1
|
Eickhoff N, Bergman AM, Zwart W. Homing in on a Moving Target: Androgen Receptor Cistromic Plasticity in Prostate Cancer. Endocrinology 2022; 163:6705578. [PMID: 36125208 DOI: 10.1210/endocr/bqac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/19/2022]
Abstract
The androgen receptor (AR) is the critical driver in prostate cancer and exerts its function mainly through transcriptional control. Recent advances in clinical studies and cell line models have illustrated that AR chromatin binding features are not static; rather they are highly variable yet reproducibly altered between clinical stages. Extensive genomic analyses of AR chromatin binding features in different disease stages have revealed a high degree of plasticity of AR chromatin interactions in clinical samples. Mechanistically, AR chromatin binding patterns are associated with specific somatic mutations on AR and other permutations, including mutations of AR-interacting proteins. Here we summarize the most recent studies on how the AR cistrome is dynamically altered in prostate cancer models and patient samples, and what implications this has for the identification of therapeutic targets to avoid the emergence of treatment resistance.
Collapse
Affiliation(s)
- Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Zhao Z, Fowle H, Valentine H, Liu Z, Tan Y, Pei J, Badal S, Testa JR, Graña X. Immortalization of human primary prostate epithelial cells via CRISPR inactivation of the CDKN2A locus and expression of telomerase. Prostate Cancer Prostatic Dis 2021; 24:233-243. [PMID: 32873916 PMCID: PMC7917161 DOI: 10.1038/s41391-020-00274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Immortalization of primary prostate epithelial cells (PrEC) with just hTERT expression is particularly inefficient in the absence of DNA tumor viral proteins or p16INK4A knockdown. MATERIALS AND METHODS Here, we describe the establishment of immortalized normal prostate epithelial cell line models using CRISPR technology to inactivate the CDKN2A locus concomitantly with ectopic expression of an hTERT transgene. RESULTS Using this approach, we have obtained immortal cell clones that exhibit fundamental characteristics of normal cells, including diploid genomes, near normal karyotypes, normal p53 and pRB cell responses, the ability to form non-invasive spheroids, and a non-transformed phenotype. Based on marker expression, these clones are of basal cell origin. CONCLUSIONS Use of this approach resulted in the immortalization of independent clones of PrEC that retained normal characteristics, were stable, and non-transformed. Thus, this approach could be used for the immortalization of normal primary prostate cells. This technique could also be useful for establishing cell lines from prostate tumor tissues of different tumor grades and/or from patients of diverse ethnicities to generate cell line models that facilitate the study of the molecular basis of disease disparity.
Collapse
Affiliation(s)
- Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA
| | - Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA
| | - Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica
| | - Zemin Liu
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Jianming Pei
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica
| | - Joseph R Testa
- Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Chen W, Mou KY, Solomon P, Aggarwal R, Leung KK, Wells JA. Large remodeling of the Myc-induced cell surface proteome in B cells and prostate cells creates new opportunities for immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2018861118. [PMID: 33483421 PMCID: PMC7848737 DOI: 10.1073/pnas.2018861118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MYC is a powerful transcription factor overexpressed in many human cancers including B cell and prostate cancers. Antibody therapeutics are exciting opportunities to attack cancers but require knowledge of surface proteins that change due to oncogene expression. To identify how MYC overexpression remodels the cell surface proteome in a cell autologous fashion and in different cell types, we investigated the impact of MYC overexpression on 800 surface proteins in three isogenic model cell lines either of B cell or prostate cell origin engineered to have high or low MYC levels. We found that MYC overexpression resulted in dramatic remodeling (both up- and down-regulation) of the cell surfaceome in a cell type-dependent fashion. We found systematic and large increases in distinct sets of >80 transporters including nucleoside transporters and nutrient transporters making cells more sensitive to toxic nucleoside analogs like cytarabine, commonly used for treating hematological cancers. Paradoxically, MYC overexpression also increased expression of surface proteins driving cell turnover such as TNFRSF10B, also known as death receptor 5, and immune cell attacking signals such as the natural killer cell activating ligand NCR3LG1, also known as B7-H6. We generated recombinant antibodies to these two targets and verified their up-regulation in MYC overexpression cell lines and showed they were sensitive to bispecific T cell engagers (BiTEs). Our studies demonstrate how MYC overexpression leads to dramatic bidirectional remodeling of the surfaceome in a cell type-dependent but functionally convergent fashion and identify surface targets or combinations thereof as possible candidates for cytotoxic metabolite or immunotherapy.
Collapse
Affiliation(s)
- Wentao Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Department of Therapeutic Discovery, Amgen Research, Thousand Oaks, CA 91320
| | - Kurt Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 11529
| | - Paige Solomon
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, CA 94158
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158;
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| |
Collapse
|
4
|
Kunjiappan S, Pavadai P, Vellaichamy S, Ram Kumar Pandian S, Ravishankar V, Palanisamy P, Govindaraj S, Srinivasan G, Premanand A, Sankaranarayanan M, Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev Res 2020; 82:309-340. [DOI: 10.1002/ddr.21758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Selvaraj Kunjiappan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy M.S. Ramaiah University of Applied Sciences Bengaluru Karnataka India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics Arulmigu Kalasalingam College of Pharmacy Krishnankoil Tamilnadu India
| | | | | | - Ponnusamy Palanisamy
- School of Mechanical Engineering Vellore Institute of Technology Vellore Tamilnadu India
| | - Saravanan Govindaraj
- Department of Pharmaceutical Chemistry MNR College of Pharmacy Sangareddy Telangana India
| | - Gowshiki Srinivasan
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Adhvitha Premanand
- Department of Biotechnology Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | | | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry Swamy Vivekananda College of Pharmacy Elayampalayam, Namakkal Tamilnadu India
| |
Collapse
|
5
|
Wise DR, Schneider JA, Armenia J, Febles VA, McLaughlin B, Brennan R, Thoren KL, Abida W, Sfanos KS, De Marzo AM, Yegnasubramanian S, Fox JJ, Haas M, Heath H, Kagey MH, Newman W, Sirard CA, Fleisher M, Morris MJ, Chen Y, Larson SM, Haffner MC, Nelson PS, Schultz N, Garabedian MJ, Scher HI, Logan SK, Sawyers CL. Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 2020; 4:2000097. [PMID: 33015525 DOI: 10.1200/po.20.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) with low androgen receptor (AR) and without neuroendocrine signaling, termed double-negative prostate cancer (DNPC), is increasingly prevalent in patients treated with AR signaling inhibitors and is in need of new biomarkers and therapeutic targets. METHODS Candidate genes enriched in DNPC were determined using differential gene expression analysis of discovery and validation cohorts of mCRPC biopsies. Laboratory studies were carried out in human mCRPC organoid cultures, prostate cancer (PCa) cell lines, and mouse xenograft models. Epigenetic studies were carried out in a rapid autopsy cohort. RESULTS Dickkopf-1 (DKK1) expression is increased in DNPC relative to prostate-specific antigen (PSA)-expressing mCRPC in the Stand Up to Cancer/Prostate Cancer Foundation discovery cohort (11.2 v 0.28 reads per kilobase per million mapped reads; q < 0.05; n = 117) and in the University of Washington/Fred Hutchinson Cancer Research Center cohort (9.2 v 0.99 fragments per kilobase of transcript per million mapped reads; P < .0001). DKK1 expression can be regulated by activated Wnt signaling in vitro and correlates with activating canonical Wnt signaling mutations and low PSA mRNA in mCRPC biopsies (P < .05). DKK1 hypomethylation was associated with increased DKK1 mRNA expression (Pearson r = -0.66; P < .0001) in a rapid autopsy cohort (n = 7). DKK1-high mCRPC biopsies are infiltrated with significantly higher numbers of quiescent natural killer (NK) cells (P < .005) and lower numbers of activated NK cells (P < .0005). Growth inhibition of the human PCa model PC3 by the anti-DKK1 monoclonal antibody DKN-01 depends on the presence of NK cells in a severe combined immunodeficient xenograft mouse model. CONCLUSION These results support DKK1 as a contributor to the immunosuppressive tumor microenvironment of DNPC. These data have provided the rationale for a clinical trial targeting DKK1 in mCRPC (ClinicalTrials.gov identifier: NCT03837353).
Collapse
Affiliation(s)
- David R Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | | | - Joshua Armenia
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Victor Adorno Febles
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Bridget McLaughlin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryan Brennan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katie L Thoren
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen S Sfanos
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Josef J Fox
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | - Martin Fleisher
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven M Larson
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael C Haffner
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Peter S Nelson
- Departments of Medicine and Pathology, University of Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J Garabedian
- Department of Urology, NYU Langone Medical Center, New York, NY.,Department of Microbiology, NYU Langone Medical Center, New York, NY
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan K Logan
- Department of Urology, NYU Langone Medical Center, New York, NY
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
6
|
Sato M, Shay JW, Minna JD. Immortalized normal human lung epithelial cell models for studying lung cancer biology. Respir Investig 2020; 58:344-354. [PMID: 32586780 DOI: 10.1016/j.resinv.2020.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023]
Abstract
Primary cultures of human lung epithelial cells are ideal representatives of normal lung epithelial cells, and while there are certain novel approaches for the long-term culture of lung epithelial cells, the cells eventually undergo irreversible growth arrest, limiting their experimental utility, particularly the ability to widely distribute these cultures and their clonal derivatives to the broader research community. Therefore, the establishment of immortalized normal human lung epithelial cell strains has garnered considerable attention. The number and type of oncogenic changes necessary for the tumorigenic transformation of normal cells could be determined using "normal" cell lines immortalized with the simian virus 40 (SV40) large T antigen (LT). A primary report suggested that LT, human telomerase reverse transcriptase (hTERT), and oncogenic RAS transformed normal lung epithelial cells into tumorigenic cells. Since LT inactivates the tumor suppressors p53 and RB, at least four alterations would be necessary. However, the SV40 small T antigen (ST), a different oncoprotein, was also introduced simultaneously with LT in the above-mentioned study. Furthermore, the possible uncharacterized functions of LT remained largely obscure. Therefore, no definitive conclusion could be arrived in these studies. Subsequent studies used methods that did not involve the use of oncoproteins and revealed that at least five genetic changes were necessary for full tumorigenic transformation. hTERT-immortalized normal human lung epithelial cell lines established without using viral oncoproteins were also used for investigating several aspects of lung cancer, such as epithelial to mesenchymal transition and the cancer stem cell theory. The use of immortalized normal lung epithelial cell models has improved our understanding of lung cancer pathogenesis and these models can serve as valuable research tools.
