1
|
James J, Dekan A, Niihori M, McClain N, Varghese M, Bharti D, Lawal OS, Padilla-Rodrigez M, Yi D, Dai Z, Gusev O, Rafikova O, Rafikov R. Novel Populations of Lung Capillary Endothelial Cells and Their Functional Significance. RESEARCH SQUARE 2023:rs.3.rs-2887159. [PMID: 37205391 PMCID: PMC10187412 DOI: 10.21203/rs.3.rs-2887159/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The role of the lung's microcirculation and capillary endothelial cells in normal physiology and the pathobiology of pulmonary diseases is unequivocally vital. The recent discovery of molecularly distinct aerocytes and general capillary (gCaps) endothelial cells by single-cell transcriptomics (scRNAseq) advanced the field in understanding microcirculatory milieu and cellular communications. However, increasing evidence from different groups indicated the possibility of more heterogenic structures of lung capillaries. Therefore, we investigated enriched lung endothelial cells by scRNAseq and identified five novel populations of gCaps with distinct molecular signatures and roles. Our analysis suggests that two populations of gCaps that express Scn7a(Na+) and Clic4(Cl-) ion transporters form the arterial-to-vein zonation and establish the capillary barrier. We also discovered and named mitotically-active "root" cells (Flot1+) on the interface between arterial, Scn7a+, and Clic4 + endothelium, responsible for the regeneration and repair of the adjacent endothelial populations. Furthermore, the transition of gCaps to a vein requires a venous-capillary endothelium expressing Lingo2. Finally, gCaps detached from the zonation represent a high level of Fabp4, other metabolically active genes, and tip-cell markers showing angiogenesis-regulating capacity. The discovery of these populations will translate into a better understanding of the involvement of capillary phenotypes and their communications in lung disease pathogenesis.
Collapse
|
2
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
3
|
Safaeian L, Vaseghi G, Mirian M, Firoozabadi MD. The effect of pramlintide, an antidiabetic amylin analogue, on angiogenesis-related markers in vitro. Res Pharm Sci 2020; 15:323-330. [PMID: 33312210 PMCID: PMC7714014 DOI: 10.4103/1735-5362.293510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/15/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background and purpose: Irregularities of angiogenesis may participate in the pathogenesis of diabetes complications. Pramlintide is an amylin analogue administered for the treatment of type 1 and type 2 diabetes. The present investigation aimed at surveying the effect of pramlintide on angiogenesis-related markers in human umbilical vein endothelial cells (HUVECs). Experimental approach: The proliferation of cells was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) method. The effect of pramlintide on migration was estimated by Transwell® assay. in vitro evaluation of angiogenesis was performed by tube formation assay. The secretion of vascular endothelial growth factor (VEGF) to the supernatant of HUVECs was measured by an enzyme- linked immunosorbent assay (ELISA) kit. All experiments were performed in triplicate. Findings / Results: Pramlintide exhibited no inhibitory effect on HUVECs proliferation. It significantly increased cell migration at the concentration of 1 μg/mL. Pramlintide (1 μg/mL) also enhanced average tubules length, size, and the mean number of junctions. However, there was not any significant change in VEGF release from HUVECs. Conclusion and implications: Findings of this research revealed the effect of pramlintide on angiogenesis- related markers via enhancing migration and tubulogenesis in vitro, suggesting a worthwhile proposition for further clinical researches on improving vascular complications and healing of diabetic wounds.
Collapse
Affiliation(s)
- Leila Safaeian
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mehdi Dehghani Firoozabadi
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
4
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
5
|
Calcitonin receptor is required for T-antigen-induced prostate carcinogenesis. Oncotarget 2020; 11:858-874. [PMID: 32180899 PMCID: PMC7061735 DOI: 10.18632/oncotarget.27495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
Expression of calcitonin (CT) and its receptor (CTR) is frequently elevated in prostate cancer (PC) and activation of CT–CTR axis in non- invasive PC cells induces an invasive phenotype. However, the role of CT-CTR axis in prostate carcinogenesis has not been investigated. We employed a transgenic mouse prostate cancer model that uses long probasin promoter to target the expression of T-antigen in the prostate gland (LPB-Tag) along with CTR knock-out mice (CTRKO) to address this question. We cross-bred LPB-Tag mice with CTRKO to obtain four groups of mice. Prostates of these mice were obtained at the age of 90 days, fixed, paraffin-embedded, and used either for the extraction of RNA or for immunofluorescence. Prostate RNAs from different groups were reverse transcribed and used either for transcription profiling or for qRT-PCR. As expected, prostates of mice with LPB-Tag genotype displayed well-grown tumors with histologic features such as loss of normal morphology and nuclear atypia. WT as well as CTRKO mice displayed normal prostate morphology. Interestingly, LPB-Tag-CTRKO prostates also displayed relatively normal morphology which was indistinguishable from the WT. Microarray analysis as well as qRT-PCR suggested that CTRKO genotype reversed T-antigen-induced silencing of RB and PTEN gene expression as well as T-antigen-induced expression of several enzymes associated with lipid metabolism/ cholesterol biosynthesis, several cancer-related and androgen-regulated genes. The results for the first time identify mechanisms associated CTR-induced prostate carcinogenesis, and raise an exciting possibility of using a potent CT antagonist to attenuate progression of prostate cancer.
