1
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
O’Leary BR, Kalen AL, Pope AN, Goswami PC, Cullen JJ. Hydrogen Peroxide Mediates Pharmacological Ascorbate Induced Radio-Sensitization of Pancreatic Cancer Cells by Enhancing G2-accumulation and Reducing Cyclin B1 Protein Levels. Radiat Res 2023; 200:444-455. [PMID: 37758045 PMCID: PMC10699322 DOI: 10.1667/rade-22-00182.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Pharmacological ascorbate (P-AscH-, high dose, intravenous vitamin C) preferentially sensitizes human pancreas ductal adenocarcinoma (PDAC) cells to radiation-induced toxicity compared to non-tumorigenic epithelial cells. Radiation-induced G2-checkpoint activation contributes to the resistance of cancer cells to DNA damage induced toxicity. We hypothesized that P-AscH- induced radio-sensitization of PDAC cells is mediated by perturbations in the radiation induced activation of the G2-checkpoint pathway. Both non-tumorigenic pancreatic ductal epithelial and PDAC cells display decreased clonogenic survival and increased doubling times after radiation treatment. In contrast, the addition of P-AscH- to radiation increases clonogenic survival and decreases the doubling time of non-tumorigenic epithelial cells but decreasing clonogenic survival and increasing the doubling time of PDAC cells. Results from the mitotic index and propidium iodide assays showed that while the P-AscH- treatments did not affect radiation-induced G2-checkpoint activation, it enhanced G2-accumulation. The addition of catalase reverses the increases in G2-accumulation, indicating a peroxide-mediated mechanism. In addition, P-AscH- treatment of PDAC cells suppresses radiation-induced accumulation of cyclin B1 protein levels. Both translational and post-translational pathways appear to regulate cyclin B1 protein levels after the combination treatment of PDAC cells with P-AscH- and radiation. The protein changes seen are reversed by the addition of catalase suggesting that hydrogen peroxide mediates P-AscH- induced radiation sensitization of PDAC cells by enhancing G2-accumulation and reducing cyclin B1 protein levels.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda L. Kalen
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda N. Pope
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Prabhat C. Goswami
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Joseph J. Cullen
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
3
|
Tyuryaeva I, Lyublinskaya O. Expected and Unexpected Effects of Pharmacological Antioxidants. Int J Mol Sci 2023; 24:ijms24119303. [PMID: 37298254 DOI: 10.3390/ijms24119303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we have collected the existing data on the bioactivity of antioxidants (N-acetylcysteine, polyphenols, vitamin C) which are traditionally used in experimental biology and, in some cases, in the clinic. Presented data show that, despite the capacity of these substances to scavenge peroxides and free radicals in cell-free systems, their ability to exhibit these properties in vivo, upon pharmacological supplementation, has not been confirmed so far. Their cytoprotective activity is explained mainly by the ability not to suppress, but to activate multiple redox pathways, which causes biphasic hormetic responses and highly pleiotropic effects in cells. N-acetylcysteine, polyphenols, and vitamin C affect redox homeostasis by generating low-molecular-weight redox-active compounds (H2O2 or H2S), known for their ability to stimulate cellular endogenous antioxidant defense and promote cytoprotection at low concentrations but exert deleterious effects at high concentrations. Moreover, the activity of antioxidants strongly depends on the biological context and mode of their application. We show here that considering the biphasic and context-dependent response of cells on the pleiotropic action of antioxidants can help explain many of the conflicting results obtained in basic and applied research and build a more logical strategy for their use.
Collapse
Affiliation(s)
- Irina Tyuryaeva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
4
|
Zhang W, Fan W, Wang X, Li P, Zhang W, Wang H, Tang B. Uncovering Endoplasmic Reticulum Superoxide Regulating Hepatic Ischemia-Reperfusion Injury by Dynamic Reversible Fluorescence Imaging. Anal Chem 2023; 95:8367-8375. [PMID: 37200499 DOI: 10.1021/acs.analchem.3c01068] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a relatively common complication of liver resection and transplantation that is intimately connected to oxidative stress. The superoxide anion radical (O2•-), as the first reactive oxygen species produced by organisms, is an important marker of HIRI. The endoplasmic reticulum (ER) is an essential site for O2•- production, especially ER oxidative stress, which is closely linked to HIRI. Thus, dynamic variations in ER O2•- may accurately indicate the HIRI extent. However, there is still a lack of tools for the dynamic reversible detection of ER O2•-. Therefore, we designed and prepared an ER-targeted fluorescent reversible probe DPC for real-time tracing of O2•- fluctuations. We successfully observed a marked increase in ER O2•- levels in HIRI mice. A potential NADPH oxidase 4-ER O2•--SERCA2b-caspase 4 signaling pathway in HIRI mice was also revealed. Attractively, DPC was successfully used for precise fluorescent navigation and excision of HIRI sites.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wenjie Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
5
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
6
|
Kirova DG, Judasova K, Vorhauser J, Zerjatke T, Leung JK, Glauche I, Mansfeld J. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev Cell 2022; 57:1712-1727.e9. [PMID: 35809563 PMCID: PMC9616724 DOI: 10.1016/j.devcel.2022.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) at the right concentration promote cell proliferation in cell culture, stem cells, and model organisms. However, the mystery of how ROS signaling is coordinated with cell cycle progression and integrated into the cell cycle control machinery on the molecular level remains unsolved. Here, we report increasing levels of mitochondrial ROS during the cell cycle in human cell lines that target cyclin-dependent kinase 2 (CDK2). Chemical and metabolic interferences with ROS production decrease T-loop phosphorylation on CDK2 and so impede its full activation and thus its efficient DNA replication. ROS regulate CDK2 activity through the oxidation of a conserved cysteine residue near the T-loop, which prevents the binding of the T-loop phosphatase KAP. Together, our data reveal how mitochondrial metabolism is coupled with DNA replication and cell cycle progression via ROS, thereby demonstrating how KAP activity toward CDKs can be cell cycle regulated. Mitochondrial ROS drive cell cycle progression and proliferation Cyclin-dependent kinase 2 (CDK2) is increasingly oxidized during the cell cycle The oxidation state of a conserved cysteine on CDK2 regulates KAP binding CDK2 oxidation promotes T-loop phosphorylation and DNA replication
Collapse
Affiliation(s)
| | - Kristyna Judasova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Julia Vorhauser
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK; Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thomas Zerjatke
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jacky Kieran Leung
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK; Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| |
Collapse
|
7
|
Induction of Premature Cell Senescence Stimulated by High Doses of Antioxidants Is Mediated by Endoplasmic Reticulum Stress. Int J Mol Sci 2021; 22:ijms222111851. [PMID: 34769282 PMCID: PMC8584632 DOI: 10.3390/ijms222111851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
In our previous study, we found that high doses of several substances with antioxidant capacities (Tempol, resveratrol, diphenyleneiodonium) can cause genotoxic stress and induce premature senescence in the human mesenchymal stem cells (MSCs). Here, using whole-transcriptome analysis, we revealed the signs of endoplasmic reticulum stress and unfolded protein response (UPR) in MSCs stressed with Tempol and resveratrol. In addition, we found the upregulation of genes, coding the UPR downstream target APC/C, and E3 ubiquitin ligase that regulate the stability of cell cycle proteins. We performed the molecular analysis, which further confirmed the untimely degradation of APC/C targets (cyclin A, geminin, and Emi1) in MSCs treated with antioxidants. Human fibroblasts responded to antioxidant applications similarly. We conclude that endoplasmic reticulum stress and impaired DNA synthesis regulation can be considered as potential triggers of cell damage and premature senescence stimulated by high-dose antioxidant treatments.