Collapse
Affiliation(s)
- Mitsuo Sato
- Dept. of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Jerry W Shay
- Dept. of Cell Biology, University of Texas Southwestern Medical Center, Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Jiang L, Ivich F, Tahsin S, Tran M, Frank SB, Miranti CK, Zohar Y. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. BIOMICROFLUIDICS 2019; 13:064116. [PMID: 31768202 PMCID: PMC6867939 DOI: 10.1063/1.5126714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/11/2019] [Indexed: 05/10/2023]
Abstract
The prostate is a walnut-sized gland that surrounds the urethra of males at the base of the bladder comprising a muscular portion, which controls the release of urine, and a glandular portion, which secretes fluids that nourish and protect sperms. Here, we report the development of a microfluidic-based model of a human prostate gland. The polydimethylsiloxane (PDMS) microfluidic device, consisting of two stacked microchannels separated by a polyester porous membrane, enables long-term in vitro cocultivation of human epithelial and stromal cells. The porous separation membrane provides an anchoring scaffold for long-term culturing of the two cell types on its opposite surfaces allowing paracrine signaling but not cell crossing between the two channels. The microfluidic device is transparent enabling high resolution bright-field and fluorescence imaging. Within this coculture model of a human epithelium/stroma interface, we simulated the functional development of the in vivo human prostate gland. We observed the successful differentiation of basal epithelial cells into luminal secretory cells determined biochemically by immunostaining with known differentiation biomarkers, particularly androgen receptor expression. We also observed morphological changes where glandlike mounds appeared with relatively empty centers reminiscent of prostatic glandular acini structures. This prostate-on-a-chip will facilitate the direct evaluation of paracrine and endocrine cross talk between these two cell types as well as studies associated with normal vs disease-related events such as prostate cancer.
Collapse
Affiliation(s)
- L. Jiang
- Department of Aerospace & Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Author to whom correspondence should be addressed:
| | - F. Ivich
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | | - M. Tran
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
8
|
Wang M, Nagle RB, Knudsen BS, Cress AE, Rogers GC. Centrosome loss results in an unstable genome and malignant prostate tumors. Oncogene 2019; 39:399-413. [PMID: 31477840 DOI: 10.1038/s41388-019-0995-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Localized, nonindolent prostate cancer (PCa) is characterized by large-scale genomic rearrangements, aneuploidy, chromothripsis, and other forms of chromosomal instability (CIN), yet how this occurs remains unclear. A well-established mechanism of CIN is the overproduction of centrosomes, which promotes tumorigenesis in various mouse models. Therefore, we developed a single-cell assay for quantifying centrosomes in human prostate tissue. Surprisingly, centrosome loss-which has not been described in human cancer-was associated with PCa progression. By chemically or genetically inducing centrosome loss in nontumorigenic prostate epithelial cells, mitotic errors ensued, producing aneuploid, and multinucleated cells. Strikingly, transient or chronic centrosome loss transformed prostate epithelial cells, which produced highly proliferative and poorly differentiated malignant tumors in mice. Our findings suggest that centrosome loss could create a cellular crisis with oncogenic potential in prostate epithelial cells.
Collapse
Affiliation(s)
- Mengdie Wang
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
9
|
Srinivasan D, Senbanjo L, Majumdar S, Franklin RB, Chellaiah MA. Androgen receptor expression reduces stemness characteristics of prostate cancer cells (PC3) by repression of CD44 and SOX2. J Cell Biochem 2019; 120:2413-2428. [PMID: 30206982 PMCID: PMC6411465 DOI: 10.1002/jcb.27573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
Abstract
Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the "molecular signature" of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells. PCa2b and PC3 cells were derived from bone metastases. PCa2b cells which are positive for the AR failed to demonstrate the expression of either cluster of differentiation 44 (CD44) or SOX2. Knockdown (KD) of AR in these cells did not affect the expression of either CD44 or SOX2. Conversely, PC3 cells, which are negative for AR, expressed both CD44 and SOX2. However, the expression of AR downregulated the expression of both CD44 and SOX2 in PC3 cells. CD44 regulates SOX2 expression as KD of CD44 and reduces SOX2 levels considerably. SOX2 KD attenuated not only the expression of SNAIL and SLUG but also the migration and tumorsphere formation in PC3 cells. Collectively, our findings underscore a novel role of CD44 signaling in the maintenance of stemness and progression of cancer through SOX2 in AR-independent PC3 cells. SOX2 has a role in the regulation of expression of SNAIL and SLUG. SOX2 could be a potential therapeutic target to thwart the progression of SOX2-positive cancer cells or recurrence of androgen-independent PCa.
Collapse
Affiliation(s)
- Deepa Srinivasan
- Department of Oncology and Diagnostic SciencesUniversity of Maryland Dental SchoolBaltimoreMaryland
| | - Linda Senbanjo
- Department of Oncology and Diagnostic SciencesUniversity of Maryland Dental SchoolBaltimoreMaryland
| | - Sunipa Majumdar
- Department of Oncology and Diagnostic SciencesUniversity of Maryland Dental SchoolBaltimoreMaryland
| | - Renty B. Franklin
- Department of Oncology and Diagnostic SciencesUniversity of Maryland Dental SchoolBaltimoreMaryland
| | - Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic SciencesUniversity of Maryland Dental SchoolBaltimoreMaryland
| |
Collapse
|
10
|
Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun 2019; 10:335. [PMID: 30659195 PMCID: PMC6338783 DOI: 10.1038/s41467-018-08245-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinomas (HCC) exhibit distinct promoter hypermethylation patterns, but the epigenetic regulation and function of transcriptional enhancers remain unclear. Here, our affinity- and bisulfite-based whole-genome sequencing analyses reveal global enhancer hypomethylation in human HCCs. Integrative epigenomic characterization further pinpoints a recurrent hypomethylated enhancer of CCAAT/enhancer-binding protein-beta (C/EBPβ) which correlates with C/EBPβ over-expression and poorer prognosis of patients. Demethylation of C/EBPβ enhancer reactivates a self-reinforcing enhancer-target loop via direct transcriptional up-regulation of enhancer RNA. Conversely, deletion of this enhancer via CRISPR/Cas9 reduces C/EBPβ expression and its genome-wide co-occupancy with BRD4 at H3K27ac-marked enhancers and super-enhancers, leading to drastic suppression of driver oncogenes and HCC tumorigenicity. Hepatitis B X protein transgenic mouse model of HCC recapitulates this paradigm, as C/ebpβ enhancer hypomethylation associates with oncogenic activation in early tumorigenesis. These results support a causal link between aberrant enhancer hypomethylation and C/EBPβ over-expression, thereby contributing to hepatocarcinogenesis through global transcriptional reprogramming. There are distinct hypermethylation patterns in gene promoters in hepatocellular carcinomas (HCCs). Here, the authors show that the enhancer of C/EBPβ is recurrently hypomethylated in human HCCs, recapitulating this in a transgenic murine model and linking aberrant enhancer hypomethylation to hepatocarcinogenesis.
Collapse
|
11
|
Abstract
Comprehensive knowledge of the normal prostate epithelial lineage hierarchy is a prerequisite to investigate the identity of the cells of origin for prostate cancer. The basal and luminal cells constitute most of the prostate epithelium and have been the major focuses of the study on the cells of origin for prostate cancer. Much progress has been made during the past few decades, mainly using mouse models, to understand the inter-lineage relationship and intra-lineage heterogeneity in adults as well as the lineage plasticity during conditions of stress. These studies have concluded that the adult mouse prostate basal and luminal cells are largely independently sustained under physiological conditions, but both types of cells possess the capacity for bipotent differentiation under stress or artificial experimental conditions. However, the existence or the identity of the putative progenitors within each lineage warrants further investigation. Whether the human prostate lineage hierarchy is completely the same as that of the mouse remains uncertain. Experiments from independent groups have demonstrated that both types of cells in mice and humans can serve as targets for transformation. But controversies remain whether the disease from distinct cells of origin display different clinical behaviors. Further investigation of the intra-lineage heterogeneity will provide new insights into this issue. Understanding the identity of the cells of origin for prostate cancer will help identify novel prognostic markers for early detection of aggressive prostate cancers, provide insights into the therapeutic vulnerability of these tumors, and inspire novel therapeutic strategies.
Collapse
|
12
|
Lu X, Pan X, Wu CJ, Zhao D, Feng S, Zang Y, Lee R, Khadka S, Amin SB, Jin EJ, Shang X, Deng P, Luo Y, Morgenlander WR, Weinrich J, Lu X, Jiang S, Chang Q, Navone NM, Troncoso P, DePinho RA, Wang YA. An In Vivo Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer. Cancer Res 2018; 78:3823-3833. [PMID: 29769196 PMCID: PMC6381393 DOI: 10.1158/0008-5472.can-17-3564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/27/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
Abstract
Advanced prostate cancer displays conspicuous chromosomal instability and rampant copy number aberrations, yet the identity of functional drivers resident in many amplicons remain elusive. Here, we implemented a functional genomics approach to identify new oncogenes involved in prostate cancer progression. Through integrated analyses of focal amplicons in large prostate cancer genomic and transcriptomic datasets as well as genes upregulated in metastasis, 276 putative oncogenes were enlisted into an in vivo gain-of-function tumorigenesis screen. Among the top positive hits, we conducted an in-depth functional analysis on Pygopus family PHD finger 2 (PYGO2), located in the amplicon at 1q21.3. PYGO2 overexpression enhances primary tumor growth and local invasion to draining lymph nodes. Conversely, PYGO2 depletion inhibits prostate cancer cell invasion in vitro and progression of primary tumor and metastasis in vivo In clinical samples, PYGO2 upregulation associated with higher Gleason score and metastasis to lymph nodes and bone. Silencing PYGO2 expression in patient-derived xenograft models impairs tumor progression. Finally, PYGO2 is necessary to enhance the transcriptional activation in response to ligand-induced Wnt/β-catenin signaling. Together, our results indicate that PYGO2 functions as a driver oncogene in the 1q21.3 amplicon and may serve as a potential prognostic biomarker and therapeutic target for metastatic prostate cancer.Significance: Amplification/overexpression of PYGO2 may serve as a biomarker for prostate cancer progression and metastasis. Cancer Res; 78(14); 3823-33. ©2018 AACR.
Collapse
Affiliation(s)
- Xin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
- Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Xiaolu Pan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shan Feng
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Yong Zang
- Department of Biostatistics, Indiana University, Indianapolis, Indiana
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunada Khadka
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samirkumar B Amin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eun-Jung Jin
- Department of Biological Science, Wonkwang University, Cheonbuk, Iksan, South Korea
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanting Luo
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - William R Morgenlander
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Jacqueline Weinrich
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Xuemin Lu
- Department of Biological Sciences, Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Chang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
13
|
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, Nitta KR, Taipale M, Popov A, Ginno PA, Domcke S, Yan J, Schübeler D, Vinson C, Taipale J. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2018; 356:356/6337/eaaj2239. [PMID: 28473536 DOI: 10.1126/science.aaj2239] [Citation(s) in RCA: 774] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/09/2017] [Indexed: 12/17/2022]
Abstract
The majority of CpG dinucleotides in the human genome are methylated at cytosine bases. However, active gene regulatory elements are generally hypomethylated relative to their flanking regions, and the binding of some transcription factors (TFs) is diminished by methylation of their target sequences. By analysis of 542 human TFs with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), we found that there are also many TFs that prefer CpG-methylated sequences. Most of these are in the extended homeodomain family. Structural analysis showed that homeodomain specificity for methylcytosine depends on direct hydrophobic interactions with the methylcytosine 5-methyl group. This study provides a systematic examination of the effect of an epigenetic DNA modification on human TF binding specificity and reveals that many developmentally important proteins display preference for mCpG-containing sequences.