Collapse
|
6
|
Cell active and functionally-relevant small-molecule agonists of calcitonin receptor. Bioorg Chem 2020; 96:103596. [PMID: 32004895 DOI: 10.1016/j.bioorg.2020.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/15/2022]
Abstract
The natural calcitonin (CT) receptor and its peptide agonists are considered validated targets for drug discovery. A small molecule agonist, SUN-B8155, has previously been shown to efficiently activate cellular CTR. Herein, we report the synthesis of a series of compounds (S8155 1-9) derived from SUN-B8155, and investigate the structural-functional relationship, bias properties and their cellular activity profile. We discover that the N-hydroxyl group from the pyridone ring is required for G protein activity and its affinity to the CT receptor. Among the compounds studied, S8155-7 exhibits improved G protein activity while S8155-4 displays a significant β-arrestin-2 signaling bias. Finally, we show that both S8155-4 and S8155-7 inhibit tumour cell invasion through CTR activation. These two compounds are anticipated to find extensive applications in chemical biology research as well drug development efforts targeting CT receptor.
Collapse
|
7
|
Zhao Z, Liu K, Tian X, Sun M, Wei N, Zhu X, Yang H, Wang T, Jiang G, Chen K. Effects of RhoC downregulation on the angiogenesis characteristics of myeloma vascular endothelial cells. Cancer Med 2019; 8:3502-3510. [PMID: 31062507 PMCID: PMC6601571 DOI: 10.1002/cam4.2208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background Tumor angiogenesis plays an important role in disease progression, and RhoC has been previously found to be expressed in vascular endothelial cells (VECs); however, its role in tumor angiogenesis requires clarification. This study aimed to explore the effects of RhoC downregulation on the cytoskeleton, pseudopod formation, migration ability, and canalization capacity of myeloma vascular endothelial cells (MVECs) in vitro. Materials and methods The expression of RhoC in MVECs and human umbilical vein endothelial cells (HUVECs) was knocked down by shRNA, and the expression levels of RhoC mRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT‐PCR). The cytoskeletal changes and pseudopods were observed by laser scanning confocal and scanning electron microscopy; VECs were incubated in two‐dimensional Matrigel and three‐dimensional microcarriers to observe tube‐like structures and budding status, respectively. The protein expression of RhoC, phosphorylation of mitogen‐activated protein kinase (p‐MAPK), and Rho‐associated coiled‐coil kinase (ROCK) was determined by Western blotting. The expression of RhoC in VECs was downregulated by RhoC shRNA, thereby decreasing the number of pseudopods, two‐dimensional tube‐like structures, and buds. Results When RhoC was downregulated, the expression levels of ROCK and phosphorylation of MAPK were both decreased (P < 0.05). Moreover, the expression levels of RhoC and phosphorylation of MAPK and three‐dimensional budding numbers were higher in MVECs than in HUVECs (P < 0.05). The downregulation of RhoC expression in MVECs and HUVECs inhibited pseudopod formation, migration, canalization ability, and angiogenesis (P < 0.05). Conclusion Our data indicated that MVECs and HUVECs were well suited for angiogenesis research, but the former cell type was shown to be more advantageous in terms of budding numbers. RhoC plays a pivotal role in MVECs angiogenesis, and the downregulation of RhoC expression could inhibit angiogenesis via the RhoC/MAPK and RhoC/ROCK signaling pathways.
