1
|
He W, Cui K, Farooq MA, Huang N, Zhu S, Jiang D, Zhang X, Chen J, Liu Y, Xu G. TCR-T cell therapy for solid tumors: challenges and emerging solutions. Front Pharmacol 2025; 16:1493346. [PMID: 40129944 PMCID: PMC11931055 DOI: 10.3389/fphar.2025.1493346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
With the use of T cell receptor T cells (TCR-T cells) and chimeric antigen receptor T cells (CAR-T cells), T-cell immunotherapy for cancer has advanced significantly in recent years. CAR-T cell therapy has demonstrated extraordinary success when used to treat hematologic malignancies. Nevertheless, there are several barriers that prevent this achievement from being applied to solid tumors, such as challenges with tumor targeting and inadequate transit and adaption of genetically modified T-cells, especially in unfavorable tumor microenvironments The deficiencies of CAR-T cell therapy in the treatment of solid tumors are compensated for by TCR-T cells, which have a stronger homing ability to initiate intracellular commands, 90% of the proteins can be used as developmental targets, and they can recognize target antigens more broadly. As a result, TCR-T cells may be more effective in treating solid tumors. In this review, we discussed the structure of TCR-T and have outlined the drawbacks of TCR-T in cancer therapy, and suggested potential remedies. This review is crucial in understanding the current state and future potential of TCR-T cell therapy. We emphasize how important it is to use combinatorial approaches, combining new combinations of various emerging strategies with over-the-counter therapies designed for TCR-T, to increase the anti-tumor efficacy of TCR-T inside the TME and maximize treatment safety, especially when it comes to solid tumor immunotherapies.
Collapse
Affiliation(s)
- Wanjun He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Kai Cui
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Muhammad Asad Farooq
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Na Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Songshan Zhu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiqian Zhang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Jian Chen
- Yinchuan Guolong Orthopedic Hospital, Yinchuan, China
| | - Yinxia Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Hori K, Yamada S, Murata K, Miyata H, Mizue Y, Murai A, Minowa T, Sasaki K, Shijubou N, Kubo T, Morita R, Tokita S, Kanaseki T, Tsukahara T, Abe T, Shinohara N, Hirohashi Y, Torigoe T. Establishment of potent TCR-T cells specific for cisplatin-resistance related tumor-associated antigen, CLSPN using codon-optimization. Hum Vaccin Immunother 2024; 20:2414542. [PMID: 39539024 PMCID: PMC11572277 DOI: 10.1080/21645515.2024.2414542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Adoptive T cell therapy, using T cell receptor-engineered T (TCR-T) cells and chimeric antigen receptor T (CAR-T) cells, is a potent immunotherapy option. Bladder cancer is a prevalent urological malignancy, particularly in cases of muscle invasion and metastasis, for which systemic therapy is crucial. Immunotherapy utilizing immune checkpoint blockade has been approved for bladder cancer treatment. The antitumor effect of an immune checkpoint blockade based on cytotoxic T cells (CTLs) and the patient's immune status is essential. The chemotherapeutic drug cisplatin (CDDP) is a key drug in bladder cancer treatment. However, it has been shown to suppress T cells, making combination therapy with CDDP and immunotherapy difficult. To address this, we developed TCR-T cells specific for bladder cancer cells. In previous studies, we found that the tumor-associated antigen CLSPN is overexpressed in CDDP-resistant bladder cancer cells and that the antigenic peptide HLA-A*02:01/CLSPN1254-1262, encoded by CLSPN, could be targeted by a CTL clone. The TCR was cloned from the HLA-A*02:01/CLSPN1254-1262 specific CTL clone yc3. We also designed a codon-optimized TCR sequence using GeneArt® GeneOptimizer® (Opt TCR) and compared the TCR-T cells using the original TCR sequence (Ori TCR-T cells) and the codon-optimized TCR sequence (Opt TCR-T cells). Opt TCR-T cells exhibited higher TCR transduction efficiency, higher TCR expression levels, higher avidity, and greater cytotoxicity than did Ori TCR-T cells. These results suggest that HLA-A*02:01/CLSPN1254-1262 specific Opt TCR-T cells are promising candidates for CDDP combination therapy.
Collapse
MESH Headings
- Humans
- Cisplatin/pharmacology
- Urinary Bladder Neoplasms/immunology
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/therapy
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Drug Resistance, Neoplasm/immunology
- Cell Line, Tumor
- T-Lymphocytes, Cytotoxic/immunology
- Codon
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Kanta Hori
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Renal and Genitourinary surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shuhei Yamada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Renal and Genitourinary surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Haruka Miyata
- Department of Renal and Genitourinary surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yuka Mizue
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoyuki Minowa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenta Sasaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Shijubou
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashige Abe
- Department of Renal and Genitourinary surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
3
|
Norollahi SE, Yousefi B, Nejatifar F, Yousefzadeh-Chabok S, Rashidy-Pour A, Samadani AA. Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy. J Egypt Natl Canc Inst 2024; 36:33. [PMID: 39465481 DOI: 10.1186/s43046-024-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center and, Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Shahrokh Yousefzadeh-Chabok
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
- , Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
4
|
Ramamurthy A, Tommasi A, Saha K. Advances in manufacturing chimeric antigen receptor immune cell therapies. Semin Immunopathol 2024; 46:12. [PMID: 39150566 PMCID: PMC12054169 DOI: 10.1007/s00281-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.