Collapse
|
8
|
Dao NV, Ercole F, Li Y, Davis TP, Kaminskas LM, Sloan EK, Quinn JF, Whittaker MR. Nitroxide-functional PEGylated nanostars arrest cellular oxidative stress and exhibit preferential accumulation in co-cultured breast cancer cells. J Mater Chem B 2021; 9:7805-7820. [PMID: 34586131 DOI: 10.1039/d1tb00812a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The limited application of traditional antioxidants to reducing elevated levels of reactive oxygen species (ROS) is potentially due to their lack of stability and biocompatibility when tested in a biological milieu. For instance, the poor biological antioxidant performance of small molecular nitroxides arises from their limited diffusion across cell membranes and their significant side effects when applied at high doses. Herein, we describe the use of nanostructured carriers to improve the antioxidant activity of a typical nitroxide derivative, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). Polymers with star-shaped structures were synthesised and were further conjugated to TEMPO moieties via amide linkages. The TEMPO-loaded stars have small hydrodynamic sizes (<20 nm), and are better tolerated by cells than free TEMPO in a breast cancer-fibroblast co-culture, a system exhibiting elevated ROS levels. At a well-tolerated concentration, the polymer with the highest TEMPO-loading capacity successfully downregulated ROS production in co-cultured cells (a significant decrease of up to 50% vs. basal ROS levels), which was accompanied by a specific reduction in superoxide anion generation in the mitochondria. In contrast, the equivalent concentration of free TEMPO did not achieve the same outcome. Further investigation showed that the TEMPO-conjugated star polymers can be recycled inside the cells, thus providing longer term scavenging activity. Cell association studies demonstrated that the polymers can be taken up by both cell types in the co-culture, and are found to co-locate with the mitochondria. Interestingly the stars exhibited preferential mitochodria targeting in the co-cultured cancer cells compared to accompanying fibroblasts. The data suggest the potential of TEMPO-conjugated star polymers to arrest oxidative stress for various applications in cancer therapy.
Collapse
Affiliation(s)
- Nam V Dao
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Francesca Ercole
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Yuhuan Li
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai 200032, China
| | - Thomas P Davis
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Peter MacCallum Cancer Centre, Division of Surgery, Melbournem, VIC 3000, Australia
| | - John F Quinn
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. .,Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Michael R Whittaker
- Australian Research Council - Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
9
|
Akhtar MJ, Ahamed M, Alhadlaq H. Anti-Inflammatory CeO 2 Nanoparticles Prevented Cytotoxicity Due to Exogenous Nitric Oxide Donors via Induction Rather Than Inhibition of Superoxide/Nitric Oxide in HUVE Cells. Molecules 2021; 26:5416. [PMID: 34500851 PMCID: PMC8434366 DOI: 10.3390/molecules26175416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1β and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•-), hydroxyl radical, etc.) by DCFH-DA and used a O2•- specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•- and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•- production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hisham Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
10
|
Katsuyama Y, Sato Y, Okano Y, Masaki H. Intracellular oxidative stress induced by calcium influx initiates the activation of phagocytosis in keratinocytes accumulating at S-phase of the cell cycle after UVB irradiation. J Dermatol Sci 2021; 103:41-48. [PMID: 34147320 DOI: 10.1016/j.jdermsci.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Phagocytosis is an essential process that maintains cellular homeostasis. In the epidermis, the phagocytosis of melanosomes into keratinocytes is important to protect their DNA against damage from ultraviolet B (UVB) radiation. Furthermore, it is considered that UVB activates the phagocytosis by keratinocytes but the detailed mechanism involved is not fully understood. OBJECTIVE To clarify the mechanism of UVB-enhanced phagocytosis in keratinocytes, we investigated the relationship between the phagocytic ability of keratinocytes and the cell cycle stage of keratinocytes. METHODS The phagocytic ability of keratinocytes was evaluated using the incorporation of fluorescent beads after exposure to UVB or oxidative stress. S-phase was evaluated by BrdU incorporation and immunostaining of cyclin D1. Intracellular calcium levels of keratinocytes were measured using the probe Fluo-4AM. RESULTS The phagocytosis of fluorescent beads into keratinocytes was enhanced by UVB and also by oxidative stress. We found that keratinocytes exposed to UVB or oxidative stress were at S-phase of the cell cycle. Furthermore, keratinocytes synchronized to S-phase showed a higher phagocytic ability according to the increased intracellular ROS level. The UVB-enhanced phagocytosis and entrance into S-phase of keratinocytes was abolished by ascorbic acid, a typical antioxidant. Keratinocytes synchronized to S-phase and exposed to UVB or oxidative stress had increased levels of intracellular calcium and their enhanced phagocytic abilities were diminished by the calcium ion chelator BAPTA-AM. CONCLUSION Taken together, intracellular oxidative stress induced by intracellular calcium influx mediates the UVB-enhanced phagocytic ability of keratinocytes accumulating at S-phase of the cell cycle.
Collapse
Affiliation(s)
| | | | | | - Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
11
|
Bonetti J, Corti A, Lerouge L, Pompella A, Gaucher C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis-Nitro-Redox Interconnections. Antioxidants (Basel) 2021; 10:antiox10040516. [PMID: 33810295 PMCID: PMC8066740 DOI: 10.3390/antiox10040516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
Collapse
Affiliation(s)
- Justine Bonetti
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
| | - Lucie Lerouge
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-2218-537
| | - Caroline Gaucher
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| |
Collapse
|
12
|
Varmazyad M, Modi MM, Kalen AL, Sarsour EH, Wagner B, Du J, Schultz MK, Buettner GR, Pigge FC, Goswami PC. N-alkyl triphenylvinylpyridinium conjugated dihydroartemisinin perturbs mitochondrial functions resulting in enhanced cancer versus normal cell toxicity. Free Radic Biol Med 2021; 165:421-434. [PMID: 33561488 PMCID: PMC8020572 DOI: 10.1016/j.freeradbiomed.2021.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/17/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Dihydroartemisinin (DHA) is an FDA-approved antimalarial drug that has been repurposed for cancer therapy because of its preferential antiproliferative effects on cancer versus normal cells. Mitochondria represent an attractive target for cancer therapy based on their regulatory role in proliferation and cell death. This study investigates whether DHA conjugated to innately fluorescent N-alkyl triphenylvinylpyridinium (TPVP) perturbs mitochondrial functions resulting in a differential toxicity of cancer versus normal cells. TPVP-DHA treatments resulted in a dose-dependent toxicity of human melanoma and pancreatic cancer cells, whereas normal human fibroblasts were resistant to this treatment. TPVP-DHA treatments resulted in a G1-delay of the cancer cell cycle, which was also associated with a significant inhibition of the mTOR-metabolic and ERK1/2-proliferative signaling pathways. TPVP-DHA treatments perturbed mitochondrial functions, which correlated with increases in mitochondrial fission. In summary, TPVP mediated mitochondrial targeting of DHA enhanced cancer cell toxicity by perturbing mitochondrial functions and morphology.
Collapse
Affiliation(s)
| | - Mira M Modi
- Basic Science Department, College of Osteopathic Medicine, Kansas City University, Kansas City, MO, 64106, USA
| | - Amanda L Kalen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ehab H Sarsour
- Basic Science Department, College of Osteopathic Medicine, Kansas City University, Kansas City, MO, 64106, USA
| | - Brett Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Juan Du
- Department of Surgery, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael K Schultz
- Department of Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Prabhat C Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
13
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
14
|
Panahi M, Rahimi B, Rahimi G, Yew Low T, Saraygord-Afshari N, Alizadeh E. Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. J Cell Physiol 2020; 235:6462-6495. [PMID: 32239727 DOI: 10.1002/jcp.29660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.
Collapse
Affiliation(s)
- Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Hydrogen Peroxide Mediates Artemisinin-Derived C-16 Carba-Dimer-Induced Toxicity of Human Cancer Cells. Antioxidants (Basel) 2020; 9:antiox9020108. [PMID: 31991904 PMCID: PMC7070254 DOI: 10.3390/antiox9020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
This study used a nitroaliphatic chemistry approach to synthesize a novel artemisinin-derived carba-dimer (AG-1) and determined its anti-proliferative effects in human normal and cancer cells. AG-1 treatments selectively inhibit proliferation of cancer cells compared to normal human fibroblasts. Compared to artemisinin, AG-1 is more toxic to human breast, prostate, head–neck, pancreas and skin cancer cells; 50% inhibition (IC50) 123 µM in AG-1 vs. 290 µM in artemisinin-treated breast cancer cells. AG-1 treatment decreased (~5 folds) cyclin D1 protein expression that correlated with an increase in the percentage of cells in the G1-phase, suggesting a G1 delay. AG-1-induced toxicity was independent of the DNA damage at 72 h post-treatment, as measured by micronuclei frequency and γH2AX protein levels. Results from electron paramagnetic resonance spectroscopy showed Fe-catalyzed formation of AG-1 carbon-centered radicals in a cell-free system. Flow cytometry analysis of H2DCF-DA oxidation showed a significant increase in the steady-state levels of reactive oxygen species (ROS) in AG-1-treated cells. Pre-treatment with N-acetyl-l-cysteine and antioxidant enzymes (superoxide dismutase and catalase) significantly suppressed AG-1-induced toxicity, suggesting that superoxide and hydrogen peroxide contribute to AG-1-induced toxicity in human cancer cells. AG-1 represents a novel class of anti-cancer drug that is more potent than its parent compound, artemisinin.