Collapse
Affiliation(s)
- Zhihua Zhao
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Kai Liu
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiangyu Tian
- Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Miaomiao Sun
- The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Na Wei
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaoyan Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongmei Yang
- Henan Province Medical College, Zhengzhou, Henan, People's Republic of China
| | - Tong Wang
- Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guozhong Jiang
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Kuisheng Chen
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.,Department of Pathology of The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
8
|
Cappagli V, Potes CS, Ferreira LB, Tavares C, Eloy C, Elisei R, Sobrinho-Simões M, Wookey PJ, Soares P. Calcitonin receptor expression in medullary thyroid carcinoma. PeerJ 2017; 5:e3778. [PMID: 28929017 PMCID: PMC5600720 DOI: 10.7717/peerj.3778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background Calcitonin expression is a well-established marker for medullary thyroid carcinoma (MTC); yet the role of calcitonin receptor (CTR), its seven-transmembrane G-protein coupled receptor, remains to be established in C-cells derived thyroid tumors. The aim of this work was to investigate CTR expression in MTC and to correlate such expression with clinicopathological features in order to evaluate its possible role as a prognostic indicator of disease aggressiveness and outcome. Methods Calcitonin receptor expression was analyzed in a series of 75 MTCs by immunohistochemistry, and by qPCR mRNA quantification in specimens from four patients. Statistical tests were used to evaluate the correlation between CTR expression and the clinicopathological and molecular characteristics of patients and tumors. Results Calcitonin receptor expression was detected in 62 out of 75 samples (82.7%), whereas 13 of the 75 samples (17.3%) were completely negative. CTR expression was significantly associated with expression of cytoplasmatic phosphatase and tensin homologue deleted on chromosome 10 and osteopontin, as well as with wild type RET/RAS genes and absence of tumor stroma, suggesting that CTR expression do not associate with clinicopathological signs of worse prognosis. Discussion Calcitonin receptor expression appears to be associated in MTC with more differentiated status of the neoplastic cells.
Collapse
Affiliation(s)
- Virginia Cappagli
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Catarina Soares Potes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.,Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luciana Bueno Ferreira
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Tavares
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Eloy
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Rossella Elisei
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Manuel Sobrinho-Simões
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Department of Pathology, Hospital de S. João, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| | - Peter J Wookey
- Department of Medicine at Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Paula Soares
- Cancer Signaling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Cao F, Gamble AB, Onagi H, Howes J, Hennessy JE, Gu C, Morgan JAM, Easton CJ. Detection of Biosynthetic Precursors, Discovery of Glycosylated Forms, and Homeostasis of Calcitonin in Human Cancer Cells. Anal Chem 2017; 89:6992-6999. [PMID: 28590120 DOI: 10.1021/acs.analchem.7b00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The peptide hormone calcitonin is intimately connected with human cancer development and proliferation. Its biosynthesis is reasoned to proceed via glycine-, α-hydroxyglycine-, glycyllysine-, and glycyllysyllysine-extended precursors; however, as a result of the limitations of current analytical methods, until now, there has been no procedure capable of detecting these individual species in cell or tissue samples. Therefore, their presence and dynamics in cancer had not been established. Here, we report the first methodology for the separation, detection, and quantification of calcitonin and each of its precursors in human cancer cells. We also report the discovery and characterization of O-glycosylated calcitonin and its analogous biosynthetic precursors. Through direct and simultaneous analysis of the glycosylated and nonglycosylated species, we interrogate the hormone biosynthesis. This shows that the cellular calcitonin level is maintained to mitigate effects of biosynthetic enzyme inhibitors that substantially change the proportions of calcitonin-related species released into the culture medium.
Collapse
Affiliation(s)
- Feihua Cao
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Allan B Gamble
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Joanna Howes
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - James E Hennessy
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Chen Gu
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Jeremy A M Morgan
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University , Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Aljameeli A, Thakkar A, Shah G. Calcitonin receptor increases invasion of prostate cancer cells by recruiting zonula occludens-1 and promoting PKA-mediated TJ disassembly. Cell Signal 2017; 36:1-13. [PMID: 28428082 DOI: 10.1016/j.cellsig.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
Almost all primary prostate cancers (PCs) and PC cell lines express calcitonin (CT) and/or its receptor (CTR), and their co-expression positively correlates with their invasiveness. Activation of the CT-CTR axis in non-invasive LNCaP cells induces an invasive phenotype. In contrast, silencing of CT/CTR expression in highly metastatic PC-3M cells markedly reduces their tumorigenicity and abolishes their ability to form distant metastases in nude mice. Our recent studies suggest that CTR interacts with zonula occludens 1 (ZO-1) through PDZ interaction to destabilize tight junctions and increase invasion of PC cells. Our results show that CTR activates AKAP2-anchored cAMP-dependent protein kinase A, which then phosphorylates tight junction proteins ZO-1 and claudin 3. Moreover, PKA-mediated phosphorylation of tight unction proteins required CTR-ZO-1 interaction, suggesting that the interaction may bring CTR-activated PKA in close proximity of tight junction proteins. Furthermore, inhibition of PKA activity attenuated CT-induced loss of TJ functionality and invasion, suggesting that the phosphorylation of TJ proteins is responsible for TJ disassembly. Finally, we show that the prevention of CTR-ZO-1 interaction abolishes CT-induced invasion, and can serve as a novel therapeutic tool to treat aggressive prostate cancers. In brief, the present study identifies the significance of CTR-ZO-1 interaction in progression of prostate cancer to its metastatic form.
