1
|
Yanzhang R, Yan M, Yang Z, Zhang H, Yu Y, Li X, Shen R, Chu X, Han S, Zhang Z, Teng J, Li H, Li T, Jin G, Guo Z. Ginger extract inhibits c-MET activation and suppresses osteosarcoma in vitro and in vivo. Cancer Cell Int 2025; 25:130. [PMID: 40186167 PMCID: PMC11971884 DOI: 10.1186/s12935-025-03759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Osteosarcoma (OS) as an invasive and lethal malignancy showing a low 5-year survival rate requires novel therapeutic targets and their suppressors to improve prevention and treatment strategies. METHODS Our research served to clarify the therapeutic potential of ginger extract and its underlying antineoplastic mechanisms in OS. In vitro studies were used to detect the anti-proliferation ability of ginger extract towards OS cells. Patient-derived xenograft (PDX) was performed to confirm whether ginger extract suppressed tumor growth. Cancer Heat Shock Protein (HSP) database was utilized to identify the potential target of ginger extract, which was subsequently validated through a computational docking model screening method, molecular dynamics simulations and pull-down assay. Analysis of the Gene Expression Omnibus (GEO) database revealed the c-MET expression among OS samples as well as the potential mechanism. Immunohistochemistry (IHC) staining corroborated the c-MET expression level among OS tissues relative to the controls. Functional studies involving c-MET knockdown among OS cell lines were produced to elucidate the functional role of c-MET in OS cellular processes. RESULTS In vitro studies demonstrated that ginger extract administration impeded OS cell progress while inducing apoptosis and inhibiting migration. Moreover, in vivo tests unveiled that ginger extract prominently inhibited patient-derived xenograft (PDX) tumor development. Cancer HSP database analysis recognized c-MET as an underlying target of ginger extract, which was subsequently validated through a computational docking model screening, molecular dynamics simulations and pull-down assay. Analysis of the Gene Expression Omnibus (GEO) database combined with immunohistochemistry (IHC) staining corroborated the c-MET overexpression among OS tissues in contrast with the controls. Next, our study confirmed the significant suppression of cell progress and anchorage-independent growth, while concomitantly inducing apoptosis after c-MET knockdown, underscoring its prospect for a therapeutic target. CONCLUSION Collectively, our findings show that c-MET is a prospective therapeutic target for OS. Ginger extract, a natural c-MET inhibitor, exhibits potent antineoplastic effects by suppressing OS growth both in vitro and in vivo, highlighting its prospect for a new therapeutic agent of this aggressive malignancy.
Collapse
Affiliation(s)
- Ruoping Yanzhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Mingyang Yan
- China-US (Henan) Hormel Cancer Institute, No.126, Dongming street, Jinshui District, Zhengzhou, Henan, 450008, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaojie Yang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Huijun Zhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Yin Yu
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Xiangping Li
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Ruifang Shen
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Xiao Chu
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Siyuan Han
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Ziliang Zhang
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Junyan Teng
- Laboratory of Bone Tumor, Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Zhengzhou, 450000, China
| | - Hao Li
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China
| | - Tao Li
- Healthy Management Center, Fuwai Central China Cardiovascular Hospital, No.1 Fuwai Road, Zhengzhou, Henan, 451464, China
| | - Guoguo Jin
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
- China-US (Henan) Hormel Cancer Institute, No.126, Dongming street, Jinshui District, Zhengzhou, Henan, 450008, China.
| | - Zhiping Guo
- Henan Key Laboratory of Chronic Disease, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Chen JC, Chen MS, Jiang SK, Eaw CY, Han YJ, Tang CH. Transcriptomic data integration and analysis revealing potential mechanisms of doxorubicin resistance in chondrosarcoma cells. Biochem Pharmacol 2025; 232:116733. [PMID: 39732441 DOI: 10.1016/j.bcp.2024.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Chondrosarcoma is a type of bone cancer that originates from cartilage cells. In clinical practice, surgical resection is the primary treatment for chondrosarcoma, but chemotherapy becomes essential for patients with metastasis or tumors in surgically inaccessible sites. However, drug resistance often leads to treatment failure. Tumor microenvironment proteins modulate intercellular communication, contributing to drug resistance. Doxorubicin (Dox) is a common chemotherapeutic agent. The present study aimed to establish Dox-resistant chondrosarcoma cells and compare their secretome with parental cells using antibody arrays. Results showed significantly heightened secretion of hepatocyte growth factor (HGF). Knockdown of both HGF and its receptor MET increased Dox sensitivity in chondrosarcoma cells. Treatment of chondrosarcoma cells with conditioned media (CM) from cells secreting high levels of HGF resulted in MET activation. Additionally, the expression levels of HGF and MET were significantly elevated in chondrosarcoma tissues compared to normal cartilage tissues, as confirmed by analysis of GEO database. RNA sequencing and Gene Set Enrichment Analysis (GSEA) elucidated the mechanism involving HGF. Additionally, genes with log fold change > 1 underwent bioinformatics analysis using the ShinyGO web server. The results from both GSEA and ShinyGO analyses corroborate each other, indicating the significance of HGF in cellular signal transduction, regulation of cell motility, developmental processes, immune-inflammatory responses, and functions related to blood and neural systems. In summary, highly secreted HGF can activate signaling pathways through its receptor MET, particularly Ras and Akt activation, enhancing drug resistance in chondrosarcoma cells. The present study may guide the development of novel therapeutic strategies targeting HGF, ultimately improving treatment outcomes and prognosis for malignant chondrosarcoma patients.
Collapse
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Shin-Kuang Jiang
- Department of Neurology, China Medical University Hospital, Taichung 404332, Taiwan
| | - Chi-Yang Eaw
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan
| | - Yu-Jiao Han
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600355, Taiwan
| | - Chih-Hsin Tang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan; Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
3
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells. Clin Cancer Res 2025; 31:414-429. [PMID: 39540841 PMCID: PMC11739783 DOI: 10.1158/1078-0432.ccr-24-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell RNA sequencing, we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multiparameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics were used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and nontumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. Single-cell RNA sequencing demonstrated that the surrounding lung stroma adopts a chronic, nonresolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, the metastasis-associated lung demonstrated marked fibrosis, likely because of the accumulation of pathogenic, profibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a prometastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the antifibrotic tyrosine kinase inhibitor (TKI) nintedanib. Our data shed light on the non-cell-autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
Affiliation(s)
- James B. Reinecke
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
| | - Leyre Jimenez Garcia
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
| | - Amy C. Gross
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Maren Cam
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew V. Cannon
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Matthew J. Gust
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
| | - Jeffrey P. Sheridan
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, Ohio
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
4
|
Zeng M, Liu C, Gong H, Tang Z, Wen J, Wang S, Xiao S. Therapeutic potential of tyrosine-protein kinase MET in osteosarcoma. Front Mol Biosci 2024; 11:1367331. [PMID: 38596618 PMCID: PMC11002252 DOI: 10.3389/fmolb.2024.1367331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Osteosarcoma, the most prevalent primary bone tumor in children and young adults, can often be successfully treated with standard chemotherapy and surgery when diagnosed at an early stage. However, patients presenting with metastases face significant challenges in achieving a cure. Despite advancements in classical therapies over the past few decades, clinical outcomes for osteosarcoma have not substantially improved. Recently, there has been increased understanding of the biology of osteosarcoma, leading to the identification of new therapeutic targets. One such target is MET, a tyrosine kinase receptor for Hepatocyte Growth Factor (HGF) encoded by the MET gene. In vitro and in vivo studies have demonstrated that the HGF/MET pathway plays a crucial role in cancer growth, invasion, metastasis, and drug resistance across various cancers. Clinical trials targeting this pathway are already underway for lung cancer and hepatocellular carcinoma. Moreover, MET has also been implicated in promoting osteosarcoma progression. This review summarizes 3 decades' worth of research on MET's involvement in osteosarcoma and further explores its potential as a therapeutic target for patients with this disease.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Haoli Gong
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Zhongwen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
- Department of Anatomy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Sisi Wang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sheng Xiao
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
5
|
Wang L, Xu L, Han S, Zhu X. Anlotinib Inhibits Cisplatin Resistance in Non-Small-Cell Lung Cancer Cells by Inhibiting MCL-1 Expression via MET/STAT3/Akt Pathway. Can Respir J 2024; 2024:2632014. [PMID: 38468814 PMCID: PMC10927342 DOI: 10.1155/2024/2632014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Background Anlotinib is an effective targeted therapy for advanced non-small-cell lung cancer (NSCLC) and has been found to mediate chemoresistance in many cancers. However, the underlying molecular mechanism of anlotinib mediates cisplatin (DDP) resistance in NSCLC remains unclear. Methods Cell viability was assessed by the cell counting kit 8 assay. Cell proliferation, migration, and invasion were determined using the colony formation assay and transwell assay. The mRNA expression levels of mesenchymal-epithelial transition factor (MET) and myeloid cell leukemia-1 (MCL-1) were measured by quantitative real-time PCR. Protein expression levels of MET, MCL-1, and STAT3/Akt pathway-related markers were examined using western blot analysis. Results Our data showed that anlotinib inhibited the DDP resistance of NSCLC cells by regulating cell proliferation and metastasis. Moreover, MET and MCL-1 expression could be decreased by anlotinib treatment. Silencing of MET suppressed the activity of the STAT3/Akt pathway and MCL-1 expression. Furthermore, MET overexpression reversed the inhibitory effect of anlotinib on the DDP resistance of NSCLC cells, and this effect could be eliminated by MCL-1 knockdown or ACT001 (an inhibitor for STAT3/Akt pathway). Conclusion Our results confirmed that anlotinib inhibited DDP resistance in NSCLC cells, which might decrease MCL-1 expression via mediating the MET/STAT3/Akt pathway.
Collapse
Affiliation(s)
- Lile Wang
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Lu Xu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Shuhua Han
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoli Zhu
- Department of Respiratory Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Campbell K, Posner A, Chen N, Cavanaugh K, Bhushan K, Janeway KA, Shulman DS, George S, Klega K, Crompton B, London WB, DuBois SG. Phase 1 study of cabozantinib in combination with topotecan-cyclophosphamide for patients with relapsed Ewing sarcoma or osteosarcoma. Pediatr Blood Cancer 2023; 70:e30681. [PMID: 37715723 DOI: 10.1002/pbc.30681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE Phase 1 study assessing the safety and toxicity of cabozantinib in combination with topotecan and cyclophosphamide for relapsed osteosarcoma and Ewing sarcoma. METHODS Oral cabozantinib (25 mg/m2 ) was administered daily for 21 (dose level 1) or 14 (dose level -1B) days. Topotecan (0.75 mg/m2 ) and cyclophosphamide (250 mg/m2 ) were administered intravenously (IV) on days 1-5. A modified 3+3 design based upon first cycle dose-limiting toxicities (DLT) was used for dose escalation. RESULTS Twelve patients with a median age of 15 (12.9-33.2) years were enrolled (seven with Ewing sarcoma; five with osteosarcoma); all were evaluable for toxicity. At dose level 1, three of six patients developed first cycle DLT: grade 3 epistaxis, grade 3 transaminitis, and prolonged grade 2 thrombocytopenia. Six patients were enrolled on dose level -1B (interrupted cabozantinib, given days 8-21), with one first cycle DLT (grade 3 pneumothorax) observed. Of the 10 response evaluable patients, one had partial response (Ewing sarcoma), seven had stable disease, and two had progressive disease. CONCLUSIONS The recommended phase 2 doses and schedules for this combination are topotecan 0.75 mg/m2 IV days 1-5, cyclophosphamide 250 mg/m2 IV days 1-5, and cabozantinib 25 mg/m2 days 8-21. Non-concomitant administration of cabozantinib with cytotoxic therapy in this population has acceptable toxicity, while allowing for potential disease control.