Collapse
|
16
|
Palmieri B, Vadalà M, Laurino C. Nutrition in wound healing: investigation of the molecular mechanisms, a narrative review. J Wound Care 2019; 28:683-693. [DOI: 10.12968/jowc.2019.28.10.683] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nutrition can be outlined in terms of epigenetic signals influencing each of the wound healing steps (haemostasis, inflammatory, proliferative and remodelling phase). Specific nutrients, such as amino acids, minerals, vitamins, natural compounds and herbal extracts, target DNA-regulating transcription factors, cytokines, extracellular matrix proteins and glycosaminoglycan, and are specifically involved in the wound healing process. This review focuses on experimental in vivo and clinical evidence of dietary supplements administration in pressure ulcers. A good nutritional status is, for example, fundamental to the haemostasis phase of skin wounds. In the inflammatory phase, vitamin A enhances cytokine release, bromelain and amino acids prevent prolonged inflammatory events, while vitamin C enhances neutrophil migration and lymphocyte activation. In the proliferative phase, vitamin C and Centella asiatica are required for collagen synthesis. Glucosamine enhances hyaluronic acid production, vitamin A promotes epithelial cell differentiation, zinc is required for DNA and protein synthesis and cell division, and Aloe vera supports granulation tissue generation. Finally, in the remodelling phase, amino acids and proteins play a key role in wound scar stabilisation.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy. Second Opinion Medical Network
| | - Maria Vadalà
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy. Second Opinion Medical Network
| | - Carmen Laurino
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy. Second Opinion Medical Network
| |
Collapse
|
17
|
Switch of Mitochondrial Superoxide Dismutase into a Prooxidant Peroxidase in Manganese-Deficient Cells and Mice. Cell Chem Biol 2019; 25:413-425.e6. [PMID: 29398562 DOI: 10.1016/j.chembiol.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/06/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
Abstract
Superoxide radical anion (O2⋅‒) and other reactive oxygen species are constantly produced during respiration. In mitochondria, the dismutation of O2⋅‒ is accelerated by the mitochondrial superoxide dismutase 2 (SOD2), an enzyme that has been traditionally associated with antioxidant protection. However, increases in SOD2 expression promote oxidative stress, indicating that there may be a prooxidant role for SOD2. Here we show that SOD2, which normally binds manganese, can incorporate iron and generate an alternative isoform with peroxidase activity. The switch from manganese to iron allows FeSOD2 to utilize H2O2 to promote oxidative stress. We found that FeSOD2 is formed in cultured cells and in vivo. FeSOD2 causes mitochondrial dysfunction and higher levels of oxidative stress in cultured cells and in vivo. We show that formation of FeSOD2 converts an antioxidant defense into a prooxidant peroxidase that leads to cellular changes seen in multiple human diseases.
Collapse
|
18
|
Kornienko JS, Smirnova IS, Pugovkina NA, Ivanova JS, Shilina MA, Grinchuk TM, Shatrova AN, Aksenov ND, Zenin VV, Nikolsky NN, Lyublinskaya OG. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci Rep 2019; 9:1296. [PMID: 30718685 PMCID: PMC6361906 DOI: 10.1038/s41598-018-37972-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022] Open
Abstract
Stress-induced premature senescence program is known to be activated in cells by various genotoxic stressors, and oxidative stress is considered to be the main of those. To this end, many studies discover antioxidants as protective anti-aging agents. In the current study, we examined the effects of different antioxidants (Tempol, resveratrol, NAC, DPI) on the mesenchymal stem cells maintained in normal physiological conditions. We used high, but non-cytotoxic antioxidant doses which are widely used in laboratory practice to protect cells from oxidative damage. We show that these substances induce reversible block of cell proliferation and do not cause any genotoxic effects when applied to the quiescent cells. However, the same doses of the same substances, when applied to the proliferating cells, can induce irreversible cell cycle arrest, DNA strand breaks accumulation and DNA damage response activation. As a consequence, antioxidant-induced DNA damage results in the stress-induced premature senescence program activation. We conclude that high doses of antioxidants, when applied to the proliferating cells that maintain physiological levels of reactive oxygen species, can cause DNA damage and induce premature senescence which suggests to re-estimate believed unconditional anti-aging antioxidant properties.
Collapse
Affiliation(s)
- Ju S Kornienko
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - I S Smirnova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - N A Pugovkina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - Ju S Ivanova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - M A Shilina
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - T M Grinchuk
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - A N Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - N D Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - V V Zenin
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - N N Nikolsky
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia
| | - O G Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky pr. 4, St.Petersburg, 194064, Russia.
| |
Collapse
|
19
|
Lafin JT, Sarsour EH, Kalen AL, Wagner BA, Buettner GR, Goswami PC. Methylseleninic Acid Induces Lipid Peroxidation and Radiation Sensitivity in Head and Neck Cancer Cells. Int J Mol Sci 2019; 20:ijms20010225. [PMID: 30626124 PMCID: PMC6337472 DOI: 10.3390/ijms20010225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Combination radiation and chemotherapy are commonly used to treat locoregionally advanced head and neck squamous cell carcinoma (HNSCC). Aggressive dosing of these therapies is significantly hampered by side effects due to normal tissue toxicity. Selenium represents an adjuvant that selectively sensitizes cancer cells to these treatments modalities, potentially by inducing lipid peroxidation (LPO). This study investigated whether one such selenium compound, methylseleninic acid (MSA), induces LPO and radiation sensitivity in HNSCC cells. Results from 4,4-difluoro-4-bora-3a,4a-diaza-S-indacene (BODIPY) C11 oxidation and ferric thiocyanate assays revealed that MSA induced LPO in cells rapidly and persistently. Propidium iodide (PI) exclusion assay found that MSA was more toxic to cancer cells than other related selenium compounds; this toxicity was abrogated by treatment with α-tocopherol, an LPO inhibitor. MSA exhibited no toxicity to normal fibroblasts at similar doses. MSA also sensitized HNSCC cells to radiation as determined by clonogenic assay. Intracellular glutathione in cancer cells was depleted following MSA treatment, and supplementation of the intracellular glutathione pool with N-acetylcysteine sensitized cells to MSA. The addition of MSA to a cell-free solution of glutathione resulted in an increase in oxygen consumption, which was abrogated by catalase, suggesting the formation of H2O2. Results from this study identify MSA as an inducer of LPO, and reveal its capability to sensitize HNSCC to radiation. MSA may represent a potent adjuvant to radiation therapy in HNSCC.
Collapse
Affiliation(s)
- John T Lafin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| | - Ehab H Sarsour
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Amanda L Kalen
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Brett A Wagner
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Garry R Buettner
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Prabhat C Goswami
- The University of Iowa Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
Chang YC, Fong Y, Tsai EM, Chang YG, Chou HL, Wu CY, Teng YN, Liu TC, Yuan SS, Chiu CC. Exogenous C₈-Ceramide Induces Apoptosis by Overproduction of ROS and the Switch of Superoxide Dismutases SOD1 to SOD2 in Human Lung Cancer Cells. Int J Mol Sci 2018; 19:ijms19103010. [PMID: 30279365 PMCID: PMC6213533 DOI: 10.3390/ijms19103010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Ceramides, abundant sphingolipids on the cell membrane, can act as signaling molecules to regulate cellular functions including cell viability. Exogenous ceramide has been shown to exert potent anti-proliferative effects against cancer cells, but little is known about how it affects reactive oxygen species (ROS) in lung cancer cells. In this study, we investigated the effect of N-octanoyl-D-erythro-sphingosine (C₈-ceramide) on human non-small-cell lung cancer H1299 cells. Flow cytometry-based assays indicated that C₈-ceramide increased the level of endogenous ROS in H1299 cells. Interestingly, the ratio of superoxide dismutases (SODs) SOD1 and SOD2 seem to be regulated by C₈-ceramide treatment. Furthermore, the accumulation of cell cycle G1 phase and apoptotic populations in C₈-ceramide-treated H1299 cells was observed. The results of the Western blot showed that C₈-ceramide causes a dramatically increased protein level of cyclin D1, a critical regulator of cell cycle G1/S transition. These results suggest that C₈-ceramide acts as a potent chemotherapeutic agent and may increase the endogenous ROS level by regulating the switch of SOD1 and SOD2, causing the anti-proliferation, and consequently triggering the apoptosis of NSCLC H1299 cells. Accordingly, our works may give a promising strategy for lung cancer treatment in the future.