Collapse
Affiliation(s)
- Ahmed Aljameeli
- Pharmacology, University of Louisiana College of Pharmacy, Monroe, LA 71209, USA
| | - Arvind Thakkar
- Pharmacology, University of Louisiana College of Pharmacy, Monroe, LA 71209, USA
| | - Girish Shah
- Pharmacology, University of Louisiana College of Pharmacy, Monroe, LA 71209, USA.
| |
Collapse
|
11
|
Mori A, Suzawa H, Sakamoto K, Nakahara T, Ishii K. Vasodilator Effects of Elcatonin, a Synthetic Eel Calcitonin, on Retinal Blood Vessels in Rats. Biol Pharm Bull 2016; 38:1536-41. [PMID: 26424018 DOI: 10.1248/bpb.b15-00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to examine the effects of elcatonin, a synthetic derivative of eel calcitonin, on rat retinal blood vessels, and to determine how diabetes affects the retinal vascular responses. Ocular fundus images were captured with an original high-resolution digital fundus camera in vivo. The retinal vascular responses were evaluated by measuring the diameter of retinal blood vessels contained in the digital images. Both systemic blood pressure and heart rate were continuously recorded. Elcatonin increased the diameter of retinal blood vessels but decreased mean blood pressure in a dose-dependent manner, whereas it had no significant effect on heart rate. A diminished retinal vasodilator response and significant pressor response to elcatonin were observed in rats injected intravenously with N(G)-nitro-L-arginine methyl ester, a nitric oxide (NO) synthase inhibitor. Intravitreal injection of indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ22536, an adenylyl cyclase inhibitor, markedly attenuated the vasodilator effects of elcatonin on retinal blood vessels. The retinal vasodilator responses to elcatonin were unaffected 2 weeks after the induction of diabetes by a combination of streptozotocin treatment and D-glucose feeding. These results suggest that elcatonin dilates rat retinal blood vessels via NO- and COX-dependent mechanisms and that the adenylyl cyclase-adenosine 3',5'-cyclic monophosphate system plays a major role in the vasodilator mechanisms. The retinal vasodilatory effects of elcatonin seem to be preserved at early stages of diabetes.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | | | | | | | | |
Collapse
|
12
|
Wells G, Chernoff J, Gilligan JP, Krause DS. Does salmon calcitonin cause cancer? A review and meta-analysis. Osteoporos Int 2016; 27:13-9. [PMID: 26438308 PMCID: PMC4715844 DOI: 10.1007/s00198-015-3339-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/24/2015] [Indexed: 02/08/2023]
Abstract
Recently an association between the use of calcitonin and cancer has been postulated. We reviewed the biological rationale and performed an additional analysis of historical data with respect to the possibility. An association cannot be excluded, but the relationship is weak and causality is unlikely. The purpose of the present study is to review the strength of association and likelihood of a causal relationship between use of calcitonin and cancer. We reviewed the evidence for this association, including the molecular signaling mechanisms of calcitonin, preclinical data, an "experiment of nature," and the results of a previous meta-analysis which showed a weak association. We performed an additional meta-analysis to incorporate the data from a novel investigational oral formulation of salmon calcitonin. Review of the literature did not identify a cellular signaling mechanism of action which might account for a causal relationship or toxicologic or postmarketing data to support the thesis. Additional clinical results incorporated into previous meta-analyses weakened but did not completely negate the possibility of association. A causal association between calcitonin use and malignancy is unlikely, as there is little biological plausibility. The preponderance of nonclinical and clinical evidence also does not favor a causal relationship.
Collapse
Affiliation(s)
- G Wells
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada, K1Y 4W7
| | - J Chernoff
- Fox Chase Cancer Institute, 333 Cottman Ave # 307, Philadelphia, USA
| | - J P Gilligan
- Tarsa Therapeutics Inc, 8 Penn Center, 1628 JFK Blvd., Philadelphia, PA, 19103, USA
| | - D S Krause
- Tarsa Therapeutics Inc, 8 Penn Center, 1628 JFK Blvd., Philadelphia, PA, 19103, USA.