Collapse
Affiliation(s)
- Apoorva Ramamurthy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
5
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
7
|
Kawai A, Ishihara M, Nakamura T, Kitano S, Iwata S, Takada K, Emori M, Kato K, Endo M, Matsumoto Y, Kakunaga S, Sato E, Miyahara Y, Morino K, Tanaka S, Takahashi S, Matsuo F, Matsumine A, Kageyama S, Ueda T. Safety and Efficacy of NY-ESO-1 Antigen-Specific T-Cell Receptor Gene-Transduced T Lymphocytes in Patients with Synovial Sarcoma: A Phase I/II Clinical Trial. Clin Cancer Res 2023; 29:5069-5078. [PMID: 37792433 PMCID: PMC10722137 DOI: 10.1158/1078-0432.ccr-23-1456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE To determine, for patients with advanced or recurrent synovial sarcoma (SS) not suitable for surgical resection and resistant to anthracycline, the safety and efficacy of the infusion of autologous T lymphocytes expressing NY-ESO-1 antigen-specific T-cell receptor (TCR) gene and siRNA to inhibit the expression of endogenous TCR (product code: TBI-1301). PATIENTS AND METHODS Eligible Japanese patients (HLA-A*02:01 or *02:06, NY-ESO-1-positive tumor expression) received cyclophosphamide 750 mg/m2 on days -3 and -2 (induction period) followed by a single dose of 5×109 (±30%) TBI-1301 cells as a divided infusion on days 0 and 1 (treatment period). Primary endpoints were safety-related (phase I) and efficacy-related [objective response rate (ORR) by RECIST v1.1/immune-related RECIST (irRECIST); phase II]. Safety- and efficacy-related secondary endpoints were considered in both phase I/II parts. RESULTS For the full analysis set (N = 8; phase I, n = 3; phase II, n = 5), the ORR was 50.0% (95% confidence interval, 15.7-84.3) with best overall partial response in four of eight patients according to RECIST v1.1/irRECIST. All patients experienced adverse events and seven of eight patients (87.5%) had adverse drug reactions, but no deaths were attributed to adverse events. Cytokine release syndrome occurred in four of eight patients (50.0%), but all cases recovered with prespecified treatment. Immune effector cell-associated neurotoxicity syndrome, replication-competent retrovirus, and lymphocyte clonality were absent. CONCLUSIONS Adoptive immunotherapy with TBI-1301 to selectively target NY-ESO-1-positive tumor cells appears to be a promising strategy for the treatment of advanced or recurrent SS with acceptable toxicity.
Collapse
Affiliation(s)
- Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | | | - Tomoki Nakamura
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Shigehisa Kitano
- Department of Advanced Medical Development, The Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Department of Orthopedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Shigeki Kakunaga
- Department of Orthopaedic Surgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiro Miyahara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|
8
|
Okada S, Muraoka D, Yasui K, Tawara I, Kawamura A, Okamoto S, Mineno J, Seo N, Shiku H, Eguchi S, Ikeda H. T cell receptor gene-modified allogeneic T cells with siRNA for endogenous T cell receptor induce efficient tumor regression without graft-versus-host disease. Cancer Sci 2023; 114:4172-4183. [PMID: 37675556 PMCID: PMC10637063 DOI: 10.1111/cas.15954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Adoptive immunotherapy using genetically engineered patient-derived lymphocytes to express tumor-reactive receptors is a promising treatment for malignancy. However, utilization of autologous T cells in this therapy limits the quality of gene-engineered T cells, thereby inhibiting the timely infusion of the cells into patients. In this study, we evaluated the anti-tumor efficacy and the potential to induce graft-versus-host disease (GVHD) in T cell receptor (TCR) gene-engineered allogeneic T cells that downregulate the endogenous TCR and HLA class I molecules with the aim of developing an "off-the-shelf" cell product with expanded application of genetically engineered T cells. We transduced human lymphocytes with a high-affinity TCR specific to the cancer/testis antigen NY-ESO-1 using a novel retrovirus vector with siRNAs specific to the endogenous TCR (siTCR vector). These T cells showed reduced expression of endogenous TCR and minimized reactivity to allogeneic cells in vitro. In non-obese diabetic/SCID/γcnull mice, TCR gene-transduced T cells induced tumor regression without development of GVHD. A lentivirus-based CRISPR/Cas9 system targeting β-2 microglobulin in TCR gene-modified T cells silenced the HLA class I expression and prevented allogeneic CD8+ T cell stimulation without disrupting their anti-tumor capacity. This report is the first demonstration that siTCR technology is effective in preventing GVHD. Adoptive cell therapy with allogeneic T cells engineered with siTCR vector may be useful in developing an "off-the-shelf" therapy for patients with malignancy.