Collapse
Affiliation(s)
- Kevin Campbell
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Posner
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nan Chen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kerri Cavanaugh
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ketki Bhushan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne George
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Kelly Klega
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Zhang Q, Yang Y, You X, Ju Y, Zhang Q, Sun T, Liu W. Comprehensive genomic analysis of primary bone sarcomas reveals different genetic patterns compared with soft tissue sarcomas. Front Oncol 2023; 13:1173275. [PMID: 37546405 PMCID: PMC10401477 DOI: 10.3389/fonc.2023.1173275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Sarcomas are classified into two types, bone sarcoma and soft tissue sarcoma (STS), which account for approximately 1% of adult solid malignancies and 20% of pediatric solid malignancies. There exist more than 50 subtypes within the two types of sarcoma. Each subtype is highly diverse and characterized by significant variations in morphology and phenotypes. Understanding tumor molecular genetics is helpful in improving the diagnostic accuracy of tumors that have been difficult to classify based on morphology alone or that have overlapping morphological features. The different molecular characteristics of bone sarcoma and STS in China remain poorly understood. Therefore, this study aimed to analyze genomic landscapes and actionable genomic alterations (GAs) as well as tumor mutational burden (TMB), microsatellite instability (MSI), and programmed death ligand-1 (PD-L1) expression among Chinese individuals diagnosed with primary bone sarcomas and STS. Methods This retrospective study included 145 patients with primary bone sarcomas (n = 75) and STS (n = 70), who were categorized based on the 2020 World Health Organization classification system. Results Patients diagnosed with bone sarcomas were significantly younger than those diagnosed with STS (p < 0.01). The top 10 frequently altered genes in bone sarcoma and STS were TP53, CDKN2A, CDKN2B, MAP3K1, LRP1B, MDM2, RB1, PTEN, MYC, and CDK4.The EWSR1 fusions exhibited statistically significant differences (p < 0.01) between primary bone sarcoma and STS in terms of their altered genes. Based on the actionable genes defined by OncoKB, actionable GAs was found in 30.7% (23/75) of the patients with bone sarcomas and 35.7% (25/70) of those with STS. There were 4.0% (3/75) patients with bone sarcoma and 4.3% (3/70) patients with STS exhibited high tumor mutational burden (TMB-H) (TMB ≥ 10). There was only one patient with STS exhibited MSI-L, while the remaining cases were microsatellite stable. The positive rate of PD-L1 expression was slightly higher in STS (35.2%) than in bone sarcoma (33.3%), however, this difference did not reach statistical significance. The expression of PD-L1 in STS patients was associated with a poorer prognosis (p = 0.007). Patients with STS had a better prognosis than those with bone sarcoma, but the observed difference did not attain statistical significance (p = 0.21). Amplification of MET and MYC genes were negatively correlated with clinical prognosis in bone tumors (p<0.01). Discussion In conclusion, bone sarcoma and STS have significantly different clinical and molecular characteristics, suggesting that it is vital to diagnose accurately for clinical treatment. Additionally, comprehensive genetic landscape can provide novel treatment perspectives for primary bone sarcoma and STS. Taking TMB, MSI, PD-L1 expression, and OncoKB definition together into consideration, there are still many patients who have the potential to respond to targeted therapy or immunotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Orthopaedic Oncology, Beijing Ji Shui Tan Hospital, Peking University, Beijing, China
| | - Yongkun Yang
- Department of Orthopaedic Oncology, Beijing Ji Shui Tan Hospital, Peking University, Beijing, China
| | - Xia You
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
| | - Yongzhi Ju
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
| | - Qin Zhang
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
| | - Tingting Sun
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, Jiangsu, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, Jiangsu, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology, Beijing Ji Shui Tan Hospital, Peking University, Beijing, China
| |
Collapse
|
8
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
9
|
Kokkali S, Kyriazoglou A, Mangou E, Economopoulou P, Panousieris M, Psyrri A, Ardavanis A, Vassos N, Boukovinas I. Real-World Data on Cabozantinib in Advanced Osteosarcoma and Ewing Sarcoma Patients: A Study from the Hellenic Group of Sarcoma and Rare Cancers. J Clin Med 2023; 12:jcm12031119. [PMID: 36769769 PMCID: PMC9918141 DOI: 10.3390/jcm12031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Advanced osteosarcomas (OSs) and Ewing sarcomas (ESs) tend to have poor prognosis with limited therapeutic options beyond first-line therapy. Aberrant angiogenesis and MET signaling play an important role in preclinical models. The anti-angiogenic drug cabozantinib was tested in a phase 2 trial of advanced OS and ES and was associated with clinical benefits. We retrospectively analyzed the off-label use of cabozantinib in adult patients with advanced OS and ES/primitive neuroectodermal tumors (PNETs) in three centers of the Hellenic Group of Sarcoma and Rare Cancers (HGSRC). Between April 2019 and January 2022, 16 patients started taking 60 mg of cabozantinib for advanced bone sarcoma or PNET. Median age at cabozantinib initiation was 31 years (17-83). All patients had received peri-operative chemotherapy for primary sarcoma and between 0 and 4 lines of treatment (median; 2.5) for advanced disease. The most common adverse effects included fatigue, anorexia, hypertransaminasemia, weight loss, and diarrhea. One toxic death was noted (cerebral hemorrhage). Dose reduction to 40 mg was required in 31.3% of the patients. No objective response was noted, and 9/16 patients exhibited stable disease outcomes. Progression-free survival varied from 1 to 8 (median; 5) months. Our study demonstrates that cabozantinib has antitumor activity in this population. In the real-life setting, we observed similar adverse events as in the CABONE study and in other neoplasms.
Collapse
Affiliation(s)
- Stefania Kokkali
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
- Medical Oncology Unit, Department of Internal Medicine, Hippocratio General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-2132089511
| | - Anastasios Kyriazoglou
- Medical Oncology Unit, Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elpida Mangou
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
| | - Panagiota Economopoulou
- Medical Oncology Unit, Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Michail Panousieris
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
| | - Amanda Psyrri
- Medical Oncology Unit, Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Alexandros Ardavanis
- Department of Medical Oncology, Saint-Savvas Anticancer Hospital, 11522 Athens, Greece
| | - Nikolaos Vassos
- Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Ioannis Boukovinas
- Department of Medical Oncology, Bioclinic Hospital, 54622 Thessaloniki, Greece
| |
Collapse
|
10
|
Tang W, Zhang Y, Zhang H, Zhang Y. Vascular Niche Facilitates Acquired Drug Resistance to c-Met Inhibitor in Originally Sensitive Osteosarcoma Cells. Cancers (Basel) 2022; 14:cancers14246201. [PMID: 36551686 PMCID: PMC9776923 DOI: 10.3390/cancers14246201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents characterized by drug resistance and poor prognosis. As one of the key oncogenes, c-Met is recognized as a promising therapeutic target for OS. In this report, we show that c-Met inhibitor PF02341066 specifically killed OS cells with highly phosphorylated c-Met in vitro. However, the inhibitory effect of PF02341066 was abrogated in vivo due to interference from the vascular niche. OS cells adjacent to microvessels or forming vascular mimicry suppressed c-Met expression and phosphorylation. Moreover, VEGFR2 was activated in OS cells and associated with acquired drug resistance. Dual targeting of c-Met and VEGFR2 could effectively shrink the tumor size in a xenograft model. c-Met-targeted therapy combined with VEGFR2 inhibition might be beneficial to achieve an ideal therapeutic effect in OS patients. Together, our results confirm the pivotal role of tumor heterogeneity and the microenvironment in drug response and reveal the molecular mechanism underlying acquired drug resistance to c-Met-targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Yan Zhang
- Correspondence: ; Tel.: +86-20-3933-2955
| |
Collapse
|
11
|
Albarrán V, Villamayor ML, Chamorro J, Rosero DI, Pozas J, San Román M, Calvo JC, Pérez de Aguado P, Moreno J, Guerrero P, González C, García de Quevedo C, Álvarez-Ballesteros P, Vaz MÁ. Receptor Tyrosine Kinase Inhibitors for the Treatment of Recurrent and Unresectable Bone Sarcomas. Int J Mol Sci 2022; 23:13784. [PMID: 36430263 PMCID: PMC9697271 DOI: 10.3390/ijms232213784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Bone sarcomas are a heterogeneous group of rare tumors with a predominance in the young population. Few options of systemic treatment are available once they become unresectable and resistant to conventional chemotherapy. A better knowledge of the key role that tyrosine kinase receptors (VEGFR, RET, MET, AXL, PDGFR, KIT, FGFR, IGF-1R) may play in the pathogenesis of these tumors has led to the development of multi-target inhibitors (TKIs) that are progressively being incorporated into our therapeutic arsenal. Osteosarcoma (OS) is the most frequent primary bone tumor and several TKIs have demonstrated clinical benefit in phase II clinical trials (cabozantinib, regorafenib, apatinib, sorafenib, and lenvatinib). Although the development of TKIs for other primary bone tumors is less advanced, preclinical data and early trials have begun to show their potential benefit in advanced Ewing sarcoma (ES) and rarer bone tumors (chondrosarcoma, chordoma, giant cell tumor of bone, and undifferentiated pleomorphic sarcoma). Previous reviews have mainly provided information on TKIs for OS and ES. We aim to summarize the existing knowledge regarding the use of TKIs in all bone sarcomas including the most recent studies as well as the potential synergistic effects of their combination with other systemic therapies.