| |
Collapse
|
13
|
Thakkar A, Bijnsdorp IV, Geldof AA, Shah GV. Profiling of the calcitonin-calcitonin receptor axis in primary prostate cancer: clinical implications and molecular correlates. Oncol Rep 2013; 30:1265-74. [PMID: 23820954 DOI: 10.3892/or.2013.2583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/06/2013] [Indexed: 11/06/2022] Open
Abstract
Expression of the neuroendocrine peptide calcitonin (CT) and its receptor (CTR) is frequently elevated in prostate cancers (PCs), and activation of the CT-CTR axis in non-invasive PC cells induces an invasive phenotype. We aimed to link CT/CTR expression in prostate specimens to clinicopathological parameters of PC. We analyzed CT and CTR expression in cohorts of benign prostates and primary PCs with/without metastatic disease by immunohistochemistry. Furthermore, we correlated CT/CTR expression with several clinicopathological parameters. CT/CTR immunostaining in benign prostate acini was predominantly localized to basal epithelium. However, this spatial specificity was lost in malignant prostates. PC sections displayed a remarkable increase in cell populations expressing CT/CTR and their staining intensity. Tumors with higher CT/CTR expression consistently displayed metastatic disease and poor clinical outcome. High CT/CTR expression in primary prostate tumors may serve as a prognostic indicator of disease aggressiveness and poor clinical outcome.
Collapse
Affiliation(s)
- Arvind Thakkar
- Department of Pharmacology, University of Louisiana, College of Pharmacy, Monroe, LA 71291, USA
| | | | | | | |
Collapse
|
14
|
A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS One 2013; 8:e62042. [PMID: 23646114 PMCID: PMC3639942 DOI: 10.1371/journal.pone.0062042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature. METHODS Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort. RESULTS A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p<0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group. CONCLUSION We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.
Collapse
|
15
|
Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 2013; 9:4513-24. [PMID: 23036951 PMCID: PMC3523808 DOI: 10.1016/j.actbio.2012.09.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/22/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The foreign body reaction often interferes with the long-term functionality and performance of implanted biomedical devices through fibrous capsule formation. While many implant modification techniques have been adopted in attempts to control fibrous encapsulation, the outcomes remained sub-optimal. Nanofiber scaffold-mediated RNA interference may serve as an alternative approach through the localized and sustained delivery of siRNA at implant sites. In this study, we investigated the efficacy of siRNA-poly(caprolactone-co-ethylethylene phosphate) nanofibers in controlling fibrous capsule formation through the down-regulation of collagen type I (COL1A1) in vitro and in vivo. By encapsulating complexes of COL1A1 siRNA with a transfection reagent (Transit TKO) or the cell penetrating peptides CADY or MPG within the nanofibers (550-650 nm in diameter), a sustained release of siRNA was obtained for at least 28 days (loading efficiency ~60-67%). Scaffold-mediated transfection significantly enhanced cellular uptake of oligonucleotides and prolonged in vitro gene silencing duration by at least 2-3 times as compared to conventional bolus delivery of siRNA (14 days vs. 5-7 days by bolus delivery). In vivo subcutaneous implantation of siRNA scaffolds revealed a significant decrease in fibrous capsule thickness at weeks 2 and 4 as compared to plain nanofibers (p<0.05). Taken together, the results demonstrated the efficacy of scaffold-mediated siRNA gene-silencing in providing effective long-term control of fibrous capsule formation.
Collapse
Affiliation(s)
- Pim-on Rujitanaroj
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Brian Jao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Junghoon Yang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Feng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - James M. Anderson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
16
|
Li J, Chigurupati S, Agarwal R, Mughal MR, Mattson MP, Becker KG, Wood WH, Zhang Y, Morin PJ. Possible angiogenic roles for claudin-4 in ovarian cancer. Cancer Biol Ther 2010; 8:1806-14. [PMID: 19657234 DOI: 10.4161/cbt.8.19.9427] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Claudin proteins are frequently overexpressed in various tumors such as breast, prostate and ovarian cancer. While their functions in cancer have not been completely elucidated, roles in survival, adhesion and invasion have been suggested. In order to clarify the roles of claudins in ovarian cancer, we have performed gene expression profiling of ovarian surface epithelial cells overexpressing claudin-4 and compared the expression patterns to the parental, non-expressing cells. Claudin-4 expression leads to the differential expression of several genes, including many that have previously been implicated in angiogenesis. In particular, angiogenic cytokines, such as IL-8, were found elevated while genes of the angiostatic interferon pathway were found downregulated. In vitro assays show that claudin-4-expressing cells produce factors that can stimulate angiogenesis as measured by tube formation and migration in HUVEC cells. In addition, an in vivo mouse dorsal skinfold assay confirms that cells expressing claudin-4 secrete factors that can mediate angiogenesis in the dorsal skin of mice. Our data suggest a novel function for claudin-4 in cancer and provide an additional rationale for its common overexpression in human tumors.