Collapse
Affiliation(s)
- Yuli C Chang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yao Fong
- Chest Surgery, Chi-Mei Medical Center, Yung Kang City, Tainan 901, Taiwan.
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Ya-Gin Chang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Han Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;.
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan.
| | - Ta-Chih Liu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Shyng-Shiou Yuan
- Translational Research Center, Cancer Center, Department of Medical Research, Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chien-Chih Chiu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;.
- Translational Research Center, Cancer Center, Department of Medical Research, Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Research Center for Environment Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
21
|
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants (Basel) 2018; 7:E62. [PMID: 29702624 PMCID: PMC5981248 DOI: 10.3390/antiox7050062] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
Which scientist has never heard of glutathione (GSH)? This well-known low-molecular-weight tripeptide is perhaps the most famous natural antioxidant. However, the interest in GSH should not be restricted to its redox properties. This multidisciplinary review aims to bring out some lesser-known aspects of GSH, for example, as an emerging tool in nanotechnologies to achieve targeted drug delivery. After recalling the biochemistry of GSH, including its metabolism pathways and redox properties, its involvement in cellular redox homeostasis and signaling is described. Analytical methods for the dosage and localization of GSH or glutathiolated proteins are also covered. Finally, the various therapeutic strategies to replenish GSH stocks are discussed, in parallel with its use as an addressing molecule in drug delivery.
Collapse
Affiliation(s)
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | | | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | - Pierre Leroy
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | | |
Collapse
|
22
|
Kalen AL, Ahmad IM, Abdalla MY, O'Malley YQ, Goswami PC, Sarsour EH. MnSOD and Cyclin B1 Coordinate a Mito-Checkpoint during Cell Cycle Response to Oxidative Stress. Antioxidants (Basel) 2017; 6:E92. [PMID: 29149089 PMCID: PMC5745502 DOI: 10.3390/antiox6040092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 11/22/2022] Open
Abstract
Communication between the nucleus and mitochondrion could coordinate many cellular processes. While the mechanisms regulating this communication are not completely understood, we hypothesize that cell cycle checkpoint proteins coordinate the cross-talk between nuclear and mitochondrial functions following oxidative stress. Human normal skin fibroblasts, representative of the G₂-phase, were irradiated with 6 Gy of ionizing radiation and assayed for cyclin B1 translocation, mitochondrial function, reactive oxygen species (ROS) levels, and cytotoxicity. In un-irradiated controls, cyclin B1 was found primarily in the nucleus of G₂-cells. However, following irradiation, cyclin B1 was excluded from the nucleus and translocated to the cytoplasm and mitochondria. These observations were confirmed further by performing transmission electron microscopy and cell fractionation assays. Cyclin B1 was absent in mitochondria isolated from un-irradiated G₂-cells and present in irradiated G₂-cells. Radiation-induced translocation of cyclin B1 from the nucleus to the mitochondrion preceded changes in the activities of mitochondrial proteins, that included decreases in the activities of aconitase and the mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), and increases in complex II activity. Changes in the activities of mito-proteins were followed by an increase in dihydroethidium (DHE) oxidation (indicative of increased superoxide levels) and loss of the mitochondrial membrane potential, events that preceded the restart of the stalled cell cycle and subsequently the loss in cell viability. Comparable results were also observed in un-irradiated control cells overexpressing mitochondria-targeted cyclin B1. These results indicate that MnSOD and cyclin B1 coordinate a cross-talk between nuclear and mitochondrial functions, to regulate a mito-checkpoint during the cell cycle response to oxidative stress.
Collapse
Affiliation(s)
- Amanda L Kalen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Iman M Ahmad
- Department of Medical Imaging and Therapeutic Sciences, College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Maher Y Abdalla
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Yunxia Q O'Malley
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA.
| | - Prabhat C Goswami
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| | - Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
23
|
Wilkes JG, Alexander MS, Cullen JJ. Superoxide Dismutases in Pancreatic Cancer. Antioxidants (Basel) 2017; 6:antiox6030066. [PMID: 28825637 PMCID: PMC5618094 DOI: 10.3390/antiox6030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 01/17/2023] Open
Abstract
The incidence of pancreatic cancer is increasing as the population ages but treatment advancements continue to lag far behind. The majority of pancreatic cancer patients have a K-ras oncogene mutation causing a shift in the redox state of the cell, favoring malignant proliferation. This mutation is believed to lead to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and superoxide overproduction, generating tumorigenic behavior. Superoxide dismutases (SODs) have been studied for their ability to manage the oxidative state of the cell by dismuting superoxide and inhibiting signals for pancreatic cancer growth. In particular, manganese superoxide dismutase has clearly shown importance in cell cycle regulation and has been found to be abnormally low in pancreatic cancer cells as well as the surrounding stromal tissue. Likewise, extracellular superoxide dismutase expression seems to favor suppression of pancreatic cancer growth. With an increased understanding of the redox behavior of pancreatic cancer and key regulators, new treatments are being developed with specific targets in mind. This review summarizes what is known about superoxide dismutases in pancreatic cancer and the most current treatment strategies to be advanced from this knowledge.
Collapse
Affiliation(s)
- Justin G. Wilkes
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Matthew S. Alexander
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Joseph J. Cullen
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
- Veterans Affairs Medical Center, Iowa City, IA 52245, USA
- Correspondence: ; Tel.: +1-319-353-8297; Fax: +1-319-356-8378
| |
Collapse
|
24
|
Blajszczak C, Bonini MG. Mitochondria targeting by environmental stressors: Implications for redox cellular signaling. Toxicology 2017; 391:84-89. [PMID: 28750850 DOI: 10.1016/j.tox.2017.07.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/22/2017] [Accepted: 07/21/2017] [Indexed: 01/07/2023]
Abstract
Mitochondria are cellular powerhouses as well as metabolic and signaling hubs regulating diverse cellular functions, from basic physiology to phenotypic fate determination. It is widely accepted that reactive oxygen species (ROS) generated in mitochondria participate in the regulation of cellular signaling, and that some mitochondria chronically operate at a high ROS baseline. However, it is not completely understood how mitochondria adapt to persistently high ROS states and to environmental stressors that disturb the redox balance. Here we will review some of the current concepts regarding how mitochondria resist oxidative damage, how they are replaced when excessive oxidative damage compromises function, and the effect of environmental toxicants (i.e. heavy metals) on the regulation of mitochondrial ROS (mtROS) production and subsequent impact.
Collapse
Affiliation(s)
- Chuck Blajszczak
- Departments of Medicine and Pathology, University of Illinois College of Medicine at Chicago, IL, USA
| | - Marcelo G Bonini
- Departments of Medicine and Pathology, University of Illinois College of Medicine at Chicago, IL, USA.
| |
Collapse
|
25
|
Morales-González Á, Bautista M, Madrigal-Santillán E, Posadas-Mondragón A, Anguiano-Robledo L, Madrigal-Bujaidar E, Álvarez-González I, Fregoso-Aguilar T, Gayosso-Islas E, Sánchez-Moreno C, Morales-González JA. Nrf2 modulates cell proliferation and antioxidants defenses during liver regeneration induced by partial hepatectomy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7801-7811. [PMID: 31966628 DOI: pmid/31966628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/21/2017] [Indexed: 02/07/2023]
Abstract
The objective was to determine the regulatory dynamic of Nrf2 during liver regeneration and the administration of EtOH and/or the G. schiedeanum extract. Male Wistar rats weighing 200-230 g were subjected to a 70% partial hepatectomy; they were then divided into three groups (groups 1-3). During the experiment, animals in Group 1 drank only water. The other two groups (2-3) received an intragastric dose of ethanol (1.5 g/kg BW, solution at 40% in isotonic saline solution). Additionally, rats in group 3 received a geranium extract daily at a dose of 300 mg/kg BW i.g. EtOh and/or Geranium schiedeanum was administered to rats with regenerating livers for 7 days. At the end of treatment, the activity was determined of the antioxidant enzymes, DNA concentration, TBARS, and TAC, in addition to the expression of Nrf-2, Cyclin D1, and Nqo1. EtOH increased ROS and Nrf-2, which activated the antioxidant defenses and delayed liver proliferation. On the other hand, Geranium schiedeanum exerted an antioxidant effect, diminishing ROS, but Nrf-2 expression increased, favoring liver proliferation through the increase of DNA concentration and the overexpression of Cyclin D1, however it did not activate the antioxidant defenses. In sum, it can be concluded that Nrf-2 possesses a regulatory dynamic that is evident in the presence of a toxic agent (EtOH) and/or a phytochemical agent with antioxidant capacity (Geranium schiedeanum) during liver regeneration.