Collapse
Affiliation(s)
- Víctor Albarrán
- Department of Medical Oncology, Ramon y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chiriaco C, Donini C, Cortese M, Ughetto S, Modica C, Martinelli I, Proment A, Vitali L, Fontani L, Casucci M, Comoglio PM, Giordano S, Sangiolo D, Leuci V, Vigna E. Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:309. [PMID: 36271379 PMCID: PMC9585715 DOI: 10.1186/s13046-022-02479-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Background Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. Methods Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeric Antigen Receptor (CAR) targeting MET overexpressing tumors of different histotypes. We engineered two different MET-CAR constructs and tested MET-CAR-T cell cytotoxic activity against different MET overexpressing models, including tumor cell lines, primary cancer cells, organoids, and xenografts in immune-deficient mice. Results We proved that MET-CAR-T exerted a specific cytotoxic activity against MET expressing cells. Cell killing was proportional to the level of MET expressed on the cell surface. While CAR-T cytotoxicity was minimal versus cells carrying MET at physiological levels, essentially sparing normal cells, the activity versus MET overexpressing tumors was robust, significantly controlling tumor cell growth in vitro and in vivo. Notably, MET-CAR-T cells were also able to brake acquired resistance to MET targeting agents in MET amplified cancer cells carrying secondary mutations in downstream signal transducers. Conclusions We set and validated at the pre-clinical level a MET-CAR immunotherapy strategy potentially beneficial for cancers not eligible for MET targeted therapy with inhibitory molecules, including those exhibiting primary or secondary resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02479-y.
Collapse
Affiliation(s)
- Cristina Chiriaco
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,Present address: Anemocyte S.r.l., 21040 Gerenzano, VA Italy
| | - Chiara Donini
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Marco Cortese
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Stefano Ughetto
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,Present address: Bios-Therapy, Physiological System for Health S.p.A, 52037 Sansepolcro, AR Italy
| | - Chiara Modica
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.10776.370000 0004 1762 5517Present address: Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Ilaria Martinelli
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Alessia Proment
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Letizia Vitali
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Lara Fontani
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Monica Casucci
- grid.18887.3e0000000417581884Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Maria Comoglio
- grid.7678.e0000 0004 1757 7797IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Giordano
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Dario Sangiolo
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Leuci
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Elisa Vigna
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
14
|
Noh JJ, Cho YJ, Ryu JY, Choi JJ, Hwang JR, Choi JY, Lee JW. Anti-cancer activity of the combination of cabozantinib and temozolomide in uterine sarcoma. Clin Cancer Res 2022; 28:3850-3861. [PMID: 35727598 DOI: 10.1158/1078-0432.ccr-22-0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/11/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the anti-cancer effects of cabozantinib, temozolomide, and their combination in uterine sarcoma cell lines and mouse xenograft models. EXPERIMENTAL DESIGN Human uterine sarcoma cell lines (SK-LMS-1, SK-UT-1, MES-SA, and SKN) were used to evaluate the anti-cancer activity of cabozantinib, temozolomide, and their combination. The optimal dose of each drug was determined by MTT assay. Cell proliferation and apoptosis were assessed 48 hours and 72 hours after the drug treatments. The tumor weights were measured in an SK-LMS-1 xenograft mouse model and a patient-derived xenograft (PDX) model of leiomyosarcoma treated with cabozantinib, temozolomide, or both. RESULTS Given individually, cabozantinib and temozolomide each significantly decreased the growth and viability of cells. This inhibitory effect was more pronounced when cabozantinib (0.50 µM) and temozolomide (0.25 mM or 0.50 mM) were co-administered (p-value < 0.05). The combination of the drugs also significantly increased apoptosis in all cells. Moreover, this effect was consistently observed in patient-derived leiomyosarcoma cells. In vivo studies with SK-LMS-1 cell xenografts and the PDX model with leiomyosarcoma demonstrated that combined treatment with cabozantinib (5 mg/kg/day, per os administration) and temozolomide (5 mg/kg/day, per os administration) synergistically decreased tumor growth (both p-values < 0.05). CONCLUSION The addition of cabozantinib to temozolomide offers synergistic anti-cancer effects in uterine sarcoma cell lines and xenograft mouse models, including PDX. These results warrant further investigation in a clinical trial.
Collapse
Affiliation(s)
- Joseph J Noh
- Samsung Medical Center, Seoul, Korea (South), Republic of
| | - Young-Jae Cho
- Samsung Medical Center, Seoul, Seoul, Korea (South), Republic of
| | - Ji-Yoon Ryu
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (South), Republic of
| | - Jung-Joo Choi
- Samsung Medical Center, Seoul, Korea (South), Republic of
| | - Jae Ryoung Hwang
- Sungkyunkwan Univeristy School of Medicine, Seoul, Korea (South), Republic of
| | - Ju-Yeon Choi
- Samsung Medical Center, Korea (South), Republic of
| | - Jeong-Won Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (South), Republic of
| |
Collapse
|
15
|
MET Expression Level in Lung Adenocarcinoma Loosely Correlates with MET Copy Number Gain/Amplification and Is a Poor Predictor of Patient Outcome. Cancers (Basel) 2022; 14:cancers14102433. [PMID: 35626038 PMCID: PMC9139916 DOI: 10.3390/cancers14102433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MET is a proto-oncogene and plays an important role on tumor cell survival, proliferation, metastasis, and drug resistance. Patient with MET amplification has shown an inferior outcome comparing to patients without MET amplification. Fluorescence in situ hybridization (FISH) is often used to detect MET amplification, and immunohistochemistry (IHC) is often used to assess MET expression level. Though some institutions provide both tests, IHC is more readily available in most pathology laboratories and is cheaper than FISH. This study evaluated the correlation of MET expression level with MET copy number gain/amplification, and the MET overexpression with patient’s outcome. By studying 446 patients with lung adenocarcinoma, we found that the concordance of MET expression and MET copy number gain/amplification was low; high-level of MET expression was associated with inferior outcome, but it was not an independent poor prognostic factor. These findings indicate that IHC for MET expression can’t substitute FISH analysis for MET amplification. Abstract MET amplification has been associated with shorter survival in cancer patients, however, the potential correlation of MET overexpression with either MET amplification or patient outcome is controversial. The aim of this study was to address these questions by correlating MET expression level with MET copy number and patient outcome in a cohort of 446 patients who had a lung adenocarcinoma: 88 with MET amplification, 118 with polysomy 7, and 240 with negative results by fluorescence in situ hybridization. MET expression assessed by immunohistochemistry was semi-quantified by expression level: absent (0+), weak (1+), moderate (2+) and strong (3+); or by H-score: 0–99, 100–199, and ≥200. MET expression level or H-score was positively but weakly correlated with MET copy number or MET/CEP7 ratio. Strong expression of MET (3+ or H-score ≥ 200) was associated with a shorter overall survival, but it was not an independent hazard for survival by multivariant analysis. We conclude that MET expression is loosely correlated with MET copy number gain/amplification. Strong expression of MET does not independently predict patient outcome.
Collapse
|
16
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Yang X, Liao HY, Zhang HH. Roles of MET in human cancer. Clin Chim Acta 2021; 525:69-83. [PMID: 34951962 DOI: 10.1016/j.cca.2021.12.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
The MET proto-oncogene was first identified in osteosarcoma cells exposed to carcinogens. Although expressed in many normal cells, MET is overexpressed in many human cancers. MET is involved in the initiation and development of various human cancers and mediates proliferation, migration and invasion. Accordingly, MET has been successfully used as a biomarker for diagnosis and prognosis, survival, post-operative recurrence, risk assessment and pathologic grading, as well as a therapeutic target. In addition, recent work indicates that inhibition of MET expression and function has potential clinical benefit. This review summarizes the role, mechanism, and clinical significance of MET in the formation and development of human cancer.
Collapse
Affiliation(s)
- Xin Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
18
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
19
|
Assi T, Watson S, Samra B, Rassy E, Le Cesne A, Italiano A, Mir O. Targeting the VEGF Pathway in Osteosarcoma. Cells 2021; 10:cells10051240. [PMID: 34069999 PMCID: PMC8157846 DOI: 10.3390/cells10051240] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common primary tumor of the bones affecting mainly young adults. Despite the advances in the field of systemic anticancer therapy, the prognosis of relapsed of metastatic osteosarcoma patients remain dismal with very short survival. However, the better understanding of the pathophysiology of this subtype of sarcoma has led to the identification of new targeted agents with significant activity. In fact, increased angiogenesis plays a major role in the tumor growth and survival of osteosarcoma patients. Several targeted agents have demonstrated a significant anti-tumor activity including multi-kinase inhibitors. In this review, we will discuss the pathophysiology, rationale, and role of targeting angiogenesis via the VEGF pathway in patients with osteosarcoma with emphasis on the published clinical trials and future directions.
Collapse
Affiliation(s)
- Tarek Assi
- Department of Hematology-Oncology, Faculty of Medicine, Saint Joseph University, Beirut 166830, Lebanon;
| | - Sarah Watson
- Department of Medical Oncology and INSERMU830, Curie Institute, 75005 Paris, France;
| | - Bachar Samra
- Department of Hematology/Oncology, Presbyterian Healthcare Services, Albuquerque, NM 87110, USA;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy, 94800 Villejuif, France;
| | - Axel Le Cesne
- Sarcoma Group, Gustave Roussy, 94800 Villejuif, France; (A.L.C.); (A.I.)
| | - Antoine Italiano
- Sarcoma Group, Gustave Roussy, 94800 Villejuif, France; (A.L.C.); (A.I.)
- Department of Medical Oncology and INSERM U1218, Institut Bergonié, 33000 Bordeaux, France
| | - Olivier Mir
- Sarcoma Group, Gustave Roussy, 94800 Villejuif, France; (A.L.C.); (A.I.)
- Correspondence: ; Tel.: +33-1-42114316
| |
Collapse
|
20
|
Gola C, Giannuzzi D, Rinaldi A, Iussich S, Modesto P, Morello E, Buracco P, Aresu L, De Maria R. Genomic and Transcriptomic Characterization of Canine Osteosarcoma Cell Lines: A Valuable Resource in Translational Medicine. Front Vet Sci 2021; 8:666838. [PMID: 34079834 PMCID: PMC8165228 DOI: 10.3389/fvets.2021.666838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OSA) represents the most common primary bone tumor in dogs and is characterized by a highly aggressive behavior. Cell lines represent one of the most suitable and reproducible pre-clinical models, and therefore the knowledge of their molecular landscape is mandatory to investigate oncogenic mechanisms and drug response. The present study aims at determining variants, putative driver genes, and gene expression aberrations by integrating whole-exome and RNA sequencing. For this purpose, eight canine OSA cell lines and one matched pair of primary tumor and normal tissue were analyzed. Overall, cell lines revealed a mean tumor mutational burden of 9.6 mutations/Mb (range 3.9–16.8). Several known oncogenes and tumor suppressor genes, such as ALK, MYC, and MET, were prioritized as having a likely role in canine OSA. Mutations in eight genes, previously described as human OSA drivers and including TP53, PTCH1, MED12, and PI3KCA, were retrieved in our cell lines. When variants were cross-referenced with human OSA driver mutations, the E273K mutation of TP53 was identified in the Wall cell line and tumor sample. The transcriptome profiling detected two possible p53 inactivation mechanisms in the Wall cell line on the one hand, and in D17 and D22 on the other. Moreover, MET overexpression, potentially leading to MAPK/ERK pathway activation, was observed in D17 and D22 cell lines. In conclusion, our data provide the molecular characterization of a large number of canine OSA cell lines, allowing future investigations on potential therapeutic targets and associated biomarkers. Notably, the Wall cell line represents a valuable model to empower prospective in vitro studies both in human and in dogs, since the TP53 driver mutation was maintained during cell line establishment and was widely reported as a mutation hotspot in several human cancers.