Collapse
Affiliation(s)
- Yimeng Yin
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Ekaterina Morgunova
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Arttu Jolma
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Eevi Kaasinen
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Biswajyoti Sahu
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Syed Khund-Sayeed
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Pratyush K Das
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Teemu Kivioja
- Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| | - Kashyap Dave
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Fan Zhong
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Kazuhiro R Nitta
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Minna Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Alexander Popov
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Paul A Ginno
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Silvia Domcke
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jian Yan
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden
| | - Dirk Schübeler
- Friedrich-Miescher-Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058 Basel, Switzerland.,Faculty of Science, University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Room 3128, Building 37, Bethesda, MD 20892, USA
| | - Jussi Taipale
- Division of Functional Genomics and Systems Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 141 83 Stockholm, Sweden. .,Genome-Scale Biology Program, Post Office Box 63, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Jiang L, Shan J, Shen J, Wang Y, Yan P, Liu L, Zhao W, Xu Y, Zhu W, Su L, Chen J, Cheng F, Yao H, Xu H, Qian C, Liang Z. Androgen/androgen receptor axis maintains and promotes cancer cell stemness through direct activation of Nanog transcription in hepatocellular carcinoma. Oncotarget 2018; 7:36814-36828. [PMID: 27167111 PMCID: PMC5095041 DOI: 10.18632/oncotarget.9192] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and malignant cancers. The HCC incidence gets a strong sexual dimorphism as men are the major sufferers in this disaster. Although several studies have uncovered the presentative correlation between the axis of androgen/androgen receptor (AR) and HCC incidence, the mechanism is still largely unknown. Cancer stem cells (CSCs) are a small subgroup of cancer cells contributing to multiple tumors malignant behaviors, which play an important role in oncogenesis of various cancers including HCC. However, whether androgen/AR axis involves in regulation of HCC cells stemness remains unclear. Our previous study had identified that the pluripotency factor Nanog is not only a stemness biomarker, but also a potent regulator of CSCs in HCC. In this study, we revealed androgen/AR axis can promote HCC cells stemness by transcriptional activation of Nanog expression through directly binding to its promoter. In HCC tissues, we found that AR expression was abnormal high and got correlation with Nanog. Then, by labeling cellular endogenous Nanog with green fluorescent protein (GFP) through CRISPR/Cas9 system, it verified the co-localization of AR and Nanog in HCC cells. With in vitro experiments, we demonstrated the axis can promote HCC cells stemness, which effect is in a Nanog-dependent manner and through activating its transcription. And the xenografted tumor experiments confirmed the axis effect on tumorigenesis facilitation in vivo. Above all, we revealed a new sight of androgen/AR axis roles in HCC and provided a potential way for suppressing the axis in HCC therapy.
Collapse
Affiliation(s)
- Lupin Jiang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanzhou Wang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Yan
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenxu Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feifei Cheng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Yao
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huicheng Xu
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Zhao R, Wang X, Jiang C, Shi F, Zhu Y, Yang B, Zhuo J, Jing Y, Luo G, Xia S, Han B. Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling. Cell Prolif 2017; 51:e12415. [PMID: 29194865 DOI: 10.1111/cpr.12415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Urinary tract infection, urinary frequency, urgency, urodynia and haemorrhage are common post-operative complications of thulium laser resection of the prostate (TmLRP). Our study mainly focuses on the role of finasteride in prostate wound healing through AR signalling. MATERIALS AND METHODS TmLRP beagles were randomly distributed into different treatment groups. Serum and intra-prostatic testosterone and DHT level were determined. Histological analysis was conducted to study the re-epithelialization and inflammatory response of the prostatic urethra in each group. We investigated the role of androgen in proliferation and inflammatory response in prostate. In addition, the effects of TNF-α on prostate epithelium and stromal cells were also investigated. RESULTS Testosterone and DHT level increased in testosterone group and DHT decreased in finasteride group. Accelerated wound healing of prostatic urethra was observed in the finasteride group. DHT suppressed proliferation of prostate epithelium and enhanced inflammatory response in prostate. We confirmed that DHT enhanced macrophages TNF-α secretion through AR signalling. TNF-α suppressed proliferation of prostate epithelial cells and retarded cell migration. TNF-α also played a pivotal role in suppressing fibroblasts activation and contraction. CONCLUSION Testosterone treatment repressed re-epithelialization and wound healing of prostatic urethra. Finasteride treatment may be an effective way to promote prostate re-epithelialization.
Collapse
Affiliation(s)
- Ruizhe Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingjie Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boyu Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhuo
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Huang FW, Mosquera JM, Garofalo A, Oh C, Baco M, Amin-Mansour A, Rabasha B, Bahl S, Mullane SA, Robinson BD, Aldubayan S, Khani F, Karir B, Kim E, Chimene-Weiss J, Hofree M, Romanel A, Osborne JR, Kim JW, Azabdaftari G, Woloszynska-Read A, Sfanos K, De Marzo AM, Demichelis F, Gabriel S, Van Allen EM, Mesirov J, Tamayo P, Rubin MA, Powell IJ, Garraway LA. Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function ERF Mutations. Cancer Discov 2017; 7:973-983. [PMID: 28515055 PMCID: PMC5836784 DOI: 10.1158/2159-8290.cd-16-0960] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/22/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022]
Abstract
African-American men have the highest incidence of and mortality from prostate cancer. Whether a biological basis exists for this disparity remains unclear. Exome sequencing (n = 102) and targeted validation (n = 90) of localized primary hormone-naïve prostate cancer in African-American men identified several gene mutations not previously observed in this context, including recurrent loss-of-function mutations in ERF, an ETS transcriptional repressor, in 5% of cases. Analysis of existing prostate cancer cohorts revealed ERF deletions in 3% of primary prostate cancers and mutations or deletions in ERF in 3% to 5% of lethal castration-resistant prostate cancers. Knockdown of ERF confers increased anchorage-independent growth and generates a gene expression signature associated with oncogenic ETS activation and androgen signaling. Together, these results suggest that ERF is a prostate cancer tumor-suppressor gene. More generally, our findings support the application of systematic cancer genomic characterization in settings of broader ancestral diversity to enhance discovery and, eventually, therapeutic applications.Significance: Systematic genomic sequencing of prostate cancer in African-American men revealed new insights into prostate cancer, including the identification of ERF as a prostate cancer gene; somatic copy-number alteration differences; and uncommon PIK3CA and PTEN alterations. This study highlights the importance of inclusion of underrepresented minorities in cancer sequencing studies. Cancer Discov; 7(9); 973-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 920.
Collapse
Affiliation(s)
- Franklin W Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Andrea Garofalo
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Coyin Oh
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Maria Baco
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Ali Amin-Mansour
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Bokang Rabasha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Samira Bahl
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Stephanie A Mullane
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Brian D Robinson
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Saud Aldubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Beerinder Karir
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Eejung Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jeremy Chimene-Weiss
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Matan Hofree
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Joseph R Osborne
- Centre for Integrative Biology, University of Trento, Trento, Italy
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Gissou Azabdaftari
- Department of Pathology, Roswell Park Cancer Institute, Roswell Park, New York
| | - Anna Woloszynska-Read
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Roswell Park, New York
| | - Karen Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Francesca Demichelis
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian, New York, New York
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Stacey Gabriel
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jill Mesirov
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, University of California, San Diego, La Jolla, California
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Pablo Tamayo
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Medicine, University of California, San Diego, La Jolla, California
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian, New York, New York.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, New York
| | - Isaac J Powell
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
- Department of Urology, Wayne State University School of Medicine, Detroit, Michigan
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cancer Program, the Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
17
|
White MA, Lin C, Rajapakshe K, Dong J, Shi Y, Tsouko E, Mukhopadhyay R, Jasso D, Dawood W, Coarfa C, Frigo DE. Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer. Mol Cancer Res 2017; 15:1017-1028. [PMID: 28507054 DOI: 10.1158/1541-7786.mcr-16-0480] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 01/07/2023]
Abstract
Despite the known importance of androgen receptor (AR) signaling in prostate cancer, the processes downstream of AR that drive disease development and progression remain poorly understood. This knowledge gap has thus limited the ability to treat cancer. Here, it is demonstrated that androgens increase the metabolism of glutamine in prostate cancer cells. This metabolism was required for maximal cell growth under conditions of serum starvation. Mechanistically, AR signaling promoted glutamine metabolism by increasing the expression of the glutamine transporters SLC1A4 and SLC1A5, genes commonly overexpressed in prostate cancer. Correspondingly, gene expression signatures of AR activity correlated with SLC1A4 and SLC1A5 mRNA levels in clinical cohorts. Interestingly, MYC, a canonical oncogene in prostate cancer and previously described master regulator of glutamine metabolism, was only a context-dependent regulator of SLC1A4 and SLC1A5 levels, being unable to regulate either transporter in PTEN wild-type cells. In contrast, rapamycin was able to decrease the androgen-mediated expression of SLC1A4 and SLC1A5 independent of PTEN status, indicating that mTOR complex 1 (mTORC1) was needed for maximal AR-mediated glutamine uptake and prostate cancer cell growth. Taken together, these data indicate that three well-established oncogenic drivers (AR, MYC, and mTOR) function by converging to collectively increase the expression of glutamine transporters, thereby promoting glutamine uptake and subsequent prostate cancer cell growth.Implications: AR, MYC, and mTOR converge to increase glutamine uptake and metabolism in prostate cancer through increasing the levels of glutamine transporters. Mol Cancer Res; 15(8); 1017-28. ©2017 AACR.
Collapse
Affiliation(s)
- Mark A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Chenchu Lin
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jianrong Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yan Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Efrosini Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Ratna Mukhopadhyay
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Diana Jasso
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Wajahat Dawood
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Daniel E Frigo
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas. .,Molecular Medicine Program, The Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
18
|
Crumbaker M, Khoja L, Joshua AM. AR Signaling and the PI3K Pathway in Prostate Cancer. Cancers (Basel) 2017; 9:E34. [PMID: 28420128 PMCID: PMC5406709 DOI: 10.3390/cancers9040034] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a leading cause of cancer-related death in men worldwide. Aberrant signaling in the androgen pathway is critical in the development and progression of prostate cancer. Despite ongoing reliance on androgen receptor (AR) signaling in castrate resistant disease, in addition to the development of potent androgen targeting drugs, patients invariably develop treatment resistance. Interactions between the AR and PI3K pathways may be a mechanism of treatment resistance and inhibitors of this pathway have been developed with variable success. Herein we outline the role of the PI3K pathway in prostate cancer and, in particular, its association with androgen receptor signaling in the pathogenesis and evolution of prostate cancer, as well as a review of the clinical utility of PI3K targeting.
Collapse
Affiliation(s)
- Megan Crumbaker
- Kinghorn Cancer Centre, St Vincent's Hospital, 370 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- Garvan Institute of Medical Research, St Vincent's Clinical School, University of New South Wales, Sydney, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Leila Khoja
- AstraZeneca UK, Clinical Discovery Unit, Early Clinical Development Innovative Medicines, da Vinci Building, Melbourn Science Park, Melbourn, Hertfordshire SG8 6HB, UK.
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0QQ, UK.
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincent's Hospital, 370 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- Garvan Institute of Medical Research, St Vincent's Clinical School, University of New South Wales, Sydney, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia.