Collapse
Affiliation(s)
- Satomi Okada
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Department of SurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Daisuke Muraoka
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Division of Translational OncoimmunologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Kiyoshi Yasui
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Isao Tawara
- Department of Hematology and OncologyMie University Graduate School of MedicineMieJapan
| | | | | | | | - Naohiro Seo
- Department of Personalized Cancer ImmunotherapyMie University Graduate School of MedicineMieJapan
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Hiroshi Shiku
- Department of Personalized Cancer ImmunotherapyMie University Graduate School of MedicineMieJapan
| | - Susumu Eguchi
- Department of SurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroaki Ikeda
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Leading Medical Research Core UnitNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
9
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
10
|
Fujiki F, Morimoto S, Nishida Y, Tanii S, Aoyama N, Inatome M, Inoue K, Katsuhara A, Nakajima H, Nakata J, Nishida S, Tsuboi A, Oka Y, Oji Y, Sogo S, Sugiyama H. Establishment of a novel NFAT-GFP reporter platform useful for the functional avidity maturation of HLA class II-restricted TCRs. Cancer Immunol Immunother 2023; 72:2347-2356. [PMID: 36939853 PMCID: PMC10264488 DOI: 10.1007/s00262-023-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 03/21/2023]
Abstract
CD4+ T cells that recognize antigenic peptides presented on HLA class II are essential for inducing an optimal anti-tumor immune response, and adoptive transfer of tumor antigen-specific TCR-transduced CD4+ T cells with high responsiveness against tumor is a promising strategy for cancer treatment. Whereas a precise evaluation method of functional avidity, an indicator of T cell responsiveness against tumors, has been established for HLA class I-restricted TCRs, it remains unestablished for HLA class II-restricted TCRs. In this study, we generated a novel platform cell line, CD4-2D3, in which GFP reporter was expressed by NFAT activation via TCR signaling, for correctly evaluating functional avidity of HLA class II-restricted TCRs. Furthermore, using this platform cell line, we succeeded in maturating functional avidity of an HLA class II-restricted TCR specific for a WT1-derived helper peptide by substituting amino acids in complementarity determining region 3 (CDR3) of the TCR. Importantly, we demonstrated that transduction of an avidity-maturated TCR conferred strong cytotoxicity against WT1-expressing leukemia cells on CD4+ T cells, compared to that of its original TCR. Thus, CD4-2D3 cell line should be useful not only to evaluate TCR functional avidity in HLA class II-restricted TCRs but also to screen appropriate TCRs for clinical applications such as cancer immunotherapy.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Nishida
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoe Tanii
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nao Aoyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Miki Inatome
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kento Inoue
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akiko Katsuhara
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sumiyuki Nishida
- Strategic Global Partnership & X (Cross)-Innovation Initiative, Graduate School of Medicine, Osaka University & Osaka University Hospital, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Sogo
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Research Management, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
- Joint Research Chair of Immune Therapeutic Drug Discovery IFReC, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Grailer J, Cheng ZJ, Hartnett J, Slater M, Fan F, Cong M. A Novel Cell-based Luciferase Reporter Platform for the Development and Characterization of T-Cell Redirecting Therapies and Vaccine Development. J Immunother 2023; 46:96-106. [PMID: 36809225 PMCID: PMC9988225 DOI: 10.1097/cji.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
T-cell immunotherapies are promising strategies to generate T-cell responses towards tumor-derived or pathogen-derived antigens. Adoptive transfer of T cells genetically modified to express antigen receptor transgenes has shown promise for the treatment of cancer. However, the development of T-cell redirecting therapies relies on the use of primary immune cells and is hampered by the lack of easy-to-use model systems and sensitive readouts to facilitate candidate screening and development. Particularly, testing T-cell receptor (TCR)-specific responses in primary T cells and immortalized T cells is confounded by the presence of endogenous TCR expression which results in mixed alpha/beta TCR pairings and compresses assay readouts. Herein, we describe the development of a novel cell-based TCR knockout (TCR-KO) reporter assay platform for the development and characterization of T-cell redirecting therapies. CRISPR/Cas9 was used to knockout the endogenous TCR chains in Jurkat cells stably expressing a human interleukin-2 promoter-driven luciferase reporter gene to measure TCR signaling. Reintroduction of a transgenic TCR into the TCR-KO reporter cells results in robust antigen-specific reporter activation compared with parental reporter cells. The further development of CD4/CD8 double-positive and double-negative versions enabled low-avidity and high-avidity TCR screening with or without major histocompatibility complex bias. Furthermore, stable TCR-expressing reporter cells generated from TCR-KO reporter cells exhibit sufficient sensitivity to probe in vitro T-cell immunogenicity of protein and nucleic acid-based vaccines. Therefore, our data demonstrated that TCR-KO reporter cells can be a useful tool for the discovery, characterization, and deployment of T-cell immunotherapy.
