1
|
Aakriti J, Vithalkar MP, Maity S, Baby K, Nagareddy PR, Nayak Y. Focal adhesion kinase (FAK): emerging target for drug-resistant malignant tumors. Mol Biol Rep 2025; 52:248. [PMID: 39976799 PMCID: PMC11842479 DOI: 10.1007/s11033-025-10296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025]
Abstract
Malignant tumors associated with drug resistance present a significant challenge for clinicians and drug developers. Mutations and alterations within the tumor microenvironment frequently drive cancer cell invasion and metastasis. Despite identifying numerous molecular targets and lead compounds, achieving sustained efficacy remains challenging due to the rapid mutation rates and the emergence of resistance. Recently, Focal Adhesion Kinase (FAK), a non-receptor tyrosine kinase, has emerged as a promising target for inhibiting cancer progression, with several lead molecules advancing through clinical trials. FAK plays a critical role in cancer pathology by regulating cell adhesion, migration, proliferation, and survival. Its structure comprises three domains- the N-terminal FERM domain, kinase domain, and C-terminal focal adhesion targeting domain- contributing to its functional versatility. Ligands targeting the FERM and kinase domains can suppress cancer cell proliferation, invasion, and migration. The FERM domain, a member of the ezrin, radixin, and moesin family, is particularly noteworthy for its ligand-binding capabilities and potential to inhibit tumor growth. While FAK is a compelling anticancer target, challenges such as tissue-specific physiological variability and broad ligand specificity remain. This review provides a detailed analysis of FAK's role in cancer progression and explores emerging molecules targeting FAK as potential treatments for drug-resistant malignant tumors.
Collapse
Affiliation(s)
- Jaya Aakriti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, 576104, India
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, 576104, India
| | - Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, 576104, India
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhava Nagar, Manipal, 576104, India.
| |
Collapse
|
2
|
Wang X, Sato AY, Marino S, Akel N, Boysen G, Basnakian AG, Bellido TM, Li HY. Generation of BT-Amide, a Bone-Targeted Pyk2 Inhibitor, Effective via Oral Administration, for the Prevention of Glucocorticoid-Induced Bone Loss. J Med Chem 2024; 67:20708-20720. [PMID: 39540576 DOI: 10.1021/acs.jmedchem.4c02539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the leading cause of iatrogenic osteoporosis due to the widespread clinical use of glucocorticoids (GC) as immunosuppressants. Previous research identified the proline-rich tyrosine kinase 2, Pyk2, as a critical mediator of GC-induced bone loss, and that blocking Pyk2 could protect the skeleton from adverse GC actions. However, systemic administration of current Pyk2 inhibitors causes harmful side effects, such as skin lesions. To address this, we developed bone-targeted (BT) Pyk2 inhibitors by conjugating them with bisphosphonates (BP), ensuring adherence to the bone matrix and reducing impact on noncalcified tissues. We synthesized BT-Amide by linking a derivative of TAE-226, a Pyk2 inhibitor, with alendronic acid. Oral administration (gavage) of BT-Amide prevented GC-induced bone loss in mice without causing skin lesions, or elevation of any organ toxicity markers. These findings introduce BT-Amide as the first orally effective bone-targeted Pyk2 inhibitor for preventing GC-induced bone loss while minimizing off-target effects.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Amy Y Sato
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Nisreen Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Gunnar Boysen
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, United States
| | - Teresita M Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, United States
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
3
|
Feng Z, Wei W, Wang S, Li X, Zhao L, Wan G, Hu R, Yu L. A novel selective FAK inhibitor E2 inhibits ovarian cancer metastasis and growth by inducing cytotoxic autophagy. Biochem Pharmacol 2024; 229:116461. [PMID: 39102992 DOI: 10.1016/j.bcp.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Ovarian cancer (OC) is the deadliest form of the gynecologic malignancies and effective therapeutic drugs are urgently needed. Focal adhesion kinase (FAK) is overexpressed in various solid tumors, and could serve as a potential biomarker of ovarian cancer. However, there are no launched drugs targeting FAK. Hence, the development of the novel FAK inhibitors is an emerging approach for the treatment of ovarian cancer. In this work, we characterized a selective FAK inhibitor E2, with a high inhibitory potency toward FAK. Moreover, E2 had cytotoxic, anti-invasion and anti-migration activity on ovarian cancer cells. Mechanistically, after treatment with E2, FAK downstream signaling cascades (e.g., Src and AKT) were suppressed, thus resulting in the ovarian cancer cell arrest at G0/G1 phase and the induction of cytotoxic autophagy. In addition, E2 attenuated the tumor growth of PA-1 and ES-2 ovarian cancer subcutaneous xenografts, as well as suppressed peritoneal metastasis of OVCAR3-luc. Furthermore, E2 exhibited favorable pharmacokinetic properties. Altogether, these findings demonstrate that E2 is a selective FAK inhibitor with potent anti-ovarian cancer activities both in vivo and in vitro, offering new possibilities for OC treatment strategies.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shirui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Guoquan Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Flockerzi FA, Hohneck J, Langer F, Tränkenschuh W, Stahl PR. The Role of SCARA5 as a Potential Biomarker in Squamous Cell Carcinoma of the Lung. Int J Mol Sci 2024; 25:7355. [PMID: 39000462 PMCID: PMC11242384 DOI: 10.3390/ijms25137355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the western world. Squamous cell carcinoma is one of the most common histological subtypes of this malignancy. For squamous cell carcinoma of the lung (LSCC), prognostic and predictive markers still are largely missing. In a previous study, we were able to show that the expression of THSD7A shows an association with unfavorable prognostic parameters in prostate cancer. There is also a link to a high expression of FAK. There is incidence that SCARA5 might be the downstream gene of THSD7A. Furthermore, there is evidence that SCARA5 interacts with FAK. We were interested in the role of SCARA5 as a potential biomarker in LSCC. Furthermore, we wanted to know whether SCARA5 expression is linked to THSD7A positivity and to the expression level of FAK. For this reason, we analyzed 101 LSCC tumors by immunohistochemistry. Tissue microarrays were utilized. No significant association was found between SCARA5 expression and overall survival or clinicopathological parameters. There was also no significant association between THSD7A positivity and SCARA5 expression level. Moreover, no significant association was found between FAK expression level and SCARA5 expression level. SCARA5 seems not to play a major role as a biomarker in squamous cell carcinoma of the lung.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
- Department of Pathology, Medical School Berlin, 14197 Berlin, Germany
| |
Collapse
|
5
|
Gunji D, Narumi R, Muraoka S, Isoyama J, Ikemoto N, Ishida M, Tomonaga T, Sakai Y, Obama K, Adachi J. Integrative analysis of cancer dependency data and comprehensive phosphoproteomics data revealed the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant colorectal cancer. Mol Omics 2023; 19:624-639. [PMID: 37232035 DOI: 10.1039/d3mo00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Colorectal cancer (CRC), a common malignant tumour of the gastrointestinal tract, is a life-threatening cancer worldwide. Mutations in KRAS and BRAF, the major driver mutation subtypes in CRC, activate the RAS pathway, contribute to tumorigenesis in CRC and are being investigated as potential therapeutic targets. Despite recent advances in clinical trials targeting KRASG12C or RAS downstream signalling molecules for KRAS-mutant CRC, there is a lack of effective therapeutic interventions. Therefore, understanding the unique molecular characteristics of KRAS-mutant CRC is essential for identifying molecular targets and developing novel therapeutic interventions. We obtained in-depth proteomics and phosphoproteomics quantitative data for over 7900 proteins and 38 700 phosphorylation sites in cells from 35 CRC cell lines and performed informatic analyses, including proteomics-based coexpression analysis and correlation analysis between phosphoproteomics data and cancer dependency scores of the corresponding phosphoproteins. Our results revealed novel dysregulated protein-protein associations enriched specifically in KRAS-mutant cells. Our phosphoproteomics analysis revealed activation of EPHA2 kinase and downstream tight junction signalling in KRAS-mutant cells. Furthermore, the results implicate the phosphorylation site Y378 in the tight junction protein PARD3 as a cancer vulnerability in KRAS-mutant cells. Together, our large-scale phosphoproteomics and proteomics data across 35 steady-state CRC cell lines represent a valuable resource for understanding the molecular characteristics of oncogenic mutations. Our approach to predicting cancer dependency from phosphoproteomics data identified the EPHA2-PARD3 axis as a cancer vulnerability in KRAS-mutant CRC.