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, University Avenue, Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
19
|
Graham MK, Principessa L, Antony L, Meeker AK, Isaacs JT. Low p16 INK4a Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone. Prostate 2017; 77:374-384. [PMID: 27859428 PMCID: PMC5548187 DOI: 10.1002/pros.23276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND There are two principal senescence barriers that must be overcome to successfully immortalize primary human epithelial cells in culture, stress-induced senescence, and replicative senescence. The p16INK4a /retinoblastoma protein (p16/Rb) pathway mediates stress-induced senescence, and is generally upregulated by primary epithelial cells in response to the artificial conditions from tissue culture. Replicative senescence is associated with telomere loss. Following each round of cell division, telomeres progressively shorten. Once telomeres shorten to a critical length, the DNA damage response pathway is activated, and the tumor suppressor p53 pathway triggers replicative senescence. Exogenous expression of telomerase in normal human epithelial cells extends the replicative capacity of cells, and in some cases, immortalizes cells. However reliable immortalization of epithelial cells usually requires telomerase activity coupled with inactivation of the p16/Rb pathway. METHODS A lentiviral vector, pLOX-TERT-iresTK (Addgene #12245), containing a CMV promoter upstream of a bicistronic coding cassette that includes loxP sites flanking the catalytic subunit of human telomerase gene (TERT) and herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) was used to transduce normal prostate basal epithelial cells (PrECs) initiated in cell culture from prostate cancer patients undergoing radical prostatectomies. RESULTS Transduction of early (i.e., <7) passage PrECs with TERT led to successful immortalization. However, attempts to immortalize late (i.e., >7) passage PrECs were unsuccessful. Late passage PrECs, which acquired elevated p16, were unable to overcome the senescence barrier. Immortalized PrECs (TERT-PrECs) retained a normal male karyotype and low p16 expression. Additionally, TERT-PrECs were non-tumorigenic when inoculated into intact male immunodeficient NSG mice. CONCLUSIONS The present studies document that early passage human PrECs have sufficiently low p16 to permit immortalization by TERT expression alone. TERT-PrECs developed using this transduction approach provides an appropriate and experimentally facile model for clarifying the molecular mechanism(s) involved in both immortalization of human PrECs, as well as identifying genetic/epigenetic "drivers" for conversion of these immortalized non-tumorigenic cells into fully lethal prostate cancers. Notably, loxP sites flank the exogenous TERT gene in the TERT-PrECs. Cre recombinase can be used to excise TERT, and resolve whether TERT expression is required for these cells to be fully transformed into lethal cancer. Prostate 77: 374-384, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mindy Kim Graham
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, Maryland
| | - Lorenzo Principessa
- Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Lizamma Antony
- Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Alan K. Meeker
- Departments of Pathology, Oncology and Urology, John Hopkins University School of Medicine, Baltimore, Maryland
| | - John T. Isaacs
- Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Correspondence to: Dr. John T. Isaacs, Chemical Therapeutic Program, Bunting-Blaustein CRB1, 1650 Orleans Street, Baltimore, MD 21231.
| |
Collapse
|
20
|
Choudhury AD, Schinzel AC, Cotter MB, Lis RT, Labella K, Lock YJ, Izzo F, Guney I, Bowden M, Li YY, Patel J, Hartman E, Carr SA, Schenone M, Jaffe JD, Kantoff PW, Hammerman PS, Hahn WC. Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. Cancer Res 2017; 77:753-765. [PMID: 27899381 PMCID: PMC5290202 DOI: 10.1158/0008-5472.can-16-0455] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/09/2016] [Accepted: 11/04/2016] [Indexed: 01/16/2023]
Abstract
In prostate cancer, the development of castration resistance is pivotal in progression to aggressive disease. However, understanding of the pathways involved remains incomplete. In this study, we performed a high-throughput genetic screen to identify kinases that enable tumor formation by androgen-dependent prostate epithelial (LHSR-AR) cells under androgen-deprived conditions. In addition to the identification of known mediators of castration resistance, which served to validate the screen, we identified a mitotic-related serine/threonine kinase, NEK6, as a mediator of androgen-independent tumor growth. NEK6 was overexpressed in a subset of human prostate cancers. Silencing NEK6 in castration-resistant cancer cells was sufficient to restore sensitivity to castration in a mouse xenograft model system. Tumors in which castration resistance was conferred by NEK6 were predominantly squamous in histology with no evidence of AR signaling. Gene expression profiling suggested that NEK6 overexpression stimulated cytoskeletal, differentiation, and immune signaling pathways and maintained gene expression patterns normally decreased by castration. Phosphoproteome profiling revealed the transcription factor FOXJ2 as a novel NEK6 substrate, with FOXJ2 phosphorylation associated with increased expression of newly identified NEK6 transcriptional targets. Overall, our studies establish NEK6 signaling as a central mechanism mediating castration-resistant prostate cancer. Cancer Res; 77(3); 753-65. ©2016 AACR.
Collapse
Affiliation(s)
- Atish D Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Anna C Schinzel
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Rosina T Lis
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Francesca Izzo
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Isil Guney
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Yvonne Y Li
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jinal Patel
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Emily Hartman
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Steven A Carr
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Monica Schenone
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jacob D Jaffe
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Philip W Kantoff
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Peter S Hammerman
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, Massachusetts.
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
21
|
Zarif JC, Miranti CK. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal 2016; 28:348-356. [PMID: 26829214 PMCID: PMC4788534 DOI: 10.1016/j.cellsig.2016.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
The androgen receptor (AR) remains the major oncogenic driver of prostate cancer, as evidenced by the efficacy of androgen deprivation therapy (ADT) in naïve patients, and the continued effectiveness of second generation ADTs in castration resistant disease. However, current ADTs are limited to interfering with AR ligand binding, either through suppression of androgen production or the use of competitive antagonists. Recent studies demonstrate 1) the expression of constitutively active AR splice variants that no longer depend on androgen, and 2) the ability of AR to signal in the cytoplasm independently of its transcriptional activity (non-genomic); thus highlighting the need to consider other ways to target AR. Herein, we review canonical AR signaling, but focus on AR non-genomic signaling, some of its downstream targets and how these effectors contribute to prostate cancer cell behavior. The goals of this review are to 1) re-highlight the continued importance of AR in prostate cancer as the primary driver, 2) discuss the limitations in continuing to use ligand binding as the sole targeting mechanism, 3) discuss the implications of AR non-genomic signaling in cancer progression and therapeutic resistance, and 4) address the need to consider non-genomic AR signaling mechanisms and pathways as a viable targeting strategy in combination with current therapies.
Collapse
Affiliation(s)
- Jelani C Zarif
- The James Buchanan Brady Urological Institute at The Johns Hopkins University School of Medicine Baltimore, MD 21287, United States
| | - Cindy K Miranti
- Lab of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503, United States.
| |
Collapse
|
22
|
Weterings E, Gallegos AC, Dominick LN, Cooke LS, Bartels TN, Vagner J, Matsunaga TO, Mahadevan D. A novel small molecule inhibitor of the DNA repair protein Ku70/80. DNA Repair (Amst) 2016; 43:98-106. [PMID: 27130816 DOI: 10.1016/j.dnarep.2016.03.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
Non-Homologous End-Joining (NHEJ) is the predominant pathway for the repair of DNA double strand breaks (DSBs) in human cells. The NHEJ pathway is frequently upregulated in several solid cancers as a compensatory mechanism for a separate DSB repair defect or for innate genomic instability, making this pathway a powerful target for synthetic lethality approaches. In addition, NHEJ reduces the efficacy of cancer treatment modalities which rely on the introduction of DSBs, like radiation therapy or genotoxic chemotherapy. Consequently, inhibition of the NHEJ pathway can modulate a radiation- or chemo-refractory disease presentation. The Ku70/80 heterodimer protein plays a pivotal role in the NHEJ process. It possesses a ring-shaped structure with high affinity for DSBs and serves as the first responder and central scaffold around which the rest of the repair complex is assembled. Because of this central position, the Ku70/80 dimer is a logical target for the disruption of the entire NHEJ pathway. Surprisingly, specific inhibitors of the Ku70/80 heterodimer are currently not available. We here describe an in silico, pocket-based drug discovery methodology utilizing the crystal structure of the Ku70/80 heterodimer. We identified a novel putative small molecule binding pocket and selected several potential inhibitors by computational screening. Subsequent biological screening resulted in the first identification of a compound with confirmed Ku-inhibitory activity in the low micro-molar range, capable of disrupting the binding of Ku70/80 to DNA substrates and impairing Ku-dependent activation of another NHEJ factor, the DNA-PKCS kinase. Importantly, this compound synergistically sensitized human cell lines to radiation treatment, indicating a clear potential to diminish DSB repair. The chemical scaffold we here describe can be utilized as a lead-generating platform for the design and development of a novel class of anti-cancer agents.
Collapse
Affiliation(s)
- Eric Weterings
- Department of Radiation Oncology, University of Arizona Cancer Center, 1515N. Campbell Ave, Tucson, AZ 85724, United States.
| | - Alfred C Gallegos
- Department of Radiation Oncology, University of Arizona Cancer Center, 1515N. Campbell Ave, Tucson, AZ 85724, United States
| | - Lauren N Dominick
- Department of Radiation Oncology, University of Arizona Cancer Center, 1515N. Campbell Ave, Tucson, AZ 85724, United States
| | - Laurence S Cooke
- Division of Hematology/Oncology, University of Arizona Cancer Center, 1515N. Campbell Ave, Tucson, AZ 85724, United States
| | - Trace N Bartels
- Department of Radiation Oncology, University of Arizona Cancer Center, 1515N. Campbell Ave, Tucson, AZ 85724, United States
| | - Josef Vagner
- Bio5 Institute, Ligand Discovery Lab, University of Arizona, 1657 E. Helen St, Tucson, AZ 85721, United States
| | - Terry O Matsunaga
- Department of Medical Imaging, University of Arizona, 1609N. Warren Street, building 211, Tucson, AZ 85724, United States
| | - Daruka Mahadevan
- Division of Hematology/Oncology, University of Arizona Cancer Center, 1515N. Campbell Ave, Tucson, AZ 85724, United States
| |
Collapse
|
23
|
Gravina GL, Di Sante S, Limoncin E, Mollaioli D, Ciocca G, Carosa E, Sanità P, Di Cesare E, Lenzi A, Jannini EA. Challenges to treat hypogonadism in prostate cancer patients: implications for endocrinologists, urologists and radiotherapists. Transl Androl Urol 2016; 4:139-47. [PMID: 26816820 PMCID: PMC4708127 DOI: 10.3978/j.issn.2223-4683.2015.04.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The literature suggests that the serum testosterone level required for maximum androgen receptor (AR) binding may be in the range of nanomolar and above this range of concentrations; this sexual hormone may not significantly affect tumour biology. This assumption is supported by clinical studies showing that cell proliferation markers did not change when serum T levels increased after exogenous T treatment in comparison to subjects treated with placebo. However, a considerable part of the global scientific community remains sceptical regarding the use of testosterone replacement therapy (TRT) in men suffering from hypogonadism and prostate cancer (Pca). The negative attitudes with respect to testosterone supplementation in men with hypogonadism and Pca may be justified by the relatively low number of clinical and preclinical studies that specifically dealt with how androgens affect Pca biology. More controversial still is the use of TRT in men in active surveillance or at intermediate or high risk of recurrence and treated by curative radiotherapy. In these clinical scenarios, clinicians should be aware that safety data regarding TRT are scanty limiting our ability to draw definitive conclusions on this important topic. In this review we critically discuss the newest scientific evidence concerning the new challenges in the treatment of men with hypogonadal condition and Pca providing new insights in the pharmacological and psychological approaches.