Collapse
|
12
|
Ishihara M, Kitano S, Kageyama S, Miyahara Y, Yamamoto N, Kato H, Mishima H, Hattori H, Funakoshi T, Kojima T, Sasada T, Sato E, Okamoto S, Tomura D, Nukaya I, Chono H, Mineno J, Kairi MF, Diem Hoang Nguyen P, Simoni Y, Nardin A, Newell E, Fehlings M, Ikeda H, Watanabe T, Shiku H. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. J Immunother Cancer 2022; 10:e003811. [PMID: 35768164 PMCID: PMC9244667 DOI: 10.1136/jitc-2021-003811] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Because of the shortage of ideal cell surface antigens, the development of T-cell receptor (TCR)-engineered T cells (TCR-T) that target intracellular antigens such as NY-ESO-1 is a promising approach for treating patients with solid tumors. However, endogenous TCRs in vector-transduced T cells have been suggested to impair cell-surface expression of transduced TCR while generating mispaired TCRs that can become self-reactive. METHODS We conducted a first-in-human phase I clinical trial with the TCR-transduced T-cell product (TBI-1301) in patients with NY-ESO-1-expressing solid tumors. In manufacturing TCR-T cells, we used a novel affinity-enhanced NY-ESO-1-specific TCR that was transduced by a retroviral vector that enables siRNA (small interfering RNA)-mediated silencing of endogenous TCR. The patients were divided into two cohorts. Cohort 1 was given a dose of 5×108 cells (whole cells including TCR-T cells) preconditioned with 1500 mg/m2 cyclophosphamide. Cohort 2 was given 5× 109 cells preconditioned with 1500 mg/m2 cyclophosphamide. RESULTS In vitro study showed that both the CD8+ and CD4+ T fractions of TCR-T cells exhibited cytotoxic effects against NY-ESO-1-expressing tumor cells. Three patients and six patients were allocated to cohort 1 and cohort 2, respectively. Three of the six patients who received 5×109 cells showed tumor response, while three patients developed early-onset cytokine release syndrome (CRS). One of the patients developed a grade 3 lung injury associated with the infiltration of the TCR-T cells. No siRNA-related adverse events other than CRS were observed. Cytokines including interleukin 6 I and monocyte chemotactic protein-1/chemokine (C-C motif) ligand (CCL2)increased in the sera of patients with CRS. In vitro analysis showed these cytokines were not secreted from the T cells infused. A significant fraction of the manufactured T cells in patients with CRS was found to express either CD244, CD39, or both at high levels. CONCLUSIONS The trial showed that endogenous TCR-silenced and affinity-enhanced NY-ESO-1 TCR-T cells were safely administered except for grade 3 lung injury. The TCR-T cell infusion exhibited significant tumor response and early-onset CRS in patients with tumors that express NY-ESO-1 at high levels. The differentiation properties of the manufactured T cells may be prognostic for TCR-T-related CRS. TRIAL REGISTRATION NUMBER NCT02366546.
Collapse
Affiliation(s)
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Shinichi Kageyama
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Miyahara
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Japan
| | | | - Hiroyoshi Hattori
- Laboratory of Advanced Therapy, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Eiichi Sato
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Watanabe
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Shiku
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
13
|
Liu Y, Yan X, Zhang F, Zhang X, Tang F, Han Z, Li Y. TCR-T Immunotherapy: The Challenges and Solutions. Front Oncol 2022; 11:794183. [PMID: 35145905 PMCID: PMC8822241 DOI: 10.3389/fonc.2021.794183] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/28/2021] [Indexed: 12/31/2022] Open
Abstract
T cell receptor-engineered T cell (TCR-T) therapy is free from the limit of surface antigen expression of the target cells, which is a potential cellular immunotherapy for cancer treatment. Significant advances in the treatment of hematologic malignancies with cellular immunotherapy have aroused the interest of researchers in the treatment of solid tumors. Nevertheless, the overall efficacy of TCR-T cell immunotherapy in solid tumors was not significantly high when compared with hematological malignancies. In this article, we pay attention to the barriers of TCR-T cell immunotherapy for solid tumors, as well as the strategies affecting the efficacy of TCR-T cell immunotherapy. To provide some reference for researchers to better overcome the impact of TCR-T cell efficiency in solid tumors.