Collapse
Affiliation(s)
- Daigo Gunji
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Narumi Ikemoto
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Mimiko Ishida
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, 606-8507, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan.
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
6
|
Flockerzi FA, Hohneck J, Saar M, Bohle RM, Stahl PR. SCARA5 Is Overexpressed in Prostate Cancer and Linked to Poor Prognosis. Diagnostics (Basel) 2023; 13:2211. [PMID: 37443605 DOI: 10.3390/diagnostics13132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is one of the most common malignancies worldwide, showing a wide range of clinical behaviors. Therefore, several treatment options arise out of the diagnosis "prostate cancer". For this reason, it is desirable to find novel prognostic and predictive markers. In former studies, we showed that THSD7A expression is associated with unfavorable prognostic parameters in prostate cancer and is linked to a high expression of focal adhesion kinase (FAK). Recently, scavenger receptor class A member 5 (SCARA5) was reported to be the downstream gene of THSD7A in esophageal squamous cell carcinoma. SCARA5 is believed to play an important role in the development and progression of several different tumor types. Most studies describe SCARA5 as a tumor suppressor. There is also evidence that SCARA 5 interacts with FAK. To examine the role of SCARA5 as a potential biomarker in prostate cancer, a total of 461 prostate cancers were analyzed via immunohistochemistry using tissue microarrays. Furthermore, we compared the expression level of SCARA5 with our previously collected data on THSD7A and FAK. High SCARA5 expression was associated with advanced tumor stage (p < 0.001), positive nodal status (p < 0.001) and high Gleason-score (p < 0.001). At least, strongly SCARA5-positive cancers were associated with THSD7A-positivity. There was no significant association between SCARA5 expression level and FAK expression level. To our knowledge, we are the first to investigate the role of SCARA5 in prostate cancer and we demonstrated that SCARA5 might be a potential biomarker in prostate cancer.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, University Hospital, 52074 Aachen, Germany
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Rainer Maria Bohle
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| |
Collapse
|
7
|
Flockerzi FA, Hohneck J, Langer F, Bohle RM, Stahl PR. THSD7A Positivity Predicts Poor Survival and Is Linked to High FAK Expression and FGFR1-Wildtype in Female Patients with Squamous Cell Carcinoma of the Lung. Int J Mol Sci 2023; 24:10639. [PMID: 37445817 DOI: 10.3390/ijms241310639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the western world, with squamous cell carcinoma being one of the most common histological subtypes. Prognostic and predictive markers are still largely missing for squamous cell carcinoma of the lung (LSCC). Several studies indicate that THSD7A might at least play a role in the prognosis of different tumors. FAK seems to play an important role in lung cancer and is discussed as a potential therapeutic target. In addition, there is evidence that FAK-dependent signaling pathways might be affected by THSD7A. For that reason, we investigated the role of THSD7A as a potential tumor marker in LSCC and whether THSD7A expression has an impact on the expression level of FAK. A total of 101 LSCCs were analyzed by immunohistochemistry using tissue microarrays. THSD7A positivity was associated with poor overall survival in female patients and showed a relation to high FAK expression in this subgroup. To our knowledge, we are the first to report these correlations in lung cancer. The results might be proof of the assumed activation of FAK-dependent signaling pathways by THSD7A and that as a membrane-associated protein, THSD7A might serve as a putative therapeutic target in LSCC.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, 66424 Homburg, Germany
| | - Rainer Maria Bohle
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| |
Collapse
|
8
|
Design, synthesis and evaluation of nitric oxide releasing derivatives of 2,4-diaminopyrimidine as novel FAK inhibitors for intervention of metastatic triple-negative breast cancer. Eur J Med Chem 2023; 250:115192. [PMID: 36801517 DOI: 10.1016/j.ejmech.2023.115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
To search for novel medicines for intervention of triple-negative breast cancer (TNBC), a series of phenylsulfonyl furoxan-based 2,4-diaminopyrimidine derivatives (8a-t) were designed and synthesized based on blocking FAK-mediated signaling pathways through both kinase-dependent and -independent manners. The most active compound 8f not only significantly inhibited FAK kinase activity (IC50 = 27.44 nM), displayed potent inhibitory effects on the proliferation (IC50 = 0.126 μM), invasion and migration of MDA-MB-231 cells, superior to the most widely studied FAK inhibitor, TAE226, bearing 2,4-diaminopyrimidine, but also released high levels of NO, contributing to blockage of FAK mediated-signaling pathways by upregulating of p53 as well as suppressing the Y397 phosphorylation and its downstream effectors, including p-Akt, MMP-2, and MMP-9 via kinase-independent manner, leading to apoptosis induction and decrease of FAs and SFs in TNBC cells. Importantly, 8f inhibited the lung metastasis of TNBC in vivo. Together, 8f may serve as a promising candidate for the treatment of metastatic TNBC.
Collapse
|
9
|
Three-Dimensional-QSAR and Relative Binding Affinity Estimation of Focal Adhesion Kinase Inhibitors. Molecules 2023; 28:molecules28031464. [PMID: 36771129 PMCID: PMC9919860 DOI: 10.3390/molecules28031464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Precise binding affinity predictions are essential for structure-based drug discovery (SBDD). Focal adhesion kinase (FAK) is a member of the tyrosine kinase protein family and is overexpressed in a variety of human malignancies. Inhibition of FAK using small molecules is a promising therapeutic option for several types of cancer. Here, we conducted computational modeling of FAK-targeting inhibitors using three-dimensional structure-activity relationship (3D-QSAR), molecular dynamics (MD), and hybrid topology-based free energy perturbation (FEP) methods. The structure-activity relationship (SAR) studies between the physicochemical descriptors and inhibitory activities of the chemical compounds were performed with reasonable statistical accuracy using CoMFA and CoMSIA. These are two well-known 3D-QSAR methods based on the principle of supervised machine learning (ML). Essential information regarding residue-specific binding interactions was determined using MD and MM-PB/GBSA methods. Finally, physics-based relative binding free energy (ΔΔGRBFEA→B) terms of analogous ligands were estimated using alchemical FEP simulation. An acceptable agreement was observed between the experimental and computed relative binding free energies. Overall, the results suggested that using ML and physics-based hybrid approaches could be useful in synergy for the rational optimization of accessible lead compounds with similar scaffolds targeting the FAK receptor.
Collapse
|
10
|
The dual FAK-HDAC inhibitor MY-1259 displays potent activities in gastric cancers in vitro and in vivo. Bioorg Chem 2023; 131:106328. [PMID: 36542986 DOI: 10.1016/j.bioorg.2022.106328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Epigenetic regulation and Focal adhesion kinase (FAK) are considered to be two important targets for the development of antitumor drugs. Studies have shown that the combination of FAK and HDAC inhibitors could exhibit synergistic effects in a subset of cancer cells in vitro and in vivo. At present, there are few reports on dual target inhibitors of FAK and HDAC. Here, we first reported a new compound MY-1259 as a dual FAK and HDAC6 inhibitor, which exhibited efficient treatment effects on gastric cancers in vitro and in vivo. MY-1259 exhibited potent inhibitory activities against FAK (IC50 = 132 nM) and HDAC6 (IC50 = 16 nM). Notably, MY-1259 showed selective inhibitory potency on HDAC6 over HDAC1, HDAC2 and HDAC3. In addition, MY-1259 could potently inhibit the proliferative activities of MGC-803 and BGC-823 cells (IC50 = 3.91 and 15.46 nM, respectively, using flow cytometry counting), induce cell apoptosis, and cellular senescence. MY-1259 could effectively down-regulate the levels of Ac-Histone H3 and Ac-α-tubulin, and also inhibit the phosphorylation of FAK at three phosphorylation sites Y397, Y576/577 and Y925, thereby inhibiting the activation of ERK and AKT/mTOR. MY-1259 exhibited more effective antitumor effect in vivo than the HDAC inhibitor SAHA and FAK inhibitor TAE-226 alone or in combination, showing the advantages of FAK/HDAC dual inhibitors in the treatment of gastric cancers. Therefore, the results in this work suggested that inhibition of FAK and HDAC by MY-1259 might represent a promising strategy for the treatment of gastric cancers.
