cancer and anti-microbial therapies and it suggests how evolving technologies combined with photochemically-initiated molecular processes may be exploited to become co-conspirators in optimization of treatment outcomes. We also project, at least for the short term, the direction that this modality may be taking in the near future.
Collapse
Affiliation(s)
- Pushpamali De Silva
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mohammad A. Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hanna C. Thomsen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Biteghe FAN, Mungra N, Chalomie NET, Ndong JDLC, Engohang-Ndong J, Vignaux G, Padayachee E, Naran K, Barth S. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget 2020; 11:3531-3557. [PMID: 33014289 PMCID: PMC7517958 DOI: 10.18632/oncotarget.27730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.
Collapse
Affiliation(s)
- Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | | | - Jean De La Croix Ndong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA
| | | | - Eden Padayachee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| |
Collapse
|
28
|
Lifshits LM, Roque Iii JA, Konda P, Monro S, Cole HD, von Dohlen D, Kim S, Deep G, Thummel RP, Cameron CG, Gujar S, McFarland SA. Near-infrared absorbing Ru(ii) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chem Sci 2020; 11:11740-11762. [PMID: 33976756 PMCID: PMC8108386 DOI: 10.1039/d0sc03875j] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mounting evidence over the past 20 years suggests that photodynamic therapy (PDT), an anticancer modality known mostly as a local treatment, has the capacity to invoke a systemic antitumor immune response, leading to protection against tumor recurrence. For aggressive cancers such as melanoma, where chemotherapy and radiotherapy are ineffective, immunomodulating PDT as an adjuvant to surgery is of interest. Towards the development of specialized photosensitizers (PSs) for treating pigmented melanomas, nine new near-infrared (NIR) absorbing PSs based on a Ru(ii) tris-heteroleptic scaffold [Ru(NNN)(NN)(L)]Cln, were explored. Compounds 2, 6, and 9 exhibited high potency toward melanoma cells, with visible EC50 values as low as 0.292–0.602 μM and PIs as high as 156–360. Single-micromolar phototoxicity was obtained with NIR-light (733 nm) with PIs up to 71. The common feature of these lead NIR PSs was an accessible low-energy triplet intraligand (3IL) excited state for high singlet oxygen (1O2) quantum yields (69–93%), which was only possible when the photosensitizing 3IL states were lower in energy than the lowest triplet metal-to-ligand charge transfer (3MLCT) excited states that typically govern Ru(ii) polypyridyl photophysics. PDT treatment with 2 elicited a pro-inflammatory response alongside immunogenic cell death in mouse B16F10 melanoma cells and proved safe for in vivo administration (maximum tolerated dose = 50 mg kg−1). Female and male mice vaccinated with B16F10 cells that were PDT-treated with 2 and challenged with live B16F10 cells exhibited 80 and 55% protection from tumor growth, respectively, leading to significantly improved survival and excellent hazard ratios of ≤0.2. Ru(ii) photosensitizers (PSs) destroy aggressive melanoma cells, triggering an immune response that leads to protection against tumor challenge and mouse survival.![]()
Collapse
Affiliation(s)
- Liubov M Lifshits
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - John A Roque Iii
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA .,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada
| | - Susan Monro
- Department of Chemistry, Acadia University Wolfville Nova Scotia B4P 2R6 Canada
| | - Houston D Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - David von Dohlen
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro Greensboro North Carolina 27402 USA
| | - Susy Kim
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine Winston Salem NC 27157 USA
| | - Randolph P Thummel
- Department of Chemistry, University of Houston 112 Fleming Building Houston Texas 77204-5003 USA
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada .,Department of Pathology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Department of Biology, Dalhousie University Halifax Nova Scotia B3H 1X5 Canada.,Beatrice Hunter Cancer Research Institute Halifax Nova Scotia B3H 4R2 Canada
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington Texas 76019-0065 USA
| |
Collapse
|
29
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
30
|
Liu T, Zhang X, Zhang H, Zhao H, Zhang Z, Tian Y. Method for monitoring singlet oxygen quantum yield in real time by time resolved spectroscopy measurement. OPTICS EXPRESS 2020; 28:25757-25766. [PMID: 32906860 DOI: 10.1364/oe.401423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The singlet oxygen quantum yield (ΦΔ) was monitored in real time through time resolved spectroscopy measurement, using gadolinium labeled hematoporphyrin monomethyl ether (Gd-HMME) as photosensitizer. According to the kinetics equations of singlet oxygen generation and reaction, ΦΔ was related to phosphorescence lifetime (τp). Through measuring τp of Gd-HMME in different oxygen conditions, the radiation transition property of first exited triplet state (T1) was monitored; combined with the triplet state quantum yield (ΦT) determined by linear fitting the ΦΔ, which was measured in different oxygen content using a relative measurement, ΦΔ can be determined in real time. The identification of anoxia during the treatment of photodynamic therapy (PDT) by this method is also presented.