Collapse
Affiliation(s)
- Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional México
- Área Académica de Farmacia, ICSa, Universidad Autónoma del Estado de Hidalgo México
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional México
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional México
- Depto. de Fisiología, Laboratorio de Hormonas y Conducta, ENCB campus Zacatenco, Instituto Politécnico Nacional México
- Área Académica de Enfermería, ICSa, Universidad Autónoma del Estado de Hidalgo México
| | - Mirandeli Bautista
- Área Académica de Farmacia, ICSa, Universidad Autónoma del Estado de Hidalgo México
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional México
| | - Araceli Posadas-Mondragón
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional México
| | - Liliana Anguiano-Robledo
- Laboratorio de Farmacología Molecular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional México
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional México
| | - Tomás Fregoso-Aguilar
- Depto. de Fisiología, Laboratorio de Hormonas y Conducta, ENCB campus Zacatenco, Instituto Politécnico Nacional México
| | - Evila Gayosso-Islas
- Área Académica de Enfermería, ICSa, Universidad Autónoma del Estado de Hidalgo México
| | | | - José A Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional México
| |
Collapse
|
26
|
Wang G, Wang J, Khan MF. Altered miRNA expression in aniline-mediated cell cycle progression in rat spleen. Toxicol Mech Methods 2017; 27:511-517. [PMID: 28463034 DOI: 10.1080/15376516.2017.1324932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aniline exposure is associated with toxicity to the spleen, however, early molecular events in aniline-induced cell cycle progression in the spleen remain unknown. MicroRNAs (miRNAs) have been implicated in tumor development by modulating key cell cycle regulators and controlling cell proliferation. This study was, therefore, undertaken on the expression of miRNAs, regulation of cyclins and cyclin-dependent kinases (CDKs) in an experimental condition that precedes a tumorigenic response. Male SD rats were treated with aniline (1 mmol/kg/day by gavage) for 7 days, and expression of miRNAs, cyclins and CDKs in rat spleens were analyzed. Microarray and/or qPCR analyses showed that aniline exposure led to significantly decreased miRNA expression of let-7a, miR-24, miR-34c, miR-100, miR-125b, and greatly increased miR-181a. The aberrant expression of miRNAs was associated with significantly increased protein expression of cyclins A, B1, D3 and E. Furthermore, remarkably enhanced expression of CDKs like CDK1, CDK2, CDK4, CDK6, especially p-CDK1 and p-CDK2 as well as alternations in the expression of pRB, p27, and CDC25A in the spleens of aniline-treated rats was also observed. The data suggest that aniline exposure leads to aberrant expression of miRNAs in the spleen which could be important in the regulation of cell cycle proteins. Our findings, thus, provide new insight into the role of miRNAs in cell cycle progression, which may contribute to aniline-induced tumorigenic response in the spleen.
Collapse
Affiliation(s)
- Gangduo Wang
- a Department of Pathology , University of Texas Medical Branch , Galveston , TX , USA
| | - Jianling Wang
- a Department of Pathology , University of Texas Medical Branch , Galveston , TX , USA
| | - M Firoze Khan
- a Department of Pathology , University of Texas Medical Branch , Galveston , TX , USA
| |
Collapse
|
27
|
Tabakov VY, Veiko NN, Chestkov VV, Kostyuk SV. Thiol antioxidants increase the intracellular level of reactive oxygen species and prolifetaion of SP2/0 mouse myeloma cells in serum-free medium. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1990519x17020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Martínez MA, Úbeda A, Moreno J, Trillo MÁ. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci 2016; 17:510. [PMID: 27058530 PMCID: PMC4848966 DOI: 10.3390/ijms17040510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.
Collapse
Affiliation(s)
- María Antonia Martínez
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Alejandro Úbeda
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Jorge Moreno
- Departamento de Ingeniería Eléctrica, Electrónica y de Automatización y Física Aplicada, Technical School of Engineering and Industrial Design (ETSID), UPM, 28012 Madrid, Spain.
| | - María Ángeles Trillo
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| |
Collapse
|
29
|
Mao G, Goswami M, Kalen AL, Goswami PC, Sarsour EH. N-acetyl-L-cysteine increases MnSOD activity and enhances the recruitment of quiescent human fibroblasts to the proliferation cycle during wound healing. Mol Biol Rep 2015; 43:31-9. [PMID: 26671656 DOI: 10.1007/s11033-015-3935-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/08/2015] [Indexed: 01/30/2023]
Abstract
The rebuilding of the connective tissue during wound healing requires the recruitment of fibroblasts to the wound area as well as reentry of quiescent fibroblasts to the proliferative cycle. Whether this process can be modulated by a small molecular weight thiol antioxidant N-acetyl-L-cysteine (NAC) was tested in normal human skin fibroblasts (NHFs) using a uni-directional wound healing assay. NAC treated cells demonstrated a decreased migration rate but increased number of proliferating cells recruited into the wound area post wounding. Fifteen day quiescent control and NAC treated NHFs were re-plated at a lower density and cell numbers counted at different days post-plating. Interestingly, NAC treated cells exhibited increased cellular proliferation indicated by both decreased cell population doubling time and increased S phase cells. NAC treated cells demonstrated decreased steady state levels of reactive oxygen species as well as increased protein and activity levels of manganese superoxide dismutase (MnSOD). NAC treatment failed to induce proliferation in quiescent cells lacking MnSOD expression. These results demonstrate that NAC enhanced the recruitment of quiescent NHFs into proliferation cycle during wound healing. Our results also suggest that the wound healing properties of NAC might be due to its ability to induce and enhance MnSOD expression and activity. Altogether, these findings suggest NAC might be potentially developed as a dietary intervention to improve tissue injury in animals and humans.
Collapse
Affiliation(s)
- Gaowei Mao
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Monali Goswami
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Amanda L Kalen
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Prabhat C Goswami
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ehab H Sarsour
- B180 Med Labs, Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
30
|
Kolossov VL, Beaudoin JN, Ponnuraj N, DiLiberto SJ, Hanafin WP, Kenis PJA, Gaskins HR. Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III. Am J Physiol Cell Physiol 2015; 309:C81-91. [PMID: 25994788 DOI: 10.1152/ajpcell.00006.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration.
Collapse
|
31
|
Hsieh CY, Chen CL, Yang KC, Ma CT, Choi PC, Lin CF. Detection of reactive oxygen species during the cell cycle under normal culture conditions using a modified fixed-sample staining method. J Immunoassay Immunochem 2015; 36:149-61. [PMID: 24749949 DOI: 10.1080/15321819.2014.910806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We developed an alternative method of simultaneously monitoring the generation of reactive oxygen species (ROS) and cellular oxidative responses using the oxidation-sensitive fluorescent probe dichlorofluorescein (DCF) in fixed samples. In this study, we evaluated the ability of this method to detect ROS generation during the cell cycle under normal culture conditions using flow cytometric analyses. Among the fixatives tested, only acetone and paraformaldehyde did not alter the endogenous oxidation of the responsive dye 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), which is a chloromethyl derivative of H2DCFDA. Only acetone fixation followed by staining with propidium iodide was able to detect ROS generation during the cell cycle without altering DCF oxidation. Further thymidine treatment led to cell cycle arrest at the G1 phase followed by the downregulation of total intracellular ROS. Paraformaldehyde-based fixation enabled the evaluation of ROS generation by immunostaining at a different phase of the cell cycle, whereas MPM2 co-staining enabled identification of the specific mitotic phase. This study demonstrates a modified fixed-sample method that can be used to measure intracellular ROS production during the cell cycle using standard immunostaining techniques.
Collapse
Affiliation(s)
- Chia-Yuan Hsieh
- a Institute of Clinical Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Reactive Oxygen Species Are Required for Human Mesenchymal Stem Cells to Initiate Proliferation after the Quiescence Exit. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:502105. [PMID: 26273423 PMCID: PMC4530296 DOI: 10.1155/2015/502105] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 12/15/2022]
Abstract
The present study focuses on the involvement of reactive oxygen species (ROS) in the process of mesenchymal stem cells “waking up” and entering the cell cycle after the quiescence. Using human endometrial mesenchymal stem cells (eMSCs), we showed that intracellular basal ROS level is positively correlated with the proliferative status of the cell cultures. Our experiments with the eMSCs synchronized in the G0 phase of the cell cycle revealed a transient increase in the ROS level upon the quiescence exit after stimulation of the cell proliferation. This increase was registered before the eMSC entry to the S-phase of the cell cycle, and elimination of this increase by antioxidants (N-acetyl-L-cysteine, Tempol, and Resveratrol) blocked G1–S-phase transition. Similarly, a cell cycle arrest which resulted from the antioxidant treatment was observed in the experiments with synchronized human mesenchymal stem cells derived from the adipose tissue. Thus, we showed that physiologically relevant level of ROS is required for the initiation of human mesenchymal stem cell proliferation and that low levels of ROS due to the antioxidant treatment can block the stem cell self-renewal.