Collapse
Affiliation(s)
- Cecilia Gola
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padua, Padua, Italy
| | - Andrea Rinaldi
- Faculty of Biomedical Sciences, Institute of Oncology Research, Universit'a della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Selina Iussich
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria, and Valle d'Aosta, Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Paolo Buracco
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Turin, Italy
| | | |
Collapse
|
21
|
Garon EB, Brodrick P. Targeted Therapy Approaches for MET Abnormalities in Non-Small Cell Lung Cancer. Drugs 2021; 81:547-554. [PMID: 33638808 DOI: 10.1007/s40265-021-01477-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
The tyrosine kinase receptor mesenchymal epithelial transition (MET) is a proto-oncogene that, through the activation of the MET-hepatocyte growth factor (HGF) pathway, encodes a variety of biological processes, including cell development, proliferation, invasion, and migration. Abnormal activation of the MET pathway, occurring through MET protein overexpression, and gene amplification or mutation, can contribute to oncogenesis and has been implicated in non-small cell lung cancer (NSCLC). Though it is associated with poor clinical outcome in NSCLCs, MET overexpression and its role as a therapeutic target remains somewhat elusive due to discrepancies in its occurrence. Unlike MET overexpression, MET amplification has demonstrated a stronger potential as a biomarker for therapeutic treatment, with clinical data indicating a compelling connection between a high MET gene copy number and a high response rate to targeted therapies. However, MET exon 14 skipping mutations, occurring in 3%-4 % of lung adenocarcinomas, are of particular interest, as tumors harboring these mutations have shown a significant response to MET inhibitors. Following the discovery of MET as a potential therapeutic target, extensive clinical studies have proposed three approaches to targeting MET: (1) MET tyrosine kinase inhibitors (TKIs), including crizotinib, capmatinib, tepotinib, savolinitib, and cabozantinib; (2) MET or HGF monoclonal antibodies, including emibetuzumab and ficlatuzumab; and (3) MET or HGF antibody drug conjugates, including telisotuzumab. Herein, we discuss the relevant clinical trials, particularly focusing on the efficacy as well as the safety and tolerability of the treatment options, in the promising field of targeting MET in NSCLC.
Collapse
Affiliation(s)
- Edward B Garon
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Paige Brodrick
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Legerstee K, Abraham TE, van Cappellen WA, Nigg AL, Slotman JA, Houtsmuller AB. Growth factor dependent changes in nanoscale architecture of focal adhesions. Sci Rep 2021; 11:2315. [PMID: 33504939 PMCID: PMC7841166 DOI: 10.1038/s41598-021-81898-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/12/2021] [Indexed: 01/21/2023] Open
Abstract
Focal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.
Collapse
Affiliation(s)
- Karin Legerstee
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Tsion E Abraham
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Wiggert A van Cappellen
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Johan A Slotman
- Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands. .,Optical Imaging Centre, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GE, the Netherlands.
| |
Collapse
|
23
|
McCoach CE, Yu A, Gandara DR, Riess JW, Vang DP, Li T, Lara PN, Gubens M, Lara F, Mack PC, Beckett LA, Kelly K. Phase I/II Study of Capmatinib Plus Erlotinib in Patients With MET-Positive Non-Small-Cell Lung Cancer. JCO Precis Oncol 2021; 1:PO.20.00279. [PMID: 34036220 PMCID: PMC8140807 DOI: 10.1200/po.20.00279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE MET dysregulation is an oncogenic driver in non-small-cell lung cancer (NSCLC), as well as a mechanism of TKI (tyrosine kinase inhibitor) resistance in patients with epidermal growth factor receptor (EGFR)-mutated disease. This study was conducted to determine safety and preliminary efficacy of the combination EGFR and MET inhibitors as a strategy to overcome and/or delay EGFR-TKI resistance. METHODS A standard 3 + 3 dose-escalation trial of capmatinib in combination with erlotinib in patients with MET-positive NSCLC was used. Eighteen patients in the dose-escalation cohort received 100-600 mg twice daily of capmatinib with 100-150 mg daily of erlotinib. There were two dose-expansion cohorts. Cohort A included 12 patients with EGFR-mutant tumors resistant to TKIs. Cohort B included five patients with EGFR wild-type tumors. The primary outcome was to assess safety and determine the recommended phase II dose (RP2D) of the combination. RESULTS The most common adverse events of any grade were rash (62.9%), fatigue (51%), and nausea (45.7%). Capmatinib exhibited nonlinear pharmacokinetics combined with erlotinib, while showing no significant drug interactions. The RP2D was 400 mg twice daily capmatinib tablets with 150 mg daily erlotinib. The overall response rate (ORR) and DCR in dose-expansion cohort A was 50% and 50%, respectively. In cohort B, the ORR and disease control rate were 75% and 75%. CONCLUSION Capmatinib in combination with erlotinib demonstrated safety profiles consistent with prior studies. We observed efficacy in specific patient populations. Continued evaluation of capmatinib plus EGFR-TKIs is warranted in patients with EGFR activating mutations.
Collapse
Affiliation(s)
- Caroline E. McCoach
- Helen Diller Family Comprehensive Cancer
Center, University of California, San Francisco, CA
| | - Aiming Yu
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - David R. Gandara
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - Jonathan W. Riess
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - Daniel P. Vang
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - Tiahong Li
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - Primo N. Lara
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - Matthew Gubens
- Helen Diller Family Comprehensive Cancer
Center, University of California, San Francisco, CA
| | - Frances Lara
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - Philip C. Mack
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
- Mount Sinai Tisch Cancer Institute, New
York, NY
| | - Laurel A. Beckett
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| | - Karen Kelly
- University of California Davis
Comprehensive Cancer Center, Sacramento, CA
| |
Collapse
|
24
|
Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH. Wnt Signaling in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:125-139. [PMID: 32767238 DOI: 10.1007/978-3-030-43085-6_8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt molecules are a class of cysteine-rich secreted glycoproteins that participate in various developmental events during embryogenesis and adult tissue homeostasis. Since its discovery in 1982, the roles of Wnt signaling have been established in various key regulatory systems in biology. Wnt signals exert pleiotropic effects, including mitogenic stimulation, cell fate specification, and differentiation. The Wnt signaling pathway in humans has been shown to be involved in a wide variety of disorders including colon cancer, sarcoma, coronary artery disease, tetra-amelia, Mullerian duct regression, eye vascular defects, and abnormal bone mass. The canonical Wnt pathway functions by regulating the function of the transcriptional coactivator β-catenin, whereas noncanonical pathways function independent of β-catenin. Although the role of Wnt signaling is well established in epithelial malignancies, its role in mesenchymal tumors is more controversial. Some studies have suggested that Wnt signaling plays a pro-oncogenic role in various sarcomas by driving cell proliferation and motility; however, others have reported that Wnt signaling acts as a tumor suppressor by committing tumor cells to differentiate into a mature lineage. Wnt signaling pathway also plays an important role in regulating cancer stem cell function. In this review, we will discuss Wnt signaling pathway and its role in osteosarcoma.
Collapse
Affiliation(s)
- Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Tian Z, Niu X, Yao W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol 2020; 10:1642. [PMID: 32984034 PMCID: PMC7485562 DOI: 10.3389/fonc.2020.01642] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials have shown several multi-target tyrosine kinase inhibitors (TKIs) to be effective in the treatment of osteosarcoma. However, these TKIs have a number of targets, and it is yet unclear which of these targets has a key role in osteosarcoma treatment. In this review, we first summarize the TKIs that were studied in clinical trials registered on ClinicalTrials.gov. Further, we compare and discuss the targets of these TKIs. We found that TKIs with promising therapeutic effect for osteosarcoma include apatinib, cabozantinib, lenvatinib, regorafenib, and sorafenib. The key targets for osteosarcoma treatment may include VEGFRs and RET. The receptor tyrosine kinases (RTKs) MET, IGF-1R, AXL, PDGFRs, KIT, and FGFRs might be relevant but unimportant targets for osteosarcoma treatment. Inhibition of one type of RTK for the treatment of osteosarcoma is not effective. It is necessary to inhibit several relevant RTKs simultaneously to achieve a breakthrough in osteosarcoma treatment. This review provides comprehensive information on TKI targets relevant in osteosarcoma treatment, and it will be useful for further research in this field.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaohui Niu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
26
|
Fagioli F, Tirtei E. Cabozantinib: a new perspective for advanced bone sarcoma. Lancet Oncol 2020; 21:331-332. [DOI: 10.1016/s1470-2045(20)30004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
|
27
|
Dai H, Zeng W, Luo H. C-MET-dependent signal transduction mediates retinoblastoma growth by regulating PKM2 nuclear translocation. Cell Biochem Funct 2020; 38:204-212. [PMID: 31729060 DOI: 10.1002/cbf.3464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022]
Abstract
Mesenchymal epithelial transition (C-MET) factor overexpression has been found in many types of cancer and has served as an important molecular target for therapeutic intervention. However, the role of C-MET in retinoblastoma remains largely unclear. The present study aimed to investigate the potential role and mechanism of C-MET in Y79 retinoblastoma cells. We found that C-MET was highly expressed in Y79 retinoblastoma cells, and, in addition, the levels of C-MET were positively correlated with cell proliferation and retinoblastoma growth. Inhibition of C-MET suppressed Y79 retinoblastoma cell proliferation and tumour growth. Mechanistically, we showed that HGF-induced C-MET-dependent signal transduction resulted in ERK 1/2 phosphorylation, which subsequently promoted the nuclear translocation of PKM2. Nuclear PKM2 further interacted with histone H3 and contributed to C-MET-dependent cyclin D1 and c-Myc expression and cell proliferation. These findings highlight the role of C-MET in Y79 retinoblastoma cells and reveal a C-MET-dependent signal transduction mechanism. C-MET may be a potential therapeutic target for retinoblastoma. SIGNIFICANCE OF THE STUDY: We demonstrated a new target of retinoblastoma, C-MET. C-MET-dependent signal transduction promotes Y79 retinoblastoma cell proliferation and tumour growth through ERK 1/2/PKM2/histone H3 signalling pathway. C-MET may be a potential target for retinoblastoma therapy.