Collapse
|
31
|
Liu YN, Yang JF, Huang DJ, Ni HH, Zhang CX, Zhang L, He J, Gu JM, Chen HX, Mai HQ, Chen QY, Zhang XS, Gao S, Li J. Hypoxia Induces Mitochondrial Defect That Promotes T Cell Exhaustion in Tumor Microenvironment Through MYC-Regulated Pathways. Front Immunol 2020; 11:1906. [PMID: 32973789 PMCID: PMC7472844 DOI: 10.3389/fimmu.2020.01906] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
T cell exhaustion is an obstacle to immunotherapy for solid tumors. An understanding of the mechanism by which T cells develop this phenotype in solid tumors is needed. Here, hypoxia, a feature of the tumor microenvironment, causes T cell exhaustion (TExh) by inducing a mitochondrial defect. Upon exposure to hypoxia, activated T cells with a TExh phenotype are characterized by mitochondrial fragmentation, decreased ATP production, and decreased mitochondrial oxidative phosphorylation activity. The TExh phenotype is correlated with the downregulation of the mitochondrial fusion protein mitofusin 1 (MFN1) and upregulation of miR-24. Overexpression of miR-24 alters the transcription of many metabolism-related genes including its target genes MYC and fibroblast growth factor 11 (FGF11). Downregulation of MYC and FGF11 induces TExh differentiation, reduced ATP production and a loss of the mitochondrial mass in T cell receptor (TCR)-stimulated T cells. In addition, we determined that MYC regulates the transcription of FGF11 and MFN1. In nasopharyngeal carcinoma (NPC) tissues, the T cells exhibit an increased frequency of exhaustion and loss of mitochondrial mass. In addition, inhibition of miR-24 signaling decreases NPC xenograft growth in nude mice. Our findings reveal a mechanism for T cell exhaustion in the tumor environment and provide potential strategies that target mitochondrial metabolism for cancer immunotherapy.
Collapse
Affiliation(s)
- Yi-Na Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jie-Feng Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Dai-Jia Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Huan-He Ni
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Chuan-Xia Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jia He
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Mei Gu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hong-Xia Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Hai-Qiang Mai
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-Yan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Shi Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Gao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jiang Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Shenzhen, China
| |
Collapse
|
32
|
Kareliotis G, Tremi I, Kaitatzi M, Drakaki E, Serafetinides AA, Makropoulou M, Georgakilas AG. Combined radiation strategies for novel and enhanced cancer treatment. Int J Radiat Biol 2020; 96:1087-1103. [PMID: 32602416 DOI: 10.1080/09553002.2020.1787544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies focus on cancer therapy worldwide, and although many advances have been recorded, the complexity of the disease dictates thinking out of the box to confront it. This study reviews some of the currently available ionizing (IR) and non-ionizing radiation (NIR)-based treatment methods and explores their possible combinations that lead to synergistic, multimodal approaches with promising therapeutic outcomes. Traditional techniques, like radiotherapy (RT) show decent results, although they cannot spare 100% the healthy tissues neighboring with the cancer ones. Targeted therapies, such as proton and photodynamic therapy (PT and PDT, respectively) present adequate outcomes, even though each one has its own drawbacks. To overcome these limitations, the combination of therapeutic modalities has been proposed and has already been showing promising results. At the same time, the recent advances in nanotechnology in the form of nanoparticles enhance cancer therapy, making multimodal treatments worthy of exploring and studying. The combination of RT and PDT has reached the level of clinical trials and is showing promising results. Moreover, in vitro and in vivo studies of nanoparticles with PDT have also provided beneficial results concerning enhanced radiation treatments. In any case, novel and multimodal approaches have to be adopted to achieve personalized, enhanced and effective cancer treatment.