Collapse
|
33
|
Gupte TM. Mitochondrial Fragmentation Due to Inhibition of Fusion Increases Cyclin B through Mitochondrial Superoxide Radicals. PLoS One 2015; 10:e0126829. [PMID: 26000631 PMCID: PMC4441460 DOI: 10.1371/journal.pone.0126829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/08/2015] [Indexed: 11/25/2022] Open
Abstract
During the cell cycle, mitochondria undergo regulated changes in morphology. Two particularly interesting events are first, mitochondrial hyperfusion during the G1-S transition and second, fragmentation during entry into mitosis. The mitochondria remain fragmented between late G2- and mitotic exit. This mitotic mitochondrial fragmentation constitutes a checkpoint in some cell types, of which little is known. We bypass the ‘mitotic mitochondrial fragmentation’ checkpoint by inducing fragmented mitochondrial morphology and then measure the effect on cell cycle progression. Using Drosophila larval hemocytes, Drosophila S2R+ cell and cells in the pouch region of wing imaginal disc of Drosophila larvae we show that inhibiting mitochondrial fusion, thereby increasing fragmentation, causes cellular hyperproliferation and an increase in mitotic index. However, mitochondrial fragmentation due to over-expression of the mitochondrial fission machinery does not cause these changes. Our experiments suggest that the inhibition of mitochondrial fusion increases superoxide radical content and leads to the upregulation of cyclin B that culminates in the observed changes in the cell cycle. We provide evidence for the importance of mitochondrial superoxide in this process. Our results provide an insight into the need for mitofusin-degradation during mitosis and also help in understanding the mechanism by which mitofusins may function as tumor suppressors.
Collapse
Affiliation(s)
- Tejas M. Gupte
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK campus, Bellary road, Bangalore, 560 065, Karnataka, India
- inStem, Institute for Stem Cell Biology and Regenerative Medicine, GKVK post, Bellary road, Bangalore, 560 065, Karnataka, India
- * E-mail:
| |
Collapse
|
34
|
Singh F, Charles AL, Schlagowski AI, Bouitbir J, Bonifacio A, Piquard F, Krähenbühl S, Geny B, Zoll J. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1574-85. [PMID: 25769432 DOI: 10.1016/j.bbamcr.2015.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/02/2023]
Abstract
Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.
Collapse
Affiliation(s)
- François Singh
- University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France; CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, B.P. 426, 67091 Strasbourg, France.; Department of Clinical Pharmacology & Toxicology, Department of Biomedicine, University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Anne-Laure Charles
- University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
| | - Anna-Isabel Schlagowski
- University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France; CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, B.P. 426, 67091 Strasbourg, France
| | - Jamal Bouitbir
- Department of Clinical Pharmacology & Toxicology, Department of Biomedicine, University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Annalisa Bonifacio
- Department of Clinical Pharmacology & Toxicology, Department of Biomedicine, University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - François Piquard
- University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France
| | - Stephan Krähenbühl
- Department of Clinical Pharmacology & Toxicology, Department of Biomedicine, University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Bernard Geny
- University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France; CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, B.P. 426, 67091 Strasbourg, France
| | - Joffrey Zoll
- University of Strasbourg, Faculty of Medicine, Fédération de Médecine Translationelle, EA 3072, 11 rue Humann, Strasbourg, France; CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, B.P. 426, 67091 Strasbourg, France..
| |
Collapse
|
35
|
Gentric G, Maillet V, Paradis V, Couton D, L'Hermitte A, Panasyuk G, Fromenty B, Celton-Morizur S, Desdouets C. Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver disease. J Clin Invest 2015; 125:981-92. [PMID: 25621497 DOI: 10.1172/jci73957] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Polyploidization is one of the most dramatic changes that can occur in the genome. In the liver, physiological polyploidization events occur during both liver development and throughout adult life. Here, we determined that a pathological polyploidization takes place in nonalcoholic fatty liver disease (NAFLD), a widespread hepatic metabolic disorder that is believed to be a risk factor for hepatocellular carcinoma (HCC). In murine models of NAFLD, the parenchyma of fatty livers displayed alterations of the polyploidization process, including the presence of a large proportion of highly polyploid mononuclear cells, which are rarely observed in normal hepatic parenchyma. Biopsies from patients with nonalcoholic steatohepatitis (NASH) revealed the presence of alterations in hepatocyte ploidy compared with tissue from control individuals. Hepatocytes from NAFLD mice revealed that progression through the S/G2 phases of the cell cycle was inefficient. This alteration was associated with activation of a G2/M DNA damage checkpoint, which prevented activation of the cyclin B1/CDK1 complex. Furthermore, we determined that oxidative stress promotes the appearance of highly polyploid cells, and antioxidant-treated NAFLD hepatocytes resumed normal cell division and returned to a physiological state of polyploidy. Collectively, these findings indicate that oxidative stress promotes pathological polyploidization and suggest that this is an early event in NAFLD that may contribute to HCC development.
Collapse
|
36
|
Salcher S, Hagenbuchner J, Geiger K, Seiter MA, Rainer J, Kofler R, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol Cancer 2014; 13:224. [PMID: 25261981 PMCID: PMC4197242 DOI: 10.1186/1476-4598-13-224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022] Open
Abstract
Background FOXO transcription factors control cellular levels of reactive oxygen species (ROS) which critically contribute to cell survival and cell death in neuroblastoma. In the present study we investigated the regulation of C10orf10/DEPP by the transcription factor FOXO3. As a physiological function of C10orf10/DEPP has not been described so far we analyzed its effects on cellular ROS detoxification and death sensitization in human neuroblastoma cells. Methods The effect of DEPP on cellular ROS was measured by catalase activity assay and live cell fluorescence microscopy using the ROS-sensitive dye reduced MitoTracker Red CM-H2XROS. The cellular localization of DEPP was determined by confocal microscopy of EYFP-tagged DEPP, fluorescent peroxisomal- and mitochondrial probes and co-immunoprecipitation of the PEX7 receptor. Results We report for the first time that DEPP regulates ROS detoxification and localizes to peroxisomes and mitochondria in neuroblastoma cells. FOXO3-mediated apoptosis involves a biphasic ROS accumulation. Knockdown of DEPP prevented the primary and secondary ROS wave during FOXO3 activation and attenuated FOXO3- and H2O2-induced apoptosis. Conditional overexpression of DEPP elevates cellular ROS levels and sensitizes to H2O2 and etoposide-induced cell death. In neuronal cells, cellular ROS are mainly detoxified in peroxisomes by the enzyme CAT/catalase. As DEPP contains a peroxisomal-targeting-signal-type-2 (PTS2) sequence at its N-terminus that allows binding to the PEX7 receptor and import into peroxisomes, we analyzed the effect of DEPP on cellular detoxification by measuring enzyme activity of catalase. Catalase activity was reduced in DEPP-overexpressing cells and significantly increased in DEPP-knockdown cells. DEPP directly interacts with the PEX7 receptor and localizes to the peroxisomal compartment. In parallel, the expression of the transcription factor peroxisome proliferator-activated receptor gamma (PPARG), a critical regulator of catalase enzyme activity, was strongly upregulated in DEPP-knockdown cells. Conclusion The combined data indicate that in neuroblastoma DEPP localizes to peroxisomes and mitochondria and impairs cellular ROS detoxification, which sensitizes tumor cells to ROS-induced cell death. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-224) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael J Ausserlechner
- Department of Pediatrics I, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria.
| | | |
Collapse
|
37
|
Robb EL, Christoff CA, Maddalena LA, Stuart JA. Mitochondrial reactive oxygen species (ROS) in animal cells: relevance to aging and normal physiology. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In animal mitochondria, the four electron reduction of molecular oxygen to produce water at respiratory complex IV is the terminal step in substrate oxidation. However, respiratory complexes I, II, and III can participate in the single electron reduction of oxygen to produce the radical species superoxide. This progenitor reactive oxygen species (ROS) participates in a number of reactions that generate other ROS. These molecules may react with, and damage, intracellular macromolecules, leading to cellular dysfunction. Mitochondrial ROS production is often considered from this perspective of macromolecular damage and is central to the “oxidative damage theory of aging”, which suggests the accumulation of oxidative damage in animal cells underlies the aging phenotype and limits lifespan. In this review, we discuss some experimental results accumulated over the past decade that are inconsistent with this theory. A limitation of the theory is that it presupposes mitochondrial ROS are inherently harmful. However, it is increasingly apparent that some basic cellular functions are physiologically regulated by normal levels of mitochondrial ROS. For example, cell growth and division, the apoptotic pathway, and mitochondrial fusion–fission dynamics all appear to be redox-regulated by mitochondrial ROS and perhaps the matrix manganese superoxide dismutase (MnSOD). Therefore, it is less clear how the balance between ROS regulation of normal cellular activities and ROS-mediated macromolecular damage is maintained and how this relates to aging and longevity in animals.