Collapse
|
11
|
Flockerzi FA, Hohneck J, Saar M, Bohle RM, Stahl PR. THSD7A Positivity Is Associated with High Expression of FAK in Prostate Cancer. Diagnostics (Basel) 2023; 13:diagnostics13020221. [PMID: 36673031 PMCID: PMC9857569 DOI: 10.3390/diagnostics13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Prostate cancer is one of the most common malignancies, and there are a wide range of treatment options after diagnosis. Most prostate cancers behave in an indolent manner. However, a given sub-group has been shown to exhibit aggressive behavior; therefore, it is desirable to find novel prognostic and predictive (molecular) markers. THSD7A expression is significantly associated with unfavorable prognostic parameters in prostate cancer. FAK is overexpressed in several tumor types and is believed to play a role in tumor progression and metastasis. Furthermore, there is evidence that THSD7A might affect FAK-dependent signaling pathways. To examine whether THSD7A expression has an impact on the expression level of FAK in its unphosphorylated form, a total of 461 prostate cancers were analyzed by immunohistochemistry using tissue microarrays. THSD7A positivity and low FAK expression were associated with adverse pathological features. THSD7A positivity was significantly associated with high FAK expression. To our knowledge we are the first to show that THSD7A positivity is associated with high FAK expression in prostate cancer. This might be proof of the actual involvement of THSD7A in FAK-dependent signaling pathways. This is of special importance because THSD7A might also serve as a putative therapeutic target in cancer therapy.
Collapse
Affiliation(s)
| | - Johannes Hohneck
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Matthias Saar
- Department of Urology, University Hospital, 52074 Aachen, Germany
| | - Rainer Maria Bohle
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Phillip Rolf Stahl
- Department of Pathology, Saarland University Medical Center, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
12
|
Kumar R, Tiwari V, Dey S. Role of proline-rich tyrosine kinase 2 (Pyk2) in the pathogenesis of Alzheimer's disease. Eur J Neurosci 2022; 56:5442-5452. [PMID: 34905657 DOI: 10.1111/ejn.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common form of dementia in the elderly. Two major pathological hallmarks have been identified for AD: extracellular amyloid plaques and intracellular neurofibrillary tangles (NFT). Recently, proline-rich tyrosine kinase 2 (Pyk2), which belongs to the focal adhesion kinase (FAK) non-receptor tyrosine kinase family, was recognized to contribute significantly towards the pathogenesis of AD. Pyk2 can influence the formation of amyloid plaques as well as NFTs. The kinase can directly phosphorylate tau, which is a significant component of NFTs and enhances tau pathology. Several competitive inhibitors have been developed for Pyk2, tested in several cancer models, as Pyk2 is known to be overexpressed under those conditions. The current review article discusses the possible mechanistic pathways by which Pyk2 can influence the pathogenesis of AD. Besides, it describes various inhibitors for Pyk2 and their potential role as therapeutics for AD in the future.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biotechnology, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Role of Cancer-Associated fibroblast in the pathogenesis of ovarian Cancer: Focus on the latest therapeutic approaches. Int Immunopharmacol 2022; 110:109052. [DOI: 10.1016/j.intimp.2022.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
|
14
|
Silva-Rodríguez P, Fernández-Díaz D, Bande M, Pardo M, Loidi L, Blanco-Teijeiro MJ. GNAQ and GNA11 Genes: A Comprehensive Review on Oncogenesis, Prognosis and Therapeutic Opportunities in Uveal Melanoma. Cancers (Basel) 2022; 14:3066. [PMID: 35804836 PMCID: PMC9264989 DOI: 10.3390/cancers14133066] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The GNAQ and GNA11 genes are mutated in almost 80-90% of uveal melanomas in a mutually exclusive pattern. These genes encode the alpha subunits of the heterotrimeric G proteins, Gq and G11; thus, mutations of these genes result in the activation of several important signaling pathways, including phospholipase C, and activation of the transcription factor YAP. It is well known that both of them act as driver genes in the oncogenic process and it has been assumed that they do not play a role in the prognosis of these tumours. However, it has been hypothesised that mutations in these genes could give rise to molecularly and clinically distinct types of uveal melanomas. It has also been questioned whether the type and location of mutation in the GNAQ and GNA11 genes may affect the progression of these tumours. All of these questions, except for their implications in carcinogenesis, remain controversial. Uveal melanoma has a distinctive genetic profile, and specific recurrent mutations, which make it a potential candidate for treatment with targeted therapy. Given that the most frequent mutations are those observed in the GNAQ and GNA11 genes, and that both genes are involved in oncogenesis, these molecules, as well as the downstream signalling pathways in which they are involved, have been proposed as promising potential therapeutic targets. Therefore, in this review, special attention is paid to the current data related to the possible prognostic implications of both genes from different perspectives, as well as the therapeutic options targeting them.
Collapse
Affiliation(s)
- Paula Silva-Rodríguez
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain;
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
| | - Daniel Fernández-Díaz
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
| | - Manuel Bande
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain
| | - María Pardo
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), CIBEROBN, ISCIII, 15706 Santiago de Compostela, Spain;
| | - Lourdes Loidi
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain;
| | - María José Blanco-Teijeiro
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (D.F.-D.); (M.B.); (M.J.B.-T.)
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Wen C, Wang C, Hu C, Qi T, Jing R, Wang Y, Zhang M, Shao Y, Pei C. REPS2 downregulation facilitates FGF-induced adhesion and migration in human lens epithelial cells through FAK/Cdc42 signaling and contributes to posterior capsule opacification. Cell Signal 2022; 97:110378. [PMID: 35690292 DOI: 10.1016/j.cellsig.2022.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Posterior capsular opacification (PCO) can cause postoperative visual loss after cataract surgery. Residual human lens epithelial cell (HLEC) proliferation, migration, epithelial-mesenchymal transition (EMT) and synthesis of extracellular matrix (ECM) are the entitative reasons for PCO. Low expression of Ral-binding protein 1-associated Eps domain-containing 2 (REPS2) and high levels of basic fibroblast growth factor (b-FGF) were observed in the lens and postoperative aqueous humor of cataract patients. REPS2 was identified as a negative regulator in growth factor signaling; however, its function in HLECs is unknown. This was first investigated in the present study by evaluating REPS2 expression in anterior lens capsules from cataract patients, a mouse cataract model, and HLE-b3 cells. The biological function of REPS2 in HLE-B3 cells was assessed by REPS2 silencing and Cell Counting Kit 8, wound healing, Transwell migration, F-actin staining, G-protein pulldown and western blot assays. In the present study, REPS2 was significantly downregulated in human and mouse cataract capsules and H2O2-treated HLE-B3 cells. REPS2 knockdown increased fibronectin, type I collagen, and α-smooth muscle actin expression levels and stimulated HLECs proliferation and migration; these effects were enhanced by FGF treatment and accompanied with focal adhesion kinase (FAK) phosphorylation, cell division cycle 42 (Cdc42) activation, focal adhesion protein upregulation, and F-actin cytoskeleton reorganization. However, treatment with the FAK inhibitor PF573228 abolished these effects. Thus, REPS2 downregulation in cataract HLECs induces their proliferation and facilitates FGF-induced ECM synthesis, EMT, cell adhesion and migration by activating FAK/Cdc42 signaling, which may underlie PCO pathogenesis.
Collapse
Affiliation(s)
- Chan Wen
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Chen Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Conghui Hu
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Tiantian Qi
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Ruihua Jing
- Department of Ophthalmology, second affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yunqing Wang
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Ming Zhang
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Cheng Pei
- Department of Ophthalmology, first affiliated hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China.
| |
Collapse
|
16
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
17
|
Design, synthesis and biological evaluation of 7-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)oxy)-2,3-dihydro-1H-inden-1-one derivatives as potent FAK inhibitors for the treatment of ovarian cancer. Eur J Med Chem 2022; 228:113978. [PMID: 34810020 DOI: 10.1016/j.ejmech.2021.113978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023]
Abstract
Focal adhesion kinase (FAK) promotes tumor progression by intracellular signal transduction and regulation of gene expression and protein turnover, which is a compelling therapeutic target for various cancer types, including ovarian cancer. However, the clinical responses of FAK inhibitors remain unsatisfactory. Here, we describe the discovery of FAK inhibitors using a scaffold hopping strategy. Structure-activity relationship (SAR) exploration identified 36 as a potent FAK inhibitor, which exhibited inhibitory activities against FAK signaling in vitro. Treatment with 36 not only decreased migration and invasion of PA-1 cells, but also reduced expression of MMP-2 and MMP-9. Moreover, 36 inhibited tumor growth and metastasis, and no obvious adverse effects were observed during the in vivo study. These results revealed the potential of FAK inhibitor 36 for treatment of ovarian cancer.
