1
|
Zhang T, Jiang S, Zhang L, Liu Y, Zheng H, Zhao H, Du S, Xu Y, Lu X. A bibliometric analysis of oncolytic virotherapy combined with immunotherapy. Hum Vaccin Immunother 2024; 20:2406621. [PMID: 39400287 PMCID: PMC11485904 DOI: 10.1080/21645515.2024.2406621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Oncolytic virotherapy in combination with immunotherapy has demonstrated significant survival benefits in some types of cancer. Here, we summarized the development, research hotpots and potential trends of the combination therapy using visual bibliometric analysis. A total of 712 articles were retrieved on June 21, 2023. The USA was the top contributors of any country (325, 45.65%), and the Rluk Research Libraries UK ranked first (43, 6.03%) of any institutions. The Journal for ImmunoTherapy of Cancer was with the largest publications (60, 8.43%). 'Tumor microenvironment' and 'delivery' were citation keywords with the strongest ongoing bursts. Research fronts in the future may focus on the methods of virus delivery and tumor microenvironment modulation. Futhermore, the most extensively studied cancer were melanoma, glioma and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shitao Jiang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaoge Liu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Abdelmageed AA, Dewhurst S, Ferran MC. Employing the Oncolytic Vesicular Stomatitis Virus in Cancer Virotherapy: Resistance and Clinical Considerations. Viruses 2024; 17:16. [PMID: 39861805 PMCID: PMC11768927 DOI: 10.3390/v17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Vesicular Stomatitis Virus (VSV) has emerged as a promising candidate for various clinical applications, including vaccine development, virus pseudotyping, and gene delivery. Its broad host range, ease of propagation, and lack of pre-existing immunity in humans make it ideal for therapeutic use. VSV's potential as an oncolytic virus has garnered attention; however, resistance to VSV-mediated oncolysis has been observed in some cell lines and tumor types, limiting its effectiveness. This review provides a detailed analysis of recent advances in VSV-based oncolysis, focusing on resistance mechanisms such as sustained type-I IFN signaling, upregulation of ISGs, immune cell activation, the tumor microenvironment (TME), and tumor-intrinsic factors. Strategies to overcome resistance include enhancing viral oncoselectivity, inhibiting IFN responses, modulating the TME, and combining VSV with chemotherapies, radiation, and immune checkpoint inhibitors. Several VSV-based phase I/II clinical trials show promise; however, addressing resistance and developing novel strategies to enhance therapeutic efficacy are essential for realizing the full potential of VSV oncolytic virotherapy. Future research should focus on patient-specific approaches, as tumor heterogeneity implies varying resistance mechanisms. Personalized treatments tailored to tumor molecular profiles, along with identifying biomarkers predictive of resistance to VSV oncolysis, will enhance patient selection and enable more effective, individualized VSV-based therapies.
Collapse
Affiliation(s)
- Alaa A. Abdelmageed
- Biomedical Genetics and Genomics Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (A.A.A.); (S.D.)
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Stephen Dewhurst
- Biomedical Genetics and Genomics Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (A.A.A.); (S.D.)
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Maureen C. Ferran
- Thomas H. Gosnell School for Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
3
|
Vile R, Pulido J, Chen A, Kendall B, Tonne J, Metko M, Thompson J, Sangsuwannukul T, Yerovi MC, Diaz R, Webb M, Huff A, Moore M, Schuelke M, Irshad S, Appleton E, Melcher A. Cancer Immunotherapy Using AIRE Conditioning of the Tumor Epitopeome. RESEARCH SQUARE 2024:rs.3.rs-5411393. [PMID: 39606441 PMCID: PMC11601838 DOI: 10.21203/rs.3.rs-5411393/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
T cell immune tolerance is established in part through the activity of the Auto-immune Regulator (AIRE) transcription factor in the medullary Thymic Epithelial Cells (mTEC) of the thymus. AIRE induces expression of SELF peripheral tissue-specific antigens for presentation to naïve T cells to promote activation/deletion of potentially autoreactive T cells. We show, for the first time to our knowledge, that tumors mimic the role of AIRE in mTEC to evade immune rejection. Thus, by expressing a broad range of SELF epitopes against which minimal functional T cell reactivities exist because of thymic deletion, AIRE acts as a master controller of SELFNESS, effectively cloaking the tumor from T cell attack. Moreover, we describe a completely novel immunotherapy in which engineered changes in AIRE expression in tumor cells alters their profile of SELFNESS, exposing both AIRE-modified, and parental unmodified, tumor cells to T cell attack. Consistent with our studies, patient RNAseq shows expression of AIRE predicts response to immune therapies with a strong correlation between AIRE expression and markers of TCR signaling. Therefore, by re-setting the immunological SELFNESS of cancer cells, this novel AIRE-mediated immunotherapy 1). converts a highly tolerized T cell compartment into a heteroclitic tumor-reactive T cell population; 2) confers de novo sensitivity to immune checkpoint blockade upon non-immunogenic tumors; 3). completely removes the need to identify potentially immunogenic tumor-associated antigens as targets for generation of de novo CD8+ and helper CD4+ T cell responses; and 4) leads to potent T cell-mediated rejection of aggressive, immunologically cold, non-immunogenic tumors.
Collapse
|
4
|
Rajwani J, Vishnevskiy D, Turk M, Naumenko V, Gafuik C, Kim DS, Mah LK, Snelling S, Gonzales GA, Xue J, Chanda A, Potts KG, Todesco HM, Lau KCK, Hildebrand KM, Chan JA, Liao S, Monument MJ, Hyrcza M, Bose P, Jenne CN, Canton J, Zemp FJ, Mahoney DJ. VSV ∆M51 drives CD8 + T cell-mediated tumour regression through infection of both cancer and non-cancer cells. Nat Commun 2024; 15:9933. [PMID: 39548070 PMCID: PMC11567966 DOI: 10.1038/s41467-024-54111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Oncolytic viruses (OV) are designed to selectively infect and kill cancer cells, while simultaneously eliciting antitumour immunity. The mechanism is expected to originate from infected cancer cells. However, recent reports of tumour regression unaccompanied by cancer cell infection suggest a more complex mechanism of action. Here, we engineered vesicular stomatitis virus (VSV)ΔM51-sensitive and VSVΔM51-resistant tumour lines to elucidate the role of OV-infected cancer and non-cancer cells. We found that, while cancer cell infections elicit oncolysis and antitumour immunity as expected, infection of non-cancer cells alone can also contribute to tumour regression. This effect is partly attributed to the systemic production of cytokines that promote dendritic cell (DC) activation, migration and antigen cross-presentation, leading to magnified antitumour CD8+ T cell activation and tumour regression. Such OV-induced antitumour immunity is complementary to PD-1 blockade. Overall, our results reveal mechanistic insights into OV-induced antitumour immunity that can be leveraged to improve OV-based therapeutics.
Collapse
Affiliation(s)
- Jahanara Rajwani
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Daniil Vishnevskiy
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Madison Turk
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Victor Naumenko
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Chris Gafuik
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Dae-Sun Kim
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Laura K Mah
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shannon Snelling
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gerone A Gonzales
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jingna Xue
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Ayan Chanda
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kyle G Potts
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hayley M Todesco
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Keith C K Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Karys M Hildebrand
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shan Liao
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Michael J Monument
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Martin Hyrcza
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Pathology and Laboratory Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Pinaki Bose
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Oncology; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Craig N Jenne
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Johnathan Canton
- The Calvin, Joan and Phoebe Snyder Institute for Chronic Disease; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Faculty of Veterinary Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Franz J Zemp
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine; University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
5
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
6
|
Geoffroy K, Mullins-Dansereau V, Leclerc-Desaulniers K, Viens M, Bourgeois-Daigneault MC. Oncolytic vesicular stomatitis virus alone or in combination with JAK inhibitors is effective against ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200826. [PMID: 39006945 PMCID: PMC11246050 DOI: 10.1016/j.omton.2024.200826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Therapy-resistant ovarian cancers have a poor prognosis and novel effective treatment options are urgently needed. In this study, we evaluated the therapeutic efficacy of the oncolytic vesicular stomatitis virus (VSV) against a panel of patient-derived ovarian cancer cell lines of all epithelial subtypes. Notably, we found that most of the cell lines were sensitive to VSV virotherapy. With the objective of improving treatment efficacy for the oncolytic virus-resistant cell lines, we tested various combinations with ovarian cancer standard of care drugs: olaparib, carboplatin, paclitaxel, doxorubicin, cyclophosphamide, and gemcitabine. While none of these combinations revealed to be beneficial, further experiments demonstrated that the antiviral interferon pathway was functional in VSV-resistant cell lines. Given that interferons signal through Janus kinase (JAK)-STAT to mediate their antiviral function, we tested combinations of oncolytic VSV with clinically relevant JAK inhibitors. Our results show that combining VSV with various JAK inhibitors, including ruxolitinib, enhances VSV virotherapy and treatment efficacy. Altogether, we show that VSV, either as a stand-alone treatment or in combination with JAK inhibitors provides an effective therapeutic option for ovarian cancer patients.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Victor Mullins-Dansereau
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Kim Leclerc-Desaulniers
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mélissa Viens
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer and Immunopathology Axes, CHUM Research Centre, Montreal, QC H2X 0A9, Canada
- Institut du cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
7
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Webb MJ, Sangsuwannukul T, van Vloten J, Evgin L, Kendall B, Tonne J, Thompson J, Metko M, Moore M, Chiriboga Yerovi MP, Olin M, Borgatti A, McNiven M, Monga SPS, Borad MJ, Melcher A, Roberts LR, Vile R. Expression of tumor antigens within an oncolytic virus enhances the anti-tumor T cell response. Nat Commun 2024; 15:5442. [PMID: 38937436 PMCID: PMC11211353 DOI: 10.1038/s41467-024-49286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Although patients benefit from immune checkpoint inhibition (ICI) therapy in a broad variety of tumors, resistance may arise from immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, OVs could potentially restore ICI responsiveness via recruitment, priming, and activation of anti-tumor T cells. Here we find that on the contrary, an oncolytic vesicular stomatitis virus, expressing interferon-ß (VSV-IFNß), antagonizes the effect of anti-PD-L1 therapy in a partially anti-PD-L1-responsive model of HCC. Cytometry by Time of Flight shows that VSV-IFNß expands dominant anti-viral effector CD8 T cells with concomitant relative disappearance of anti-tumor T cell populations, which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, combination OV and anti-PD-L1 therapeutic benefit could be restored. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, through encoding tumor antigens within the virus, oncolytic virotherapy can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.