Collapse
Affiliation(s)
- Georgios Kareliotis
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Ioanna Tremi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Myrsini Kaitatzi
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Eleni Drakaki
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Alexandros A Serafetinides
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Mersini Makropoulou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| |
Collapse
|
33
|
Cramer GM, Moon EK, Cengel KA, Busch TM. Photodynamic Therapy and Immune Checkpoint Blockade
†. Photochem Photobiol 2020; 96:954-961. [DOI: 10.1111/php.13300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Gwendolyn M. Cramer
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Edmund K. Moon
- Department of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Keith A. Cengel
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Theresa M. Busch
- Department of Radiation Oncology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
34
|
Chamberlain S, Bellnier D, Yendamuri S, Lindenmann J, Demmy T, Nwogu C, Ramer M, Tworek L, Oakley E, Mallory M, Carlsen L, Sexton S, Curtin L, Shafirstein G. An Optical Surface Applicator for Intraoperative Photodynamic Therapy. Lasers Surg Med 2020; 52:523-529. [PMID: 31587314 PMCID: PMC7131890 DOI: 10.1002/lsm.23168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Intraoperative photodynamic therapy (IO-PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO-PDT. STUDY DESIGN/MATERIALS AND METHODS An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue-mimicking optical phantoms by measurements from a multi-channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665-nm laser light to activate 2-(1'-hexyloxyethyl) pyropheophorbide-a (HPPH) in the thoracic cavity of adult swine. RESULTS At the OSA surface, the irradiance distribution was non-uniform, ranging from 128 to 346 mW/cm2 . However, in the tissue-mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39-153, 33-87, and 12-28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine. CONCLUSIONS The OSA can provide predictable light irradiances for administering a well-defined and potentially effective therapeutic light in IO-PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Chamberlain
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - David Bellnier
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park, Buffalo, New York
| | - Joerg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Medical University Graz, Austria
| | - Todd Demmy
- Department of Thoracic Surgery, Roswell Park, Buffalo, New York
| | | | - Max Ramer
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Larry Tworek
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Emily Oakley
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Matthew Mallory
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Lindsey Carlsen
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| | - Sandra Sexton
- Laboratory Animal Shared Resource, Roswell Park, Buffalo, New York
| | - Leslie Curtin
- Laboratory Animal Shared Resource, Roswell Park, Buffalo, New York
| | - Gal Shafirstein
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center (Roswell Park), Buffalo, New York
| |
Collapse
|
35
|
Chamberlain S, Cole HD, Roque J, Bellnier D, McFarland SA, Shafirstein G. TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals (Basel) 2020; 13:E137. [PMID: 32605213 PMCID: PMC7407920 DOI: 10.3390/ph13070137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
Intra-operative photodynamic therapy (IO-PDT) in combination with surgery for the treatment of non-small cell lung cancer and malignant pleural mesothelioma has shown promise in improving overall survival in patients. Here, we developed a PDT platform consisting of a ruthenium-based photosensitizer (TLD1433) activated by an optical surface applicator (OSA) for the management of residual disease. Human lung adenocarcinoma (A549) cell viability was assessed after treatment with TLD1433-mediated PDT illuminated with either 532- or 630-nm light with a micro-lens laser fiber. This TLD1433-mediated PDT induced an EC50 of 1.98 μM (J/cm2) and 4807 μM (J/cm2) for green and red light, respectively. Cells were then treated with 10 µM TLD1433 in a 96-well plate with the OSA using two 2-cm radial diffusers, each transmitted 532 nm light at 50 mW/cm for 278 s. Monte Carlo simulations of the surface light propagation from the OSA computed light fluence (J/cm2) and irradiance (mW/cm2) distribution. In regions where 100% loss in cell viability was measured, the simulations suggest that >20 J/cm2 of 532 nm was delivered. Our studies indicate that TLD1433-mediated PDT with the OSA and light simulations have the potential to become a platform for treatment planning for IO-PDT.