Collapse
Affiliation(s)
- Ellen L. Robb
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Casey A. Christoff
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Lucas A. Maddalena
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
38
|
Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys 2014; 67:477-83. [PMID: 22161621 DOI: 10.1007/s12013-011-9320-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Systems biology is now recognized as a needed approach to understand the dynamics of inter- and intra-cellular processes. Redox processes are at the foundation of nearly all aspects of biology. Free radicals, related oxidants, and antioxidants are central to the basic functioning of cells and tissues. They set the cellular redox environment and, therefore, are the key to regulation of biochemical pathways and networks, thereby influencing organism health. To understand how short-lived, quasi-stable species, such as superoxide, hydrogen peroxide, and nitric oxide, connect to the metabolome, proteome, lipidome, and genome we need absolute quantitative information on all redox active compounds as well as thermodynamic and kinetic information on their reactions, i.e., knowledge of the complete redoxome. Central to the state of the redoxome are the interactive details of the superoxide/peroxide formation and removal systems. Quantitative information is essential to establish the dynamic mathematical models needed to reveal the temporal evolution of biochemical pathways and networks. This new field of Quantitative Redox Biology will allow researchers to identify new targets for intervention to advance our efforts to achieve optimal human health.
Collapse
|
39
|
Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal 2014; 20:1618-27. [PMID: 23590434 PMCID: PMC3942678 DOI: 10.1089/ars.2013.5303] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Manganese superoxide dismutase (MnSOD) is a nuclear-encoded and mitochondria-matrix-localized oxidation-reduction (redox) enzyme that regulates cellular redox homeostasis. Cellular redox processes are known to regulate proliferative and quiescent growth states. Therefore, MnSOD and mitochondria-generated reactive oxygen species (ROS) are believed to be critical regulators of quiescent cells' entry into the cell cycle and exit from the proliferative cycle back to the quiescent state. RECENT ADVANCES/CRITICAL ISSUES Recent evidence suggests that the intracellular redox environment fluctuates during the cell cycle, shifting toward a more oxidized status during mitosis. MnSOD activity is higher in G0/G1 cells compared with S, G2 and M phases. After cell division, MnSOD activity increases in the G1 phase of the daughter generation. The periodic fluctuation in MnSOD activity during the cell cycle inversely correlates with cellular superoxide levels as well as glucose and oxygen consumption. Based on an inverse correlation between MnSOD activity and glucose consumption during the cell cycle, it is proposed that MnSOD is a central molecular player for the "Warburg effect." FUTURE DIRECTIONS In general, loss of MnSOD activity results in aberrant proliferation. A better understanding of the MnSOD and mitochondrial ROS-dependent cell cycle processes may lead to novel approaches to overcome aberrant proliferation. Since ROS have both deleterious (pathological) and beneficial (physiological) effects, it is proposed that "eustress" should be used when discussing ROS processes that regulate normal physiological functions, while "oxidative stress" should be used to discuss the deleterious effects of ROS.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa
| | | | | |
Collapse
|
40
|
Fan SH, Wang YY, Lu J, Zheng YL, Wu DM, Li MQ, Hu B, Zhang ZF, Cheng W, Shan Q. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One 2014; 9:e89961. [PMID: 24587153 PMCID: PMC3935965 DOI: 10.1371/journal.pone.0089961] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/25/2014] [Indexed: 01/20/2023] Open
Abstract
The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC) is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS) accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC.
Collapse
Affiliation(s)
- Shao-hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yan-yan Wang
- Department of Function Examination, The First People's Hospital of Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuan-lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
- * E-mail:
| | - Dong-mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Meng-qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zi-feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wei Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
41
|
Robb EL, Stuart JA. The stilbenes resveratrol, pterostilbene and piceid affect growth and stress resistance in mammalian cells via a mechanism requiring estrogen receptor beta and the induction of Mn-superoxide dismutase. PHYTOCHEMISTRY 2014; 98:164-173. [PMID: 24361291 DOI: 10.1016/j.phytochem.2013.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
The mitochondrial antioxidant enzyme, Mn superoxide dismutase (MnSOD), has been shown to confer cytoprotection and to regulate cell cycle progression. Resveratrol, a phytoestrogen found in red wines and other foods, has been previously reported to increase MnSOD protein levels and activity both in vitro and in vivo. Numerous structural analogues of resveratrol produced via the same stilbene synthesis pathway (e.g. pterostilbene and piceid) and also present in foods and red wine may be capable of eliciting the same effects. Furthermore, in humans resveratrol is rapidly metabolized to resveratrol-4'-sulfate, resveratrol-3-glucuronide and other metabolites in vivo. Although these metabolites may accumulate to relatively high levels in plasma and tissues, little is known about their biological activities. Here the activities were compared of these stilbenes and stilbene metabolites in mammalian cells. Two key cellular activities associated with resveratrol were examined: inhibition of proliferative growth and increased stress resistance (important anti-cancer and cell protective activities, respectively). While resveratrol-4'-sulfate and resveratrol-3-glucuronide had no effect on either cell growth or stress resistance, both pterostilbene and piceid were at least as effective as resveratrol. Using pharmacological and genetic approaches, it was found that the effects of pterostilbene and piceid required an induction of the mitochondrial enzyme MnSOD and intact mitochondrial respiration. In addition, using estrogen receptor beta (ERbeta) knockout mouse myoblasts, it was demonstrated that the effects of stilbene compounds on cell growth and stress resistance all require ERbeta. Taken together, these results indicate that resveratrol, pterostilbene and piceid all activate the same mitochondrial response in mammalian cells, and therefore these latter two molecules might be as effective as resveratrol in eliciting positive health outcomes in vivo.
Collapse
Affiliation(s)
- Ellen L Robb
- Department of Biological Sciences and Cold Climate Oenology and Viticulture Institute, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences and Cold Climate Oenology and Viticulture Institute, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
42
|
Eckers JC, Kalen AL, Xiao W, Sarsour EH, Goswami PC. Selenoprotein P inhibits radiation-induced late reactive oxygen species accumulation and normal cell injury. Int J Radiat Oncol Biol Phys 2013; 87:619-25. [PMID: 24074935 DOI: 10.1016/j.ijrobp.2013.06.2063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). METHODS AND MATERIALS Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. RESULTS Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). CONCLUSION SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.
Collapse
Affiliation(s)
- Jaimee C Eckers
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | | | | | | | | |
Collapse
|
43
|
Molecular analysis of the inhibitory effect of N-acetyl-L-cysteine on the proliferation and invasiveness of pancreatic cancer cells. Anticancer Drugs 2013; 24:504-18. [PMID: 23511429 DOI: 10.1097/cad.0b013e32836009d7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Preliminary studies have suggested that the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) may be effective in inhibiting the growth of pancreatic cancer cells. In-depth cellular and molecular analyses were carried out to determine NAC's mode of action in inhibiting the growth of a well-characterized pancreatic cancer cell line (AsPC-1). Standardized assays were used to monitor cellular growth, apoptosis, levels of ROS, cellular senescence, migration, and invasiveness. Cell stiffness was measured using atomic force microscopy. Gene expression was monitored by quantitative PCR. NAC significantly inhibits the growth and metastatic potential of AsPC-1 cells by inducing cell-cycle arrest in G1 and subsequent cellular senescence and decreased invasiveness. These anticancer properties are associated with an unexpected increase in the intracellular concentrations of ROS. NAC does not decrease the susceptibility of AsPC-1 cells to the anticancer drugs gemcitabine, mitomycin C, and doxorubicin. NAC-induced changes in gene expression are consistent with the onset of mesenchymal-to-epithelial transition. In conclusion, our findings indicate that NAC induces an integrated series of responses in AsPC-1 cells that make it a highly promising candidate for development as a pancreatic cancer therapeutic.