Collapse
Affiliation(s)
- Mason J Webb
- Department of Hematology/Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Jacob van Vloten
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z1L3, Canada
- Michael Smith Genome Sciences Department, BC Cancer Research Institute, Vancouver, BC, V5Z1L3, Canada
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Michael Olin
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Clinical Investigation Center, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mark McNiven
- Mayo Center for Biomedical Discovery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Satdarshan P S Monga
- Pittsburgh Liver Institute, University of Pittsburgh and UPMC, Pittsburgh, PA, 15261, USA
| | - Mitesh J Borad
- Department of Hematology/Medical Oncology, Mayo Clinic, Phoenix, AZ, 85054, USA
| | - Alan Melcher
- Division of Radiotherapy and Imaging, Institute of Cancer Research, Chester Beatty Laboratories, London, SW3 6JB, UK
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
- Joan Reece Department of Immuno-oncology, King's College London, London, UK.
| |
Collapse
|
9
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Vile R, Webb M, van Vloten J, Evgin L, Sangsuwannukul T, Kendall B, Tonne J, Thompson J, Metko M, Moore M, Yerovi MC, McNiven M, Monga S, Borad M, Roberts L. Chimerization of the Anti-Viral CD8 + T Cell Response with A Broad Anti-Tumor T Cell Response Reverses Inhibition of Checkpoint Blockade Therapy by Oncolytic Virotherapy. RESEARCH SQUARE 2023:rs.3.rs-3576281. [PMID: 38045348 PMCID: PMC10690324 DOI: 10.21203/rs.3.rs-3576281/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although immune checkpoint inhibition (ICI) has produced profound survival benefits in a broad variety of tumors, a proportion of patients do not respond. Treatment failure is in part due to immune suppressive tumor microenvironments (TME), which is particularly true of hepatocellular carcinoma (HCC). Since oncolytic viruses (OV) can generate a highly immune-infiltrated, inflammatory TME, we developed a vesicular stomatitis virus expressing interferon-ß (VSV-IFNß) as a viro-immunotherapy against HCC. Since HCC standard of care atezolizumab/bevacizumab incorporates ICI, we tested the hypothesis that pro-inflammatory VSV-IFNß would recruit, prime, and activate anti-tumor T cells, whose activity anti-PD-L1 ICI would potentiate. However, in a partially anti-PD-L1-responsive model of HCC, addition of VSV-IFNß abolished anti-PD-L1 therapy. Cytometry by Time of Flight showed that VSV-IFNß expanded dominant anti-viral effector CD8 T cells with concomitant, relative disappearance of anti-tumor T cell populations which are the target of anti-PD-L1. However, by expressing a range of HCC tumor antigens within VSV, the potent anti-viral response became amalgamated with an anti-tumor T cell response generating highly significant cures compared to anti-PD-L1 ICI alone. Our data provide a cautionary message for the use of highly immunogenic viruses as tumor-specific immune-therapeutics by showing that dominant anti-viral T cell responses can inhibit sub-dominant anti-tumor T cell responses. However, by chimerizing anti-viral and anti-tumor T cell responses through encoding tumor antigens within the virus, oncolytic virotherapy can be purposed for very effective immune driven tumor clearance and can generate anti-tumor T cell populations upon which immune checkpoint blockade can effectively work.
Collapse
|
11
|
Smith KER, Peng KW, Pulido JS, Weisbrod AJ, Strand CA, Allred JB, Newsom AN, Zhang L, Packiriswamy N, Kottke T, Tonne JM, Moore M, Montane HN, Kottschade LA, McWilliams RR, Dudek AZ, Yan Y, Dimou A, Markovic SN, Federspiel MJ, Vile RG, Dronca RS, Block MS. A phase I oncolytic virus trial with vesicular stomatitis virus expressing human interferon beta and tyrosinase related protein 1 administered intratumorally and intravenously in uveal melanoma: safety, efficacy, and T cell responses. Front Immunol 2023; 14:1279387. [PMID: 38022659 PMCID: PMC10644866 DOI: 10.3389/fimmu.2023.1279387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Metastatic uveal melanoma (MUM) has a poor prognosis and treatment options are limited. These patients do not typically experience durable responses to immune checkpoint inhibitors (ICIs). Oncolytic viruses (OV) represent a novel approach to immunotherapy for patients with MUM. Methods We developed an OV with a Vesicular Stomatitis Virus (VSV) vector modified to express interferon-beta (IFN-β) and Tyrosinase Related Protein 1 (TYRP1) (VSV-IFNβ-TYRP1), and conducted a Phase 1 clinical trial with a 3 + 3 design in patients with MUM. VSV-IFNβ-TYRP1 was injected into a liver metastasis, then administered on the same day as a single intravenous (IV) infusion. The primary objective was safety. Efficacy was a secondary objective. Results 12 patients with previously treated MUM were enrolled. Median follow up was 19.1 months. 4 dose levels (DLs) were evaluated. One patient at DL4 experienced dose limiting toxicities (DLTs), including decreased platelet count (grade 3), increased aspartate aminotransferase (AST), and cytokine release syndrome (CRS). 4 patients had stable disease (SD) and 8 patients had progressive disease (PD). Interferon gamma (IFNγ) ELIspot data showed that more patients developed a T cell response to virus encoded TYRP1 at higher DLs, and a subset of patients also had a response to other melanoma antigens, including gp100, suggesting epitope spreading. 3 of the patients who responded to additional melanoma antigens were next treated with ICIs, and 2 of these patients experienced durable responses. Discussion Our study found that VSV-IFNβ -TYRP1 can be safely administered via intratumoral (IT) and IV routes in a previously treated population of patients with MUM. Although there were no clear objective radiographic responses to VSV-IFNβ-TYRP1, dose-dependent immunogenicity to TYRP1 and other melanoma antigens was seen.
Collapse
Affiliation(s)
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jose S. Pulido
- Department of Ophthalmology, Wills Eye Hospital, Philadelphia, PA, United States
| | - Adam J. Weisbrod
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Carrie A. Strand
- Department of Biostatistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Jacob B. Allred
- Department of Biostatistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Alysha N. Newsom
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jason M. Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Heather N. Montane
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Lisa A. Kottschade
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | | | - Arkadiusz Z. Dudek
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Yiyi Yan
- Department of Hematology and Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Anastasios Dimou
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | | | - Mark J. Federspiel
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Roxana S. Dronca
- Department of Hematology and Oncology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Matthew S. Block
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
Muthukutty P, Yoo SY. Oncolytic Virus Engineering and Utilizations: Cancer Immunotherapy Perspective. Viruses 2023; 15:1645. [PMID: 37631987 PMCID: PMC10459766 DOI: 10.3390/v15081645] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Oncolytic viruses have positively impacted cancer immunotherapy over the past 20 years. Both natural and genetically modified viruses have shown promising results in treating various cancers. Various regulatory authorities worldwide have approved four commercial oncolytic viruses, and more are being developed to overcome this limitation and obtain better anti-tumor responses in clinical trials at various stages. Faster advancements in translating research into the commercialization of cancer immunotherapy and a comprehensive understanding of the modification strategies will widen the current knowledge of future technologies related to the development of oncolytic viruses. In this review, we discuss the strategies of virus engineering and the progress of clinical trials to achieve virotherapeutics.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
13
|
Webb MJ, Kottke T, Kendall BL, Swanson J, Uzendu C, Tonne J, Thompson J, Metko M, Moore M, Borad M, Roberts L, Diaz RM, Olin M, Borgatti A, Vile R. Trap and ambush therapy using sequential primary and tumor escape-selective oncolytic viruses. Mol Ther Oncolytics 2023; 29:129-142. [PMID: 37313455 PMCID: PMC10258242 DOI: 10.1016/j.omto.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
In multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-β induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 (CSDE1) gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus. Here, we show that the evolution of viral ESC tumor cells harboring the escape-promoting CSDE1C-T mutation can also be exploited by a virological ambush. By sequential delivery of two oncolytic VSVs in vivo, tumors which would otherwise escape VSV-IFN-β oncolytic virotherapy could be cured. This also facilitated the priming of anti-tumor T cell responses, which could be further exploited using immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L) peptide. Our findings here are significant in that they offer the possibility to develop oncolytic viruses as highly specific, escape-targeting viro-immunotherapeutic agents to be used in conjunction with recurrence of tumors following multiple different types of frontline cancer therapies.