Collapse
Affiliation(s)
- Sarah Chamberlain
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.C.); (D.B.)
| | - Houston D. Cole
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA; (H.D.C.); (J.R.III)
| | - John Roque
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA; (H.D.C.); (J.R.III)
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA
| | - David Bellnier
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.C.); (D.B.)
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA; (H.D.C.); (J.R.III)
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA
| | - Gal Shafirstein
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; (S.C.); (D.B.)
| |
Collapse
|
36
|
Raja IS, Kang MS, Kim KS, Jung YJ, Han DW. Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and Perspectives. Cancers (Basel) 2020; 12:E1657. [PMID: 32580528 PMCID: PMC7352353 DOI: 10.3390/cancers12061657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
As the combination of therapies enhances the performance of biocompatible materials in cancer treatment, theranostic therapies are attracting increasing attention rather than individual approaches. In this review, we describe a variety of two-dimensional (2D) theranostic nanomaterials and their efficacy in ablating tumors. Though many literature reports are available to demonstrate the potential application of 2D nanomaterials, we have reviewed here cancer-treating therapies based on such multifunctional nanomaterials abstracting the content from literature works which explain both the in vitro and in vivo level of applications. In addition, we have included a discussion about the future direction of 2D nanomaterials in the field of theranostic cancer treatment.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, Busan 46241, Korea
| | - Yu Jin Jung
- Research Centre for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
37
|
Demir Duman F, Sebek M, Thanh NTK, Loizidou M, Shakib K, MacRobert AJ. Enhanced photodynamic therapy and fluorescence imaging using gold nanorods for porphyrin delivery in a novel in vitro squamous cell carcinoma 3D model. J Mater Chem B 2020; 8:5131-5142. [PMID: 32420578 DOI: 10.1039/d0tb00810a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanocomposites of gold nanorods (Au NRs) with the cationic porphyrin TMPyP (5,10,15,20-tetrakis(1- methyl 4-pyridinio)porphyrin tetra(p-toluenesulfonate)) were investigated as a nanocarrier system for photodynamic therapy (PDT) and fluorescence imaging. To confer biocompatibility and facilitate the cellular uptake, the NRs were encapsulated with polyacrylic acid (PAA) and efficiently loaded with the cationic porphyrin by electrostatic interaction. The nanocomposites were tested with and without light exposure following incubation in 2D monolayer cultures and a 3D compressed collagen construct of head and neck squamous cell carcinoma (HNSCC). The results showed that Au NRs enhance the absorption and emission intensity of TMPyP and improve its photodynamic efficiency and fluorescence imaging capability in both 2D cultures and 3D cancer constructs. Au NRs are promising theranostic agents for delivery of photosensitisers for HNSCC treatment and imaging.
Collapse
Affiliation(s)
- Fatma Demir Duman
- Division of Surgery and Interventional Science, Centre for Nanomedicine and Surgical Theranostics, University College London, Royal Free Campus, Rowland Hill St, London, NW3 2PE, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Falk-Mahapatra R, Gollnick SO. Photodynamic Therapy and Immunity: An Update. Photochem Photobiol 2020; 96:550-559. [PMID: 32128821 DOI: 10.1111/php.13253] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Dr. Thomas Dougherty and his Oncology Foundation of Buffalo were the first to support my (S.O.G.) research into the effects of photodynamic therapy (PDT) on the host immune system. The small grant I was awarded in 2002 launched my career as an independent researcher; at the time, there were few studies on the importance of the immune response on the efficacy of PDT and no studies demonstrating the ability of PDT to enhance antitumor immunity. Over the last decades, the interest in PDT as an enhancer of antitumor immunity and our understanding of the mechanisms by which PDT enhances antitumor immunity have dramatically increased. In this review article, we look back on the studies that laid the foundation for our understanding and provide an update on current advances and therapies that take advantage of PDT enhancement of immunity.