Collapse
|
18
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
19
|
Quispe PA, Lavecchia MJ, León IE. Focal adhesion kinase inhibitors in the treatment of solid tumors: Preclinical and clinical evidence. Drug Discov Today 2021; 27:664-674. [PMID: 34856395 DOI: 10.1016/j.drudis.2021.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Focal Adhesion Kinase (FAK) is a 125-kDa cytoplasmic protein kinase that is implicated in several cellular functions. This protein is an attractive molecular target for cancer therapy because a wide variety of studies have demonstrated associations between the activation or elevated expression of FAK and tumor progression, invasion, and drug resistance in malignant tumors. Here, we review the strategies used to inhibit FAK activity in solid tumors. We also include an overview of the preclinical (in vitro and in vivo) and clinical studies on FAK inhibitors.
Collapse
Affiliation(s)
- Patricia A Quispe
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Martin J Lavecchia
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
20
|
Wu Y, Li N, Ye C, Jiang X, Luo H, Zhang B, Zhang Y, Zhang Q. Focal adhesion kinase inhibitors, a heavy punch to cancer. Discov Oncol 2021; 12:52. [PMID: 35201485 PMCID: PMC8777493 DOI: 10.1007/s12672-021-00449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Kinases are the ideal druggable targets for diseases and especially were highlighted on cancer therapy. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and its aberrant signaling extensively implicates in the progression of most cancer types, involving in cancer cell growth, adhesion, migration, and tumor microenvironment (TME) remodeling. FAK is commonly overexpressed and activated in a variety of cancers and plays as a targetable kinase in cancer therapy. FAK inhibitors already exhibited promising performance in preclinical and early-stage clinical trials. Moreover, substantial evidence has implied that targeting FAK is more effective in combination strategy, thereby reversing the failure of chemotherapies or targeted therapies in solid tumors. In the current review, we summarized the drug development progress, chemotherapy strategy, and perspective view for FAK inhibitors.
Collapse
Affiliation(s)
- Yueling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ning Li
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
21
|
Li H, Gao Y, Ren C. Focal adhesion kinase inhibitor BI 853520 inhibits cell proliferation, migration and EMT process through PI3K/AKT/mTOR signaling pathway in ovarian cancer. Discov Oncol 2021; 12:29. [PMID: 35201437 PMCID: PMC8777525 DOI: 10.1007/s12672-021-00425-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/18/2021] [Indexed: 01/06/2023] Open
Abstract
Focal adhesion kinase (FAK) activation has been reported to be associated with cell progression and metastasis in a wide variety of cancer cells. Target treatment by inhibiting FAK has achieved remarkable effects in several cancers, but the effect in ovarian cancer has not been reported. In this study, we determined the role and the underlying molecular mechanism of BI853520, a novel small chemical FAK inhibitor against ovarian cancer. Results show that phosphorylated FAK tyrosine 397 (p-FAK Y397) is highly expressed in ovarian cancer tumor tissues and cell lines (SKOV3 and OVCAR3). BI853520 treatment greatly suppresses cell proliferation, viability, migration, invasion, decreases anchorage-independent growth and motility in vitro. Besides, treatment with BI853520 increases biologic effects following combination with chemotherapy in ovarian cancer cell lines. In addition, BI853520 suppresses EMT in ovarian cancer cell lines. Mechanically, BI853520 treatment downregulates the activation of PI3K/AKT/mTOR signal pathway. Finally, mice model experiments confirm BI853520 treatment dramatically reduces tumor growth in vivo and suppresses the activation of PI3K/AKT/mTOR signal pathway. Taken together, our findings demonstrate that focal adhesion kinase inhibitor BI853520 inhibits cell proliferation, migration, invasion and EMT process through PI3K/AKT/mTOR signaling pathway in ovarian cancer, and BI853520 can offer a preclinical rationale for targeting repression of FAK in ovarian cancer.
Collapse
Affiliation(s)
- Hong Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yizhi Gao
- Department of High School, Wuhan Maple Leaf International School, Wuhan, China
| | - Chenchen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
22
|
Cho H, Shin I, Yoon H, Jeon E, Lee J, Kim Y, Ryu S, Song C, Kwon NH, Moon Y, Kim S, Kim ND, Choi HG, Sim T. Identification of Thieno[3,2- d]pyrimidine Derivatives as Dual Inhibitors of Focal Adhesion Kinase and FMS-like Tyrosine Kinase 3. J Med Chem 2021; 64:11934-11957. [PMID: 34324343 DOI: 10.1021/acs.jmedchem.1c00459] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focal adhesion kinase (FAK) is overexpressed in highly invasive and metastatic cancers. To identify novel FAK inhibitors, we designed and synthesized various thieno[3,2-d]pyrimidine derivatives. An intensive structure-activity relationship (SAR) study led to the identification of 26 as a lead. Moreover, 26, a multitargeted kinase inhibitor, possesses excellent potencies against FLT3 mutants as well as FAK. Gratifyingly, 26 remarkably inhibits recalcitrant FLT3 mutants, including F691L, that cause drug resistance. Importantly, 26 is superior to PF-562271 in terms of apoptosis induction, anchorage-independent growth inhibition, and tumor burden reduction in the MDA-MB-231 xenograft mouse model. Also, 26 causes regression of tumor growth in the MV4-11 xenograft mouse model, indicating that it could be effective against acute myeloid leukemia (AML). Finally, in an orthotopic mouse model using MDA-MB-231, 26 remarkably prevents metastasis of orthotopic tumors to lymph nodes. Taken together, the results indicate that 26 possesses potential therapeutic value against highly invasive cancers and relapsed AML.
Collapse
Affiliation(s)
- Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Injae Shin
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hojong Yoon
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunhye Jeon
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwon Lee
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Younghoon Kim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - SeongShick Ryu
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Nam Hoon Kwon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Youngji Moon
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Nam Doo Kim
- Voronoibio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Hwan Geun Choi
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- B2Sbio Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Republic of Korea
| | - Taebo Sim
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, 5 Hwarangro14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
23
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
24
|
Zhu T, Yang Q, Shao J, Chen Z, Cai B, Mao G. Pyk2 level is a novel prognostic marker for patients with esophageal squamous cell carcinoma after radical surgery. Virchows Arch 2021; 479:905-917. [PMID: 34313839 DOI: 10.1007/s00428-021-03153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/09/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in East Asia. Surgical resection is currently the typical treatment. However, due to the highly invasive and metastatic characteristic of the disease, the mortality rate is still high. A search for potential prognostic biomarkers and therapeutic targets is very necessary. Here, we studied the expression of proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine protein kinase, in ESCC and its influence on prognosis. A total of 112 cases of ESCC and paired adjacent normal tissues (NT) were organized in tissue microarray (TMA) from the Nantong First People's Hospital. Our analysis of TMA revealed that Pyk2 levels were higher in ESCC than in paired adjacent NT by immunohistochemistry (p<0.001). Western blot and real-time quantitative PCR analysis (p=0.0359) also reached similar conclusions. To further explore the significance of Pyk2 in ESCC, another set of tissue microarrays was collected from the Affiliated Hospital of Nantong University, which includes 241 consecutive patients undergoing radical surgery for ESCC, to perform IHC scores. We demonstrated that the expression level of Pyk2 was positively correlated with N stage (node negative versus node positive, p=0.02) and clinical stage (I + II versus III + IV, p=0.042). Univariate and multivariate analyses suggested that high Pyk2 expression was an independent prognostic factor for overall survival with ESCC. Cell function studies found that Pyk2 promoted tumor proliferation and migration and reduced apoptosis. Pyk2 knockdown enhanced the sensitivity to cisplatin in ESCC cells. Western blot analysis confirmed that Pyk2 may promote tumor progression by activating the Akt signaling pathway.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Oncology, The First People's Hospital of Yancheng, Yancheng, China
| | - Qiuxing Yang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Zhuolin Chen
- Department of Pathology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Bo Cai
- Nantong Center for Disease Control and Prevention Institute of Chronic Noncommunicable Diseases Prevention and Control, Nantong, China.