Collapse
Affiliation(s)
- Yating Liu
- Department of Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Yan
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fan Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaoxia Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Futian Tang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Yumin Li,
| |
Collapse
|
14
|
Zur RT, Adler G, Shamalov K, Tal Y, Ankri C, Cohen CJ. Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:253-294. [PMID: 35165867 DOI: 10.1007/978-3-030-91311-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As an important part of the immune system, T lymphocytes exhibit undoubtedly an important role in targeting and eradicating cancer. However, despite these characteristics, their natural antitumor response may be insufficient. Numerous clinical trials in terminally ill cancer patients testing the design of novel and efficient immunotherapeutic approaches based on the adoptive transfer of autologous tumor-specific T lymphocytes have shown encouraging results. Moreover, this also led to the approval of engineered T-cell therapies in patients. Herein, we will expand on the development and the use of such strategies using tumor-infiltrating lymphocytes or genetically engineered T-cells. We will also comment on the requirements and potential hurdles encountered when elaborating and implementing such treatments as well as the exciting prospects for this kind of emerging personalized medicine therapy.
Collapse
Affiliation(s)
- Raphaëlle Toledano Zur
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Galit Adler
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yair Tal
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chen Ankri
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Cyrille J Cohen
- Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
15
|
Sun Y, Li F, Sonnemann H, Jackson KR, Talukder AH, Katailiha AS, Lizee G. Evolution of CD8 + T Cell Receptor (TCR) Engineered Therapies for the Treatment of Cancer. Cells 2021; 10:cells10092379. [PMID: 34572028 PMCID: PMC8469972 DOI: 10.3390/cells10092379] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered T cell receptor T (TCR-T) cell therapy has facilitated the generation of increasingly reliable tumor antigen-specific adaptable cellular products for the treatment of human cancer. TCR-T cell therapies were initially focused on targeting shared tumor-associated peptide targets, including melanoma differentiation and cancer-testis antigens. With recent technological developments, it has become feasible to target neoantigens derived from tumor somatic mutations, which represents a highly personalized therapy, since most neoantigens are patient-specific and are rarely shared between patients. TCR-T therapies have been tested for clinical efficacy in treating solid tumors in many preclinical studies and clinical trials all over the world. However, the efficacy of TCR-T therapy for the treatment of solid tumors has been limited by a number of factors, including low TCR avidity, off-target toxicities, and target antigen loss leading to tumor escape. In this review, we discuss the process of deriving tumor antigen-specific TCRs, including the identification of appropriate tumor antigen targets, expansion of antigen-specific T cells, and TCR cloning and validation, including techniques and tools for TCR-T cell vector construction and expression. We highlight the achievements of recent clinical trials of engineered TCR-T cell therapies and discuss the current challenges and potential solutions for improving their safety and efficacy, insights that may help guide future TCR-T studies in cancer.
Collapse
Affiliation(s)
- Yimo Sun
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Fenge Li
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Heather Sonnemann
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Kyle R. Jackson
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Amjad H. Talukder
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Arjun S. Katailiha
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
| | - Gregory Lizee
- Department of Melanoma, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; (Y.S.); (F.L.); (H.S.); (K.R.J.); (A.H.T.); (A.S.K.)
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
16
|
Ghaffari S, Khalili N, Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. J Exp Clin Cancer Res 2021; 40:269. [PMID: 34446084 PMCID: PMC8390258 DOI: 10.1186/s13046-021-02076-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy has gained attention as the supreme therapeutic modality for the treatment of various malignancies. Adoptive T-cell therapy (ACT) is one of the most distinctive modalities of this therapeutic approach, which seeks to harness the potential of combating cancer cells by using autologous or allogenic tumor-specific T-cells. However, a plethora of circumstances must be optimized to produce functional, durable, and efficient T-cells. Recently, the potential of ACT has been further realized by the introduction of novel gene-editing platforms such as the CRISPR/Cas9 system; this technique has been utilized to create T-cells furnished with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR) that have precise tumor antigen recognition, minimal side effects and treatment-related toxicities, robust proliferation and cytotoxicity, and nominal exhaustion. Here, we aim to review and categorize the recent breakthroughs of genetically modified TCR/CAR T-cells through CRISPR/Cas9 technology and address the pearls and pitfalls of each method. In addition, we investigate the latest ongoing clinical trials that are applying CRISPR-associated TCR/CAR T-cells for the treatment of cancers.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
17
|
Müller TR, Jarosch S, Hammel M, Leube J, Grassmann S, Bernard B, Effenberger M, Andrä I, Chaudhry MZ, Käuferle T, Malo A, Cicin-Sain L, Steinberger P, Feuchtinger T, Protzer U, Schumann K, Neuenhahn M, Schober K, Busch DH. Targeted T cell receptor gene editing provides predictable T cell product function for immunotherapy. Cell Rep Med 2021; 2:100374. [PMID: 34467251 PMCID: PMC8385324 DOI: 10.1016/j.xcrm.2021.100374] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/15/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023]
Abstract