Collapse
Affiliation(s)
| | - Sandra O Gollnick
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.,Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
39
|
The Potential of Nanobody-Targeted Photodynamic Therapy to Trigger Immune Responses. Cancers (Basel) 2020; 12:cancers12040978. [PMID: 32326519 PMCID: PMC7226123 DOI: 10.3390/cancers12040978] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobody-targeted photodynamic therapy (NB-PDT) has been recently developed as a more tumor-selective approach rather than conventional photodynamic therapy (PDT). NB-PDT uses nanobodies that bind to tumor cells with high affinity, to selectively deliver a photosensitizer, i.e., a chemical which becomes cytotoxic when excited with light of a particular wavelength. Conventional PDT has been reported to be able to induce immunogenic cell death, characterized by the exposure/release of damage-associated molecular patterns (DAMPs) from dying cells, which can lead to antitumor immunity. We explored this aspect in the context of NB-PDT, targeting the epidermal growth factor receptor (EGFR), using high and moderate EGFR-expressing cells. Here we report that, after NB-PDT, the cytoplasmic DAMP HSP70 was detected on the cell membrane of tumor cells and the nuclear DAMP HMGB1 was found in the cell cytoplasm. Furthermore, it was shown that NB-PDT induced the release of the DAMPs HSP70 and ATP, as well as the pro- inflammatory cytokines IL- 1β and IL-6. Conditioned medium from high EGFR-expressing tumor cells treated with NB-PDT led to the maturation of human dendritic cells, as indicated by the upregulation of CD86 and MHC II on their cell surface, and the increased release of IL-12p40 and IL-1β. Subsequently, these dendritic cells induced CD4+ T cell proliferation, accompanied by IFNγ release. Altogether, the initial steps reported here point towards the potential of NB-PDT to stimulate the immune system, thus giving this selective-local therapy a systemic reach.
Collapse
|
40
|
Dupre PJ, Ong YH, Friedberg J, Singhal S, Carter S, Simone CB, Finlay JC, Zhu TC, Cengel KA, Busch TM. Light Fluence Rate and Tissue Oxygenation (S t O 2 ) Distributions Within the Thoracic Cavity of Patients Receiving Intraoperative Photodynamic Therapy for Malignant Pleural Mesothelioma. Photochem Photobiol 2020; 96:417-425. [PMID: 32048732 PMCID: PMC11855480 DOI: 10.1111/php.13224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/29/2019] [Indexed: 01/22/2023]
Abstract
The distributions of light and tissue oxygenation (St O2 ) within the chest cavity were determined for 15 subjects undergoing macroscopic complete resection followed by intraoperative photodynamic therapy (PDT) as part of a clinical trial for the treatment of malignant pleural mesothelioma (MPM). Over the course of light delivery, detectors at each of eight different sites recorded exposure to variable fluence rate. Nevertheless, the treatment-averaged fluence rate was similar among sites, ranging from a median of 40-61 mW cm-2 during periods of light exposure to a detector. St O2 at each tissue site varied by subject, but posterior mediastinum and posterior sulcus were the most consistently well oxygenated (median St O2 >90%; interquartile ranges ~85-95%). PDT effect on St O2 was characterized as the St O2 ratio (post-PDT St O2 /pre-PDT St O2 ). High St O2 pre-PDT was significantly associated with oxygen depletion (St O2 ratio < 1), although the extent of oxygen depletion was mild (median St O2 ratio of 0.8). Overall, PDT of the thoracic cavity resulted in moderate treatment-averaged fluence rate that was consistent among treated tissue sites, despite instantaneous exposure to high fluence rate. Mild oxygen depletion after PDT was experienced at tissue sites with high pre-PDT St O2 , which may suggest the presence of a treatment effect.