Collapse
Affiliation(s)
- Jianghong Li
- Laboratory of Cellular and Molecular Biology, National Institute on Aging/NIH, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chigurupati S, Venkataraman R, Barrera D, Naganathan A, Madan M, Paul L, Pattisapu JV, Kyriazis GA, Sugaya K, Bushnev S, Lathia JD, Rich JN, Chan SL. Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 2009; 70:418-27. [PMID: 20028870 DOI: 10.1158/0008-5472.can-09-2654] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and incurable type of brain tumor of adults. Hypoxia has been shown to direct GBM toward a more aggressive and malignant state. Here we show that hypoxia increases Notch1 activation, which in turn induces the expression of transient receptor potential 6 (TRPC6) in primary samples and cell lines derived from GBM. TRPC6 is required for the development of the aggressive phenotype because knockdown of TRPC6 expression inhibits glioma growth, invasion, and angiogenesis. Functionally, TRPC6 causes a sustained elevation of intracellular calcium that is coupled to the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway. Pharmacologic inhibition of the calcineurin-NFAT pathway substantially reduces the development of the malignant GBM phenotypes under hypoxia. Clinically, expression of TRPC6 was elevated in GBM specimens in comparison with normal tissues. Collectively, our studies indicate that TRPC6 is a key mediator of tumor growth of GBM in vitro and in vivo and that TRPC6 may be a promising therapeutic target in the treatment of human GBM.
Collapse
Affiliation(s)
- Srinivasulu Chigurupati
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Florida Hospital Cancer Institute, Orlando, Florida 32816, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
19
|
The elevated expression of calcitonin receptor by cells recruited into the endothelial layer and neo-intima of atherosclerotic plaque. Histochem Cell Biol 2009; 132:181-9. [DOI: 10.1007/s00418-009-0600-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2009] [Indexed: 02/04/2023]
|
20
|
Shah GV, Muralidharan A, Gokulgandhi M, Soan K, Thomas S. Cadherin switching and activation of beta-catenin signaling underlie proinvasive actions of calcitonin-calcitonin receptor axis in prostate cancer. J Biol Chem 2008; 284:1018-30. [PMID: 19001380 DOI: 10.1074/jbc.m807823200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calcitonin, a neuroendocrine peptide, and its receptor are localized in the basal epithelium of benign prostate but in the secretory epithelium of malignant prostates. The abundance of calcitonin and calcitonin receptor mRNA displays positive correlation with the Gleason grade of primary prostate cancers. Moreover, calcitonin increases tumorigenicity and invasiveness of multiple prostate cancer cell lines by cyclic AMP-dependent protein kinase-mediated actions. These actions include increased secretion of matrix metalloproteinases and urokinase-type plasminogen activator and an increase in prostate cancer cell invasion. Activation of calcitonin-calcitonin receptor autocrine loop in prostate cancer cell lines led to the loss of cell-cell adhesion, destabilization of tight and adherens junctions, and internalization of key integral membrane proteins. In addition, the activation of calcitonin-calcitonin receptor axis induced epithelial-mesenchymal transition of prostate cancer cells as characterized by cadherin switch and the expression of the mesenchymal marker, vimentin. The activated calcitonin receptor phosphorylated glycogen synthase kinase-3, a key regulator of cytosolic beta-catenin degradation within the WNT signaling pathway. This resulted in the accumulation of intracellular beta-catenin, its translocation in the nucleus, and transactivation of beta-catenin-responsive genes. These results for the first time identify actions of calcitonin-calcitonin receptor axis on prostate cancer cells that lead to the destabilization of cell-cell junctions, epithelial-to-mesenchymal transition, and activation of WNT/beta-catenin signaling. The results also suggest that cyclic AMP-dependent protein kinase plays a key role in calcitonin receptor-induced destabilization of cell-cell junctions and activation of WNT-beta-catenin signaling.
Collapse
Affiliation(s)
- Girish V Shah
- Department of Pharmacology, University of Louisiana College of Pharmacy, Monroe, Louisiana 71209, USA.
| | | | | | | | | |
Collapse
|
21
|
Wang W, Wu F, Fang F, Tao Y, Yang L. RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization. Cancer Sci 2008; 99:2012-8. [PMID: 19016761 PMCID: PMC11160101 DOI: 10.1111/j.1349-7006.2008.00902.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 05/29/2008] [Accepted: 06/01/2008] [Indexed: 12/11/2022] Open
Abstract
The angiogenesis induced by tumor cells is essential for metastasis of hepatocellular carcinoma. Available information suggests that RhoC participates in angiogenesis through regulation of vascular endothelial growth factor expression in tumor cells. For its broad functions in cell migration and cytoskeletal organization, we hypothesized that RhoC regulating angiogenesis does not exclusively depend on regulation of vascular endothelial growth factor expression. To address this question, in the present study, we used a retroviral small interfering RNA approach to selectively knockdown the expression of RhoC in a neovascularization model in vivo and in vitro. Our present results indicate that RhoC is the downstream regulator of vascular endothelial growth factor in endothelial cells and is essential for angiogenesis induced by vascular endothelial growth factor, notwithstanding that RhoC regulates the expression of vascular endothelial growth factor in tumor cells. Furthermore, we show that knockdown of RhoC is associated with the inhibition of invasion and migration but not apoptosis of endothelial cells. Knockdown of RhoC results in inhibition of endothelial cell organization through restraining the reorganization of F-actin filaments, which represses endothelial cell network and sprout formation. In conclusion, our results demonstrate that knockdown of RhoC inhibits angiogenesis induced by tumor cells not only through effecting the release of vascular endothelial growth factor, but also through inhibiting endothelial cell migration and organization, which implies that it blocks tumor metastasis by specifically inhibiting RhoC in endothelial cells.