Adoptive transfer of T cells expressing a transgenic T cell receptor (TCR) has the potential to revolutionize immunotherapy of infectious diseases and cancer. However, the generation of defined TCR-transgenic T cell medicinal products with predictable in vivo function still poses a major challenge and limits broader and more successful application of this "living drug." Here, by studying 51 different TCRs, we show that conventional genetic engineering by viral transduction leads to variable TCR expression and functionality as a result of variable transgene copy numbers and untargeted transgene integration. In contrast, CRISPR/Cas9-mediated TCR replacement enables defined, targeted TCR transgene insertion into the TCR gene locus. Thereby, T cell products display more homogeneous TCR expression similar to physiological T cells. Importantly, increased T cell product homogeneity after targeted TCR gene editing correlates with predictable in vivo T cell responses, which represents a crucial aspect for clinical application in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
- Thomas R. Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Justin Leube
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Simon Grassmann
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bettina Bernard
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Immanuel Andrä
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - M. Zeeshan Chaudhry
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Theresa Käuferle
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Antje Malo
- Institute of Virology, TUM, Munich, Germany
| | - Luka Cicin-Sain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tobias Feuchtinger
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute of Virology, TUM, Munich, Germany
| | - Kathrin Schumann
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- Institute for Advanced Study, TUM, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute for Advanced Study, TUM, Munich, Germany
| |
Collapse
|
18
|
Xiong D, Zhang Z, Wang T, Wang X. A comparative study of multiple instance learning methods for cancer detection using T-cell receptor sequences. Comput Struct Biotechnol J 2021; 19:3255-3268. [PMID: 34141144 PMCID: PMC8192570 DOI: 10.1016/j.csbj.2021.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/02/2022] Open
Abstract
As a branch of machine learning, multiple instance learning (MIL) learns from a collection of labeled bags, each containing a set of instances. The learning process is weakly supervised due to ambiguous instance labels. Since its emergence, MIL has been applied to solve various problems including content-based image retrieval, object tracking/detection, and computer-aided diagnosis. In biomedical research, the use of MIL has been focused on medical image analysis and molecule activity prediction. We review and apply 16 methods to investigate the applicability of MIL to a novel biomedical application, cancer detection using T-cell receptor (TCR) sequences. This important application can be a viable approach for large-scale cancer screening, as TCRs can be easily profiled from a subject's peripheral blood. We consider two feasible data-generating mechanisms, and for the purpose of performance evaluation, we simulate data under each mechanism, where we vary potentially important factors to mimic realistic situations. We also apply the methods to sequencing data of ten cancer types from The Cancer Genome Atlas, as an early proof of concept for distinguishing tumor patients from healthy individuals via TCR sequencing of peripheral blood. We find that given an appropriate MIL method is used, satisfactory performance with Area Under the Receiver Operating Characteristic Curve above 80% can be achieved for five in the ten cancers. Based on our numerical results, we make suggestions about selection of a proper method and avoidance of any method with poor performance. We further point out directions of future research as well as identify a pressing need of new MIL methodologies for improved performance (for some cancer types) and more explainable outcomes.
Collapse
Affiliation(s)
- Danyi Xiong
- Department of Statistical Science, Southern Methodist University, 3225 Daniel Avenue, Dallas 75275, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
| | - Ze Zhang
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
| | - Tao Wang
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, 3225 Daniel Avenue, Dallas 75275, TX, USA
| |
Collapse
|
19
|
Lu F, Ma XJN, Jin WL, Luo Y, Li X. Neoantigen Specific T Cells Derived From T Cell-Derived Induced Pluripotent Stem Cells for the Treatment of Hepatocellular Carcinoma: Potential and Challenges. Front Immunol 2021; 12:690565. [PMID: 34054880 PMCID: PMC8155510 DOI: 10.3389/fimmu.2021.690565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy has become an indispensable part of the comprehensive treatment of hepatocellular carcinoma (HCC). Immunotherapy has proven effective in patients with early HCC, advanced HCC, or HCC recurrence after liver transplantation. Clinically, the most commonly used immunotherapy is immune checkpoint inhibition using monoclonal antibodies, such as CTLA-4 and PD-1. However, it cannot fundamentally solve the problems of a weakened immune system and inactivation of immune cells involved in killing tumor cells. T cells can express tumor antigen-recognizing T cell receptors (TCRs) or chimeric antigen receptors (CARs) on the cell surface through gene editing to improve the specificity and responsiveness of immune cells. According to previous studies, TCR-T cell therapy is significantly better than CAR-T cell therapy in the treatment of solid tumors and is one of the most promising immune cell therapies for solid tumors so far. However, its application in the treatment of HCC is still being researched. Technological advancements in induction and redifferentiation of induced pluripotent stem cells (iPSCs) allow us to use T cells to induce T cell-derived iPSCs (T-iPSCs) and then differentiate them into TCR-T cells. This has allowed a convenient strategy to study HCC models and explore optimal treatment strategies. This review gives an overview of the major advances in the development of protocols to generate neoantigen-specific TCR-T cells from T-iPSCs. We will also discuss their potential and challenges in the treatment of HCC.