Collapse
Affiliation(s)
- Pamela J. Dupre
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Hong Ong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Friedberg
- Division of Thoracic Surgery, University of Maryland Medical Center, Baltimore, Maryland
| | - Sunil Singhal
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirron Carter
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Center, New York NY, USA
| | - Jarod C. Finlay
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy C. Zhu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith A. Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa M. Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
41
|
Hu D, Pan M, Yu Y, Sun A, Shi K, Qu Y, Qian Z. Application of nanotechnology for enhancing photodynamic therapy via ameliorating, neglecting, or exploiting tumor hypoxia. VIEW 2020. [DOI: 10.1002/viw2.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- DanRong Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Yan Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Ao Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of HematologyState Key Laboratory of BiotherapyWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| |
Collapse
|
42
|
Preclinical and Clinical Evidence of Immune Responses Triggered in Oncologic Photodynamic Therapy: Clinical Recommendations. J Clin Med 2020; 9:jcm9020333. [PMID: 31991650 PMCID: PMC7074240 DOI: 10.3390/jcm9020333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is an anticancer strategy utilizing light-mediated activation of a photosensitizer (PS) which has accumulated in tumor and/or surrounding vasculature. Upon activation, the PS mediates tumor destruction through the generation of reactive oxygen species and tumor-associated vasculature damage, generally resulting in high tumor cure rates. In addition, a PDT-induced immune response against the tumor has been documented in several studies. However, some contradictory results have been reported as well. With the aim of improving the understanding and awareness of the immunological events triggered by PDT, this review focuses on the immunological effects post-PDT, described in preclinical and clinical studies. The reviewed preclinical evidence indicates that PDT is able to elicit a local inflammatory response in the treated site, which can develop into systemic antitumor immunity, providing long-term tumor growth control. Nevertheless, this aspect of PDT has barely been explored in clinical studies. It is clear that further understanding of these events can impact the design of more potent PDT treatments. Based on the available preclinical knowledge, recommendations are given to guide future clinical research to gain valuable information on the immune response induced by PDT. Such insights directly obtained from cancer patients can only improve the success of PDT treatment, either alone or in combination with immunomodulatory approaches.
Collapse
|
43
|
Peng W, de Bruijn HS, ten Hagen TLM, Berg K, Roodenburg JLN, van Dam GM, Witjes MJH, Robinson DJ. In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers (Basel) 2020; 12:E190. [PMID: 31940973 PMCID: PMC7017190 DOI: 10.3390/cancers12010190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Targeted photodynamic therapy (PDT) has the potential to improve the therapeutic effect of PDT due to significantly better tumor responses and less normal tissue damage. Here we investigated if the efficacy of epidermal growth factor receptor (EGFR) targeted PDT using cetuximab-IRDye700DX is fluence rate dependent. Cell survival after treatment with different fluence rates was investigated in three cell lines. Singlet oxygen formation was investigated using the singlet oxygen quencher sodium azide and singlet oxygen sensor green (SOSG). The long-term response (to 90 days) of solid OSC-19-luc2-cGFP tumors in mice was determined after illumination with 20, 50, or 150 mW·cm-2. Reflectance and fluorescence spectroscopy were used to monitor therapy. Singlet oxygen was formed during illumination as shown by the increase in SOSG fluorescence and the decreased response in the presence of sodium azide. Significantly more cell death and more cures were observed after reducing the fluence rate from 150 mW·cm-2 to 20 mW·cm-2 both in-vitro and in-vivo. Photobleaching of IRDye700DX increased with lower fluence rates and correlated with efficacy. The response in EGFR targeted PDT is strongly dependent on fluence rate used. The effectiveness of targeted PDT is, like PDT, dependent on the generation of singlet oxygen and thus the availability of intracellular oxygen.