Collapse
Affiliation(s)
- Hanjun Dai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Weijuan Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hong Luo
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
28
|
Italiano A, Mir O, Mathoulin-Pelissier S, Penel N, Piperno-Neumann S, Bompas E, Chevreau C, Duffaud F, Entz-Werlé N, Saada E, Ray-Coquard I, Lervat C, Gaspar N, Marec-Berard P, Pacquement H, Wright J, Toulmonde M, Bessede A, Crombe A, Kind M, Bellera C, Blay JY. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2020; 21:446-455. [PMID: 32078813 DOI: 10.1016/s1470-2045(19)30825-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/23/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Patients with Ewing sarcoma or osteosarcoma have a median overall survival of less than 12 months after diagnosis, and a standard treatment strategy has not yet been established. Pharmacological inhibition of MET signalling and aberrant angiogenesis has shown promising results in several preclinical models of Ewing sarcoma and osteosarcoma. We aimed to investigate the activity of cabozantinib, an inhibitor of MET and VEGFR2, in patients with advanced Ewing sarcoma and osteosarcoma. METHODS We did a multicentre, single-arm, two-stage, phase 2 trial in patients with advanced Ewing sarcoma or osteosarcoma recruited from ten centres in the French Sarcoma Group. Key eligibility criteria were aged 12 years or older, Eastern Cooperative Oncology Group performance status of 0-1, and documented disease progression (according to Response Evaluation Criteria in Solid Tumors version 1.1) before study entry. The number of previous lines of treatment was not limited. Patients received cabozantinib (adults 60 mg, children [<16 years] 40 mg/m2) orally once daily in 28-day cycles until disease progression, unacceptable toxicity, the investigator's decision to discontinue, or participant withdrawal. The primary endpoint for Ewing sarcoma was best objective response within 6 months of treatment onset; for osteosarcoma, a dual primary endpoint of 6-month objective response and 6-month non-progression was assessed. All enrolled patients who received at least one dose of cabozantinib were included in the safety analysis, and all participants who received at least one complete or two incomplete treatment cycles were included in the efficacy population. This study was registered with ClinicalTrials.gov, number NCT02243605. FINDINGS Between April 16, 2015, and July 12, 2018, 90 patients (45 with Ewing sarcoma 45 with osteosarcoma) were recruited to the study. Median follow-up was 31·3 months (95% CI 12·4-35·4) for patients with Ewing sarcoma and 31·1 months (24·4-31·7) for patients with osteosarcoma. 39 (87%) patients with Ewing sarcoma and 42 (93%) patients with osteosarcoma were assessable for efficacy after histological and radiological review. In patients with Ewing sarcoma, ten (26%; 95% CI 13-42) of 39 patients had an objective response (all partial responses) by 6 months; in patients with osteosarcoma, five (12%; 4-26) of 42 patients had an objective response (all partial responses) and 14 (33%; 20-50) had 6-month non-progression. The most common grade 3 or 4 adverse events were hypophosphataemia (five [11%] for Ewing sarcoma, three [7%] for osteosarcoma), aspartate aminotransferase increase (two [4%] for Ewing sarcoma, three [7%] for osteosarcoma), palmar-plantar syndrome (three [7%] for Ewing sarcoma, two [4%] for osteosarcoma), pneumothorax (one [2%] for Ewing sarcoma, four [9%] for osteosarcoma), and neutropenia (two [4%] for Ewing sarcoma, four [9%] for osteosarcoma). At least one serious adverse event was reported in 61 (68%) of 90 patients. No patients died from drug-related toxic effects. INTERPRETATION Cabozantinib has antitumor activity in patients with advanced Ewing sarcoma and osteosarcoma and was generally well tolerated. Cabozantinib could represent a new therapeutic option in this setting, and deserves further investigation. FUNDING Institut Bergonié; French National Cancer Institute; Association pour la Recherche contre le Cancer.
Collapse
Affiliation(s)
- Antoine Italiano
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - Olivier Mir
- Department of Medicine, Institut Gustave Roussy, Villejuif, France
| | - Simone Mathoulin-Pelissier
- Unité d'épidémiologie et de recherche cliniques, Institut Bergonié, Bordeaux, France; Inserm UMR 1219, Équipe Epicene, Bordeaux, France; Inserm CIC-EC 1401, Bordeaux, France
| | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, University of Lille, Lille, France
| | | | - Emmanuelle Bompas
- Department of Medicine, Institut Cancerologie de l'Ouest, Nantes, France
| | | | - Florence Duffaud
- Department of Medical Oncology, Assistance Publique des Hôpitaux de Marseille, Hôpital La Timone, Marseille, France
| | - Natacha Entz-Werlé
- Department of Tumor Pediatrics, University Hospital Centre of Strasbourg, Strasbourg, France
| | - Esma Saada
- Department of Medicine, Centre Antoine Lacassagne, Nice, France
| | | | - Cyril Lervat
- Department of Tumor Pediatrics, Centre Oscar Lambret, University of Lille, Lille, France
| | - Nathalie Gaspar
- Department of Tumor Pediatrics, Institut Gustave Roussy, Villejuif, France
| | | | | | - John Wright
- Cancer Therapy Evaluation Program (CTEP), Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Maud Toulmonde
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, Bordeaux, France
| | | | | | | | - Carine Bellera
- Unité d'épidémiologie et de recherche cliniques, Institut Bergonié, Bordeaux, France; Inserm CIC-EC 1401, Bordeaux, France
| | - Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, Lyon, France
| |
Collapse
|
29
|
Zhang X, Bai Q, Xu Y, Wang W, Chen L, Han J, Zhu H, Zhang Z, Hou Y, Zhou J, Zhou Y, Ji Y. Molecular profiling of the biphasic components of hepatic carcinosarcoma by the use of targeted next-generation sequencing. Histopathology 2019; 74:944-958. [PMID: 30629754 DOI: 10.1111/his.13822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS To better understand the tumourogenesis and molecular features of hepatic carcinosarcoma (HCS). METHODS AND RESULTS We selected 13 cases of HCS, including the clinicopathological and immunohistochemical features, and analysed the molecular alterations in separately microdissected carcinomatous and sarcomatous components in eight cases by using targeted next-generation sequencing with a panel of 329 cancer-related genes. As a result, transitional areas were observed between the two components of HCS in all cases. Concordance and overlap in genetic alterations were identified in the two histological components of the eight HCS patients, indicating the clonal relatedness of the two tumour components. The most common gene alterations found in both components were TP53 (75%, 6/8) and NF1/2 (38%, 3/8) mutations and VEGFA amplification (25%, 2/8), which may be strongly associated with HCS tumorigenesis. Unique mutations and amplifications found only in one component were also identified. Amplifications involving MET (38%, n = 3/8) and PDGFRA (25%, n = 2/8) were present only in the sarcomatous components, whereas mutation affecting ERBB4 (25%, n = 2/8) and amplifications of CCND1 and FGF3/4/19 (38%, n = 3/8) were present only in the carcinomatous components, indicating their involvement in the clonal evolution of HCS. Furthermore, multiple potential therapeutic targets were identified for HCS. CONCLUSIONS Our findings indicate that HCS could have been of monoclonal origin, and that the diverse clonal evolution might be driven by special molecular alterations in each tumour component. Our results also identify multiple therapeutic targets of HCS, which are valuable for the personalised treatment of HCS.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifan Xu
- Department of Pathology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Wei Wang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Jing Han
- Department of Pathology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Hongguang Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhigang Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Fudan University Zhongshan Hospital, Shanghai, China
| | - Yuhong Zhou
- Department of Medical Oncology, Fudan University Zhongshan Hospital, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Fudan University Shanghai Cancer Centre, Shanghai, China
| |
Collapse
|
30
|
Zhang Z, Li P, Li T, Zhao C, Wang G. Velvet Antler compounds targeting major cell signaling pathways in osteosarcoma - a new insight into mediating the process of invasion and metastasis in OS. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractVelvet antler is the only renewable bone tissue of mammalian animals, which consists of a variety of growth factors, amino acids and polypeptides. But the mechanism of high-speed proliferation without carcinogenesis is still mystifying. The previous study of this work found that the velvet antler peptides (VAP) could not only inhibit the proliferation and migration of osteosarcoma cell lines MG-63 and U2OS, but also induced U2OS apoptosis and inhibited MG-63 epithelial-mesenchymal transition (EMT) through TGF-β and Notch pathways. These results lead us to conclude that VAP has the potential ability to mediate osteosarcoma cells by regulating related signaling pathways and growth factors. Therefore, finding a new appropriate inhibitor for OS is a valuable research direction, which will give patients a better chance to receive proper therapy. From an applied perspective, this review summarized the effects of velvet antler, genes, growth factors and research progress of relative pathways and genes of osteosarcoma, which are poised to help link regenerative molecular biology and regenerative medicine in osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Zhengyao Zhang
- School of Life Science and Medicine, Dalian University of Technology, DaGong Road, PanjinLiaoning 124221, China
| | - Pengfei Li
- School of Life Science and Medicine, Dalian University of Technology, DaGong Road, PanjinLiaoning 124221, China
| | - Tie Li
- Acupuncture and Tuina Institute, Changchun University of Chinese Medicine, ChangchunJilin 130021, China
| | - Changwei Zhao
- Department of Orthopedics, Changchun University of Chinese Medicine, ChangchunJilin 130021, China
| | - Guoxiang Wang
- Cancer Center, The First Hospital of Jilin University, ChangchunJilin 130021, China
| |
Collapse
|
31
|
Wang G, Sun M, Jiang Y, Zhang T, Sun W, Wang H, Yin F, Wang Z, Sang W, Xu J, Mao M, Zuo D, Zhou Z, Wang C, Fu Z, Wang Z, Duan Z, Hua Y, Cai Z. Anlotinib, a novel small molecular tyrosine kinase inhibitor, suppresses growth and metastasis
via
dual blockade of VEGFR2 and MET in osteosarcoma. Int J Cancer 2019; 145:979-993. [DOI: 10.1002/ijc.32180] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Gangyang Wang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Mengxiong Sun
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Wei Sun
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Hongsheng Wang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Fei Yin
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Weilin Sang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Jing Xu
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Min Mao
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Dongqing Zuo
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Zifei Zhou
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Chongren Wang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Zeze Fu
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Zongyi Wang
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Zhenfeng Duan
- Department of OrthopaedicsDavid Geffen School of Medicine at UCLA Los Angeles CA
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai General HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Bone Tumor Institute Shanghai China
| |
Collapse
|
32
|
Zhan FB, Zhang XW, Feng SL, Cheng J, Zhang Y, Li B, Xie LZ, Deng QR. MicroRNA-206 Reduces Osteosarcoma Cell Malignancy In Vitro by Targeting the PAX3-MET Axis. Yonsei Med J 2019; 60:163-173. [PMID: 30666838 PMCID: PMC6342722 DOI: 10.3349/ymj.2019.60.2.163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE This study was undertaken to explore how miR-206 represses osteosarcoma (OS) development. MATERIALS AND METHODS Expression levels of miR-206, PAX3, and MET mRNA were explored in paired OS and adjacent tissue specimens. A patient-derived OS cell line was established. miR-206 overexpression and knockdown were achieved by lentiviral transduction. PAX3 and MET overexpression were achieved by plasmid transfection. Treatment with hepatocyte growth factor (HGF) was utilized to activate c-Met receptor. Associations between miR-206 and PAX3 or MET mRNA in OS cells were verified by AGO2-RNA immunoprecipitation assay and miRNA pulldown assay. OS cell malignancy was evaluated in vitro by cell proliferation, metastasis, and apoptosis assays. PAX3 and MET gene expression in OS cells was assayed by RT-qPCR and Western blot. Activation of PI3K-AKT and MAPK-ERK in OS cells were assayed by evaluating Akt1 Ser473 phosphorylation and total threonine phosphorylation of Erk1/2, respectively. RESULTS Expression levels of miR-206 were significantly decreased in OS tissue specimens, compared to adjacent counterparts, and were inversely correlated with expression of PAX3 and MET mRNA. miR-206 directly interacted with PAX3 and MET mRNA in OS cells. miR-206 overexpression significantly reduced PAX3 and MET gene expression in OS cells in vitro, resulting in significant decreases in Akt1 and Erk1/2 activation, cell proliferation, and metastasis, as well as increases in cell apoptosis, while miR-206 knockdown showed the opposite effects. The effects of miR-206 overexpression on OS cells were reversed by PAX3 or MET overexpression, but only partially attenuated by HGF treatment. CONCLUSION miR-206 reduces OS cell malignancy in vitro by targeting PAX3 and MET gene expression.