Collapse
Affiliation(s)
- Fei Lu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Lin Jin
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yang Luo
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China.,Health Science Center, Lanzhou University, Lanzhou, China.,Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Martínez Bedoya D, Dutoit V, Migliorini D. Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Front Immunol 2021; 12:640082. [PMID: 33746981 PMCID: PMC7966522 DOI: 10.3389/fimmu.2021.640082] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as one of the major breakthroughs in cancer immunotherapy in the last decade. Outstanding results in hematological malignancies and encouraging pre-clinical anti-tumor activity against a wide range of solid tumors have made CAR T cells one of the most promising fields for cancer therapies. CAR T cell therapy is currently being investigated in solid tumors including glioblastoma (GBM), a tumor for which survival has only modestly improved over the past decades. CAR T cells targeting EGFRvIII, Her2, or IL-13Rα2 have been tested in GBM, but the first clinical trials have shown modest results, potentially due to GBM heterogeneity and to the presence of an immunosuppressive microenvironment. Until now, the use of autologous T cells to manufacture CAR products has been the norm, but this approach has several disadvantages regarding production time, cost, manufacturing delay and dependence on functional fitness of patient T cells, often reduced by the disease or previous therapies. Universal “off-the-shelf,” or allogeneic, CAR T cells is an alternative that can potentially overcome these issues, and allow for multiple modifications and CAR combinations to target multiple tumor antigens and avoid tumor escape. Advances in genome editing tools, especially via CRISPR/Cas9, might allow overcoming the two main limitations of allogeneic CAR T cells product, i.e., graft-vs.-host disease and host allorejection. Here, we will discuss how allogeneic CAR T cells could allow for multivalent approaches and alteration of the tumor microenvironment, potentially allowing the development of next generation therapies for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Darel Martínez Bedoya
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
21
|
Abstract
Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.
Collapse
|
22
|
Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, Miftakhova R, Fainshtein M, Rizvanov A, Bulatov E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers (Basel) 2021; 13:743. [PMID: 33670139 PMCID: PMC7916861 DOI: 10.3390/cancers13040743] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Laboratory of Transplantation Immunology, National Hematology Research Centre, 125167 Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Alexey Petukhov
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia;
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
23
|
Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Front Immunol 2021; 11:585385. [PMID: 33569049 PMCID: PMC7868419 DOI: 10.3389/fimmu.2020.585385] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
The use of T cells reactive with intracellular tumor-associated or tumor-specific antigens has been a promising strategy for cancer immunotherapies in the past three decades, but the approach has been constrained by a limited understanding of the T cell receptor's (TCR) complex functions and specificities. Newer TCR and T cell-based approaches are in development, including engineered adoptive T cells with enhanced TCR affinities, TCR mimic antibodies, and T cell-redirecting bispecific agents. These new therapeutic modalities are exciting opportunities by which TCR recognition can be further exploited for therapeutic benefit. In this review we summarize the development of TCR-based therapeutic strategies and focus on balancing efficacy and potency versus specificity, and hence, possible toxicity, of these powerful therapeutic modalities.
Collapse
Affiliation(s)
- Heather F. Jones
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| | - Zaki Molvi
- Weill Cornell Medicine, New York, NY, United States
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Martin G. Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - David A. Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
24
|
Poels R, Drent E, Lameris R, Katsarou A, Themeli M, van der Vliet HJ, de Gruijl TD, van de Donk NWCJ, Mutis T. Preclinical Evaluation of Invariant Natural Killer T Cells Modified with CD38 or BCMA Chimeric Antigen Receptors for Multiple Myeloma. Int J Mol Sci 2021; 22:1096. [PMID: 33499253 PMCID: PMC7865760 DOI: 10.3390/ijms22031096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Due to the CD1d restricted recognition of altered glycolipids, Vα24-invariant natural killer T (iNKT) cells are excellent tools for cancer immunotherapy with a significantly reduced risk for graft-versus-host disease when applied as off-the shelf-therapeutics across Human Leukocyte Antigen (HLA) barriers. To maximally harness their therapeutic potential for multiple myeloma (MM) treatment, we here armed iNKT cells with chimeric antigen receptors (CAR) directed against the MM-associated antigen CD38 and the plasma cell specific B cell maturation antigen (BCMA). We demonstrate that both CD38- and BCMA-CAR iNKT cells effectively eliminated MM cells in a CAR-dependent manner, without losing their T cell receptor (TCR)-mediated cytotoxic activity. Importantly, iNKT cells expressing either BCMA-CARs or affinity-optimized CD38-CARs spared normal hematopoietic cells and displayed a Th1-like cytokine profile, indicating their therapeutic utility. While the costimulatory domain of CD38-CARs had no influence on the cytotoxic functions of iNKT cells, CARs containing the 4-1BB domain showed a better expansion capacity. Interestingly, when stimulated only via CD1d+ dendritic cells (DCs) loaded with α-galactosylceramide (α-GalCer), both CD38- and BCMA-CAR iNKT cells expanded well, without losing their CAR- or TCR-dependent cytotoxic activities. This suggests the possibility of developing an off-the-shelf therapy with CAR iNKT cells, which might even be boostable in vivo by administration α-GalCer pulsed DCs.