Collapse
Affiliation(s)
- Wei Peng
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henriette S. de Bruijn
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Timo L. M. ten Hagen
- ErasmusMC, Laboratory of Experimental Oncology, Department of Pathology, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Kristian Berg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Boks 1072 Blindern, NO-0316 Oslo, Norway
- Department of Pharmacy, School of Pharmacy, University of Oslo, Boks 1072 Blindern, NO-0316 Oslo, Norway
| | - Jan L. N. Roodenburg
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Go M. van Dam
- Department of Surgery, Nuclear Medicine and Molecular Imaging and Intensive Care, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Max J. H. Witjes
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dominic J. Robinson
- ErasmusMC Cancer Institute, Department of Otolaryngology and Head & Neck Surgery, Center for Optical Diagnostics and Therapy, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
44
|
S. Lobo AC, Gomes-da-Silva LC, Rodrigues-Santos P, Cabrita A, Santos-Rosa M, Arnaut LG. Immune Responses after Vascular Photodynamic Therapy with Redaporfin. J Clin Med 2019; 9:jcm9010104. [PMID: 31906092 PMCID: PMC7027008 DOI: 10.3390/jcm9010104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) relies on the administration of a photosensitizer (PS) that is activated, after a certain drug-to-light interval (DLI), by the irradiation of the target tumour with light of a specific wavelength absorbed by the PS. Typically, low light doses are insufficient to eradicate solid tumours and high fluence rates have been described as poorly immunogenic. However, previous work with mice bearing CT26 tumours demonstrated that vascular PDT with redaporfin, using a low light dose delivered at a high fluence rate, not only destroys the primary tumour but also reduces the formation of metastasis, thus suggesting anti-tumour immunity. This work characterizes immune responses triggered by redaporfin-PDT in mice bearing CT26 tumours. Our results demonstrate that vascular-PDT leads to a strong neutrophilia (2-24 h), systemic increase of IL-6 (24 h), increased percentage of CD4+ and CD8+ T cells producing IFN-γ or CD69+ (2-24 h) and increased CD4+/CD8+ T cell ratio (2-24 h). At the tumour bed, T cell tumour infiltration disappeared after PDT but reappeared with a much higher incidence one day later. In addition, it is shown that the therapeutic effect of redaporfin-PDT is highly dependent on neutrophils and CD8+ T cells but not on CD4+ T cells.
Collapse
Affiliation(s)
| | - Lígia C. Gomes-da-Silva
- CQC, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal;
- Correspondence: (L.C.G.-d.-S.); (L.G.A.)
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; (P.R.-S.); (M.S.-R.)
- Laboratory of Immunology and Oncology, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - António Cabrita
- Anatomic Pathology Department, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Manuel Santos-Rosa
- Immunology Institute, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; (P.R.-S.); (M.S.-R.)
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís G. Arnaut
- CQC, Chemistry Department, University of Coimbra, 3004-535 Coimbra, Portugal;
- Correspondence: (L.C.G.-d.-S.); (L.G.A.)
| |
Collapse
|
45
|
Santos AF, Almeida DRQ, Terra LF, Wailemann RA, Gomes VM, Arini GS, Ravagnani FG, Baptista MS, Labriola L. Fluence Rate Determines PDT Efficiency in Breast Cancer Cells Displaying Different GSH Levels. Photochem Photobiol 2019; 96:658-667. [DOI: 10.1111/php.13182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ancély F. Santos
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | | | - Letícia F. Terra
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | | | - Vinícius M. Gomes
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Gabriel S. Arini
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Felipe G. Ravagnani
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Maurício S. Baptista
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| | - Leticia Labriola
- Department of Biochemistry Chemistry Institute University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
46
|
Nie S, Wang X, Wang H. NLRP3 Inflammasome Mediated Interleukin-1β Production in Cancer-Associated Fibroblast Contributes to ALA-PDT for Cutaneous Squamous Cell Carcinoma. Cancer Manag Res 2019; 11:10257-10267. [PMID: 31849516 PMCID: PMC6912005 DOI: 10.2147/cmar.s226356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Long-term tumor control following PDT is a result of its direct effect on tumor and vasculature in combination with induction of inflammatory-reactions upregulating the immune system. When PDT induces necrosis of tumors and vascular system, an immune cascade can be initiated to release all kinds of cytokines including IL1β. This further leads to the activation of inflammatory-cells and hence death of tumor cells. Methods Ultraviolet irradiation was used to induce cSCC mice model, gene chip was used to screen inflammatory cytokines, qPCR, ELISA and implanted tumor mice model were used to verify the changes and important role of interleukin-1β, and WB preliminarily explored the production mechanism of interleukin-1β. Results Inflammatory cytokines and receptors transcript screening identify IL1r1 as the top4. After ALA-PDT, IL1r1 and IL1β increased in patients' biopsies, principally in mesenchymal cells. In vivo, the inhibition of ALA-PDT on tumor growth of cutaneous squamous cell carcinoma (cSCC) mice in the group with intralesional injection of anti-IL1β mAb or caspase1-inhibitor was significantly weaker than the control groups. Furthermore, NLRP3-inflammasome and p-p65/p65 were elevated after ALA-PDT mediated IL1β production in cancer-associated-fibroblasts. Discussion By means of activating NLRP3-inflammasome with IL1β production in CAFs, PDT stimulates local acute-inflammatory-response, which further promotes PDT effect for cSCC.