Collapse
Affiliation(s)
- Giovanni L Gravina
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Stefania Di Sante
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Erika Limoncin
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Daniele Mollaioli
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Giacomo Ciocca
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Eleonora Carosa
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Patrizia Sanità
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Ernesto Di Cesare
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Andrea Lenzi
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| | - Emmanuele A Jannini
- 1 Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy ; 2 Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy ; 3 Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy ; 4 Department of Systems Medicine, Tor Vergata University of Rome, 00131 Roma, Italy
| |
Collapse
|
24
|
Hsieh AC, Nguyen HG, Wen L, Edlind MP, Carroll PR, Kim W, Ruggero D. Cell type-specific abundance of 4EBP1 primes prostate cancer sensitivity or resistance to PI3K pathway inhibitors. Sci Signal 2015; 8:ra116. [PMID: 26577921 DOI: 10.1126/scisignal.aad5111] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pharmacological inhibitors against the PI3K-AKT-mTOR (phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin) pathway, a frequently deregulated signaling pathway in cancer, are clinically promising, but the development of drug resistance is a major limitation. We found that 4EBP1, the central inhibitor of cap-dependent translation, was a critical regulator of both prostate cancer initiation and maintenance downstream of mTOR signaling in a genetic mouse model. 4EBP1 abundance was distinctly different between the epithelial cell types of the normal prostate. Of tumor-prone prostate epithelial cell types, luminal epithelial cells exhibited the highest transcript and protein abundance of 4EBP1 and the lowest protein synthesis rates, which mediated resistance to both pharmacologic and genetic inhibition of the PI3K-AKT-mTOR signaling pathway. Decreasing total 4EBP1 abundance reversed resistance in drug-insensitive cells. Increased 4EBP1 abundance was a common feature in prostate cancer patients who had been treated with the PI3K pathway inhibitor BKM120; thus, 4EBP1 may be associated with drug resistance in human tumors. Our findings reveal a molecular program controlling cell type-specific 4EBP1 abundance coupled to the regulation of global protein synthesis rates that renders each epithelial cell type of the prostate uniquely sensitive or resistant to inhibitors of the PI3K-AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Andrew C Hsieh
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA. Division of Hematology/Oncology and Department of Internal Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Hao G Nguyen
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lexiaochuan Wen
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merritt P Edlind
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter R Carroll
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Won Kim
- Division of Hematology/Oncology and Department of Internal Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA. Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
25
|
Wang Z, Kim J, Teng Y, Ding HF, Zhang J, Hai T, Cowell JK, Yan C. Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5(+)CK8(+) epithelial cells. Oncogene 2015; 35:3555-64. [PMID: 26522727 PMCID: PMC4853303 DOI: 10.1038/onc.2015.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Steroid sex hormones can induce prostate carcinogenesis, and are thought to contribute to the development of prostate cancer during aging. However, the mechanism for hormone-induced prostate carcinogenesis remains elusive. Here we report that activating transcription factor 3 (ATF3) – a broad stress sensor – suppressed hormone-induced prostate carcinogenesis in mice. While implantation of testosterone and estradiol (T+E2) pellets for 2 months in wild-type mice rarely induced prostatic intraepithelial neoplasia (PIN) in dorsal prostates (1 out of 8 mice), loss of ATF3 led to the appearance of not only PIN but also invasive lesions in almost all examined animals. The enhanced carcinogenic effects of hormones on ATF3-deficient prostates did not appear to be caused by a change in estrogen signaling, but were more likely a consequence of elevated androgen signaling that stimulated differentiation of prostatic basal cells into transformation-preferable luminal cells. Indeed, we found that hormone-induced lesions in ATF3-knockout mice often contained cells with both basal and luminal characteristics, such as p63+ cells (a basal cell marker) showing luminal-like morphology, or cells double-stained with basal (CK5+) and luminal (CK8+) markers. Consistent with these findings, low ATF3 expression was found to be a poor prognostic marker for prostate cancer in a cohort of 245 patients. Our results thus support that ATF3 is a tumor suppressor in prostate cancer.
Collapse
Affiliation(s)
- Z Wang
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - J Kim
- Department of Statistics, Sungkyunkwan University, Seoul, South Korea
| | - Y Teng
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - H-F Ding
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - J Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - J K Cowell
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - C Yan
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
26
|
Pomerantz MM, Li F, Takeda DY, Lenci R, Chonkar A, Chabot M, Cejas P, Vazquez F, Cook J, Shivdasani RA, Bowden M, Lis R, Hahn WC, Kantoff PW, Brown M, Loda M, Long HW, Freedman ML. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet 2015; 47:1346-51. [PMID: 26457646 PMCID: PMC4707683 DOI: 10.1038/ng.3419] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Master transcription factors interact with DNA to establish cell type identity and to regulate gene expression in mammalian cells. The genome-wide map of these transcription factor binding sites has been termed the cistrome. Here we show that the androgen receptor (AR) cistrome undergoes extensive reprogramming during prostate epithelial transformation in man. Using human prostate tissue, we observed a core set of AR binding sites that are consistently reprogrammed in tumors. FOXA1 and HOXB13 colocalized at the reprogrammed AR binding sites in human tumor tissue. Introduction of FOXA1 and HOXB13 into an immortalized prostate cell line reprogrammed the AR cistrome to resemble that of a prostate tumor, functionally linking these specific factors to AR cistrome reprogramming. These findings offer mechanistic insights into a key set of events that drive normal prostate epithelium toward transformation and establish the centrality of epigenetic reprogramming in human prostate tumorigenesis.
Collapse
Affiliation(s)
- Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Fugen Li
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David Y Takeda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, USA
| | - Romina Lenci
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Apurva Chonkar
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Chabot
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Francisca Vazquez
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, USA
| | - Jennifer Cook
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michaela Bowden
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rosina Lis
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, USA
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- The Eli and Edythe L. Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Hashem HE, Abd El-Haleem MR, Abass MA. Epithelial and stromal alterations in prostate after cypermethrin administration in adult albino rats (histological and biochemical study). Tissue Cell 2015; 47:366-72. [DOI: 10.1016/j.tice.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
28
|
Savoy RM, Chen L, Siddiqui S, Melgoza FU, Durbin-Johnson B, Drake C, Jathal MK, Bose S, Steele TM, Mooso BA, D'Abronzo LS, Fry WH, Carraway KL, Mudryj M, Ghosh PM. Transcription of Nrdp1 by the androgen receptor is regulated by nuclear filamin A in prostate cancer. Endocr Relat Cancer 2015; 22:369-86. [PMID: 25759396 PMCID: PMC4433410 DOI: 10.1530/erc-15-0021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) progression is regulated by the androgen receptor (AR); however, patients undergoing androgen-deprivation therapy (ADT) for disseminated PCa eventually develop castration-resistant PCa (CRPC). Results of previous studies indicated that AR, a transcription factor, occupies distinct genomic loci in CRPC compared with hormone-naïve PCa; however, the cause of this distinction was unknown. The E3 ubiquitin ligase Nrdp1 is a model AR target modulated by androgens in hormone-naïve PCa but not in CRPC. Using Nrdp1, we investigated how AR switches transcription programs during CRPC progression. The proximal Nrdp1 promoter contains an androgen response element (ARE); we demonstrated AR binding to this ARE in androgen-sensitive PCa. Analysis of hormone-naive human prostatectomy specimens revealed correlation between Nrdp1 and AR expression, supporting AR regulation of NRDP1 levels in androgen-sensitive tissue. However, despite sustained AR levels, AR binding to the Nrdp1 promoter and Nrdp1 expression were suppressed in CRPC. Elucidation of the suppression mechanism demonstrated correlation of NRDP1 levels with nuclear localization of the scaffolding protein filamin A (FLNA) which, as we previously showed, is itself repressed following ADT in many CRPC tumors. Restoration of nuclear FLNA in CRPC stimulated AR binding to Nrdp1 ARE, increased its transcription, and augmented NRDP1 protein expression and responsiveness to ADT, indicating that nuclear FLNA controls AR-mediated androgen-sensitive Nrdp1 transcription. Expression of other AR-regulated genes lost in CRPC was also re-established by nuclear FLNA. Thus, our results indicate that nuclear FLNA promotes androgen-dependent AR-regulated transcription in PCa, while loss of nuclear FLNA in CRPC alters the AR-regulated transcription program.
Collapse
Affiliation(s)
- Rosalinda M Savoy
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Liqun Chen
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Salma Siddiqui
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Frank U Melgoza
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Blythe Durbin-Johnson
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Christiana Drake
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Maitreyee K Jathal
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Swagata Bose
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Thomas M Steele
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Benjamin A Mooso
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Leandro S D'Abronzo
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - William H Fry
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Kermit L Carraway
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Maria Mudryj
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Paramita M Ghosh
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| |
Collapse
|
29
|
Carvalho FLF, Marchionni L, Gupta A, Kummangal BA, Schaeffer EM, Ross AE, Berman DM. HES6 promotes prostate cancer aggressiveness independently of Notch signalling. J Cell Mol Med 2015; 19:1624-36. [PMID: 25864518 PMCID: PMC4511360 DOI: 10.1111/jcmm.12537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022] Open
Abstract
Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high-grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer-specific up-regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up- and down-regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor-independent manner. Using a Notch-sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell-autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression.
Collapse
Affiliation(s)
- Filipe L F Carvalho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Basheer A Kummangal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward M Schaeffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Brady Institute of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley E Ross
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Brady Institute of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David M Berman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Brady Institute of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Pathology and Molecular Medicine and Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| |
Collapse
|
30
|
Armakolas A, Kaparelou M, Dimakakos A, Papageorgiou E, Armakolas N, Antonopoulos A, Petraki C, Lekarakou M, Lelovas P, Stathaki M, Psarros C, Donta I, Galanos PS, Msaouel P, Gorgoulis VG, Koutsilieris M. Oncogenic Role of the Ec Peptide of the IGF-1Ec Isoform in Prostate Cancer. Mol Med 2015; 21:167-79. [PMID: 25569803 DOI: 10.2119/molmed.2014.00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 12/30/2022] Open
Abstract
IGF-1 is one of the key molecules in cancer biology; however, little is known about the role of the preferential expression of the premature IGF-1 isoforms in prostate cancer. We have examined the role of the cleaved COO- terminal peptide (PEc) of the third IGF-1 isoform, IGF-1Ec, in prostate cancer. Our evidence suggests that endogenously produced PEc induces cellular proliferation in the human prostate cancer cells (PC-3) in vitro and in vivo, by activating the ERK1/2 pathway in an autocrine/paracrine manner. PEc overexpressing cells and tumors presented evidence of epithelial to mesenchymal transition, whereas the orthotopic injection of PEc-overexpressing, normal prostate epithelium cells (HPrEC) in SCID mice was associated with increased metastatic rate. In humans, the IGF-1Ec expression was detected in prostate cancer biopsies, where its expression correlates with tumor stage. Our data describes the action of PEc in prostate cancer biology and defines its potential role in tumor growth, progression and metastasis.