Collapse
Affiliation(s)
- Fang Biao Zhan
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Xian Wei Zhang
- Department of Neurology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Shi Long Feng
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jun Cheng
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - You Zhang
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Bo Li
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Li Zhong Xie
- Department of Spine Surgery, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Qian Rong Deng
- Department of Internal Medicine, Chongqing Wanzhou District Traditional Chinese Hospital, Chongqing, China.
| |
Collapse
|
33
|
Mei L, Sang W, Cui K, Zhang Y, Chen F, Li X. Norcantharidin inhibits proliferation and promotes apoptosis via c-Met/Akt/mTOR pathway in human osteosarcoma cells. Cancer Sci 2019; 110:582-595. [PMID: 30520540 PMCID: PMC6361574 DOI: 10.1111/cas.13900] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and frequently affects adolescents. Norcantharidin (NCTD), a demethylated derivative of cantharidin, has been reported to exhibit anticancer activity against various types of tumors but not human OS. The aim of the present study was to evaluate the effects of NCTD on OS cell lines (MG63 and HOS) and to explore the underlying mechanisms. In the present study, the proliferation of OS cells decreased significantly, while the apoptosis was accelerated significantly after exposure to NCTD. Meanwhile, our results also indicated that NCTD could suppress the migration and invasion, decrease the colony‐forming ability and induce S phase cell cycle arrest of OS cells in a dose‐dependent manner. Moreover, our results revealed that the anticancer effects induced by NCTD on OS cells involved autophagy, mitophagy, endoplasmic reticulum stress and c‐Met pathway. Furthermore, the results of animal experiments showed that NCTD inhibited tumor growth in a xenograft model of human OS. These results provide important new insight into the possible molecular mechanisms of NCTD and highlight its potential use as an antitumor drug for human OS.
Collapse
Affiliation(s)
- Liangwei Mei
- Department of Orthopaedics, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| | - Wenhua Sang
- Department of Pathology, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| | - Kai Cui
- Department of Pathology, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| | - Yabin Zhang
- Department of Orthopaedics, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| | - Fuchun Chen
- Department of Orthopaedics, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| | - Xiaochun Li
- Department of Orthopaedics, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Rashed WM. C-MET as a potential target therapy toward personalized therapy in some pediatric tumors: An overview. Crit Rev Oncol Hematol 2018; 131:7-15. [DOI: 10.1016/j.critrevonc.2018.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
|
35
|
Valentino F, Borra G, Allione P, Rossi L. Emerging targets in advanced non-small-cell lung cancer. Future Oncol 2018; 14:61-72. [PMID: 29989453 DOI: 10.2217/fon-2018-0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
New therapeutic options in non-small-cell lung cancer have been available through a great in-depth and genomic research, improving preclinical disease patterns and identifying the specific toxicity of target therapy. The multidisciplinary approach, increasingly practiced among clinicians, researchers, pharmaceutical companies and ethics committees has allowed the emergence of a new generation of translational clinical trials and the adoption of new technologies (e.g., point-of-care sequencing), then speeding up the development and trade of these new drugs. Consequently, there is a long list of therapeutic candidates that need to be efficiently evaluated early in the context of Phase I clinical trials. In this review, we discuss some of the key developments and novelties in the main histological groups.
Collapse
|
36
|
Validation of Suitable Housekeeping Genes for the Normalization of mRNA Expression for Studying Tumor Acidosis. Int J Mol Sci 2018; 19:ijms19102930. [PMID: 30261649 PMCID: PMC6213411 DOI: 10.3390/ijms19102930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Similar to other types of cancer, acidification of tumor microenvironment is an important feature of osteosarcoma, and a major source of cellular stress that triggers cancer aggressiveness, drug resistance, and progression. Among the different effects of low extracellular pH on tumor cells, we have recently found that short-term exposure to acidosis strongly affects gene expression. This alteration might also occur for the most commonly used housekeeping genes (HKG), thereby causing erroneous interpretation of RT-qPCR data. On this basis, by using osteosarcoma cells cultured at different pH values, we aimed to identify the ideal HKG to be considered in studies on tumor-associated acidosis. We verified the stability of 15 commonly used HKG through five algorithms (NormFinder, geNorm, BestKeeper, ΔCT, coefficient of variation) and found that no universal HKG is suitable, since at least four HKG are necessary for proper normalization. Furthermore, according to the acceptable range of values, YWHAZ, GAPDH, GUSB, and 18S rRNA were the most stable reference genes at different pH. Our results will be helpful for future investigations focusing on the effect of altered microenvironment on cancer behavior, particularly on the effectiveness of anticancer therapies in acid conditions.
Collapse
|
37
|
|
38
|
Ma S, Fan L, Liu Y, Wang Y, Yu K, Wang L, Fang N, Liu F, Guo S, Wang Z. MET-overexpressing myxofibrosarcoma frequently exhibit polysomy of chromosome 7 but not MET amplification, especially in high-grade cases: clinical and pathological review of 30 myxofibrosarcoma cases. Diagn Pathol 2018; 13:56. [PMID: 30126419 PMCID: PMC6102798 DOI: 10.1186/s13000-018-0733-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Myxofibrosarcoma (MFS) is one of the most common soft tissue sarcomas. Previous studies have shown that MET protein overexpressed in MFS patients and can serve as a prognostic factor. The reasons for MET protein overexpression include amplification of the MET gene, which is located on chromosome 7q. Triggered by an index case harboring chromosome 7 polysomy rather than MET gene amplification in myxofibrosarcoma, we investigated chromosome 7 polysomy in more cases. METHODS Immunohistochemistry and fluorescence in situ hybridization (FISH) were performed in 30 MFS cases (including 2 epithelioid variant) to detect the expression of MET protein and gene status. RESULTS MET was overexpressed in 14 cases out of 30, while thirteen cases were in higher FNCLCC grades (Grade 2-3). FISH showed that 11 cases having 3 signals on average of Met and more than 3 signals (Mean: 4.6) of centromere 7q (CEP7q). The MET/CEP7 ratio was about 0.65 on average, suggesting that chromosome 7 polysomy, rather than Met gene amplification, leading to the overexpression of MET protein in MFS. MET overexpression and chromosome 7 polysomy are positively correlated with higher Ki-67 index and higher grade and might have a high risk of local recurrence and metastasis. CONCLUSIONS It might reveals another explain of MET overexpression in myxofibrosarcoma, providing a clue for the therapy of MFS.
Collapse
Affiliation(s)
- Shirong Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, West Road #169, Xi'an, Changle, 710032, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, West Road #169, Xi'an, Changle, 710032, China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, West Road #169, Xi'an, Changle, 710032, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, West Road #169, Xi'an, Changle, 710032, China
| | - Kangjie Yu
- Student Team 1, Class 3, Fourth Military Medical University, West Road #169, Xi'an, Changle, 710032, China
| | - Lifeng Wang
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road #1665, Shanghai, 200092, China
| | - Na Fang
- Department of Pathology, Hubei Provincial Cancer hospital, Zhuodaoquan South Road #116, Wuhan, 430079, China
| | - Fang Liu
- Department of Pathology, Affiliated Foshan hospital, Sun Yet-sen University, Lingnan North Road#81, Foshan, 528000, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, West Road #169, Xi'an, Changle, 710032, China
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, West Road #169, Xi'an, Changle, 710032, China.
| |
Collapse
|
39
|
Cabozantinib Affects Osteosarcoma Growth Through A Direct Effect On Tumor Cells and Modifications In Bone Microenvironment. Sci Rep 2018. [PMID: 29520051 PMCID: PMC5843583 DOI: 10.1038/s41598-018-22469-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone. Due to its high heterogeneity and to survival signals from bone microenvironment, OS can resist to standard treatments, therefore novel therapies are needed. c-MET oncogene, a tyrosine-kinase receptor, plays a crucial role in OS initiation and progression. The present study aimed to evaluate the effect of c-MET inhibitor cabozantinib (CBZ) on OS both directly and through its action on bone microenvironment. We tested different doses of CBZ in in vitro models of OS alone or in co-culture with bone cells in order to reproduce OS-tumor microenvironment interactions. CBZ is able to decrease proliferation and migration of OS cells, inhibiting ERK and AKT signaling pathways. Furthermore, CBZ leads to the inhibition of the proliferation of OS cells expressing receptor activator of nuclear factor κB (RANK), due to its effect on bone microenvironment, where it causes an overproduction of osteoprotegerin and a decrease of production of RANK ligand by osteoblasts. Overall, our data demonstrate that CBZ might represent a new potential treatment against OS, affecting both OS cells and their microenvironment. In this scenario, RANK expression in OS cells could represent a predictive factor of better response to CBZ treatment.