Collapse
Affiliation(s)
- Shu Nie
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, People's Republic of China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, People's Republic of China
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, People's Republic of China
| |
Collapse
|
47
|
Gazzi A, Fusco L, Khan A, Bedognetti D, Zavan B, Vitale F, Yilmazer A, Delogu LG. Photodynamic Therapy Based on Graphene and MXene in Cancer Theranostics. Front Bioeng Biotechnol 2019; 7:295. [PMID: 31709252 PMCID: PMC6823231 DOI: 10.3389/fbioe.2019.00295] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/09/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer is one of the leading causes of death in the world. Therefore, the development of new advanced and targeted strategies in cancer research for early diagnosis and treatment has become essential to improve diagnosis outcomes and reduce therapy side effects. Graphene and more recently, MXene, are the main representatives of the family of two-dimensional (2D) materials and are widely studied as multimodal nanoplatforms for cancer diagnostics and treatment, in particular leveraging their potentialities as photodynamic therapeutic agents. Indeed, due to their irreplaceable physicochemical properties, they are virtuous allies for photodynamic therapy (PDT) in combination with bioimaging, photothermal therapy, as well as drug and gene delivery. In this review, the rapidly progressing literature related to the use of these promising 2D materials for cancer theranostics is described in detail, highlighting all their possible future advances in PDT.
Collapse
Affiliation(s)
- Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Sidra Medical and Research Center, Doha, Qatar
| | - Anooshay Khan
- Department of Biomedical Engineering, University of Ankara, Ankara, Turkey
| | | | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Acelya Yilmazer
- Department of Biomedical Engineering, University of Ankara, Ankara, Turkey.,Stem Cell Institute, University of Ankara, Ankara, Turkey
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
48
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
49
|
Ji J, Wang P, Zhou Q, Zhu L, Zhang H, Zhang Y, Zheng Z, Bhatta AK, Zhang G, Wang X. CCL8 enhances sensitivity of cutaneous squamous cell carcinoma to photodynamic therapy by recruiting M1 macrophages. Photodiagnosis Photodyn Ther 2019; 26:235-243. [DOI: 10.1016/j.pdpdt.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/09/2023]
|
50
|
Yang Z, Chen Q, Chen J, Dong Z, Zhang R, Liu J, Liu Z. Tumor-pH-Responsive Dissociable Albumin-Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803262. [PMID: 30307701 DOI: 10.1002/smll.201803262] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/23/2018] [Indexed: 05/06/2023]
Abstract
Despite the promises of applying nano-photosensitizers (nano-PSs) for photodynamic therapy (PDT) against cancer, severe tumor hypoxia and limited tumor penetration of nano-PSs would lead to nonoptimized therapeutic outcomes of PDT. Therefore, herein a biocompatible nano-PS is prepared by using tamoxifen (TAM), an anti-estrogen compound, to induce self-assembly of chlorin e6 (Ce6) modified human serum albumin (HSA). The formed HSA-Ce6/TAM nanocomplexes, which are stable under neutral pH with a diameter of ≈130 nm, would be dissociated into individual HSA-Ce6 and TAM molecules under the acidic tumor microenvironment, owing to the pH responsive transition of TAM from hydrophobic to hydrophilic. Upon systemic administration, such HSA-Ce6/TAM nanoparticles exhibit prolonged blood circulation and high accumulation in the tumor, where it would undergo rapid pH responsive dissociation to enable obviously enhanced intratumoral penetration of HSA-Ce6. Furthermore, utilizing the ability of TAM in reducing the oxygen consumption of cancer cells, it is found that HSA-Ce6/TAM after systemic administration could efficiently attenuate the tumor hypoxia status. Those effects acting together lead to remarkably enhanced PDT treatment. This work presents a rather simple approach to fabricate smart nano-PSs with multiple functions integrated into a single system via self-assembly of all-biocompatible components, promising for the next generation cancer PDT.
Collapse
Affiliation(s)
- Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jiawen Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|