Collapse
Affiliation(s)
- Mason J. Webb
- Division of Hematology/Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chisom Uzendu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mitesh Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Olin
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Clinical Investigation Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Jiang H, Shin DH, Yi Y, Fan X, Gumin J, He J, Gillard AG, Lang FF, Gomez-Manzano C, Fueyo J. Adjuvant Therapy with Oncolytic Adenovirus Delta-24-RGDOX After Intratumoral Adoptive T-cell Therapy Promotes Antigen Spread to Sustain Systemic Antitumor Immunity. CANCER RESEARCH COMMUNICATIONS 2023; 3:1118-1131. [PMID: 37379361 PMCID: PMC10295804 DOI: 10.1158/2767-9764.crc-23-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 06/30/2023]
Abstract
Cancer cell heterogeneity and immunosuppressive tumor microenvironment (TME) pose a challenge in treating solid tumors with adoptive cell therapies targeting limited tumor-associated antigens (TAA), such as chimeric antigen receptor T-cell therapy. We hypothesize that oncolytic adenovirus Delta-24-RGDOX activates the TME and promote antigen spread to potentiate the abscopal effect of adoptive TAA-targeting T cells in localized intratumoral treatment. Herein, we used C57BL/6 mouse models with disseminated tumors derived from B16 melanoma cell lines to assess therapeutic effects and antitumor immunity. gp100-specific pmel-1 or ovalbumin (OVA)-specific OT-I T cells were injected into the first subcutaneous tumor, followed by three injections of Delta-24-RGDOX. We found TAA-targeting T cells injected into one subcutaneous tumor showed tumor tropism. Delta-24-RGDOX sustained the systemic tumor regression mediated by the T cells, leading to improved survival rate. Further analysis revealed that, in mice with disseminated B16-OVA tumors, Delta-24-RGDOX increased CD8+ leukocyte density within treated and untreated tumors. Importantly, Delta-24-RGDOX significantly reduced the immunosuppression of endogenous OVA-specific CTLs while increasing that of CD8+ leukocytes and, to a lesser extent, adoptive pmel-1 T cells. Consequently, Delta-24-RGDOX drastically increased the density of the OVA-specific CTLs in both tumors, and the combination synergistically enhanced the effect. Consistently, the splenocytes from the combination group showed a significantly stronger response against other TAAs (OVA and TRP2) than gp100, resulted in higher activity against tumor cells. Therefore, our data demonstrate that, as an adjuvant therapy followed TAA-targeting T cells in localized treatment, Delta-24-RGDOX activates TME and promotes antigen spread, leading to efficacious systemic antitumor immunity to overcome tumor relapse. Significance Adjuvant therapy with oncolytic viruses promotes antigen spread to potentiate localized intratumoral adoptive T-cell therapy with limited TAA targets, leading to sustainable systemic antitumor immunity to overcome tumor relapse.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yanhua Yi
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuejun Fan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joy Gumin
- Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiasen He
- Pediatric division, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew G. Gillard
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Frederick F. Lang
- Department of Neuro-Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
15
|
Sakamoto A, Inoue H, Miyamoto S, Ito S, Soda Y, Tani K. Coxsackievirus A11 is an immunostimulatory oncolytic virus that induces complete tumor regression in a human non-small cell lung cancer. Sci Rep 2023; 13:5924. [PMID: 37046036 PMCID: PMC10097657 DOI: 10.1038/s41598-023-33126-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide. Innovative treatment is required to improve overall survival rates for advanced NSCLC. Oncolytic virotherapy using enteroviruses has emerged as a promising anticancer strategy. To identify a novel, potent virotherapy with an improved safety profile, we assessed the oncolytic activity of 28 enteroviral strains and focused on coxsackievirus A11 (CVA11). CVA11 infection caused extensive oncolytic activity in all three of the examined human NSCLC cell lines, with high intercellular adhesion molecule-1 (ICAM-1) expression associated with greater CVA11-induced cytotoxicity. In vitro inhibition analysis using a pan-caspase inhibitor and western blot detection of cleaved poly (ADP-ribose) polymerase (PARP) indicated that apoptosis partly contributed to CVA11-driven cytotoxicity. CVA11 infection-induced immunogenic cell death in vitro was strongly suggested by substantial calreticulin expression and release of high mobility group box-1 protein (HMGB1). Moreover, in vivo treatment of human NSCLC xenografts with intratumoral CVA11 injection caused complete tumor regression in all treated mice, without significant weight loss. Our findings indicate that novel oncolytic virotherapy utilizing CVA11 may be less toxic and more effective than current treatments for human NSCLC, thus warranting further investigation in clinical trial settings, especially in combination with immunotherapy.
Collapse
Affiliation(s)
- Akira Sakamoto
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Inoue
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Shohei Miyamoto
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Shun Ito
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasushi Soda
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kenzaburo Tani
- Laboratory of ALA Advanced Medical Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Okamura K, Inoue H, Tanaka K, Ikematsu Y, Furukawa R, Ota K, Yoneshima Y, Iwama E, Okamoto I. Immunostimulatory oncolytic activity of coxsackievirus A11 in human malignant pleural mesothelioma. Cancer Sci 2023; 114:1095-1107. [PMID: 36369966 PMCID: PMC9986072 DOI: 10.1111/cas.15645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive solid cancer with a poor prognosis, whereas coxsackievirus A11 (CVA11) is a potential oncolytic virus for cancer treatment. We here investigated the oncolytic activity of CVA11 with human MPM cell lines. CVA11 infection was cytotoxic in all six MPM cell lines examined and showed no or minimal cytotoxicity toward normal human normal cell lines. MPM cells with a higher surface level of intercellular adhesion molecule-1 (ICAM-1) expression tended to be more susceptible to CVA11-induced cytotoxicity, and a neutralizing antibody to ICAM-1 attenuated such cytotoxicity. CVA11 infection activated signaling by Akt and extracellular signal-regulated kinase (ERK) pathways, and inhibitors of such signaling also abrogated CVA11-mediated cytotoxicity. Furthermore, CVA11 infection-triggered multiple modes of tumor cell death including apoptosis, pyroptosis, and necroptosis, and such death was accompanied by the release or exposure of the proinflammatory cytokine interleukin-1β and damage-associated molecular patterns such as calreticulin, high-mobility group box-1, annexin A1, and heat shock protein 70, which are hallmarks of immunogenic cell death. Notably, in vivo treatment of human MPM xenografts with intratumoral CVA11 injection resulted in significant suppression of tumor growth in SCID mice, and all mice infected with CVA11 showed no significant change in body weight. Our findings collectively suggest that the oncolytic activity of CVA11 for MPM is dependent on ICAM-1 as a virus receptor, as well as on Akt and ERK signaling, and that oncolytic virotherapy with CVA11 is a promising treatment modality with immunostimulatory activity for human MPM.
Collapse
Affiliation(s)
- Koji Okamura
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Inoue
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Respiratory Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Ikematsu
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Respiratory Medicine, National Hospital Organization Omuta Hospital, Fukuoka, Japan
| | - Rie Furukawa
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Respiratory Medicine, Hamanomachi Hospital, Fukuoka, Japan
| | - Keiichi Ota
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Repeated dosing improves oncolytic rhabdovirus therapy in mice via interactions with intravascular monocytes. Commun Biol 2022; 5:1385. [PMID: 36536097 PMCID: PMC9761050 DOI: 10.1038/s42003-022-04254-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
There is debate in the field of oncolytic virus (OV) therapy, whether a single viral dose, or multiple administrations, is better for tumor control. Using intravital microscopy, we describe the fate of vesicular stomatitis virus (VSV) delivered systemically as a first or a second dose. Following primary administration, VSV binds to the endothelium, initiates tumor infection and activates a proinflammatory response. This initial OV dose induces neutrophil migration into the tumor and limits viral replication. OV administered as a second dose fails to infect the tumor and is captured by intravascular monocytes. Despite a lack of direct infection, this second viral dose, in a monocyte-dependent fashion, enhances and sustains infection by the first viral dose, promotes CD8 T cell recruitment, delays tumor growth and improves survival in multi-dosing OV therapy. Thus, repeated VSV dosing engages monocytes to post-condition the tumor microenvironment for improved infection and anticancer T cell responses. Understanding the complex interactions between the subsequent viral doses is crucial for improving the efficiency of OV therapy and virus-based vaccines.