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
25
|
Involvement of the FAK Network in Pathologies Related to Altered Mechanotransduction. Int J Mol Sci 2020; 21:ijms21249426. [PMID: 33322030 PMCID: PMC7764271 DOI: 10.3390/ijms21249426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Mechanotransduction is a physiological process in which external mechanical stimulations are perceived, interpreted, and translated by cells into biochemical signals. Mechanical stimulations exerted by extracellular matrix stiffness and cell–cell contacts are continuously applied to living cells, thus representing a key pivotal trigger for cell homeostasis, survival, and function, as well as an essential factor for proper organ development and metabolism. Indeed, a deregulation of the mechanotransduction process consequent to gene mutations or altered functions of proteins involved in perceiving cellular and extracellular mechanics can lead to a broad range of diseases, from muscular dystrophies and cardiomyopathies to cancer development and metastatization. Here, we recapitulate the involvement of focal adhesion kinase (FAK) in the cellular conditions deriving from altered mechanotransduction processes.
Collapse
|
26
|
Xie H, Lin X, Zhang Y, Tan F, Chi B, Peng Z, Dong W, An D. Design, synthesis and biological evaluation of ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors. Bioorg Med Chem Lett 2020; 30:127459. [PMID: 32784087 DOI: 10.1016/j.bmcl.2020.127459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022]
Abstract
We report herein the synthesis of novel ring-fused pyrazoloamino pyridine/pyrimidine derivatives as potential FAK inhibitors and the evaluation of pharmaceutical activity against five cancer cell lines (MDA-MB-231, BXPC-3, NCI-H1975, DU145 and 786O). Generally, the majority of compounds displayed strong anti-FAK enzymatic potencies (IC50 < 1 nM) and could effectively inhibit several class of cancer cell lines within the concentration of 3 μM in comparison with GSK2256098 as a reference. Among them, compound 4o is considered to be the most effective due to high sensitivity in antiproliferation. In culture, 4o could not only inhibit FAK Y397 phosphorylation in MDA-MB-231 cell line, but also trigger apoptosis in a dose-dependent manner. Furthermore, computational docking analysis also suggested that 4o and TAE-226 displayed the similar interaction with FAK kinase domain.
Collapse
Affiliation(s)
- Hongming Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xinglong Lin
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China.
| | - Fuxing Tan
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China
| | - Bo Chi
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co. Ltd, Dongguan 523871, PR China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Wanrong Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Delie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
27
|
Roy-Luzarraga M, Abdel-Fatah T, Reynolds LE, Clear A, Taylor JG, Gribben JG, Chan S, Jones L, Hodivala-Dilke K. Association of Low Tumor Endothelial Cell pY397-Focal Adhesion Kinase Expression With Survival in Patients With Neoadjuvant-Treated Locally Advanced Breast Cancer. JAMA Netw Open 2020; 3:e2019304. [PMID: 33107920 PMCID: PMC7592032 DOI: 10.1001/jamanetworkopen.2020.19304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Determining the risk of relapse after neoadjuvant chemotherapy in patients with locally advanced breast cancer is required to offer alternative therapeutic strategies. OBJECTIVE To examine whether endothelial cell phosphorylated-focal adhesion kinase (EC-pY397-FAK) expression in patients with treatment-naive locally advanced breast cancer is a biomarker for chemotherapy sensitivity and is associated with survival after neoadjuvant chemotherapy. DESIGN, SETTING, AND PARTICIPANTS In this prognostic study, expression levels of EC-pY397-FAK and tumor cell (TC)-pY397-FAK were determined by immunohistochemistry in prechemotherapy core biopsies from 82 female patients with locally advanced breast cancer treated with anthracycline-based combination neoadjuvant chemotherapy at Nottingham City Hospital in Nottingham, UK. Median follow-up time was 67 months. The study was conducted from December 1, 2010, to September 28, 2019, and data analysis was performed from October 2, 2019, to March 31, 2020. EXPOSURES All women underwent surgery followed by adjuvant radiotherapy and, if tumors were estrogen receptor-positive, 5-year tamoxifen treatment. MAIN OUTCOMES AND MEASURES Outcomes were pathologic complete response and 5-year relapse-free survival examined using Kaplan-Meier, univariable logistic, multivariable logistic, and Cox proportional hazards models. RESULTS A total of 82 women (age, 29-76 years) with locally advanced breast cancer (stage IIA-IIIC) were included. Of these, 21 women (26%) had high EC-pY397-FAK expression that was associated with estrogen receptor positivity (71% vs 46%; P = .04), progesterone receptor positivity (67% vs 39%; P = .03), high Ki67 (86% vs 41%; P < .001), 4-immunohistochemically stained luminal-B (52% vs 8%; P < .001), higher tumor category (T3/T4 category: 90% vs 59%; P = .01), high lymph node category (N2-3 category: 43% vs 5%; P < .001), and high tumor node metastasis stage (IIIA-IIIC: 90% vs 66%; P = .03). Of 21 patients with high EC-pY397-FAK expression levels, none showed pathologic complete response, compared with 11 of 61 patients with low EC-pY397-FAK expression levels who showed pathologic complete response (odds ratio, 0.70; 95% CI, 0.61-0.82; P = .04). High EC-pY397-FAK expression levels and high blood vessel density (BVD) were associated with shorter 5-year relapse-free survival compared with those with low EC-pY397-FAK expression levels (hazard ratio [HR], 2.21; 95% CI, 1.17-4.20; P = .01) and low BVD (HR, 2.2; 95% CI, 1.15-4.35; P = .02). High TC-pY397-FAK expression levels in 15 of 82 women (18%) were not associated significantly with pathologic complete response or 5-year relapse-free survival. A multivariable Cox regression model for 5-year relapse-free survival indicated that high EC-pY397-FAK expression levels was an independent poor prognostic factor after controlling for other validated prognostic factors (HR, 3.91; 95% CI, 1.42-10.74; P = .01). Combined analysis of EC-pY397-FAK expression levels, TC-pY397-FAK expression levels, and BVD improved prognostic significance over individually tested features. CONCLUSIONS AND RELEVANCE The findings of this study suggest that low EC-pY397-FAK expression levels are associated with chemotherapy sensitivity and improved 5-year relapse-free survival after systemic therapy. Combined analysis of high EC-pY397-FAK expression levels, high TC-pY397-FAK expression levels, and high BVD appeared to identify a high-risk population.
Collapse
Affiliation(s)
- Marina Roy-Luzarraga
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Tarek Abdel-Fatah
- Department of Clinical Oncology, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
- Pathology Department, National Liver Institute, Minoufyia University, Al Minufiyah, Egypt
| | - Louise E. Reynolds
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Joseph G. Taylor
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - John G. Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Stephen Chan
- Department of Clinical Oncology, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom
| |
Collapse
|
28
|
Gong H, Nie D, Li Z. Targeting Six Hallmarks of Cancer in Ovarian Cancer Therapy. Curr Cancer Drug Targets 2020; 20:853-867. [PMID: 32807056 DOI: 10.2174/1568009620999200816130218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Normal cells must overcome multiple protective mechanisms to develop into cancer cells. Their new capabilities include self-sufficiency in growth signals and insensitivity to antigrowth signals, evasion of apoptosis, a limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis; these are also termed the six hallmarks of cancer. A deep understanding of the genetic and protein alterations involved in these processes has enabled the development of targeted therapeutic strategies and clinical trial design in the search for ovarian cancer treatments. Clinically, significantly longer progression-free survival has been observed in the single use of PARP, MEK, VEGF and Chk1/Chk2 inhibitors. However, the clinical efficacy of the targeted agents is still restricted to specific molecular subtypes and no trials illustrate a benefit in overall survival. Exploring novel drug targets or combining current feasible biological agents hold great promise to further improve outcomes in ovarian cancer. In this review, we intend to provide a comprehensive description of the molecular alterations involved in ovarian cancer carcinogenesis and of emerging biological agents and combined strategies that target aberrant pathways, which might shed light on future ovarian cancer treatment.