Collapse
Affiliation(s)
- Wei Wang
- Liver Cancer Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
22
|
Kenneth Ward W. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol 2008; 2:768-77. [PMID: 19885259 PMCID: PMC2769792 DOI: 10.1177/193229680800200504] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The biological response to implanted biomaterials in mammals is a complex series of events that involves many biochemical pathways. Shortly after implantation, fibrinogen and other proteins bind to the device surface, a process known as biofouling. Macrophages then bind to receptors on the proteins, join into multinucleated giant cells, and release transforming growth factor beta and other inflammatory cytokines. In response to these signals, quiescent fibroblasts are transformed into myofibroblasts, which synthesize procollagen via activation of Smad mediators. The procollagen becomes crosslinked after secretion into the extracellular space. Mature crosslinked collagen and other extracellular matrix proteins gradually contribute to formation of a hypocellular dense fibrous capsule that becomes impermeable or hypopermeable to many compounds. Porous substrates and angiogenic growth factors can stimulate formation of microvessels, which to some extent can maintain analyte delivery to implanted sensors. However, stimulation by vascular endothelial growth factor alone may lead to formation of leaky, thin-walled, immature vessels. Other growth factors are most probably needed to act upon these immature structures to create more robust vessels.During implantation of foreign bodies, the foreign-body response is difficult to overcome, and thousands of biomaterials have been tested. Biomimicry (i.e., creating membranes whose chemical structure mimics natural cellular compounds) may diminish the response, but as of this writing, it has not been possible to create a stealth material that circumvents the ability of the mammalian surveillance systems to distinguish foreign from self.
Collapse
Affiliation(s)
- W Kenneth Ward
- Legacy Clinical Research and Technology Center and Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
23
|
Wookey PJ, Zulli A, Buxton BF, Hare DL. Calcitonin receptor immunoreactivity associated with specific cell types in diseased radial and internal mammary arteries. Histopathology 2008; 52:605-12. [PMID: 18370957 DOI: 10.1111/j.1365-2559.2008.02979.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To determine and quantify calcitonin receptor (CTR) immunoreactivity associated with specific cell types within, and associated with, the endothelial layers, neo-intima, media and vasa vasorum of diseased radial and internal mammary arteries. METHODS AND RESULTS Immunohistochemistry and anti-CTR antibodies were used to identify positive cells within remnants of diseased human radial (n = 3) and internal mammary arteries (n = 4) that remained after bypass surgery. Three cell types expressed CTR, including endothelial cells, fibroblast-like cells within the neo-intima, and cellular structures aligned with the smooth muscle cells of the media. Other smaller cells within the surrounding parenchyma of the vasa vasorum of diseased vessels and blood-borne cells were also immunoreactive. Immunoquantification of CTR expression (Intensity x Proportional Area) in the endothelium (P < 0.05), neo-intima (P < 0.02) and media (P < 0.03) established a significant statistical correlation (Students' two-tailed t-test) with the ratio of intimal/media thickness. CONCLUSIONS Increased immunoreactivity developed using anti-CTR antibodies was associated with specific cell types in the endothelial layers, neo-intima, media and vasa vasorum of diseased regions of radial and internal mammary arteries, in which there was an increased intimal/media ratio. Furthermore, CTR+, blood-borne cells present in the vessels of diseased regions suggest recruitment into these surrounding tissues.