Collapse
|
18
|
Omole RK, Oluwatola O, Akere MT, Eniafe J, Agboluaje EO, Daramola OB, Ayantunji YJ, Omotade TI, Torimiro N, Ayilara MS, Adeyemi OI, Salinsile OS. Comprehensive assessment on the applications of oncolytic viruses for cancer immunotherapy. Front Pharmacol 2022; 13:1082797. [PMID: 36569326 PMCID: PMC9772532 DOI: 10.3389/fphar.2022.1082797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The worldwide burden of cancers is increasing at a very high rate, including the aggressive and resistant forms of cancers. Certain levels of breakthrough have been achieved with the conventional treatment methods being used to treat different forms of cancers, but with some limitations. These limitations include hazardous side effects, destruction of non-tumor healthy cells that are rapidly dividing and developing, tumor resistance to anti-cancer drugs, damage to tissues and organs, and so on. However, oncolytic viruses have emerged as a worthwhile immunotherapeutic option for the treatment of different types of cancers. In this treatment approach, oncolytic viruses are being modeled to target cancer cells with optimum cytotoxicity and spare normal cells with optimal safety, without the oncolytic viruses themselves being killed by the host immune defense system. Oncolytic viral infection of the cancer cells are also being genetically manipulated (either by removal or addition of certain genes into the oncolytic virus genome) to make the tumor more visible and available for attack by the host immune cells. Hence, different variants of these viruses are being developed to optimize their antitumor effects. In this review, we examined how grave the burden of cancer is on a global level, particularly in sub-Saharan Africa, major conventional therapeutic approaches to the treatment of cancer and their individual drawbacks. We discussed the mechanisms of action employed by these oncolytic viruses and different viruses that have found their relevance in the fight against various forms of cancers. Some pre-clinical and clinical trials that involve oncolytic viruses in cancer management were reported. This review also examined the toxicity and safety concerns surrounding the adoption of oncolytic viro-immunotherapy for the treatment of cancers and the likely future directions for researchers and general audience who wants updated information.
Collapse
Affiliation(s)
- Richard Kolade Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria,*Correspondence: Richard Kolade Omole,
| | - Oluwaseyi Oluwatola
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States,Department of Immunology, Moffit Cancer Center, Tampa, FL, United States
| | - Millicent Tambari Akere
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
| | - Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | | | | | - Yemisi Juliet Ayantunji
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria,Advanced Space Technology Applications Laboratory, Cooperative Information Network, National Space Research and Development Agency, Ile-Ife, Nigeria
| | | | - Nkem Torimiro
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Oluwole Isaac Adeyemi
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
19
|
Groeneveldt C, Kinderman P, van Stigt Thans JJC, Labrie C, Griffioen L, Sluijter M, van den Wollenberg DJM, Hoeben RC, den Haan JMM, van der Burg SH, van Hall T, van Montfoort N. Preinduced reovirus-specific T-cell immunity enhances the anticancer efficacy of reovirus therapy. J Immunother Cancer 2022; 10:jitc-2021-004464. [PMID: 35853671 PMCID: PMC9301813 DOI: 10.1136/jitc-2021-004464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Many solid tumors do not respond to immunotherapy due to their immunologically cold tumor microenvironment (TME). We and others found that oncolytic viruses (OVs), including reovirus type 3 Dearing, can enhance the efficacy of immunotherapy by recruiting CD8+ T cells to the TME. A significant part of the incoming CD8+ T cells is directed toward reovirus itself, which may be detrimental to the efficacy of OVs. However, here we aim to exploit these incoming virus-specific T cells as anticancer effector cells. METHODS We performed an in-depth characterization of the reovirus-induced T-cell response in immune-competent mice bearing pancreatic KPC3 tumors. The immunodominant CD8+ T-cell epitope of reovirus was identified using epitope prediction algorithms and peptide arrays, and the quantity and quality of reovirus-specific T cells after reovirus administration were assessed using high-dimensional flow cytometry. A synthetic long peptide (SLP)-based vaccination strategy was designed to enhance the intratumoral frequency of reovirus-specific CD8+ T cells. RESULTS Reovirus administration did not induce tumor-specific T cells but rather induced high frequencies of reovirus-specific CD8+ T cells directed to the immunodominant epitope. Priming of reovirus-specific T cells required a low-frequent population of cross-presenting dendritic cells which was absent in Batf3-/- mice. While intratumoral and intravenous reovirus administration induced equal systemic frequencies of reovirus-specific T cells, reovirus-specific T cells were highly enriched in the TME exclusively after intratumoral administration. Here, they displayed characteristics of potent effector cells with high expression of KLRG1, suggesting they may be responsive against local reovirus-infected cells. To exploit these reovirus-specific T cells as anticancer effector cells, we designed an SLP-based vaccination strategy to induce a strong T-cell response before virotherapy. These high frequencies of circulating reovirus-specific T cells were reactivated on intratumoral reovirus administration and significantly delayed tumor growth. CONCLUSIONS These findings provide proof of concept that OV-specific T cells, despite not being tumor-specific, can be exploited as potent effector cells for anticancer treatment when primed before virotherapy. This is an attractive strategy for low-immunogenic tumors lacking tumor-specific T cells.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Priscilla Kinderman
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Camilla Labrie
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa Griffioen
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Sluijter
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Rob C Hoeben
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joke M M den Haan
- Molecular Cell Biology and Immunlogy, Amsterdam UMC - Location VUMC, Amsterdam, The Netherlands
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadine van Montfoort
- Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
21
|
Wantoch M, Wilson EB, Droop AP, Phillips SL, Coffey M, El‐Sherbiny YM, Holmes TD, Melcher AA, Wetherill LF, Cook GP. Oncolytic virus treatment differentially affects the CD56 dim and CD56 bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology 2022; 166:104-120. [PMID: 35156714 PMCID: PMC10357483 DOI: 10.1111/imm.13453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells protect against intracellular infection and cancer. These properties are exploited in oncolytic virus (OV) therapy, where antiviral responses enhance anti-tumour immunity. We have analysed the mechanism by which reovirus, an oncolytic dsRNA virus, modulates human NK cell activity. Reovirus activates NK cells in a type I interferon (IFN-I) dependent manner, inducing STAT1 and STAT4 signalling in both CD56dim and CD56bright NK cell subsets. Gene expression profiling revealed the dominance of IFN-I responses and identified induction of genes associated with NK cell cytotoxicity and cell cycle progression, with distinct responses in the CD56dim and CD56bright subsets. However, reovirus treatment inhibited IL-15 induced NK cell proliferation in an IFN-I dependent manner and was associated with reduced AKT signalling. In vivo, human CD56dim and CD56bright NK cells responded with similar kinetics to reovirus treatment, but CD56bright NK cells were transiently lost from the peripheral circulation at the peak of the IFN-I response, suggestive of their redistribution to secondary lymphoid tissue. Coupled with the direct, OV-mediated killing of tumour cells, the activation of both CD56dim and CD56bright NK cells by antiviral pathways induces a spectrum of activity that includes the NK cell-mediated killing of tumour cells and modulation of adaptive responses via the trafficking of IFN-γ expressing CD56bright NK cells to lymph nodes.
Collapse
Affiliation(s)
- Michelle Wantoch
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Erica B. Wilson
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Alastair P. Droop
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome Trust Sanger InstituteCambridgeUK
| | - Sarah L. Phillips
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | | | - Yasser M. El‐Sherbiny
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Present address:
Clinical Pathology DepartmentFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Tim D. Holmes
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Alan A. Melcher
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Institute of Cancer ResearchLondonUK
| | - Laura F. Wetherill
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Graham P. Cook
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| |
Collapse
|
22
|
Cerqueira OLD, Antunes F, Assis NG, Cardoso EC, Clavijo-Salomón MA, Domingues AC, Tessarollo NG, Strauss BE. Perspectives for Combining Viral Oncolysis With Additional Immunotherapies for the Treatment of Melanoma. Front Mol Biosci 2022; 9:777775. [PMID: 35495634 PMCID: PMC9048901 DOI: 10.3389/fmolb.2022.777775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer with steadily increasing incidence worldwide during the last few decades. In addition to its tumor associated antigens (TAAs), melanoma has a high mutation rate compared to other tumors, which promotes the appearance of tumor specific antigens (TSAs) as well as increased lymphocytic infiltration, inviting the use of therapeutic tools that evoke new or restore pre-existing immune responses. Innovative therapeutic proposals, such as immune checkpoint inhibitors (ICIs), have emerged as effective options for melanoma. However, a significant portion of these patients relapse and become refractory to treatment. Likewise, strategies using viral vectors, replicative or not, have garnered confidence and approval by different regulatory agencies around the world. It is possible that further success of immune therapies against melanoma will come from synergistic combinations of different approaches. In this review we outline molecular features inherent to melanoma and how this supports the use of viral oncolysis and immunotherapies when used as monotherapies or in combination.