Collapse
Affiliation(s)
- Han Gong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Nie
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
29
|
Kandil SB, Jones SR, Smith S, Hiscox SE, Westwell AD. Structure-Based Virtual Screening, Synthesis and Biological Evaluation of Potential FAK-FAT Domain Inhibitors for Treatment of Metastatic Cancer. Molecules 2020; 25:molecules25153488. [PMID: 32751931 PMCID: PMC7435868 DOI: 10.3390/molecules25153488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Focal adhesion kinase (FAK) is a tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. In cancer cells, FAK promotes the progression and metastasis of tumours. In this study, we used structure-based virtual screening to filter a library of more than 210K compounds against the focal adhesion targeting FAK-focal adhesion targeting (FAT) domain to identify 25 virtual hit compounds which were screened in the invasive breast cancer line (MDA-MB-231). Most notably, compound I showed low micromolar antiproliferative activity, as well as antimigratory activity. Moreover, examination in a model of triple negative breast cancer (TNBC), revealed that, despite not effecting FAK phosphorylation, compound I significantly impairs proliferation whilst impairing focal adhesion growth and turnover leading to reduced migration. Further optimisation and synthesis of analogues of the lead compound I using a four-step synthetic procedure was performed, and analogues were assessed for their antiproliferative activity against three breast cancer (MDA-MB-231, T47D, BT474) cell lines and one pancreatic cancer (MIAPaCa2) cell line. Compound 5f was identified as a promising lead compound with IC50 values in the range of 4.59–5.28 μM in MDA-MB-231, T47D, BT474, and MIAPaCa2. Molecular modelling and pharmacokinetic studies provided more insight into the therapeutic features of this new series.
Collapse
|
30
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
31
|
Levy A, Alhazzani K, Dondapati P, Alaseem A, Cheema K, Thallapureddy K, Kaur P, Alobid S, Rathinavelu A. Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors. Curr Cancer Drug Targets 2020; 19:179-188. [PMID: 29984656 DOI: 10.2174/1568009618666180706165222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.
Collapse
Affiliation(s)
- Arkene Levy
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khalid Alhazzani
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Priya Dondapati
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ali Alaseem
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khadijah Cheema
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Keerthi Thallapureddy
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Paramjot Kaur
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Saad Alobid
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Appu Rathinavelu
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
32
|
Mennie KM, Vara BA, Levi SM. Reductive sp 3-sp 2 Coupling Reactions Enable Late-Stage Modification of Pharmaceuticals. Org Lett 2020; 22:556-559. [PMID: 31909629 DOI: 10.1021/acs.orglett.9b04320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Late-stage derivatization of pharmaceutically relevant scaffolds relies on the availability of highly functional-group tolerant reactions. Reactions that increase the sp3 character of molecules enable the pursuit of more selective and well-tolerated pharmaceuticals. Herein, we report the use of sp3-sp2 cross-electrophile reductive couplings to modify a generic ATP-competitive kinase inhibitor with a broad range of primary and secondary alkyl halide coupling partners.
Collapse
Affiliation(s)
- Katrina M Mennie
- Department of Discovery Chemistry , Merck & Co. Inc. , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Brandon A Vara
- Department of Discovery Chemistry , Merck & Co. Inc. , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Samuel M Levi
- Department of Discovery Chemistry , Merck & Co. Inc. , 33 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| |
Collapse
|
33
|
Moritake H, Saito Y, Sawa D, Sameshima N, Yamada A, Kinoshita M, Kamimura S, Konomoto T, Nunoi H. TAE226, a dual inhibitor of focal adhesion kinase and insulin-like growth factor-I receptor, is effective for Ewing sarcoma. Cancer Med 2019; 8:7809-7821. [PMID: 31692287 PMCID: PMC6912025 DOI: 10.1002/cam4.2647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
The outcomes for relapsed and metastatic Ewing sarcoma (EWS) is extremely poor. Therefore, it is important to identify the tumor‐specific targets in these intractable diseases. High focal adhesion kinase (FAK) transcript expression levels in EWS cell lines are known. TAE226 is a dual inhibitor of FAK and insulin‐like growth factor‐I receptor (IGF‐IR), while PF‐562,271 is a dual inhibitor of FAK and proline‐rich tyrosine kinase 2. We compared the cytotoxicity of TAE226 and PF‐562,271 toward three EWS cell lines. TAE226 strongly inhibited proliferation of three cell lines when compared with PF‐562,271. Furthermore, we investigated the efficacy of TAE226 as well as its mechanism of action against EWS. A stable EWS cell line with FAK and IGF‐IR knocked down was established, and microarray analysis revealed dysregulated expression in various pathways. TAE226 treatment of EWS cell lines induced cell cycle arrest, apoptosis, AKT dephosphorylation, and inhibition of invasion. We demonstrated that TAE226 drastically inhibits the local growth of primary tumors and metastasis in EWS using mouse models. Furthermore, the combination of TAE226 and conventional chemotherapy proved to exert synergistic effects. TAE226 may be a candidate single agent or combined therapy drug to be developed for patients who have relapse and metastatic EWS tumors in future.
Collapse
Affiliation(s)
- Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Daisuke Sawa
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoki Sameshima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mariko Kinoshita
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachiyo Kamimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takao Konomoto
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
34
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
35
|
In Silico Screening of Circulating MicroRNAs as Potential Biomarkers for the Diagnosis of Ovarian Cancer. DISEASE MARKERS 2019; 2019:7541857. [PMID: 31467618 PMCID: PMC6701281 DOI: 10.1155/2019/7541857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022]
Abstract
Current screening tests for the diagnosis of ovarian cancer (OC) face enduring challenges. However, microRNAs (miRNAs) are stable in the circulation and may be promising molecular biomarkers for OC prediction. Circulating miRNA expression profiles in OC were analyzed using sequencing data from the Gene Expression Omnibus database. Differentially expressed miRNAs were generated from GSE94533, of which some were selected as candidate miRNAs based on an electronic search of the literature and comprehensive evaluation. A meta-analysis was preformed to integrate an evaluation index for these miRNAs in diagnosing OC patients. An independent validation set (GSE106817) was also conducted to further confirm the roles of these miRNAs. We identified four MIR200 members (MIR200A, MIR200B, MIR200C, and MIR429) and MIR25 as being differentially expressed among malignant or benign ovarian tumor patients and healthy controls. In the meta-analysis, these five miRNAs yielded a pooled area under the receiver operating characteristic (ROC) curve (AUC) of 0.78 (sensitivity: 64%, specificity: 88%) in discriminating OC from healthy controls, while the four MIR200 members demonstrated a summary AUC of 0.81 (sensitivity: 92%, specificity: 69%) in differing OC cases from patients with benign disease. In the validation set, differential expression and ROC curve analyses of these miRNAs were consistent except for MIR25. The circulating MIR200 family has the potential to become reliable and noninvasive biomarkers for OC diagnosis. Studies with larger cohorts are warranted to validate the applicability of these miRNAs.