Collapse
|
40
|
Geller JI, Perentesis JP, Liu X, Minard CG, Kudgus RA, Reid JM, Fox E, Blaney SM, Weigel BJ. A phase 1 study of the c-Met inhibitor, tivantinib (ARQ197) in children with relapsed or refractory solid tumors: A Children's Oncology Group study phase 1 and pilot consortium trial (ADVL1111). Pediatr Blood Cancer 2017; 64:10.1002/pbc.26565. [PMID: 28449393 PMCID: PMC5657151 DOI: 10.1002/pbc.26565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND The c-Met receptor tyrosine kinase is dysregulated in many pediatric cancers. Tivantinib is an oral small molecule that inhibits the c-Met receptor tyrosine kinase. A phase 1 and pharmacokinetic (PK) trial evaluating tivantinib was conducted in children with relapsed/refractory solid tumors. METHODS Oral tivantinib capsules were administered twice daily with food, continuously in 28-day cycles. Dose levels 170, 200, and 240 mg/m2 /dose were evaluated using a rolling-six design (Part A). In Part B, subjects received tivantinib powder sprinkled on food at the recommended phase 2 dose (RP2D) from Part A. PK, CYP2C19 genotyping, and baseline tumor tissue c-Met expression were analyzed. RESULTS Thirty-six patients were enrolled: 20 in Part A, 6 in a PK expansion cohort, and 10 in Part B. Fifteen patients had primary central nervous system tumors and 21 had solid tumors. In Part A, there were no dose-limiting toxicities. One grade 4 intracranial hemorrhage occurred in a patient with a progressive brain tumor in the expanded PK cohort (240 mg/m2 ). PK analysis showed marked interpatient variability (20-fold) in the Cmax and AUC0-8h across all dose levels. Sprinkling tivantinib powder over food did not alter exposure. Membranous and total c-Met expression was moderate (2), low (4), or not detected (26). Two patients had stable disease as the best response. CONCLUSIONS The RP2D of tivantinib given with food in children with refractory solid tumors is 240 mg/m2 /dose. PK of tivantinib in children demonstrated high variability. Objective responses were not observed in this phase 1 trial.
Collapse
Affiliation(s)
- James I. Geller
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | - John P. Perentesis
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | | | - Charles G. Minard
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | | | | | - Elizabeth Fox
- Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Susan M. Blaney
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | - Brenda J. Weigel
- Masonic Children’s Hospital, University of Minnesota Medical Center, Minneapolis, MN
| |
Collapse
|
41
|
Cortini M, Avnet S, Baldini N. Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett 2017; 405:90-99. [PMID: 28774797 DOI: 10.1016/j.canlet.2017.07.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022]
Abstract
The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. In osteosarcoma, a very aggressive cancer of young adults characterized by the extensive need for more effective therapies, this aspect has been only recently explored. In this view, we will discuss the role of stroma, with a particular focus on the mesenchymal stroma, contributing to osteosarcoma progression through inherent features for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, and immune modulation, and also by responding to the changes of the microenvironment that are induced by tumor cells. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and osteosarcoma cells, will be reviewed providing insights likely to be used for novel therapeutic approaches against sarcomas.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
42
|
Al-Saad S, Richardsen E, Kilvaer TK, Donnem T, Andersen S, Khanehkenari M, Bremnes RM, Busund LT. The impact of MET, IGF-1, IGF1R expression and EGFR mutations on survival of patients with non-small-cell lung cancer. PLoS One 2017; 12:e0181527. [PMID: 28742836 PMCID: PMC5526580 DOI: 10.1371/journal.pone.0181527] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/03/2017] [Indexed: 01/10/2023] Open
Abstract
Introduction To compare the efficacy of silver in situ hybridization (SISH) and immunohistochemistry (IHC) in detecting MET and IGF1R alterations and to investigate their prevalence and prognostic significance. A possible correlation between MET receptor expression, MET gene alterations and the two most frequent occurring EGFR gene mutations was also investigated. Materials and methods Stage I to IIIA tumors from 326 patients with NSCLC were immunohistochemically tested for protein expression of MET and IGF-1. Their cytoplasmic expression was compared with the gene copy number of the MET and IGF1Rgenes by SISH in paraffin-embedded, formalin-fixed material. Correlations were made with the immunohistochemical expression of two frequent EGFR mutations and clinicopathological variables. Univariate and multivariate survival analyses was used to evaluate the prognostic efficacy of the tested markers. Results In univariate analyses, high cytoplasmic MET expression showed a significant negative prognostic effect in adenocarcinoma patients (p = 0.026). MET gene to chromosome 7 ratio was a significant positive prognostic marker (p = 0.005), probably only due to the highly negative prognostic significance of chromosome 7 polysomy (p = 0.002). High IGF1R gene copy number was a negative prognostic marker for all NSCLC patients (p = 0.037). In the multivariate analysis, polysomy of chromosome 7 in tumor cells correlated significantly and independently with a poor prognosis (p = 0.011). In patients with adenocarcinoma, a high cytoplasmic MET expression was an independent negative prognostic marker (p = 0.013). In males a high IGF1R gene copy number to chromosome 15 count ratio was significantly and independently correlated to a poor prognosis (p = 0.018). Conclusion MET protein expression provides superior prognostic information compared with SISH. Polysomy of chromosome 7 is an independent negative prognostic factor in NSCLC patients. This finding has an important implication while examining genes located on chromosome 7 by means of SISH. High IGF1R gene copy number to chromosome 15 count ratio is an independent predictor of inferior survival in male patients with primary NSCLC.
Collapse
Affiliation(s)
- Samer Al-Saad
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromso, Norway
- * E-mail:
| | - Elin Richardsen
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromso, Norway
| | - Thomas K. Kilvaer
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Tom Donnem
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Sigve Andersen
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Mehrdad Khanehkenari
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Roy M. Bremnes
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Department of Oncology, University Hospital of Northern Norway, Tromso, Norway
| | - Lill-Tove Busund
- Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromso, Norway
| |
Collapse
|
43
|
Chaiyawat P, Settakorn J, Sangsin A, Teeyakasem P, Klangjorhor J, Soongkhaw A, Pruksakorn D. Exploring targeted therapy of osteosarcoma using proteomics data. Onco Targets Ther 2017; 10:565-577. [PMID: 28203090 PMCID: PMC5295800 DOI: 10.2147/ott.s119993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite multimodal therapeutic treatments of osteosarcoma (OS), some patients develop resistance to currently available regimens and eventually end up with recurrent or metastatic outcomes. Many attempts have been made to discover effective drugs for improving outcome; however, due to the heterogeneity of the disease, new therapeutic options have not yet been identified. This study aims to explore potential targeted therapy related to protein profiles of OS. In this review of proteomics studies, we extracted data on differentially expressed proteins (DEPs) from archived literature in PubMed and our in-house repository. The data were divided into three experimental groups, DEPs in 1) OS/OB: OS vs osteoblastic (OB) cells, 2) metastasis: metastatic vs non-metastatic sublines plus fresh tissues from primary OS with and without pulmonary metastasis, and 3) chemoresistance: spheroid (higher chemoresistance) vs monolayer cells plus fresh tissues from biopsies from good and poor responders. All up-regulated protein entities in the list of DEPs were sorted and cross-referenced with identifiers of targets of US Food and Drug Administration (FDA)-approved agents and chemical inhibitors. We found that many targets of FDA-approved antineoplastic agents, mainly a group of epigenetic regulators, kinases, and proteasomes, were highly expressed in OS cells. Additionally, some overexpressed proteins were targets of FDA-approved non-cancer drugs, including immunosuppressive and antiarrhythmic drugs. The resulting list of chemical agents showed that some transferase enzyme inhibitors might have anticancer activity. We also explored common targets of OS/OB and metastasis groups, including amidophosphoribosyltransferase (PPAT), l-lactate dehydrogenase B chain (LDHB), and pyruvate kinase M2 (PKM2) as well as the common target of all categories, cathepsin D (CTSD). This study demonstrates the benefits of a text mining approach to exploring therapeutic targets related to protein expression patterns. These results suggest possible repurposing of some FDA-approved medicines for the treatment of OS and using chemical inhibitors in drug screening tests.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | | | - Apiruk Sangsin
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | - Pimpisa Teeyakasem
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics
| | | | | | - Dumnoensun Pruksakorn
- Orthopedic Laboratory and Research Netting Center, Department of Orthopedics; Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
44
|
Drilon A, Cappuzzo F, Ou SHI, Camidge DR. Targeting MET in Lung Cancer: Will Expectations Finally Be MET? J Thorac Oncol 2017; 12:15-26. [PMID: 27794501 PMCID: PMC5603268 DOI: 10.1016/j.jtho.2016.10.014] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/12/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
The hepatocyte growth factor receptor (MET) is a potential therapeutic target in a number of cancers, including NSCLC. In NSCLC, MET pathway activation is thought to occur through a diverse set of mechanisms that influence properties affecting cancer cell survival, growth, and invasiveness. Preclinical and clinical evidence suggests a role for MET activation as both a primary oncogenic driver in subsets of lung cancer and as a secondary driver of acquired resistance to targeted therapy in other genomic subsets. In this review, we explore the biology and clinical significance behind MET proto-oncogene receptor tyrosine kinase (MET) exon 14 alterations and MET amplification in NSCLC, the role of MET amplification in the setting of acquired resistance to EGFR tyrosine kinase inhibitor therapy in EGFR-mutant NSCLC, and the history of MET pathway inhibitor drug development in NSCLC, highlighting current strategies that enrich for biomarkers likely to be predictive of response. Whereas previous trials that focused on MET pathway-directed targeted therapy in unselected or MET-overexpressing NSCLC yielded largely negative results, more recent investigations focusing on MET exon 14 alterations and MET amplification have been notable for meaningful clinical responses to MET inhibitor therapy in a substantial proportion of patients.
Collapse
Affiliation(s)
| | | | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, California
| | | |
Collapse
|
45
|
Re-calculating! Navigating through the osteosarcoma treatment roadblock. Pharmacol Res 2016; 117:54-64. [PMID: 27940205 DOI: 10.1016/j.phrs.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
Abstract
The survival rates for patients with osteosarcoma have remained almost static for the past three decades. Current standard of care therapy includes chemotherapies such as doxorubicin, cisplatin, and methotrexate along with complete surgical resection and surgery with or without ifosfamide and etoposide for relapse, though outcomes are hoped to be improved through clinical trials. Additionally, increased understanding of the genetics, signaling pathways and microenvironmental factors driving the disease have led to the identification of promising agents and potential paths towards translation of an exciting array of novel targeted therapies. Here, we review the mechanism of action of these emerging therapies and how, with clinical translation, they can potentially improve the survival rates for osteosarcoma patients in the near future.