Collapse
Affiliation(s)
- Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Maria Kaparelou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Andreas Dimakakos
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Efstathia Papageorgiou
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | | | | | | | - Maria Lekarakou
- Department of Pathology, Metropolitan General Hospital, Athens, Greece
| | - Pavlos Lelovas
- Biomedical Research Foundation Academy of Athens, Center for Experimental Surgery, Athens, Greece
| | - Martha Stathaki
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Constantinos Psarros
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Ismene Donta
- Laboratory for Research of the Musculoskeletal System Theodoros Garofalidis, University of Athens, KAT Hospital Kifisia, Attiki, Greece
| | - Panos S Galanos
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, Medical School, University of Athens, Greece
| | - Paul Msaouel
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Laboratory of Histology and Embryology, Medical School, University of Athens, Greece.,Biomedical Research Foundation, Academy of Athens, Athens, Greece.,Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael Koutsilieris
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, Goudi-Athens, Greece
| |
Collapse
|
31
|
Velardi E, Tsai JJ, Holland AM, Wertheimer T, Yu VWC, Zakrzewski JL, Tuckett AZ, Singer NV, West ML, Smith OM, Young LF, Kreines FM, Levy ER, Boyd RL, Scadden DT, Dudakov JA, van den Brink MRM. Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. ACTA ACUST UNITED AC 2014; 211:2341-9. [PMID: 25332287 PMCID: PMC4235646 DOI: 10.1084/jem.20131289] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Velardi et al. show that sex steroids regulate thymopoiesis by directly modulating Notch signaling, and provide a novel clinical strategy to boost immune regeneration. Paradoxical to its importance for generating a diverse T cell repertoire, thymic function progressively declines throughout life. This process has been at least partially attributed to the effects of sex steroids, and their removal promotes enhanced thymopoiesis and recovery from immune injury. We show that one mechanism by which sex steroids influence thymopoiesis is through direct inhibition in cortical thymic epithelial cells (cTECs) of Delta-like 4 (Dll4), a Notch ligand crucial for the commitment and differentiation of T cell progenitors in a dose-dependent manner. Consistent with this, sex steroid ablation (SSA) led to increased expression of Dll4 and its downstream targets. Importantly, SSA induced by luteinizing hormone-releasing hormone (LHRH) receptor antagonism bypassed the surge in sex steroids caused by LHRH agonists, the gold standard for clinical ablation of sex steroids, thereby facilitating increased Dll4 expression and more rapid promotion of thymopoiesis. Collectively, these findings not only reveal a novel mechanism underlying improved thymic regeneration upon SSA but also offer an improved clinical strategy for successfully boosting immune function.
Collapse
Affiliation(s)
- Enrico Velardi
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Clinical and Experimental Medicine, University of Perugia, 06122 Perugia, Italy
| | - Jennifer J Tsai
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| | - Amanda M Holland
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021 MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Tobias Wertheimer
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Division of Hematology and Oncology, Department of Medicine, Freiburg University Medical Center, Albert-Ludwigs-University, 79106 Freiburg, Germany
| | - Vionnie W C Yu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 Harvard Stem Cell Institute, Cambridge, MA 02138 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Johannes L Zakrzewski
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Andrea Z Tuckett
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Natalie V Singer
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mallory L West
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Odette M Smith
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Lauren F Young
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Fabiana M Kreines
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Emily R Levy
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114 Harvard Stem Cell Institute, Cambridge, MA 02138 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Jarrod A Dudakov
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Anatomy and Developmental Biology, Monash University, Melbourne 3800, Australia
| | - Marcel R M van den Brink
- Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Immunology Program, Department of Medicine, and Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
32
|
Theurillat JPP, Udeshi ND, Errington WJ, Svinkina T, Baca SC, Pop M, Wild PJ, Blattner M, Groner AC, Rubin MA, Moch H, Prive GG, Carr SA, Garraway LA. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science 2014; 346:85-89. [PMID: 25278611 PMCID: PMC4257137 DOI: 10.1126/science.1250255] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer genome characterization has revealed driver mutations in genes that govern ubiquitylation; however, the mechanisms by which these alterations promote tumorigenesis remain incompletely characterized. Here, we analyzed changes in the ubiquitin landscape induced by prostate cancer-associated mutations of SPOP, an E3 ubiquitin ligase substrate-binding protein. SPOP mutants impaired ubiquitylation of a subset of proteins in a dominant-negative fashion. Of these, DEK and TRIM24 emerged as effector substrates consistently up-regulated by SPOP mutants. We highlight DEK as a SPOP substrate that exhibited decreases in ubiquitylation and proteasomal degradation resulting from heteromeric complexes of wild-type and mutant SPOP protein. DEK stabilization promoted prostate epithelial cell invasion, which implicated DEK as an oncogenic effector. More generally, these results provide a framework to decipher tumorigenic mechanisms linked to dysregulated ubiquitylation.
Collapse
Affiliation(s)
- Jean-Philippe P. Theurillat
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Wesley J. Errington
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9. Canada
| | - Tanya Svinkina
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Sylvan C. Baca
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Marius Pop
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Peter J. Wild
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, ZH 8091, Switzerland
| | - Mirjam Blattner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Anna C. Groner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mark A. Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Institute for Precision Medicine of Weill Cornell and New York Presbyterian Hospital, New York, NY 10065
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, ZH 8091, Switzerland
| | - Gilbert G. Prive
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9. Canada
| | - Steven A. Carr
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Levi A. Garraway
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
33
|
Antony L, van der Schoor F, Dalrymple SL, Isaacs JT. Androgen receptor (AR) suppresses normal human prostate epithelial cell proliferation via AR/β-catenin/TCF-4 complex inhibition of c-MYC transcription. Prostate 2014; 74:1118-31. [PMID: 24913829 PMCID: PMC4856018 DOI: 10.1002/pros.22828] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 05/02/2014] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Physiologic testosterone continuously stimulates prostate stromal cell secretion of paracrine growth factors (PGFs), which if unopposed would induce hyperplastic overgrowth of normal prostate epithelial cells (PrECs). METHODS Lentiviral shRNA stable knock down of c-MYC, β-catenin, or TCF-4 completely inhibits normal (i.e., non-transformed) human PrECs growth. c-MYC enhancer driven reporter expression and growth is inhibited by two chemically distinct molecules, which prevent β-catenin signaling either by blocking TCF-4 binding (i.e., toxoflavin) or by stimulating degradation (i.e., AVX939). Recombinant DKK1 protein at a dose, which inhibits activation of canonical Wnt signaling does not inhibit PrEC growth. Nuclear β-catenin translocation and PrEC growth is prevented by both lack of PGFs or Akt inhibitor-I. Growth inhibition induced by lack of PGFs, toxoflavin, or Akt inhibitor-I is overcome by constitutive c-MYC transcription. RESULTS In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen binding to AR suppressing c-MYC transcription, resulting in G0 arrest/terminal differentiation independent of Rb, p21, p27, FoxP3, or down regulation of growth factors receptors and instead involves androgen-induced formation of AR/β-catenin/TCF-4 complexes, which suppress c-MYC transcription. Such suppression does not occur when AR is mutated in its zinc-finger binding domain. DISCUSSION Proliferation of non-transformed human PrECs is dependent upon c-MYC transcription via formation/binding of β-catenin/TCF-4 complexes at both 5' and 3' c-MYC enhancers stimulated by Wnt-independent, PGF induced Akt signaling. In the presence of continuous PGF signaling, PrEC hyperplasia is prevented by androgen-induced formation of AR/β-catenin/TCF-4 complexes, which retains binding to 3' c-MYC enhancer, but now suppresses c-MYC transcription.
Collapse
Affiliation(s)
- Lizamma Antony
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
- Correspondence to: Lizamma Antony, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans St., Baltimore, MD 21287.
| | - Freek van der Schoor
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Susan L. Dalrymple
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John T. Isaacs
- Chemical Therapeutics Program and Prostate Cancer Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Urology, The Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
34
|
Berger PL, Frank SB, Schulz VV, Nollet EA, Edick MJ, Holly B, Chang TTA, Hostetter G, Kim S, Miranti CK. Transient induction of ING4 by Myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis. Cancer Res 2014; 74:3357-68. [PMID: 24762396 PMCID: PMC4066454 DOI: 10.1158/0008-5472.can-13-3076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms by which Myc overexpression or Pten loss promotes prostate cancer development are poorly understood. We identified the chromatin remodeling protein, ING4, as a crucial switch downstream of Myc and Pten that is required for human prostate epithelial differentiation. Myc-induced transient expression of ING4 is required for the differentiation of basal epithelial cells into luminal cells, while sustained ING4 expression induces apoptosis. ING4 expression is lost in >60% of human primary prostate tumors. ING4 or Pten loss prevents epithelial cell differentiation, which was necessary for tumorigenesis. Pten loss prevents differentiation by blocking ING4 expression, which is rescued by ING4 re-expression. Pten or ING4 loss generates tumor cells that co-express basal and luminal markers, indicating prostate oncogenesis occurs through disruption of an intermediate step in the prostate epithelial differentiation program. Thus, we identified a new epithelial cell differentiation switch involving Myc, Pten, and ING4, which when disrupted leads to prostate tumorigenesis. Myc overexpression and Pten loss are common genetic abnormalities in prostate cancer, whereas loss of the tumor suppressor ING4 has not been reported. This is the first demonstration that transient ING4 expression is absolutely required for epithelial differentiation, its expression is dependent on Myc and Pten, and it is lost in the majority of human prostate cancers. This is the first demonstration that loss of ING4, either directly or indirectly through loss of Pten, promotes Myc-driven oncogenesis by deregulating differentiation. The clinical implication is that Pten/ING4 negative and ING4-only negative tumors may reflect two distinct subtypes of prostate cancer.
Collapse
Affiliation(s)
- Penny L Berger
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Sander B Frank
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, ArizonaAuthors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Veronique V Schulz
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Eric A Nollet
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, ArizonaAuthors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Mathew J Edick
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Brittany Holly
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Ting-Tung A Chang
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Galen Hostetter
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Suwon Kim
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| | - Cindy K Miranti
- Authors' Affiliations: Laboratory of Integrin Signaling; Laboratory of Translational Imaging; and Laboratory of Analytical Pathology; and Van Andel Institute Graduate School, Grand Rapids; Genetics Graduate Program, Michigan State University, Lansing, Michigan; and Tranlational Genomics Research Institute and University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
35
|
Vander Griend DJ, Litvinov IV, Isaacs JT. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation. Int J Biol Sci 2014; 10:627-42. [PMID: 24948876 PMCID: PMC4062956 DOI: 10.7150/ijbs.8756] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/12/2014] [Indexed: 12/22/2022] Open
Abstract
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression.
Collapse
Affiliation(s)
- Donald J Vander Griend
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 3. The Brady Urological Institute, Johns Hopkins
| | - Ivan V Litvinov
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 2. Cellular and Molecular Medicine Graduate Program at Johns Hopkins
| | - John T Isaacs
- 1. Chemical Therapeutics Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. ; 2. Cellular and Molecular Medicine Graduate Program at Johns Hopkins. ; 3. The Brady Urological Institute, Johns Hopkins
| |
Collapse
|
36
|
Negative regulation of the androgen receptor gene through a primate-specific androgen response element present in the 5' UTR. Discov Oncol 2014; 5:299-311. [PMID: 24895212 PMCID: PMC4164857 DOI: 10.1007/s12672-014-0185-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023] Open
Abstract
The androgen receptor (AR) is a widely expressed ligand-activated transcription factor which mediates androgen signalling by binding to androgen response elements (AREs) in normal tissue and prostate cancer (PCa). Within tumours, the amount of AR plays a crucial role in determining cell growth, resistance to therapy and progression to fatal castrate recurrent PCa in which prostate cells appear to become independent of androgenic steroids. Despite the pivotal role of the AR in male development and fertility and all stages of PCa development, the mechanisms governing AR expression remain poorly understood. In this work, we describe an active nonconsensus androgen response element (ARE) in the 5' UTR of the human AR gene. The ARE represses transcription upon binding of activated AR, and this downregulation is relieved by disruption of the regulatory element through mutation. Also, multiple species comparison of the genomic region reveals that this ARE is specific to primates, leading to the conclusion that care must be exercised when elucidating the operation of the human AR in PCa based upon rodent promoter studies.