Collapse
Affiliation(s)
- Otto Luiz Dutra Cerqueira
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Fernanda Antunes
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nadine G Assis
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Elaine C Cardoso
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria A Clavijo-Salomón
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana C Domingues
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Nayara G Tessarollo
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Bryan E Strauss
- Centro de Investigação Translacional em Oncologia (CTO)/LIM, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- *Correspondence: Bryan E Strauss,
| |
Collapse
|
23
|
Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers (Basel) 2022; 14:cancers14040978. [PMID: 35205725 PMCID: PMC8870056 DOI: 10.3390/cancers14040978] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The precision guiding of endogenous or adoptively transferred lymphocytes to the solid tumour mass is obligatory for optimal anti-tumour effects and will improve patient safety. The recognition and elimination of the tumour is best achieved when anti-tumour lymphocytes are proximal to the malignant cells. For example, the regional secretion of soluble factors, cytotoxic granules, and cell-surface molecule interactions are required for the death of tumour cells and the suppression of neovasculature formation, tumour-associated suppressor, or stromal cells. The resistance of individual tumour cell clones to cellular therapy and the hostile environment of the solid tumours is a major challenge to adoptive cell therapy. We review the strategies that could be useful to overcoming insufficient immune cell migration to the tumour cell mass. We argue that existing 'competitive' approaches should now be revisited as complementary approaches to improve CAR T and NK cell therapy.
Collapse
|
24
|
Bystander T cells in cancer immunology and therapy. NATURE CANCER 2022; 3:143-155. [PMID: 35228747 DOI: 10.1038/s43018-022-00335-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023]
Abstract
Cancer-specific T cells are required for effective anti-cancer immunity and have a central role in cancer immunotherapy. However, emerging evidence suggests that only a small fraction of tumor-infiltrating T cells are cancer specific, and T cells that recognize cancer-unrelated antigens (so-called 'bystanders') are abundant. Although the role of cancer-specific T cells in anti-cancer immunity has been well established, the implications of bystander T cells in tumors are only beginning to be understood. It is becoming increasingly clear that bystander T cells are not a homogeneous group of cells but, instead, they differ in their specificities, their activation states and effector functions. In this Perspective, we discuss recent studies of bystander T cells in tumors, including experimental and computational approaches that enable their identification and functional analysis and viewpoints on how these insights could be used to develop new therapeutic approaches for cancer immunotherapy.
Collapse
|
25
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
26
|
Chen Y, Hu S, Shu Y, Qi Z, Zhang B, Kuang Y, Ma J, Cheng P. Antifibrotic Therapy Augments the Antitumor Effects of Vesicular Stomatitis Virus Via Reprogramming Tumor Microenvironment. Hum Gene Ther 2021; 33:237-249. [PMID: 34405694 DOI: 10.1089/hum.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Solid tumors are characterized by abundant extracellular matrix originating from cancer-associated fibroblasts (CAFs). High collagen content can trigger the collapse of vascular system in the tumor and form physical barrier that eventually impedes the penetration of drug particles and cytotoxic immune cells. Moreover, CAFs is able to promote the enrichment of tumor-associated macrophages (TAMs) and differentiation of myeloid-derived suppressor cells (MDSCs) that work in concert to develop a highly immunosuppressive tumor microenvironment (TME). In this study, we investigated if halofuginone, an antifibrotic drug, can augment the therapeutic effects of oncolytic vesicular stomatitis virus (VSV). The results revealed that halofuginone significantly disrupts the collagen network in tumors and promotes the distribution of VSV and infiltration of CD8+ T cells (p < 0.0001). Combined treatment of VSV and halofuginone also modulates the immunosuppressive TME via deletion of TAM, MDSCs, and regulatory T cells (Tregs). Collectively, the combination therapy remarkably inhibits the tumor growth in multiple murine models and prolongs survival of mice. The results demonstrate the clinical potential of halofuginone in combination with oncolytic virus.
Collapse
Affiliation(s)
- Yanwei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Shichuan Hu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yongheng Shu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Qi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yueting Kuang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
27
|
Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:129-142. [PMID: 34514094 PMCID: PMC8413837 DOI: 10.1016/j.omto.2021.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
Oncolytic virus therapy can increase the immunogenicity of tumors and remodel the immunosuppressive tumor microenvironment, leading to an increased antitumor response to immune-checkpoint inhibitors. Here, we investigated the therapeutic potential of G47Δ, a third-generation oncolytic herpes simplex virus type 1, in combination with immune-checkpoint inhibitors using various syngeneic murine subcutaneous tumor models. Intratumoral inoculations with G47Δ and systemic anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody administration caused an enhanced antitumor activity when combined and worked synergistically. Conversely, the efficacy of G47Δ in combination with anti-programmed cell death protein-1 (PD-1) antibody was equivalent to that of the anti-PD-1 antibody alone in all murine models examined. The combination of intratumoral G47Δ and systemic anti-CTLA-4 antibody was shown to recruit effector T cells into the tumor efficiently while decreasing regulatory T cells. Furthermore, a wide range of gene signatures related to inflammation, lymphoid lineage, and T cell activation was highly upregulated with the combination therapy, suggesting the conversion of immune-insusceptible tumors to immune susceptible. The therapeutic effect proved tumor specific and long lasting. Immune cell subset depletion studies demonstrated that CD4+ T cells were required for synergistic curative activity. The results depict the dynamics of immune modulation of the tumor microenvironment and provide a clinical rationale for using G47Δ with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hirotaka Ito
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
28
|
Niavarani SR, Lawson C, Boudaud M, Simard C, Tai LH. Oncolytic vesicular stomatitis virus-based cellular vaccine improves triple-negative breast cancer outcome by enhancing natural killer and CD8 + T-cell functionality. J Immunother Cancer 2021; 8:jitc-2019-000465. [PMID: 32179632 PMCID: PMC7073779 DOI: 10.1136/jitc-2019-000465] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Seyedeh-Raheleh Niavarani
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Christine Lawson
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Marie Boudaud
- Pediatrics, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Camille Simard
- Pharmacology and Physiology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada
| | - Lee-Hwa Tai
- Immunology and Cell Biology, Université de Sherbrooke, Faculté de médecine et des sciences de la santé, Sherbrooke, Quebec, Canada .,Centre de recherche du CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
29
|
AuYeung AWK, Mould RC, Stegelmeier AA, van Vloten JP, Karimi K, Woods JP, Petrik JJ, Wood GA, Bridle BW. Mechanisms that allow vaccination against an oncolytic vesicular stomatitis virus-encoded transgene to enhance safety without abrogating oncolysis. Sci Rep 2021; 11:15290. [PMID: 34315959 PMCID: PMC8316323 DOI: 10.1038/s41598-021-94483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/09/2021] [Indexed: 11/26/2022] Open
Abstract
Vaccination can prevent viral infections via virus-specific T cells, among other mechanisms. A goal of oncolytic virotherapy is replication of oncolytic viruses (OVs) in tumors, so pre-existing T cell immunity against an OV-encoded transgene would seem counterproductive. We developed a treatment for melanomas by pre-vaccinating against an oncolytic vesicular stomatitis virus (VSV)-encoded tumor antigen. Surprisingly, when the VSV-vectored booster vaccine was administered at the peak of the primary effector T cell response, oncolysis was not abrogated. We sought to determine how oncolysis was retained during a robust T cell response against the VSV-encoded transgene product. A murine melanoma model was used to identify two mechanisms that enable this phenomenon. First, tumor-infiltrating T cells had reduced cytopathic potential due to immunosuppression. Second, virus-induced lymphopenia acutely removed virus-specific T cells from tumors. These mechanisms provide a window of opportunity for replication of oncolytic VSV and rationale for a paradigm change in oncolytic virotherapy, whereby immune responses could be intentionally induced against a VSV-encoded melanoma-associated antigen to improve safety without abrogating oncolysis.
Collapse
Affiliation(s)
- Amanda W K AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Rm. 4834, Bldg. 89, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
30
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
31
|
Senekal NS, Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R. Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bull Math Biol 2021; 83:75. [PMID: 34008149 DOI: 10.1007/s11538-021-00903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/20/2021] [Indexed: 01/17/2023]
Abstract
In this paper, we investigate how natural killer (NK) cell recruitment to the tumor microenvironment (TME) affects oncolytic virotherapy. NK cells play a major role against viral infections. They are, however, known to induce early viral clearance of oncolytic viruses, which hinders the overall efficacy of oncolytic virotherapy. Here, we formulate and analyze a simple mathematical model of the dynamics of the tumor, OV and NK cells using currently available preclinical information. The aim of this study is to characterize conditions under which the synergistic balance between OV-induced NK responses and required viral cytopathicity may or may not result in a successful treatment. In this study, we found that NK cell recruitment to the TME must take place neither too early nor too late in the course of OV infection so that treatment will be successful. NK cell responses are most influential at either early (partly because of rapid response of NK cells to viral infections or antigens) or later (partly because of antitumoral ability of NK cells) stages of oncolytic virotherapy. The model also predicts that: (a) an NK cell response augments oncolytic virotherapy only if viral cytopathicity is weak; (b) the recruitment of NK cells modulates tumor growth; and (c) the depletion of activated NK cells within the TME enhances the probability of tumor escape in oncolytic virotherapy. Taken together, our model results demonstrate that OV infection is crucial, not just to cytoreduce tumor burden, but also to induce the stronger NK cell response necessary to achieve complete or at least partial tumor remission. Furthermore, our modeling framework supports combination therapies involving NK cells and OV which are currently used in oncolytic immunovirotherapy to treat several cancer types.