Collapse
|
46
|
Cortini M, Massa A, Avnet S, Bonuccelli G, Baldini N. Tumor-Activated Mesenchymal Stromal Cells Promote Osteosarcoma Stemness and Migratory Potential via IL-6 Secretion. PLoS One 2016; 11:e0166500. [PMID: 27851822 PMCID: PMC5112800 DOI: 10.1371/journal.pone.0166500] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive bone malignancy with a high relapse rate despite combined treatment with surgery and multiagent chemotherapy. As for other cancers, OS-associated microenvironment may contribute to tumor initiation, growth, and metastasis. We consider mesenchymal stromal cells (MSC) as a relevant cellular component of OS microenvironment, and have previously found that the interaction between MSC and tumor cells is bidirectional: tumor cells can modulate their peripheral environment that in turn becomes more favorable to tumor growth through metabolic reprogramming. Here, we determined the effects of MSC on OS stemness and migration, two major features associated with recurrence and chemoresistance. The presence of stromal cells enhanced the number of floating spheres enriched in cancer stem cells (CSC) of the OS cell population. Furthermore, the co-culturing with MSC stimulated the migratory capacity of OS via TGFβ1 and IL-6 secretion, and the neutralizing antibody anti-IL-6 impaired this effect. Thus, stromal cells in combination with OS spheres exploit a vicious cycle where the presence of CSC stimulates mesenchymal cytokine secretion, which in turn increases stemness, proliferation, migration, and metastatic potential of CSC, also through the increase of expression of adhesion molecules like ICAM-1. Altogether, our data corroborate the concept that a comprehensive knowledge of the interplay between tumor and stroma that also includes the stem-like fraction of tumor cells is needed to develop novel and effective anti-cancer therapies.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Annamaria Massa
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Gloria Bonuccelli
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- * E-mail:
| |
Collapse
|
47
|
Subbiah V, Wagner MJ, McGuire MF, Sarwari NM, Devarajan E, Lewis VO, Westin S, Kato S, Brown RE, Anderson P. Personalized comprehensive molecular profiling of high risk osteosarcoma: Implications and limitations for precision medicine. Oncotarget 2016; 6:40642-54. [PMID: 26510912 PMCID: PMC4747358 DOI: 10.18632/oncotarget.5841] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 12/28/2022] Open
Abstract
Background Despite advances in molecular medicine over recent decades, there has been little advancement in the treatment of osteosarcoma. We performed comprehensive molecular profiling in two cases of metastatic and chemotherapy-refractory osteosarcoma to guide molecularly targeted therapy. Patients and Methods Hybridization capture of >300 cancer-related genes plus introns from 28 genes often rearranged or altered in cancer was applied to >50 ng of DNA extracted from tumor samples from two patients with recurrent, metastatic osteosarcoma. The DNA from each sample was sequenced to high, uniform coverage. Immunohistochemical probes and morphoproteomics analysis were performed, in addition to fluorescence in situ hybridization. All analyses were performed in CLIA-certified laboratories. Molecularly targeted therapy based on the resulting profiles was offered to the patients. Biomedical analytics were performed using QIAGEN's Ingenuity® Pathway Analysis. Results In Patient #1, comprehensive next-generation exome sequencing showed MET amplification, PIK3CA mutation, CCNE1 amplification, and PTPRD mutation. Immunohistochemistry-based morphoproteomic analysis revealed c-Met expression [(p)-c-Met (Tyr1234/1235)] and activation of mTOR/AKT pathway [IGF-1R (Tyr1165/1166), p-mTOR [Ser2448], p-Akt (Ser473)] and expression of SPARC and COX2. Targeted therapy was administered to match the P1K3CA, c-MET, and SPARC and COX2 aberrations with sirolimus+ crizotinib and abraxane+ celecoxib. In Patient #2, aberrations included NF2 loss in exons 2–16, PDGFRα amplification, and TP53 mutation. This patient was enrolled on a clinical trial combining targeted agents temsirolimus, sorafenib and bevacizumab, to match NF2, PDGFRα and TP53 aberrations. Both the patients did not benefit from matched therapy. Conclusions Relapsed osteosarcoma is characterized by complex signaling and drug resistance pathways. Comprehensive molecular profiling holds great promise for tailoring personalized therapies for cancer. Methods for such profiling are evolving and need to be refined to better assist clinicians in making treatment decisions based on the large amount of data that results from this type of testing. Further research in this area is warranted.
Collapse
Affiliation(s)
- Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J Wagner
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary F McGuire
- Department of Pathology & Laboratory Medicine, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Nawid M Sarwari
- Department of Internal Medicine, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Eswaran Devarajan
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valerae O Lewis
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shanon Westin
- Division of Gynecological Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shumei Kato
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert E Brown
- Department of Pathology & Laboratory Medicine, The University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Pete Anderson
- Department of of Pediatric Hematology/Oncology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
48
|
Jiang X, Feng K, Zhang Y, Li Z, Zhou F, Dou H, Wang T. Sorafenib and DE605, a novel c-Met inhibitor, synergistically suppress hepatocellular carcinoma. Oncotarget 2016; 6:12340-56. [PMID: 25895026 PMCID: PMC4494942 DOI: 10.18632/oncotarget.3656] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023] Open
Abstract
Sorafenib, an oral multikinase inhibitor of Raf, VEGF and PDGF receptor signaling is approved for advanced hepatocellular carcinoma (HCC). One strategy to improve HCC therapy is to combine agents that target key signaling pathways. Aberrant mesenchymal-epithelial transition factor (c-Met) activation is associated with a variety of human malignancies and therefore represents a target for therapy. In this study, we investigated a novel c-Met inhibitor, DE605, together with sorafenib in hepatocellular carcinoma cells in vitro and in vivo. DE605 and sorafenib synergistically induced apoptosis in hepatocellular carcinoma cells. Mechanistically, DE605 activated the FGFR3/Erk pathway, which in turn was inhibited by sorafenib, resulting in synergism. Finally, DE605 and sorafenib significantly inhibited growth of PLC/PRF/5 hepatocellular carcinoma tumor xenografts in athymic nude mice. Importantly, no obvious weight loss (toxicity) was detected. Thus in combination, DE605 and sorafenib target complementary anti-apoptotic pathways and synergistically suppress HCC, providing the rationale for clinical studies with this novel combination.
Collapse
Affiliation(s)
- Xiufeng Jiang
- Department of General Surgery, Wuxi People's Hospital, Wuxi, China.,Nanjing Medical University, Nanjing, China
| | - Kang Feng
- Nanjing Medical University, Nanjing, China
| | - Ye Zhang
- Department of General Surgery, Wuxi People's Hospital, Wuxi, China
| | - Zengyao Li
- Nanjing Medical University, Nanjing, China
| | - Fan Zhou
- Nanjing Medical University, Nanjing, China
| | - Huiqiang Dou
- Department of General Surgery, Wuxi People's Hospital, Wuxi, China
| | - Tong Wang
- Department of General Surgery, Wuxi People's Hospital, Wuxi, China.,Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Ory B, Baud'huin M, Verrecchia F, Royer BBL, Quillard T, Amiaud J, Battaglia S, Heymann D, Redini F, Lamoureux F. Blocking HSP90 Addiction Inhibits Tumor Cell Proliferation, Metastasis Development, and Synergistically Acts with Zoledronic Acid to Delay Osteosarcoma Progression. Clin Cancer Res 2015; 22:2520-33. [PMID: 26712686 DOI: 10.1158/1078-0432.ccr-15-1925] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants the development of new strategies to improve overall patient survival. Among them, HSP90 is a molecular chaperone involved in the maturation and stability of various oncogenic proteins leading to tumor cells survival and disease progression. We assessed the antitumor properties of a synthetic HSP90 inhibitor, PF4942847, alone or in combination with zoledronic acid in osteosarcoma. EXPERIMENTAL DESIGN The effects of PF4942847 were evaluated on human osteosarcoma cells growth and apoptosis. Signaling pathways were analyzed by Western blotting. The consequence of HSP90 therapy combined or not with zoledronic acid was evaluated in mice bearing HOS-MNNG xenografts on tumor growth, associated bone lesions, and pulmonary metastasis. The effect of PF4942847 on osteoclastogenesis was assessed on human CD14(+) monocytes. RESULTS In osteosarcoma cell lines, PF4942847 inhibited cell growth in a dose-dependent manner (IC50 ±50 nmol/L) and induced apoptosis with an increase of sub-G1 fraction and cleaved PARP. These biologic events were accompanied by decreased expression of Akt, p-ERK, c-Met, and c-RAF1. When administered orally to mice bearing osteosarcoma tumors, PF4942847 significantly inhibited tumor growth by 80%, prolonged survival compared with controls, and inhibited pulmonary metastases by blocking c-Met, FAK, and MMP9 signaling. In contrast to 17-allylamino-17-demethoxygeldanamycin (17-AAG), PF4942847 did not induce osteoclast differentiation, and synergistically acted with zoledronic acid to delay osteosarcoma progression and prevent bone lesions. CONCLUSIONS All these data provide a strong rationale for clinical evaluation of PF4942847 alone or in combination with zoledronic acid in osteosarcoma. Clin Cancer Res; 22(10); 2520-33. ©2015 AACR.
Collapse
Affiliation(s)
- Benjamin Ory
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Marc Baud'huin
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France. CHU de Nantes, Nantes, France
| | - Franck Verrecchia
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Bénédicte Brounais-Le Royer
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Thibaut Quillard
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Jérôme Amiaud
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Séverine Battaglia
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Dominique Heymann
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France. CHU de Nantes, Nantes, France
| | - Francoise Redini
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France
| | - Francois Lamoureux
- Université de Nantes, Nantes atlantique universités, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Nantes, France. INSERM, UMR 957, Nantes, France. LUNAM Université, Nantes, France. Equipe labellisée LIGUE 2012, Nantes, France.
| |
Collapse
|
50
|
Olivero M, Dettori D, Arena S, Zecchin D, Lantelme E, Di Renzo MF. The stress phenotype makes cancer cells addicted to CDT2, a substrate receptor of the CRL4 ubiquitin ligase. Oncotarget 2015; 5:5992-6002. [PMID: 25115388 PMCID: PMC4171607 DOI: 10.18632/oncotarget.2042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CDT2/L2DTL/RAMP is one of the substrate receptors of the Cullin Ring Ubiquitin Ligase 4 that targets for ubiquitin mediated degradation a number of substrates, such as CDT1, p21 and CHK1, involved in the regulation of cell cycle and survival. Here we show that CDT2 depletion was alone able to induce the apoptotic death in 12/12 human cancer cell lines from different tissues, regardless of the mutation profile and CDT2 expression level. Cell death was associated to rereplication and to loss of CDT1 degradation. Conversely, CDT2 depletion did not affect non-transformed human cells, such as immortalized kidney, lung and breast cell lines, and primary cultures of endothelial cells and osteoblasts. The ectopic over-expression of an activated oncogene, such as the mutation-activated RAS or the amplified MET in non-transformed immortalized breast cell lines and primary human osteoblasts, respectively, made cells transformed in vitro, tumorigenic in vivo, and susceptible to CDT2 loss. The widespread effect of CDT2 depletion in different cancer cells suggests that CDT2 is not in a synthetic lethal interaction to a single specific pathway. CDT2 likely is a non-oncogene to which transformed cells become addicted because of their enhanced cellular stress, such as replicative stress and DNA damage.
Collapse
Affiliation(s)
- Martina Olivero
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Daniela Dettori
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: HUGEF, Human Genetics Foundation, Torino, Italy
| | - Sabrina Arena
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Davide Zecchin
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: Signal Transduction Laboratory, Cancer Research UK London Research Institute, London U.K
| | - Erica Lantelme
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy; present address: Washington University in St. Louis, St. Louis, MO
| | - Maria Flavia Di Renzo
- Department of Oncology, University of Torino, Candiolo, Torino, Italy; Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| |
Collapse
|