Collapse
|
36
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
37
|
Fukami S, Tomioka D, Murakami Y, Honda T, Hatakeyama S. Pharmacological profiling of a dual FAK/IGF-1R kinase inhibitor TAE226 in cellular and in vivo tumor models. BMC Res Notes 2019; 12:347. [PMID: 31215459 PMCID: PMC6582604 DOI: 10.1186/s13104-019-4389-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 01/31/2023] Open
Abstract
Objective A dual inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor 1 receptor (IGF-1R), TAE226, was evaluated in a panel of cancer cell lines, MIA PaCa-2 human pancreatic tumor and 4T1 murine breast tumor models. The profiling data were generated during the drug discovery research prior to the first publication of TAE226 appeared in 2007 (Liu et al. in Mol Cancer Ther 6:1357–1367, 2007; Shi et al. in Mol Carcinog 46(6):488–496, 2007; Halder et al. in Cancer Res 67(22):10976–10983, 2007). Results In a panel of 37 cancer cell lines, TAE226 showed a mean GI50 value of 0.76 μmol/L. In the MIA PaCa-2 model, TAE226 inhibited phosphorylation of Y397-FAK and phosphorylation of S473-Akt as IGF-1R signaling in the cell culture in vitro and the tumor in mice. Oral administration of TAE226 induced tumor stasis at 30 mg/kg and tumor regression at 100 mg/kg in the subcutaneous tumor, and inhibited the orthotopic tumor growth in a dose-dependent manner. Similarly in the 4T1 model, TAE226 inhibited phosphorylation of Y397-FAK and S473-Akt in the cell culture in vitro and the tumor in mice. Oral administration of TAE226 inhibited the orthotopic tumor growth and metastasis to the lung in a dose-dependent manner. Thus, TAE226 represents a novel class of selective and small molecule kinase inhibitor with a potent in vivo activity. Electronic supplementary material The online version of this article (10.1186/s13104-019-4389-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shigemi Fukami
- Novartis Institutes for BioMedical Research, Novartis Pharma K.K, Tsukuba, Ibaraki, Japan
| | - Daisaku Tomioka
- Novartis Institutes for BioMedical Research, Novartis Pharma K.K, Tsukuba, Ibaraki, Japan
| | - Yutaka Murakami
- Novartis Institutes for BioMedical Research, Novartis Pharma K.K, Tsukuba, Ibaraki, Japan
| | - Toshiyuki Honda
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| | - Shinji Hatakeyama
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
38
|
Siu MKY, Jiang YX, Wang JJ, Leung THY, Han CY, Tsang BK, Cheung ANY, Ngan HYS, Chan KKL. Hexokinase 2 Regulates Ovarian Cancer Cell Migration, Invasion and Stemness via FAK/ERK1/2/MMP9/NANOG/SOX9 Signaling Cascades. Cancers (Basel) 2019; 11:813. [PMID: 31212816 PMCID: PMC6627345 DOI: 10.3390/cancers11060813] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023] Open
Abstract
Metabolic reprogramming is a common phenomenon in cancers. Thus, glycolytic enzymes could be exploited to selectively target cancer cells in cancer therapy. Hexokinase 2 (HK2) converts glucose to glucose-6-phosphate, the first committed step in glucose metabolism. Here, we demonstrated that HK2 was overexpressed in ovarian cancer and displayed significantly higher expression in ascites and metastatic foci. HK2 expression was significantly associated with advanced stage and high-grade cancers, and was an independent prognostic factor. Functionally, knockdown of HK2 in ovarian cancer cell lines and ascites-derived tumor cells hindered lactate production, cell migration and invasion, and cell stemness properties, along with reduced FAK/ERK1/2 activation and metastasis- and stemness-related genes. 2-DG, a glycolysis inhibitor, retarded cell migration and invasion and reduced stemness properties. Inversely, overexpression of HK2 promoted cell migration and invasion through the FAK/ERK1/2/MMP9 pathway, and enhanced stemness properties via the FAK/ERK1/2/NANOG/SOX9 cascade. HK2 abrogation impeded in vivo tumor growth and dissemination. Notably, ovarian cancer-associated fibroblast-derived IL-6 contributed to its up-regulation. In conclusion, HK2, which is regulated by the tumor microenvironment, controls lactate production and contributes to ovarian cancer metastasis and stemness regulation via FAK/ERK1/2 signaling pathway-mediated MMP9/NANOG/SOX9 expression. HK2 could be a potential prognostic marker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Michelle K Y Siu
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Yu-Xin Jiang
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Jing-Jing Wang
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Thomas H Y Leung
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Benjamin K Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China.
| | - Annie N Y Cheung
- Department of Pathology, University of Hong Kong, Hong Kong, China.
| | - Hextan Y S Ngan
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| | - Karen K L Chan
- Department of Obstetrics and Gynecology, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
39
|
Su Y, Li R, Ning X, Lin Z, Zhao X, Zhou J, Liu J, Jin Y, Yin Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing dithiocarbamate moiety as novel FAK inhibitors with antitumor and anti-angiogenesis activities. Eur J Med Chem 2019; 177:32-46. [PMID: 31129452 DOI: 10.1016/j.ejmech.2019.05.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022]
Abstract
A series of 2,4-diarylaminopyrimidine derivatives containing dithiocarbamate moiety were designed by molecular hybridization strategy and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most of these compounds exhibit significant antiproliferative activities on human cancer cell lines expressing high levels of FAK at nanomolar concentrations. The compound 14z was identified as the most potent FAK inhibitor among these candidates. 14z has excellent anti-proliferative effect with IC50 values from 0.001 μM to 0.06 μM on HCT116, PC-3, U87-MG and MCF-7 cell lines and relatively less cytotoxicity to a nonmalignant cell line MCF-10A compared with MCF-7 cells (SI value > 10). 14z also exhibits significant FAK inhibitory activity (IC50 = 0.07 nM). In addition, compound 14z causes cell cycle arrest at G2/M and prompted apoptosis in both HCT116 and MCF-7 cells in a dose-dependent manner. Further studies show that compound 14z inhibits migration of MCF-7 and has anti-angiogenesis effect on HUVEC cells.
Collapse
Affiliation(s)
- Yue Su
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Ridong Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xianling Ning
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Juntuo Zhou
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Jia Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yan Jin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, 100191, PR China; Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| |
Collapse
|
40
|
Sharma J, Larkin J. Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front Pharmacol 2019; 10:324. [PMID: 31105556 PMCID: PMC6499178 DOI: 10.3389/fphar.2019.00324] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
The suppressor of cytokine signaling (SOCS) family of intracellular proteins has a vital role in the regulation of the immune system and resolution of inflammatory cascades. SOCS1, also called STAT-induced STAT inhibitor (SSI) or JAK-binding protein (JAB), is a member of the SOCS family with actions ranging from immune modulation to cell cycle regulation. Knockout of SOCS1 leads to perinatal lethality in mice and increased vulnerability to cancer, while several SNPs associated with the SOCS1 gene have been implicated in human inflammation-mediated diseases. In this review, we describe the mechanism of action of SOCS1 and its potential therapeutic role in the prevention and treatment of autoimmunity and cancer. We also provide a brief outline of the other JAK inhibitors, both FDA-approved and under investigation.
Collapse
Affiliation(s)
- Jatin Sharma
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Larkin
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
41
|
SOCS1 gene therapy has antitumor effects in imatinib-resistant gastrointestinal stromal tumor cells through FAK/PI3 K signaling. Gastric Cancer 2018; 21:968-976. [PMID: 29623544 DOI: 10.1007/s10120-018-0822-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/28/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Most of the gastrointestinal stromal tumors (GIST) have mutations in the KIT gene, encoding a receptor tyrosine kinase. Imatinib, a receptor tyrosine kinase inhibitor, is the first-line therapy for unresectable and metastatic GISTs. Despite the revolutionary effects of imatinib, some patients are primarily resistant to imatinib and many become resistant because of acquisition of secondary mutations in KIT. This study investigated the antitumor effects of SOCS1 gene therapy, which targets several signaling pathways. METHODS We used GIST-T1 (imatinib-sensitive) and GIST-R8 (imatinib-resistant) cells. We infected both cell lines with an adenovirus expressing SOCS1 (AdSOCS1) and examined antitumor effect and mechanisms of its agent. RESULTS The latter harboured with secondary KIT mutation and had imatinib resistance > 1000-fold higher than the former cells. We demonstrated that AdSOCS1 significantly decreased the proliferation and induced apoptosis in both cell lines. Moreover, SOCS1 overexpression inhibited the phosphorylation of signal transducer and activator of transcription 3 (STAT3), AKT, and focal adhesion kinase (FAK) in both of them. Inhibition of JAK signaling did not affect the proliferation enough. However, inhibition of the FAK signaling with an FAK inhibitor or RNA interference significantly showed inhibitory effect on cell growth and suppressed the phosphorylation of AKT, indicating a cross-talk between the AKT and FAK pathways in both the imatinib-sensitive and imatinib-resistant GIST cells. CONCLUSIONS Our results indicate that the activation of FAK signaling is critical for proliferation of both imatinib-sensitive and -resistant GIST cells and the interference with FAK/AKT pathway might be beneficial for therapeutic target.
Collapse
|
42
|
The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. Oncogenesis 2018; 7:73. [PMID: 30237500 PMCID: PMC6148276 DOI: 10.1038/s41389-018-0083-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates a plethora of downstream signaling pathways essential for cell migration, proliferation and death, processes that are exploited by cancer cells during malignant progression. These well-established tumorigenic activities, together with its high expression and activity in different cancer types, highlight FAK as an attractive target for cancer therapy. We have assessed and characterized the therapeutic potential and the biological effects of BI 853520, a novel small chemical inhibitor of FAK, in several preclinical mouse models of breast cancer. Treatment with BI 853520 elicits a significant reduction in primary tumor growth caused by an anti-proliferative activity by BI 853520. In contrast, BI 853520 exerts effects with varying degrees of robustness on the different stages of the metastatic cascade. Together, the data demonstrate that the repression of FAK activity by the specific FAK inhibitor BI 853520 offers a promising anti-proliferative approach for cancer therapy.