Collapse
|
37
|
Jin HJ, Zhao JC, Wu L, Kim J, Yu J. Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun 2014; 5:3972. [PMID: 24875621 PMCID: PMC4088269 DOI: 10.1038/ncomms4972] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 04/25/2014] [Indexed: 12/31/2022] Open
Abstract
The pioneering factor FOXA1 opens chromatin to facilitate androgen receptor (AR) binding to prostate-specific genes. How FOXA1 controls the AR cistrome, however, is incompletely understood. Here we show that AR directly binds chromatin through the androgen response elements (AREs). FOXA1 is not required for AR-chromatin interaction, but instrumental in recruiting AR to low-affinity half-AREs by opening local chromatin around adjacent FKHD sites. Too much FOXA1 creates excessive open chromatin regions, which serve as reservoirs that retain AR via abundant half-AREs, thereby reducing its availability for specific sites. FOXA1 downregulation, by contrast, relinquishes AR to permissively bind AREs across the genome, resulting in substantial AR-binding events and AR target gene expression even in the absence of androgen. Taken together, our data illustrate the mechanistic details by which cooperativity and equilibrium with FOXA1 define AR cistrome and reveal a previously unknown function of FOXA1 in inhibiting AR signalling and castration-resistant prostate cancer growth.
Collapse
Affiliation(s)
- Hong-Jian Jin
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Longtao Wu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jindan Yu
- 1] Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA [2] Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
38
|
Yang CC, Chung A, Ku CY, Brill LM, Williams R, Wolf DA. Systems analysis of the prostate tumor suppressor NKX3.1 supports roles in DNA repair and luminal cell differentiation. F1000Res 2014; 3:115. [PMID: 25177484 PMCID: PMC4141641 DOI: 10.12688/f1000research.3818.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 11/20/2022] Open
Abstract
NKX3.1 is a homeobox transcription factor whose function as a prostate tumor suppressor remains insufficiently understood because neither the transcriptional program governed by NKX3.1, nor its interacting proteins have been fully revealed. Using affinity purification and mass spectrometry, we have established an extensive NKX3.1 interactome which contains the DNA repair proteins Ku70, Ku80, and PARP, thus providing a molecular underpinning to previous reports implicating NKX3.1 in DNA repair. Transcriptomic profiling of NKX3.1-negative prostate epithelial cells acutely expressing NKX3.1 revealed a rapid and complex response that is a near mirror image of the gene expression signature of human prostatic intraepithelial neoplasia (PIN). Pathway and network analyses suggested that NKX3.1 actuates a cellular reprogramming toward luminal cell differentiation characterized by suppression of pro-oncogenic c-MYC and interferon-STAT signaling and activation of tumor suppressor pathways. Consistently, ectopic expression of NKX3.1 conferred a growth arrest depending on TNFα and JNK signaling. We propose that the tumor suppressor function of NKX3.1 entails a transcriptional program that maintains the differentiation state of secretory luminal cells and that disruption of NKX3.1 contributes to prostate tumorigenesis by permitting luminal cell de-differentiation potentially augmented by defects in DNA repair.
Collapse
Affiliation(s)
- Chih-Cheng Yang
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Alicia Chung
- Genentech Inc., South San Francisco, CA 94080, USA
| | - Chia-Yu Ku
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Laurence M Brill
- NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Roy Williams
- Informatics and Data Management Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Dieter A Wolf
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; San Diego Center for Systems Biology, La Jolla, CA 92093-0375, USA
| |
Collapse
|
39
|
Maertens O, Cichowski K. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Adv Biol Regul 2014; 55:1-14. [PMID: 24814062 DOI: 10.1016/j.jbior.2014.04.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
The RAS pathway is one of the most commonly deregulated pathways in human cancer. Mutations in RAS genes occur in nearly 30% of all human tumors. However in some tumor types RAS mutations are conspicuously absent or rare, despite the fact that RAS and downstream effector pathways are hyperactivated. Recently, RAS GTPase Activating Proteins (RAS GAPs) have emerged as an expanding class of tumor suppressors that, when inactivated, provide an alternative mechanism of activating RAS. RAS GAPs normally turn off RAS by catalyzing the hydrolysis of RAS-GTP. As such, the loss of a RAS GAP would be expected to promote excessive RAS activation. Indeed, this is the case for the NF1 gene, which plays an established role in a familial tumor predisposition syndrome and a variety of sporadic cancers. However, there are 13 additional RAS GAP family members in the human genome. We are only now beginning to understand why there are so many RAS GAPs, how they differentially function, and what their potential role(s) in human cancer are. This review will focus on our current understanding of RAS GAPs in human disease and will highlight important outstanding questions.
Collapse
Affiliation(s)
- Ophélia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Tennakoon JB, Shi Y, Han JJ, Tsouko E, White MA, Burns AR, Zhang A, Xia X, Ilkayeva OR, Xin L, Ittmann MM, Rick FG, Schally AV, Frigo DE. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 2013; 33:5251-61. [PMID: 24186207 PMCID: PMC4009392 DOI: 10.1038/onc.2013.463] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/28/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Prostate cancer is the most commonly diagnosed malignancy among men in industrialized countries, accounting for the second leading cause of cancer-related deaths. Although we now know that the androgen receptor (AR) is important for progression to the deadly advanced stages of the disease, it is poorly understood what AR-regulated processes drive this pathology. Here we demonstrate that AR regulates prostate cancer cell growth via the metabolic sensor 5'-AMP-activated protein kinase (AMPK), a kinase that classically regulates cellular energy homeostasis. In patients, activation of AMPK correlated with prostate cancer progression. Using a combination of radiolabeled assays and emerging metabolomic approaches, we also show that prostate cancer cells respond to androgen treatment by increasing not only rates of glycolysis, as is commonly seen in many cancers, but also glucose and fatty acid oxidation. Importantly, this effect was dependent on androgen-mediated AMPK activity. Our results further indicate that the AMPK-mediated metabolic changes increased intracellular ATP levels and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)-mediated mitochondrial biogenesis, affording distinct growth advantages to the prostate cancer cells. Correspondingly, we used outlier analysis to determine that PGC-1α is overexpressed in a subpopulation of clinical cancer samples. This was in contrast to what was observed in immortalized benign human prostate cells and a testosterone-induced rat model of benign prostatic hyperplasia. Taken together, our findings converge to demonstrate that androgens can co-opt the AMPK-PGC-1α signaling cascade, a known homeostatic mechanism, to increase prostate cancer cell growth. The current study points to the potential utility of developing metabolic-targeted therapies directed toward the AMPK-PGC-1α signaling axis for the treatment of prostate cancer.
Collapse
Affiliation(s)
- J B Tennakoon
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Y Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - J J Han
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - E Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - M A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A R Burns
- College of Optometry, University of Houston, Houston, TX, USA
| | - A Zhang
- Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - X Xia
- Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - O R Ilkayeva
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - L Xin
- 1] Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA [2] Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [3] Dan L. Duncan Cancer Center, Houston, TX, USA
| | - M M Ittmann
- 1] Departments of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [2] Dan L. Duncan Cancer Center, Houston, TX, USA [3] Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - F G Rick
- 1] Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education, Miami, FL, USA [2] Department of Urology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - A V Schally
- 1] Veterans Affairs Medical Center and South Florida VA Foundation for Research and Education, Miami, FL, USA [2] Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA [3] Divisions of Hematology/Oncology, University of Miami, Miller School of Medicine, Miami, FL, USA [4] Division of Endocrinology, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - D E Frigo
- 1] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA [2] Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
41
|
Frank SB, Miranti CK. Disruption of prostate epithelial differentiation pathways and prostate cancer development. Front Oncol 2013; 3:273. [PMID: 24199173 PMCID: PMC3813973 DOI: 10.3389/fonc.2013.00273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022] Open
Abstract
One of the foremost problems in the prostate cancer (PCa) field is the inability to distinguish aggressive from indolent disease, which leads to difficult prognoses and thousands of unnecessary surgeries. This limitation stems from the fact that the mechanisms of tumorigenesis in the prostate are poorly understood. Some genetic alterations are commonly reported in prostate tumors, including upregulation of Myc, fusion of Ets genes to androgen-regulated promoters, and loss of Pten. However, the specific roles of these aberrations in tumor initiation and progression are poorly understood. Likewise, the cell of origin for PCa remains controversial and may be linked to the aggressive potential of the tumor. One important clue is that prostate tumors co-express basal and luminal protein markers that are restricted to their distinct cell types in normal tissue. Prostate epithelium contains layer-specific stem cells as well as rare bipotent cells, which can differentiate into basal or luminal cells. We hypothesize that the primary oncogenic cell of origin is a transient-differentiating bipotent cell. Such a cell must maintain tight temporal and spatial control of differentiation pathways, thus increasing its susceptibility for oncogenic disruption. In support of this hypothesis, many of the pathways known to be involved in prostate differentiation can be linked to genes commonly altered in PCa. In this article, we review what is known about important differentiation pathways (Myc, p38MAPK, Notch, PI3K/Pten) in the prostate and how their misregulation could lead to oncogenesis. Better understanding of normal differentiation will offer new insights into tumor initiation and may help explain the functional significance of common genetic alterations seen in PCa. Additionally, this understanding could lead to new methods for classifying prostate tumors based on their differentiation status and may aid in identifying more aggressive tumors.
Collapse
Affiliation(s)
- Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute , Grand Rapids, MI , USA ; Genetics Graduate Program, Michigan State University , East Lansing, MI , USA
| | | |
Collapse
|
42
|
Reversal of chemosensitivity and induction of cell malignancy of a non-malignant prostate cancer cell line upon extracellular vesicle exposure. Mol Cancer 2013; 12:118. [PMID: 24103426 PMCID: PMC3851868 DOI: 10.1186/1476-4598-12-118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/16/2013] [Indexed: 02/03/2023] Open
Abstract
Background Extracellular vesicle (EV) trafficking is a fundamental cellular process that occurs in cells and is required for different aspects of pathophysiology. EV trafficking leads to changes in cellular function including apoptosis, angiogenesis and proliferation required for increased tumor formation. Results We report several phenotypic changes mediated by EVs isolated from non-malignant and malignant prostate cells as well as patient biopsied prostate tumor samples. EVs can reverse the resistance of prostate cancer cells to camptothecin EVs isolated from non-malignant PrECs (Prostate Epithelial Cells) can reverse soft agar colony formation of malignant DU145 cells, with the reciprocal effect observed. Isolation of EVs from 2 Gleason grade 8 prostate cancer patients significantly induced soft agar colony formation of non-malignant PrECs. We have identified proteins via antibody and Mass spectrometry analysis that may be responsible for the phenotypic changes. Mass spectrometry analysis of protein lysates using ProteoIQ revealed protein candidates associated with gene ontology annotations that may be responsible for this phenotypic change. Ingenuity Pathway Analysis was used to identify statistically relevant canonical pathways and functions associated the protein IDs and expression values obtained using ProteoIQ. Western blot analysis confirmed the increase of 14-3-3 zeta, pRKIP and prohibitin protein levels in PrEC cells co-cultured with patient EVs. 14-3-3 proteins were also found as common proteins of 3 other Gleason grade 8 patients. Conclusion Our study provides a rational basis to further investigate putative proteins, such as 14-3-3 and prohibitin and genetic factors that may be responsible for phenotypic changes that are associated with prostate cancer progression.