Collapse
Affiliation(s)
- Noma Susan Senekal
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho
| | | | | | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
32
|
Kottke T, Tonne J, Evgin L, Driscoll CB, van Vloten J, Jennings VA, Huff AL, Zell B, Thompson JM, Wongthida P, Pulido J, Schuelke MR, Samson A, Selby P, Ilett E, McNiven M, Roberts LR, Borad MJ, Pandha H, Harrington K, Melcher A, Vile RG. Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy. Nat Commun 2021; 12:1930. [PMID: 33772027 PMCID: PMC7997928 DOI: 10.1038/s41467-021-22115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1P5S form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNβ evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1P5S cells. These data show that CSDE1 is a major cellular co-factor for VSV replication. However, CSDE1P5S also generates a neo-epitope recognized by non-tolerized T cells. We exploit this predictable neo-antigenesis to drive, and trap, tumors into an escape phenotype, which can be ambushed by vaccination against CSDE1P5S, preventing tumor escape. Combining frontline therapy with escape-targeting immunotherapy will be applicable across multiple therapies which drive tumor mutation/evolution and simultaneously generate novel, targetable immunopeptidomes associated with acquired treatment resistance.
Collapse
Affiliation(s)
- Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jacob van Vloten
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Victoria A Jennings
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brady Zell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jill M Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jose Pulido
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Adel Samson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Peter Selby
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Elizabeth Ilett
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Mark McNiven
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Kevin Harrington
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Alan Melcher
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals? Cancers (Basel) 2021; 13:cancers13051106. [PMID: 33807553 PMCID: PMC7961585 DOI: 10.3390/cancers13051106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Oncolytic viruses (OVs) and adoptive T cell therapy (ACT) each possess direct tumour cytolytic capabilities, and their combination potentially seems like a match made in heaven to complement the strengths and weakness of each modality. While providing strong innate immune stimulation that can mobilize adaptive responses, the magnitude of anti-tumour T cell priming induced by OVs is often modest. Chimeric antigen receptor (CAR) modified T cells bypass conventional T cell education through introduction of a synthetic receptor; however, realization of their full therapeutic properties can be stunted by the heavily immune-suppressive nature of the tumour microenvironment (TME). Oncolytic viruses have thus been seen as a natural ally to overcome immunosuppressive mechanisms in the TME which limit CAR T cell infiltration and functionality. Engineering has further endowed viruses with the ability to express transgenes in situ to relieve T cell tumour-intrinsic resistance mechanisms and decorate the tumour with antigen to overcome antigen heterogeneity or loss. Despite this helpful remodeling of the tumour microenvironment, it has simultaneously become clear that not all virus induced effects are favourable for CAR T, begging the question whether viruses act as valets ushering CAR T into their active site, or vandals which cause chaos leading to both tumour and T cell death. Herein, we summarize recent studies combining these two therapeutic modalities and seek to place them within the broader context of viral T cell immunology which will help to overcome the current limitations of effective CAR T therapy to make the most of combinatorial strategies.
Collapse
|
34
|
Toffoli EC, Sheikhi A, Höppner YD, de Kok P, Yazdanpanah-Samani M, Spanholtz J, Verheul HMW, van der Vliet HJ, de Gruijl TD. Natural Killer Cells and Anti-Cancer Therapies: Reciprocal Effects on Immune Function and Therapeutic Response. Cancers (Basel) 2021; 13:cancers13040711. [PMID: 33572396 PMCID: PMC7916216 DOI: 10.3390/cancers13040711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells are innate lymphocytes that play an important role in the immune response against cancer. Their activity is controlled by a balance of inhibitory and activating receptors, which in cancer can be skewed to favor their suppression in support of immune escape. It is therefore imperative to find ways to optimize their antitumor functionality. In this review, we explore and discuss how their activity influences, or even mediates, the efficacy of various anti-cancer therapies and, vice versa, how their activity can be affected by these therapies. Knowledge of the mechanisms underlying these observations could provide rationales for combining anti-cancer treatments with strategies enhancing NK cell function in order to improve their therapeutic efficacy. Abstract Natural Killer (NK) cells are innate immune cells with the unique ability to recognize and kill virus-infected and cancer cells without prior immune sensitization. Due to their expression of the Fc receptor CD16, effector NK cells can kill tumor cells through antibody-dependent cytotoxicity, making them relevant players in antibody-based cancer therapies. The role of NK cells in other approved and experimental anti-cancer therapies is more elusive. Here, we review the possible role of NK cells in the efficacy of various anti-tumor therapies, including radiotherapy, chemotherapy, and immunotherapy, as well as the impact of these therapies on NK cell function.
Collapse
Affiliation(s)
- Elisa C. Toffoli
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Abdolkarim Sheikhi
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran
| | - Yannick D. Höppner
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Pita de Kok
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Mahsa Yazdanpanah-Samani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Jan Spanholtz
- Glycostem, Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Hans J. van der Vliet
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Lava Therapeutics, Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Correspondence: ; Tel.: +31-20-4444063
| |
Collapse
|
35
|
Immunologic aspects of viral therapy for glioblastoma and implications for interactions with immunotherapies. J Neurooncol 2021; 152:1-13. [PMID: 33389564 DOI: 10.1007/s11060-020-03684-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The treatment for glioblastoma (GBM) has remained unchanged for the past decade, with only minimal improvements in patient survival. As a result, novel treatments are needed to combat this devastating disease. Immunotherapies are treatments that stimulate the immune system to attack tumor cells and can be either local or systemically delivered. Viral treatments can lead to direct tumor cell death through their natural lifecycle or through the delivery of a suicide gene, with the potential to generate an anti-tumor immune response, making them interesting candidates for combinatorial treatment with immunotherapy. METHODS We review the current literature surrounding the interactions between oncolytic viruses and the immune system as well as the use of oncolytic viruses combined with immunotherapies for the treatment of GBM. RESULTS Viral therapies have exhibited preclinical efficacy as single-agents and are being investigated in that manner in clinical trials. Oncolytic viruses have significant interactions with the immune system, although this can also vary depending on the strain of virus. Combinatorial treatments using both oncolytic viruses and immunotherapies have demonstrated promising preclinical findings. CONCLUSIONS Studies combining viral and immunotherapeutic treatment modalities have provided exciting results thus far and hold great promise for patients with GBM. Additional studies assessing the clinical efficacy of these treatments as well as improved preclinical modeling systems, safety mechanisms, and the balance between treatment efficacy and immune-mediated viral clearance should be considered.
Collapse
|
36
|
Lassa-VSV chimeric virus targets and destroys human and mouse ovarian cancer by direct oncolytic action and by initiating an anti-tumor response. Virology 2020; 555:44-55. [PMID: 33453650 DOI: 10.1016/j.virol.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
Ovarian cancer is the third most common female cancer, with poor survival in later stages of metastatic spread. We test a chimeric virus consisting of genes from Lassa and vesicular stomatitis viruses, LASV-VSV; the native VSV glycoprotein is replaced by the Lassa glycoprotein, greatly reducing neurotropism. Human ovarian cancer cells in immunocompromised nude mice were lethal in controls. Chemotherapeutic paclitaxel and cisplatin showed modest cancer inhibition and survival extension. In contrast, a single intraperitoneal injection of LASV-VSV selectively infected and killed ovarian cancer cells, generating long-term survival. Mice with human ovarian cancer cells in brain showed rapid deterioration; LASV-VSV microinjection into brain blocked cancer growth, and generated long-term survival. Treatment of immunocompetent mice with infected mouse ovarian cancer cells blocked growth of non-infected ovarian cancer cells peritoneally and in brain. These results suggest LASV-VSV is a viable candidate for further study and may be of use in the treatment of ovarian cancer.
Collapse
|
37
|
Müller L, Berkeley R, Barr T, Ilett E, Errington-Mais F. Past, Present and Future of Oncolytic Reovirus. Cancers (Basel) 2020; 12:E3219. [PMID: 33142841 PMCID: PMC7693452 DOI: 10.3390/cancers12113219] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy (OVT) has received significant attention in recent years, especially since the approval of talimogene Laherparepvec (T-VEC) in 2015 by the Food and Drug administration (FDA). Mechanistic studies of oncolytic viruses (OVs) have revealed that most, if not all, OVs induce direct oncolysis and stimulate innate and adaptive anti-tumour immunity. With the advancement of tumour modelling, allowing characterisation of the effects of tumour microenvironment (TME) components and identification of the cellular mechanisms required for cell death (both direct oncolysis and anti-tumour immune responses), it is clear that a "one size fits all" approach is not applicable to all OVs, or indeed the same OV across different tumour types and disease locations. This article will provide an unbiased review of oncolytic reovirus (clinically formulated as pelareorep), including the molecular and cellular requirements for reovirus oncolysis and anti-tumour immunity, reports of pre-clinical efficacy and its overall clinical trajectory. Moreover, as it is now abundantly clear that the true potential of all OVs, including reovirus, will only be reached upon the development of synergistic combination strategies, reovirus combination therapeutics will be discussed, including the limitations and challenges that remain to harness the full potential of this promising therapeutic agent.