Collapse
|
43
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
44
|
Yen-Pon E, Li B, Acebrón-Garcia-de-Eulate M, Tomkiewicz-Raulet C, Dawson J, Lietha D, Frame MC, Coumoul X, Garbay C, Etheve-Quelquejeu M, Chen H. Structure-Based Design, Synthesis, and Characterization of the First Irreversible Inhibitor of Focal Adhesion Kinase. ACS Chem Biol 2018; 13:2067-2073. [PMID: 29897729 DOI: 10.1021/acschembio.8b00250] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Focal Adhesion Kinase signaling pathway and its functions have been involved in the development and aggressiveness of tumor malignancy, it then presents a promising cancer therapeutic target. Several reversible FAK inhibitors have been developed and are being conducted in clinical trials. On the other hand, irreversible covalent inhibitors would bring many desirable pharmacological features including high potency and increased duration of action. Herein we report the structure-guided development of the first highly potent and irreversible inhibitor of the FAK kinase. This inhibitor showed a very potent decrease of autophosphorylation of FAK in squamous cell carcinoma. A cocrystal structure of the FAK kinase domain in complex with this compound revealed the inhibitor binding mode within the ATP binding site and confirmed the covalent linkage between the targeted Cys427 of the protein and the inhibitor.
Collapse
Affiliation(s)
- Expédite Yen-Pon
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Bo Li
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Marta Acebrón-Garcia-de-Eulate
- Cell Signalling and Adhesion Group, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Céline Tomkiewicz-Raulet
- Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM, UMR S 1124, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - John Dawson
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Daniel Lietha
- Cell Signalling and Adhesion Group, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Margaret C. Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Xavier Coumoul
- Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM, UMR S 1124, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Christiane Garbay
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Mélanie Etheve-Quelquejeu
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Huixiong Chen
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Descartes, PRES Sorbonne Paris Cité, UFR Biomédicale, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
45
|
Correction: Therapeutic Efficacy of a Novel Focal Adhesion Kinase Inhibitor TAE226 in Ovarian Carcinoma. Cancer Res 2018; 78:4100. [DOI: 10.1158/0008-5472.can-18-1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Abstract
Interleukin 32 (IL-32) is a proinflammatory cytokine involved in the development of several diseases, including cancer. IL-32 is a rather peculiar cytokine because its protein structure does not show resemblance with any of the known cytokines, and an IL-32 receptor to facilitate extracellular signaling has not yet been identified. Thus far, 9 isoforms of IL-32 have been described, all of which show differences in terms of effects and in potency to elicit a specific effect. Since the first report of IL-32 in 2005, there is increasing evidence that IL-32 plays an important role in the pathophysiology of both hematologic malignancies and solid tumors. Some IL-32 isoforms have been linked to disease outcome and were shown to positively influence tumor development and progression in various different malignancies, including gastric, breast and lung cancers. However, there are other reports suggesting a tumor suppressive role for some of IL-32 as well. For example, IL-32γ and IL-32β expression is associated with increased cancer cell death in colon cancer and melanoma, whereas expression of these isoforms is associated with increased invasion and migration in breast cancer cells. Furthermore, IL-32 isoforms α, β and γ also play an important role in regulating the anti-tumor immune response, thus also influencing tumor progression. In this review, we provide an overview of the role of IL-32 and its different isoforms in carcinogenesis, invasion and metastasis, angiogenesis and regulation of the anti-tumor immune response.
Collapse
|
47
|
Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018; 10:cancers10050139. [PMID: 29738483 PMCID: PMC5977112 DOI: 10.3390/cancers10050139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
Focal adhesion kinase (FAK) and its homologous FAK-related proline-rich tyrosine kinase 2 (Pyk2) contain the same domain, exhibit high sequence homology and are defined as a distinct family of non-receptor tyrosine kinases. This group of kinases plays critical roles in cytoskeletal dynamics and cell adhesion by regulating survival and growth signaling. This review summarizes the physiological and pathological functions of Pyk2 in inflammation and cancers. In particular, overexpression of Pyk2 in cancerous tissues is correlated with poor outcomes. Pyk2 stimulates multiple oncogenic signaling pathways, such as Wnt/β-catenin, PI3K/Akt, MAPK/ERK, and TGF-β/EGFR/VEGF, and facilitates carcinogenesis, migration, invasion, epithelial⁻mesenchymal transition and metastasis. Therefore, Pyk2 is a high-value therapeutic target and has clinical significance.
Collapse
|
48
|
Jiang S, Liu X, Li D, Yan M, Ju C, Sun J, Jiang F. Study on Attenuating Angiogenesis and Epithelial-Mesenchymal Transition (EMT) of Non-Small Cell Lung Carcinoma (NSCLC) by Regulating MAGEC2. Technol Cancer Res Treat 2018; 17:1533033818797587. [PMID: 30198403 PMCID: PMC6131299 DOI: 10.1177/1533033818797587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the role of MAGE family member C2 in angiogenesis and epithelial-mesenchymal transition of non-small cell lung carcinoma. METHODS The Cancer Genome Atlas data set was analyzed to filter the highly expressed gene melanoma antigen family C2 in non-small cell lung carcinoma. Quantitative reverse transcription-polymerase chain reaction was performed to verify the overexpression of melanoma antigen family C2 in non-small cell lung carcinoma cell lines. Melanoma antigen family C2 complementary DNA and short hairpin RNA (shRNA) were transfected into SK-MES-1 cells to regulate melanoma antigen family C2 expression. Cell Counting Kit-8 assay, flow cytometry, wound healing assay, and Transwell assay were performed to investigate the effect of melanoma antigen family C2 on proliferation, apoptosis, migration, and invasion of SK-MES-1 cell line. Western blot was used to detect the expression of epithelial-mesenchymal transition markers. Enzyme-linked immunosorbent assay was performed to investigate the secretion of vascular endothelial growth factor, and tube formation assay was conducted to explore the effect of melanoma antigen family C2 on angiogenesis ability of the tumor. Tumor xenograft on nude mice and immunohistochemical/hematoxylin and eosin staining were also performed to detect the influence of melanoma antigen family C2 on growth and metastasis of non-small cell lung carcinoma cells. RESULTS Melanoma antigen family C2 was highly expressed in non-small cell lung carcinoma cells; melanoma antigen family C2 promoted the expression of epithelial-mesenchymal transition-related proteins as well as enhance the secretion of vascular endothelial growth factor and promote angiogenesis; melanoma antigen family C2 promoted proliferation, migration, and invasion and suppressed apoptosis of non-small cell lung carcinoma cells. It could also facilitate growth and metastasis of non-small cell lung carcinoma in vivo. CONCLUSION Melanoma antigen family C2 was a critical factor of angiogenesis and epithelial-mesenchymal transition in non-small cell lung carcinoma.
Collapse
Affiliation(s)
- Sicong Jiang
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Xi Liu
- Department of Thoracic Surgery, Jiangxi Province Tumor Hospital, Nanchang, Jiangxi, China
| | - Daojing Li
- Department of Oncology, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Meiying Yan
- Department of Oncology, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Ju
- Department of Thoracic Surgery, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Sun
- Department of Thoracic Surgery, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangxi Province Tumor Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
49
|
FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget 2017; 7:31586-601. [PMID: 26980710 PMCID: PMC5058780 DOI: 10.18632/oncotarget.8040] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part due to late diagnosis and a lack of effective screening tests. In spite of recent progress in imaging, surgery and new therapeutic options for pancreatic cancer, the overall five-year survival still remains unacceptably low. Numerous studies have shown that focal adhesion kinase (FAK) is activated in many cancers including PDAC and promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein that plays a key role in cytoskeletal organization, connects integrins to FAK and plays a key role in assembly and disassembly of focal adhesions. Here, we have reviewed evidence in support of FAK as a potential therapeutic target and summarized related combinatorial therapies.
Collapse
|
50
|
Jung SY, Kho S, Song KH, Ahn J, Park IC, Nam KY, Hwang SG, Nam SY, Cho SJ, Song JY. Novel focal adhesion kinase 1 inhibitor sensitizes lung cancer cells to radiation in a p53-independent manner. Int J Oncol 2017; 51:1583-1589. [DOI: 10.3892/ijo.2017.4141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/25/2017] [Indexed: 11/06/2022] Open
|