Collapse
Affiliation(s)
- P J Wookey
- Departments of Cardiology, Medicine (University of Melbourne), and Cardiac Surgery, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|
24
|
Thomas S, Chiriva-Internati M, Shah GV. Calcitonin receptor-stimulated migration of prostate cancer cells is mediated by urokinase receptor-integrin signaling. Clin Exp Metastasis 2007; 24:363-77. [PMID: 17487556 DOI: 10.1007/s10585-007-9073-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 03/31/2007] [Indexed: 12/25/2022]
Abstract
Abundance of calcitonin (CT) and calcitonin receptor (CTR) mRNA in primary prostate tumors positively correlates with tumor grade, and exogenously added CT increases the invasion of prostate cancer cell lines. We examined acute and chronic actions of CT on migration of highly metastatic PC-3M cells and poorly invasive LNCaP cells on several extracellular matrices in a spheroid disaggregation/migration assay. While PC-3M spheroids displayed maximum disaggregation/migration on vitronectin (VN), LNCaP spheroids preferred collagen but also migrated significantly on VN. Up-regulation of CT significantly enhanced disaggregation/migration of PC-3M spheroids on VN, but not on fibronectin. In contrast, down-regulation of CT, CTR, protein kinase A or urokinase-type plasminogen activator receptor (uPAR) led to amelioration of PC-3M spheroid disaggregation/migration. CT selectively increased surface activity of alpha v beta 3 or alpha 6 beta 5 integrins in PC-3M and LNCaP cell lines, respectively, and uPAR-integrin association. Finally, either CT or urokinase could completely restore migration of CT-knock-down PC-3M spheroids. But, only forced expression of urokinase receptor coupled with exogenous addition of urokinase restored migration of CTR-knock-down spheroids. These results support our hypothesis that up-regulation of CT biosynthesis and activation of CT-CTR axis in primary prostate tumors may have direct relevance in their progression to the metastatic phenotype.
Collapse
Affiliation(s)
- Shibu Thomas
- Department of Pharmacology, University of Louisiana College of Pharmacy, Monroe, LA 71209, USA
| | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The present review will provide an update of important studies in medullary thyroid cancer (MTC) with an emphasis on targeted preclinical and translational research studies published over the past 2 years. RECENT FINDINGS Recent advances in the biology of MTC, particularly in RET proto-oncogene signaling, are now being translated into promising new therapies and biomarkers. Multifunction tyrosine kinase inhibitors that target RET, plus vascular endothelial growth factor receptors and additional kinases, are now being evaluated in Phase II clinical trials in MTC. Important unanswered questions include the optimal means for selecting high-risk patients, appropriate biomarkers for monitoring kinase inhibitor trials, and trial endpoints. Similar to ABL, epidermal growth factor receptors and other kinases, individual mutant RET forms have differential sensitivity to different inhibitors. In addition to RET, an old marker, calcitonin, has assumed increasing importance, but may not adequately reflect changes in tumor burden in RET inhibitor trials. A number of new therapeutic strategies are being developed that could be appropriate for the approximately 50% of patients who lack RET mutations in their tumors. SUMMARY Progress is being made toward effective targeted MTC therapy. Patients with advanced, progressive MTC should be considered for enrollment in clinical trials.
Collapse
Affiliation(s)
- Douglas W Ball
- Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, Suite 333, 1830 E Monument Street, Baltimore, MD 21287, USA.
| |
Collapse
|
26
|
Current World Literature. Curr Opin Oncol 2007; 19:65-9. [PMID: 17133115 DOI: 10.1097/cco.0b013e328012d5fa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Sabbisetti V, Chigurupati S, Thomas S, Shah G. Calcitonin stimulates the secretion of urokinase-type plasminogen activator from prostate cancer cells: its possible implications on tumor cell invasion. Int J Cancer 2006; 118:2694-702. [PMID: 16381004 DOI: 10.1002/ijc.21625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcitonin (CT) is synthesized and secreted in prostate epithelium, and its secretion from malignant prostates is several folds higher than that in benign prostates. CT receptor (CTR) is expressed in malignant prostate epithelium, and its activation increases invasiveness of prostate cancer (PC) cells via activation of protein kinase A. Since the role of urokinase-type plasminogen activator (uPA) in invasion of PC has been established, we tested the hypothesis that CT increases invasion of PC cells by stimulating uPA secretion from PC cells. Exogenously added CT stimulated the secretion of uPA from PC-3M cells in a dose-dependent manner, which was blocked by Rp.cAMP, a competitive inhibitor of protein kinase A. CT stimulated the secretion of MMP-2 and MMP-9 from PC-3M cells, and also increased their invasiveness. Both these actions of CT were blocked by uPA-neutralizing antibodies. Immunofluorescence studies with PC-3M cells suggest that CT stimulated redistribution of cellular uPA to focal adhesion sites, which was further confirmed by co-immunoprecipitation of uPA with focal adhesion kinase (FAK) in response to CT. These results suggest that CT increases invasiveness of PC cells by stimulating PKA-mediated uPA secretion and by redirecting the secreted uPA to focal adhesion sites. The results also suggest that uPA may, at least in part, mediate proinvasive actions of CT on PC cells by stimulating the secretion of gelatinases and degradation of focal adhesion sites.
Collapse
Affiliation(s)
- Venkata Sabbisetti
- Department of Pharmacology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | | | | | | |
Collapse
|