Collapse
|
38
|
Huff AL, Evgin L, Thompson J, Kottke T, Driscoll CB, Tonne J, Wongthida P, Schuelke M, Shim KG, Mer G, Ramirez-Alvarado M, Vile R. Vesicular Stomatitis Virus Encoding a Destabilized Tumor Antigen Improves Activation of Anti-tumor T Cell Responses. Mol Ther 2020; 28:2540-2552. [PMID: 32877695 DOI: 10.1016/j.ymthe.2020.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/22/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Enhancing the immunogenicity of tumor-associated antigens would represent a major advance for anti-tumor vaccination strategies. Here, we investigated structure-directed antigen destabilization as a strategy to improve the degradation, immunogenic epitope presentation, and T cell activation against a vesicular stomatitis virus (VSV)-encoded tumor antigen. We used the crystal structure of the model antigen ovalbumin to identify charge-disrupting amino acid mutations that were predicted to decrease the stability of the protein. One mutation, OVA-C12R, significantly reduced the half-life of the protein and was preferentially degraded in a 26-S proteasomal-dependent manner. The destabilized ovalbumin protein exhibited enhanced presentation of the major histocompatibility complex (MHC) class I immunogenic epitope, SIINFEKL, on the surface of B16F10 cells or murine bone marrow-derived dendritic cells (BMDCs) in vitro. Enhanced presentation correlated with better recognition by cognate CD8 OT-I T cells as measured by activation, proliferation, and effector cytokine production. Finally, VSV encoding the degradation-prone antigen was better able to prime an antigen ovalbumin-specific CD8 T cell response in vivo without altering the anti-viral CD8 T cell response. Our studies highlight that not only is the choice of antigen in cancer vaccines of importance, but that emphasis should be placed on modifying antigen quality to ensure optimal priming of anti-tumor responses.
Collapse
Affiliation(s)
- Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Christopher B Driscoll
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Kevin G Shim
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marina Ramirez-Alvarado
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James's University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK.
| |
Collapse
|
39
|
Munis AM, Bentley EM, Takeuchi Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opin Biol Ther 2020; 20:1187-1201. [PMID: 32602788 DOI: 10.1080/14712598.2020.1787981] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Vesicular stomatitis virus (VSV) has long been a useful research tool in virology and recently become an essential part of medicinal products. Vesiculovirus research is growing quickly following its adaptation to clinical gene and cell therapy and oncolytic virotherapy. AREAS COVERED This article reviews the versatility of VSV as a research tool and biological reagent, its use as a viral and vaccine vector delivering therapeutic and immunogenic transgenes and an oncolytic virus aiding cancer treatment. Challenges such as the immune response against such advanced therapeutic medicinal products and manufacturing constraints are also discussed. EXPERT OPINION The field of in vivo gene and cell therapy is advancing rapidly with VSV used in many ways. Comparison of VSV's use as a versatile therapeutic reagent unveils further prospects and problems for each application. Overcoming immunological challenges to aid repeated administration of viral vectors and minimizing harmful host-vector interactions remains one of the major challenges. In the future, exploitation of reverse genetic tools may assist the creation of recombinant viral variants that have improved onco-selectivity and more efficient vaccine vector activity. This will add to the preferential features of VSV as an excellent advanced therapy medicinal product (ATMP) platform.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , Oxford, UK.,Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK
| | - Emma M Bentley
- Division of Virology, National Institute for Biological Standards and Control , South Mimms, UK
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK.,Division of Infection and Immunity, University College London , London, UK
| |
Collapse
|
40
|
Zhang Y, Liu Z. Oncolytic Virotherapy for Malignant Tumor: Current Clinical Status. Curr Pharm Des 2020; 25:4251-4263. [PMID: 31682207 DOI: 10.2174/1381612825666191104090544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses, as novel biological anti-tumor agents, provide anti-tumor therapeutic effects by different mechanisms including directly selective tumor cell lysis and secondary systemic anti-tumor immune responses. Some wide-type and genetically engineered oncolytic viruses have been applied in clinical trials. Among them, T-Vec has a significant therapeutic effect on melanoma patients and received the approval of the US Food and Drug Administration (FDA) as the first oncolytic virus to treat cancer in the US. However, the mechanisms of virus interaction with tumor and immune systems have not been clearly elucidated and there are still no "gold standards" for instructions of virotherapy in clinical trials. This Review collected the recent clinical trials data from 2005 to summarize the basic oncolytic viruses biology, describe the application in recent clinical trials, and discuss the challenges in the application of oncolytic viruses in clinical trials.
Collapse
Affiliation(s)
- Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Zhuoming Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
41
|
Marotel M, Hasim MS, Hagerman A, Ardolino M. The two-faces of NK cells in oncolytic virotherapy. Cytokine Growth Factor Rev 2020; 56:59-68. [PMID: 32586674 DOI: 10.1016/j.cytogfr.2020.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Oncolytic viruses (OVs) are immunotherapeutics capable of directly killing cancer cells and with potent immunostimulatory properties. OVs exert their antitumor effect, at least partially, by activating the antitumor immune response, of which NK cells are an important component. However, if on the one hand increasing evidence revealed that NK cells are important mediators of oncolytic virotherapy, on the other hand, NK cells have evolved to fight viral infections, and therefore they can have a detrimental effect for the efficacy of OVs. In this review, we will discuss the dichotomy between the antitumor and antiviral functions of NK cells related to oncolytic virotherapy. We will also review NK cell-based and OV-based therapies, engineered OVs aimed at enhancing immune stimulation, and combination therapies involving OVs and NK cells currently used in cancer immunotherapy.
Collapse
Affiliation(s)
- M Marotel
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - M S Hasim
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - A Hagerman
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada; University of Ottawa, Department of Biochemistry, Microbiology and Immunology, Ottawa, Canada
| | - M Ardolino
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, Ottawa, Canada; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada; University of Ottawa, Department of Biochemistry, Microbiology and Immunology, Ottawa, Canada.
| |
Collapse
|
42
|
Groeneveldt C, van Hall T, van der Burg SH, Ten Dijke P, van Montfoort N. Immunotherapeutic Potential of TGF-β Inhibition and Oncolytic Viruses. Trends Immunol 2020; 41:406-420. [PMID: 32223932 DOI: 10.1016/j.it.2020.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
In cancer immunotherapy, a patient's own immune system is harnessed against cancer. Immune checkpoint inhibitors release the brakes on tumor-reactive T cells and, therefore, are particularly effective in treating certain immune-infiltrated solid tumors. By contrast, solid tumors with immune-silent profiles show limited efficacy of checkpoint blockers due to several barriers. Recent discoveries highlight transforming growth factor-β (TGF-β)-induced immune exclusion and a lack of immunogenicity as examples of these barriers. In this review, we summarize preclinical and clinical evidence that illustrates how the inhibition of TGF-β signaling and the use of oncolytic viruses (OVs) can increase the efficacy of immunotherapy, and discuss the promise and challenges of combining these approaches with immune checkpoint blockade.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
43
|
Li Y, Shen Y, Zhao R, Samudio I, Jia W, Bai X, Liang T. Oncolytic virotherapy in hepato-bilio-pancreatic cancer: The key to breaking the log jam? Cancer Med 2020; 9:2943-2959. [PMID: 32130786 PMCID: PMC7196045 DOI: 10.1002/cam4.2949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional therapies have limited efficacy in hepatocellular carcinoma, pancreatic cancer, and biliary tract cancer, especially for advanced and refractory cancers. Through a deeper understanding of antitumor immunity and the tumor microenvironment, novel immunotherapies are becoming available for cancer treatment. Oncolytic virus (OV) therapy is an emerging type of immunotherapy that has demonstrated effective antitumor efficacy in many preclinical studies and clinical studies. Thus, it may represent a potential feasible treatment for hard to treat gastrointestinal (GI) tumors. Here, we summarize the research progress of OV therapy for the treatment of hepato-bilio-pancreatic cancers. In general, most OV therapies exhibits potent, specific oncolysis both in cell lines in vitro and the animal models in vivo. Currently, several clinical trials have suggested that OV therapy may also be effective in patients with refractory hepato-bilio-pancreatic cancer. Multiple strategies such as introducing immunostimulatory genes, modifying virus capsid and combining various other therapeutic modalities have been shown enhanced specific oncolysis and synergistic anti-cancer immune stimulation. Combining OV with other antitumor therapies may become a more effective strategy than using virus alone. Nevertheless, more studies are needed to better understand the mechanisms underlying the therapeutic effects of OV, and to design appropriate dosing and combination strategies.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | | | | | - William Jia
- Virogin Biotech Canada Ltd, Vancouver, Canada
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.,Innovation Center for the study of Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
44
|
Abstract
New immuno-oncology therapies are improving cancer treatments beyond the former standard of care, as evidenced by the recent and continuing clinical approvals for immunotherapies in a broad range of indications. However, a majority of patients (particularly those with immunologically cold tumors) still do not benefit, highlighting the need for rational combination approaches. Oncolytic viruses (OV) both directly kill tumor cells and inflame the tumor microenvironment. While OV spread can be limited by the generation of antiviral immune responses, the initial local tumor cell killing can reverse the immunosuppressive tumor microenvironment, resulting in more effective release of tumor-associated antigens (TAAs), cross-presentation, and antitumoral effector T cell recruitment. Moreover, many OVs can be engineered to express immunomodulatory genes. Rational combination approaches to cancer immunotherapy include the use of OVs in combination with immune checkpoint inhibitors (ICIs) or adoptive T cell therapy (ACT) to promote sustained antitumoral immune responses. OV combinations have additive or synergistic efficacy in preclinical tumor models with ICIs or ACT. Several preclinical studies have confirmed systemic reactivation and proliferation of adoptively transferred antitumoral T cells in conjunction with oncolytic OVs (expressing cytokines or TAAs) resulting from the specific tumor cell killing and immunostimulation of the tumor microenvironment which leads to increased tumor trafficking, activity, and survival. Recent clinical trials combining OVs with ICIs have shown additive effects in melanoma. Additional clinical data in an expanded range of patient indications are eagerly awaited. The relative timings of OV and ICI combination remains under-studied and is an area for continued exploration. Studies systematically exploring the effects of systemic ICIs prior to, concomitantly with, or following OV therapy will aid in the future design of clinical trials to enhance efficacy and increase patient response rates.