Collapse
|
43
|
Khera M. Testosterone Replacement in Men with Treated and Untreated Prostate Cancer. Sex Med Rev 2013; 1:143-149. [DOI: 10.1002/smrj.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Ma Y, Liang D, Liu J, Wen JG, Servoll E, Waaler G, Sæter T, Axcrona K, Vlatkovic L, Axcrona U, Paus E, Yang Y, Zhang Z, Kvalheim G, Nesland JM, Suo Z. SHBG is an important factor in stemness induction of cells by DHT in vitro and associated with poor clinical features of prostate carcinomas. PLoS One 2013; 8:e70558. [PMID: 23936228 PMCID: PMC3728318 DOI: 10.1371/journal.pone.0070558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Androgen plays a vital role in prostate cancer development. However, it is not clear whether androgens influence stem-like properties of prostate cancer, a feature important for prostate cancer progression. In this study, we show that upon DHT treatment in vitro, prostate cancer cell lines LNCaP and PC-3 were revealed with higher clonogenic potential and higher expression levels of stemness related factors CD44, CD90, Oct3/4 and Nanog. Moreover, sex hormone binding globulin (SHBG) was also simultaneously upregulated in these cells. When the SHBG gene was blocked by SHBG siRNA knock-down, the induction of Oct3/4, Nanog, CD44 and CD90 by DHT was also correspondingly blocked in these cells. Immunohistochemical evaluation of clinical samples disclosed weakly positive, and areas negative for SHBG expression in the benign prostate tissues, while most of the prostate carcinomas were strongly positive for SHBG. In addition, higher levels of SHBG expression were significantly associated with higher Gleason score, more seminal vesicle invasions and lymph node metastases. Collectively, our results show a role of SHBG in upregulating stemness of prostate cancer cells upon DHT exposure in vitro, and SHBG expression in prostate cancer samples is significantly associated with poor clinicopathological features, indicating a role of SHBG in prostate cancer progression.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Dongming Liang
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian Liu
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jian-Guo Wen
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
| | - Einar Servoll
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | - Gudmund Waaler
- Department of Surgery, Soerlandet Hospital, Arendal, Norway
| | | | - Karol Axcrona
- Departments of Urology, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ljiljana Vlatkovic
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elisabeth Paus
- Department of Medical Biochemistry, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Yue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiqian Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Gunnar Kvalheim
- Departments of Cell Therapy, The Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jahn M. Nesland
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Institute of Clinical Medicine, Oslo University Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan, China
- * E-mail:
| |
Collapse
|
45
|
Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE, Otto KB, Tom W, Paner GP, Szmulewitz RZ, Vander Griend DJ. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One 2013; 8:e53701. [PMID: 23326489 PMCID: PMC3543364 DOI: 10.1371/journal.pone.0053701] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/03/2012] [Indexed: 12/28/2022] Open
Abstract
Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways.
Collapse
Affiliation(s)
- Steven Kregel
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kyle J. Kiriluk
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, United States of America
| | - Alex M. Rosen
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yi Cai
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, United States of America
| | - Edwin E. Reyes
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kristen B. Otto
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, United States of America
| | - Westin Tom
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, United States of America
| | - Gladell P. Paner
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Russell Z. Szmulewitz
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Donald J. Vander Griend
- Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
46
|
Sheikh H, Abdulghani J, Ali S, Sinha R, Lipton A. Impact of Genetic Targets on Prostate Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:359-83. [DOI: 10.1007/978-1-4614-6176-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Barnes JM, Nauseef JT, Henry MD. Resistance to fluid shear stress is a conserved biophysical property of malignant cells. PLoS One 2012; 7:e50973. [PMID: 23226552 PMCID: PMC3513308 DOI: 10.1371/journal.pone.0050973] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/29/2012] [Indexed: 01/27/2023] Open
Abstract
During metastasis, cancer cells enter the circulation in order to gain access to distant tissues, but how this fluid microenvironment influences cancer cell biology is poorly understood. A longstanding view is that circulating cancer cells derived from solid tissues may be susceptible to damage from hemodynamic shear forces, contributing to metastatic inefficiency. Here we report that compared to non-transformed epithelial cells, transformed cells are remarkably resistant to fluid shear stress (FSS) in a microfluidic protocol, exhibiting a biphasic decrease in viability when subjected to a series of millisecond pulses of high FSS. We show that magnitude of FSS resistance is influenced by several oncogenes, is an adaptive and transient response triggered by plasma membrane damage and requires extracellular calcium and actin cytoskeletal dynamics. This novel property of malignant cancer cells may facilitate hematogenous metastasis and indicates, contrary to expectations, that cancer cells are quite resistant to destruction by hemodynamic shear forces.
Collapse
Affiliation(s)
- J. Matthew Barnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jones T. Nauseef
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael D. Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Medical Scientist Training Program, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine and The Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ju X, Ertel A, Casimiro MC, Yu Z, Meng H, McCue PA, Walters R, Fortina P, Lisanti MP, Pestell RG. Novel oncogene-induced metastatic prostate cancer cell lines define human prostate cancer progression signatures. Cancer Res 2012. [PMID: 23204233 DOI: 10.1158/0008-5472.can-12-2133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, murine prostate cancer cell lines, generated via selective transduction with a single oncogene (c-Myc, Ha-Ras, and v-Src), showed oncogene-specific prostate cancer molecular signatures that were recapitulated in human prostate cancer and developed lung metastasis in immune-competent mice. Interrogation of two independent retrospective cohorts of patient samples using the oncogene signature showed an ability to distinguish tumor from normal prostate with a predictive value for prostate cancer of 98% to 99%. In a blinded study, the signature algorithm showed independent substratification of reduced recurrence-free survival by Kaplan-Meier analysis. The generation of new oncogene-specific prostate cancer cell lines that recapitulate human prostate cancer gene expression, which metastasize in immune-competent mice, are a valuable new resource for testing targeted therapy, whereas the molecular signatures identified herein provides further value over current gene signature markers of prediction and outcome.
Collapse
Affiliation(s)
- Xiaoming Ju
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tewari AK, Yardimci GG, Shibata Y, Sheffield NC, Song L, Taylor BS, Georgiev SG, Coetzee GA, Ohler U, Furey TS, Crawford GE, Febbo PG. Chromatin accessibility reveals insights into androgen receptor activation and transcriptional specificity. Genome Biol 2012; 13:R88. [PMID: 23034120 PMCID: PMC3491416 DOI: 10.1186/gb-2012-13-10-r88] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/14/2012] [Accepted: 10/03/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms such as chromatin accessibility impact transcription factor binding to DNA and transcriptional specificity. The androgen receptor (AR), a master regulator of the male phenotype and prostate cancer pathogenesis, acts primarily through ligand-activated transcription of target genes. Although several determinants of AR transcriptional specificity have been elucidated, our understanding of the interplay between chromatin accessibility and AR function remains incomplete. RESULTS We used deep sequencing to assess chromatin structure via DNase I hypersensitivity and mRNA abundance, and paired these datasets with three independent AR ChIP-seq datasets. Our analysis revealed qualitative and quantitative differences in chromatin accessibility that corresponded to both AR binding and an enrichment of motifs for potential collaborating factors, one of which was identified as SP1. These quantitative differences were significantly associated with AR-regulated mRNA transcription across the genome. Base-pair resolution of the DNase I cleavage profile revealed three distinct footprinting patterns associated with the AR-DNA interaction, suggesting multiple modes of AR interaction with the genome. CONCLUSIONS In contrast with other DNA-binding factors, AR binding to the genome does not only target regions that are accessible to DNase I cleavage prior to hormone induction. AR binding is invariably associated with an increase in chromatin accessibility and, consequently, changes in gene expression. Furthermore, we present the first in vivo evidence that a significant fraction of AR binds only to half of the full AR DNA motif. These findings indicate a dynamic quantitative relationship between chromatin structure and AR-DNA binding that impacts AR transcriptional specificity.
Collapse
Affiliation(s)
- Alok K Tewari
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | | | - Yoichiro Shibata
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | - Nathan C Sheffield
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | - Barry S Taylor
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Stoyan G Georgiev
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
| | - Gerhard A Coetzee
- Department of Preventive Medicine, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Urology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Uwe Ohler
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Terrence S Furey
- Departments of Biology and Genetics, Carolina Center for Genome Sciences and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gregory E Crawford
- Institute for Genome Sciences & Policy, Duke University, Durham, NC 27708, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Phillip G Febbo
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94115, USA
- Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA 94115, USA
- Department of Urology, University of California at San Francisco School of Medicine, San Francisco, CA 94115, USA
| |
Collapse
|
50
|
Schiewer MJ, Goodwin JF, Han S, Brenner JC, Augello MA, Dean JL, Liu F, Planck JL, Ravindranathan P, Chinnaiyan AM, McCue P, Gomella LG, Raj GV, Dicker AP, Brody JR, Pascal JM, Centenera MM, Butler LM, Tilley WD, Feng FY, Knudsen KE. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov 2012; 2:1134-49. [PMID: 22993403 DOI: 10.1158/2159-8290.cd-12-0120] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
UNLABELLED PARP-1 is an abundant nuclear enzyme that modifies substrates by poly(ADP-ribose)-ylation. PARP-1 has well-described functions in DNA damage repair and also functions as a context-specific regulator of transcription factors. With multiple models, data show that PARP-1 elicits protumorigenic effects in androgen receptor (AR)-positive prostate cancer cells, in both the presence and absence of genotoxic insult. Mechanistically, PARP-1 is recruited to sites of AR function, therein promoting AR occupancy and AR function. It was further confirmed in genetically defined systems that PARP-1 supports AR transcriptional function, and that in models of advanced prostate cancer, PARP-1 enzymatic activity is enhanced, further linking PARP-1 to AR activity and disease progression. In vivo analyses show that PARP-1 activity is required for AR function in xenograft tumors, as well as tumor cell growth in vivo and generation and maintenance of castration resistance. Finally, in a novel explant system of primary human tumors, targeting PARP-1 potently suppresses tumor cell proliferation. Collectively, these studies identify novel functions of PARP-1 in promoting disease progression, and ultimately suggest that the dual functions of PARP-1 can be targeted in human prostate cancer to suppress tumor growth and progression to castration resistance. SIGNIFICANCE These studies introduce a paradigm shift with regard to PARP-1 function in human malignancy, and suggest that the dual functions of PARP-1 in DNA damage repair and transcription factor regulation can be leveraged to suppress pathways critical for promalignant phenotypes in prostate cancer cells by modulation of the DNA damage response and hormone signaling pathways. The combined studies highlight the importance of dual PARP-1 function in malignancy and provide the basis for therapeutic targeting.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Departments of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|