Collapse
|
44
|
Colak N, Nazli Y, Alpay MF, Aksoy ON, Akkaya IO, Bayrak R, Cakir O. Effect of topical N-acetylcysteine in the prevention of postoperative pericardial adhesion formation in a rabbit model. Cardiovasc Pathol 2013; 22:368-72. [DOI: 10.1016/j.carpath.2013.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/17/2022] Open
|
45
|
Mitra K. Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation. Bioessays 2013; 35:955-64. [PMID: 23943303 DOI: 10.1002/bies.201300011] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondrial shape change, brought about by molecules that promote either fission or fusion between individual mitochondria, has been documented in several model systems. However, the deeper significance of mitochondrial shape change has only recently begun to emerge: among others, it appears to play a role in the regulation of cell proliferation. Here, I review the emerging interplay between mitochondrial fission-fusion components with cell cycle regulatory machineries and how that may impact cell differentiation. Regulation of mitochondrial shape may modulate mitochondrial metabolism and/or energetics to promote crosstalk between signaling components and the cell cycle machinery. Focused research in this area will reveal the exact role of mitochondria in development and disease, specifically in stem cell regulation and tumorigenesis. Such research may also reveal whether and how the endosymbiotic event that gave rise to the mitochondrion was crucial for the evolution of cell cycle regulatory mechanisms in eukaryotes that are absent in prokaryotes.
Collapse
Affiliation(s)
- Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
46
|
D-penicillamine and other low molecular weight thiols: review of anticancer effects and related mechanisms. Cancer Lett 2013; 337:8-21. [PMID: 23727371 DOI: 10.1016/j.canlet.2013.05.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/13/2023]
Abstract
Low molecular weight thiols (LMWTs) like N-acetyl cysteine, D-penicillamine, captopril, Disulfiram and Amifostine, etc. have been used as chemo-preventive agents. Recent studies have reported cell growth inhibition and cytotoxicity in several different types of cancer cells following treatment with several LMWTs. Cytotoxic and cytostatic effects of LMWTs may involve interaction of the thiol group with cellular lipids, proteins, intermediates or enzymes. Some of the mechanisms that have been proposed include a p53 mediated apoptosis, thiyl radical induced DNA damage, membrane damage through lipid peroxidation, anti-angiogenic effects induced by inhibition of matrix metalloproteinase enzymes and angiostatin generation. LMWTs are strong chelators of transition metals like copper, nickel, zinc, iron and cobalt and may cause metal co-factor depletion resulting in cytotoxicity. Oxidation of thiol group can also generate cytotoxic reactive oxygen species (ROS).
Collapse
|
47
|
Ansenberger-Fricano K, Ganini DDS, Mao M, Chatterjee S, Dallas S, Mason RP, Stadler K, Santos JH, Bonini MG. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med 2013; 54:116-24. [PMID: 22982047 PMCID: PMC4155036 DOI: 10.1016/j.freeradbiomed.2012.08.573] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 12/28/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is an integral mitochondrial protein known as a first-line antioxidant defense against superoxide radical anions produced as by-products of the electron transport chain. Recent studies have shaped the idea that by regulating the mitochondrial redox status and H(2)O(2) outflow, MnSOD acts as a fundamental regulator of cellular proliferation, metabolism, and apoptosis, thereby assuming roles that extend far beyond its proposed antioxidant functions. Accordingly, allelic variations of MnSOD that have been shown to augment levels of MnSOD in mitochondria result in a 10-fold increase in prostate cancer risk. In addition, epidemiologic studies indicate that reduced glutathione peroxidase activity along with increases in H(2)O(2) further increase cancer risk in the face of MnSOD overexpression. These facts led us to hypothesize that, like its Cu,ZnSOD counterpart, MnSOD may work as a peroxidase, utilizing H(2)O(2) to promote mitochondrial damage, a known cancer risk factor. Here we report that MnSOD indeed possesses peroxidase activity that manifests in mitochondria when the enzyme is overexpressed.
Collapse
Affiliation(s)
- Kristine Ansenberger-Fricano
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Douglas da Silva Ganini
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Mao Mao
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
| | - Saurabh Chatterjee
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Shannon Dallas
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Ronald P. Mason
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Janine H. Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of the UMDNJ, Newark, NJ, 07103, USA
| | - Marcelo G. Bonini
- Section of Cardiology and Department of Pharmacology, College of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., COMRB 3020, Chicago, IL, 60612
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
48
|
Ma Q, Cavallin LE, Leung HJ, Chiozzini C, Goldschmidt-Clermont PJ, Mesri EA. A role for virally induced reactive oxygen species in Kaposi's sarcoma herpesvirus tumorigenesis. Antioxid Redox Signal 2013; 18:80-90. [PMID: 22746102 PMCID: PMC3503473 DOI: 10.1089/ars.2012.4584] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Kaposi's sarcoma (KS), caused by the Kaposi's sarcoma herpesvirus (KSHV), is an AIDS-associated cancer characterized by angiogenesis and proliferation of spindle cells. Rac1-activated reactive oxygen species (ROS) production has been implicated in KS tumorigenesis. We used an animal model of KSHV-induced Kaposi's sarcomagenesis (mECK36) to study the role of ROS in KS and the efficacy of N-acetyl l-cysteine (NAC) in inhibiting or preventing KS. RESULTS Signaling by the KSHV early lytic gene viral G protein-coupled receptor (vGPCR) activated ROS production in mECK36 cells via a Rac1-NADPH oxidase pathway. Induction of the lytic cycle in KSHV-infected KS spindle cells upregulated ROS along with upregulation of vGPCR expression. We also found that expression of the major latent transcript in 293 cells increased ROS levels. ROS scavenging with NAC halted mECK36 tumor growth in a KSHV-specific manner. NAC inhibited KSHV latent gene expression as well as tumor angiogenesis and lymphangiogenesis. These effects correlated with the reduction of vascular endothelial growth factor (VEGF), c-myc, and cyclin D1, and could be explained on the basis of inhibition of STAT3 tyrosine phosphorylation. NAC prevented mECK36 de novo tumor formation. Molecular analysis of NAC-resistant tumors revealed a strong upregulation of Rac1 and p40(PHOX). INNOVATION AND CONCLUSION Our results demonstrate that ROS-induction by KSHV plays a causal role in KS oncogenesis by promoting proliferation and angiogenesis. Our results show that both ROS and their molecular sources can be targeted therapeutically using NAC or other Food and Drug Administration (FDA)-approved inhibitors for prevention and treatment of AIDS-KS.
Collapse
Affiliation(s)
- Qi Ma
- Viral Oncology Program, Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center and Center for AIDS Research, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
49
|
Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells. PLoS One 2012; 7:e44502. [PMID: 22970236 PMCID: PMC3435274 DOI: 10.1371/journal.pone.0044502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/08/2012] [Indexed: 01/18/2023] Open
Abstract
The Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2)O(2)) in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p) at serine 10 (S10) and at threonine 198 (T198) because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2)O(2) removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2)O(2) (0.1 µM) to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2)O(2) scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization of p27Kip1.
Collapse
|
50
|
Tome ME, Lee K, Jaramillo MC, Briehl MM. Mitochondria are the primary source of the H(2)O(2) signal for glucocorticoid-induced apoptosis of lymphoma cells. Exp Ther Med 2012; 4:237-242. [PMID: 22844350 DOI: 10.3892/etm.2012.595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids are a class of steroid hormones commonly used for the treatment of hematological malignancies due to their ability to induce apoptosis in lymphoid cells. An understanding of the critical steps in glucocorticoid-induced apoptosis is required to identify sources of drug resistance. Previously, we found that an increase in hydrogen peroxide is a necessary signal for glucocorticoid-induced apoptosis. In the current study, we found that mitochondria are the source of the signal. Glucocorticoid treatment inhibited Complex I and Complex III of the electron transport chain (ETC). Mitochondrial matrix reactive oxygen species (ROS) increased concomitantly with the oxidation of the mitochondrial glutathione pool. Treatment with Tiron, a superoxide scavenger, inhibited the signal. This suggests that the hydrogen peroxide signal originates as superoxide from the mitochondria and is metabolized to hydrogen peroxide. An inability to generate mitochondrial oxidants in response to glucocorticoids could cause drug resistance.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|