Collapse
Affiliation(s)
- Luke Russell
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA
| | - Kah Whye Peng
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephen J Russell
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rosa Maria Diaz
- Vyriad Inc., 3605 US Highway 52 N, Building 110, Rochester, MN, 55901, USA.
| |
Collapse
|
45
|
Pol JG, Bridle BW, Lichty BD. Detection of Tumor Antigen-Specific T-Cell Responses After Oncolytic Vaccination. Methods Mol Biol 2020; 2058:191-211. [PMID: 31486039 DOI: 10.1007/978-1-4939-9794-7_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncolytic vaccines, which consist of recombinant oncolytic viruses (OV) encoding tumor-associated antigens (TAAs), have demonstrated potent antitumor efficacy in preclinical models and are currently evaluated in phase I/II clinical trials. On one hand, oncolysis of OV-infected malignant entities reinstates cancer immunosurveillance. On the other hand, overexpression of TAAs in infected cells further stimulates the adaptive arm of antitumor immunity. Particularly, the presence of tumor-specific CD8+ T lymphocytes within the tumor microenvironment, as well as in the periphery, has demonstrated prognostic value for cancer treatments. These effector CD8+ T cells can be detected through their production of the prototypical Tc1 cytokine: IFN-γ. The quantitative and qualitative assessment of this immune cell subset remains critical in the development process of efficient cancer vaccines, including oncolytic vaccines. The present chapter will describe a single-cell immunological assay, namely the intracellular cytokine staining (ICS), that allows the enumeration of IFN-γ-producing TAA-specific CD8+ T cells in various tissues (tumor, blood, lymphoid organs) following oncolytic vaccination.
Collapse
Affiliation(s)
- Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France. .,INSERM, U1138, Paris, France. .,Equipe 11 Labellisée par la Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France. .,Université de Paris, Paris, France. .,Sorbonne Université, Paris, France.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada. .,Turnstone Biologics, Ottawa, ON, Canada.
| |
Collapse
|
46
|
Investigating Macrophages Plasticity Following Tumour-Immune Interactions During Oncolytic Therapies. Acta Biotheor 2019; 67:321-359. [PMID: 31410657 PMCID: PMC6825040 DOI: 10.1007/s10441-019-09357-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 08/02/2019] [Indexed: 12/22/2022]
Abstract
Over the last few years, oncolytic virus therapy has been recognised as a promising approach in cancer treatment, due to the potential of these viruses to induce systemic anti-tumour immunity and selectively killing tumour cells. However, the effectiveness of these viruses depends significantly on their interactions with the host immune responses, both innate (e.g., macrophages, which accumulate in high numbers inside solid tumours) and adaptive (e.g., \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ T cells). In this article, we consider a mathematical approach to investigate the possible outcomes of the complex interactions between two extreme types of macrophages (M1 and M2 cells), effector \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ T cells and an oncolytic Vesicular Stomatitis Virus (VSV), on the growth/elimination of B16F10 melanoma. We discuss, in terms of VSV, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CD8}^{+}$$\end{document}CD8+ and macrophages levels, two different types of immune responses which could ensure tumour control and eventual elimination. We show that both innate and adaptive anti-tumour immune responses, as well as the oncolytic virus, could be very important in delaying tumour relapse and eventually eliminating the tumour. Overall this study supports the use mathematical modelling to increase our understanding of the complex immune interaction following oncolytic virotherapies. However, the complexity of the model combined with a lack of sufficient data for model parametrisation has an impact on the possibility of making quantitative predictions.
Collapse
|
47
|
Jewett A, Kos J, Kaur K, Safaei T, Sutanto C, Chen W, Wong P, Namagerdi AK, Fang C, Fong Y, Ko MW. Natural Killer Cells: Diverse Functions in Tumor Immunity and Defects in Pre-neoplastic and Neoplastic Stages of Tumorigenesis. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:41-52. [PMID: 31930165 PMCID: PMC6951836 DOI: 10.1016/j.omto.2019.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells are the key immune effectors with the ability to mediate selection and differentiation of a number of different cancer stem cells/undifferentiated tumors via lysis, and secreted or membrane-bound interferon (IFN)-γ and tumor necrosis factor (TNF)-α, respectively, leading to curtailment of tumor growth and metastasis. In this review, we present an overview of our recent findings on the biology and significance of NK cells in selection and differentiation of stem-like tumors using in vitro and in vivo studies conducted in humanized-BLT mice and in cancer patients. In addition, we present current advances in NK cell expansion and therapeutic delivery, and discuss the utility of allogeneic supercharged NK cells in the treatment of cancer patients. Moreover, we discuss the potential loss of NK cell numbers and function at the neoplastic and pre-neoplastic stages of tumorigenesis in induction and progression of pancreatic cancer. Therefore, because of their indispensable role in targeting cancer stem-like/undifferentiated tumors, NK cells should be placed high in the armamentarium of tumor immunotherapy. A combination of allogeneic supercharged NK cells with other immunotherapeutic strategies such as oncolytic viruses, antibody-dependent cellular cytotoxicity (ADCC)-inducing antibodies, checkpoint inhibitors, chimeric antigen receptor (CAR) T cells, CAR NK cells, and chemotherapeutic and radiotherapeutic strategies can be used for the ultimate goal of tumor eradication.
Collapse
Affiliation(s)
- Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
- Corresponding author: Anahid Jewett, The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Tahmineh Safaei
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Christine Sutanto
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Wuyang Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Paul Wong
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Artin Keshishian Namagerdi
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| | - Changge Fang
- APD-PAPD Center for NK Cell Therapy, Beijing, China
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
- Center for Gene Therapy, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA, Los Angeles, CA, USA
| |
Collapse
|
48
|
Su KY, Balasubramaniam VRMT. Zika Virus as Oncolytic Therapy for Brain Cancer: Myth or Reality? Front Microbiol 2019; 10:2715. [PMID: 31824472 PMCID: PMC6879458 DOI: 10.3389/fmicb.2019.02715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
Collapse
Affiliation(s)
- Kar Yan Su
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
49
|
The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer 2019; 121:647-658. [PMID: 31530903 PMCID: PMC6889376 DOI: 10.1038/s41416-019-0574-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Oncolytic virotherapy is thought to result in direct virus-induced lytic tumour killing and simultaneous activation of innate and tumour-specific adaptive immune responses. Using a chimeric vesicular stomatitis virus variant VSV-GP, we addressed the direct oncolytic effects and the role of anti-tumour immune induction in the syngeneic mouse lung cancer model LLC1. Methods To study a tumour system with limited antiviral effects, we generated interferon receptor-deficient cells (LLC1-IFNAR1−/−). Therapeutic efficacy of VSV-GP was assessed in vivo in syngeneic C57BL/6 and athymic nude mice bearing subcutaneous tumours. VSV-GP treatment effects were analysed using bioluminescent imaging (BLI), immunohistochemistry, ELISpot, flow cytometry, multiplex ELISA and Nanostring® assays. Results Interferon insensitivity correlated with VSV-GP replication and therapeutic outcome. BLI revealed tumour-to-tumour spread of viral progeny in bilateral tumours. Histological and gene expression analysis confirmed widespread and rapid infection and cell killing within the tumour with activation of innate and adaptive immune-response markers. However, treatment outcome was increased in the absence of CD8+ T cells and surviving mice showed little protection from tumour re-challenge, indicating limited therapeutic contribution by the activated immune system. Conclusion These studies present a case for a predominantly lytic treatment effect of VSV-GP in a syngeneic mouse lung cancer model.
Collapse
|
50
|
McCarthy C, Jayawardena N, Burga LN, Bostina M. Developing Picornaviruses for Cancer Therapy. Cancers (Basel) 2019; 11:E685. [PMID: 31100962 PMCID: PMC6562951 DOI: 10.3390/cancers11050685] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|