Collapse
Affiliation(s)
- Renée Poels
- Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.P.); (E.D.); (A.K.); (M.T.); (N.W.C.J.v.d.D.)
| | - Esther Drent
- Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.P.); (E.D.); (A.K.); (M.T.); (N.W.C.J.v.d.D.)
| | - Roeland Lameris
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.L.); (H.J.v.d.V.); (T.D.d.G.)
| | - Afroditi Katsarou
- Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.P.); (E.D.); (A.K.); (M.T.); (N.W.C.J.v.d.D.)
| | - Maria Themeli
- Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.P.); (E.D.); (A.K.); (M.T.); (N.W.C.J.v.d.D.)
| | - Hans J. van der Vliet
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.L.); (H.J.v.d.V.); (T.D.d.G.)
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.L.); (H.J.v.d.V.); (T.D.d.G.)
| | - Niels W. C. J. van de Donk
- Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.P.); (E.D.); (A.K.); (M.T.); (N.W.C.J.v.d.D.)
| | - Tuna Mutis
- Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; (R.P.); (E.D.); (A.K.); (M.T.); (N.W.C.J.v.d.D.)
| |
Collapse
|
25
|
Müller TR, Schuler C, Hammel M, Köhler A, Jutz S, Leitner J, Schober K, Busch DH, Steinberger P. A T-cell reporter platform for high-throughput and reliable investigation of TCR function and biology. Clin Transl Immunology 2020; 9:e1216. [PMID: 33251011 PMCID: PMC7681835 DOI: 10.1002/cti2.1216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Transgenic re-expression enables unbiased investigation of T-cell receptor (TCR)-intrinsic characteristics detached from its original cellular context. Recent advancements in TCR repertoire sequencing and development of protocols for direct cloning of full TCRαβ constructs now facilitate large-scale transgenic TCR re-expression. Together, this offers unprecedented opportunities for the screening of TCRs for basic research as well as clinical use. However, the functional characterisation of re-expressed TCRs is still a complicated and laborious matter. Here, we propose a Jurkat-based triple parameter TCR signalling reporter endogenous TCR knockout cellular platform (TPRKO) that offers an unbiased, easy read-out of TCR functionality and facilitates high-throughput screening approaches. METHODS As a proof-of-concept, we transgenically re-expressed 59 human cytomegalovirus-specific TCRs and systematically investigated and compared TCR function in TPRKO cells versus primary human T cells. RESULTS We demonstrate that the TPRKO cell line facilitates antigen-HLA specificity screening via sensitive peptide-MHC-multimer staining, which was highly comparable to primary T cells. Also, TCR functional avidity in TPRKO cells was strongly correlating to primary T cells, especially in the absence of CD8αβ co-receptor. CONCLUSION Overall, our data show that the TPRKO cell lines can serve as a surrogate of primary human T cells for standardised and high-throughput investigation of TCR biology.
Collapse
Affiliation(s)
- Thomas R Müller
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
| | - Corinna Schuler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Amelie Köhler
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Sabrina Jutz
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and HygieneTechnical University of Munich (TUM)MunichGermany
- German Center for Infection Research (DZIF)MunichGermany
- Focus Group ‘Clinical Cell Processing and Purification’Institute for Advanced StudyTUMMunichGermany
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationCenter for Pathophysiology, Infectiology, and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
26
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell Antitumor Responses. Cells 2020; 9:cells9071720. [PMID: 32708366 PMCID: PMC7408146 DOI: 10.3390/cells9071720] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past decades, adoptive transfer of T cells has revolutionized cancer immunotherapy. In particular, T-cell receptor (TCR) engineering of T cells has marked important milestones in developing more precise and personalized cancer immunotherapies. However, to get the most benefit out of this approach, understanding the role that TCR affinity, avidity, and functional avidity play on how TCRs and T cells function in the context of tumor-associated antigen (TAA) recognition is vital to keep generating improved adoptive T-cell therapies. Aside from TCR-related parameters, other critical factors that govern T-cell activation are the effect of TCR co-receptors on TCR–peptide-major histocompatibility complex (pMHC) stabilization and TCR signaling, tumor epitope density, and TCR expression levels in TCR-engineered T cells. In this review, we describe the key aspects governing TCR specificity, T-cell activation, and how these concepts can be applied to cancer-specific TCR redirection of T cells.
Collapse
|
28
|
Schober K, Müller TR, Busch DH. Orthotopic T-Cell Receptor Replacement-An "Enabler" for TCR-Based Therapies. Cells 2020; 9:E1367. [PMID: 32492858 PMCID: PMC7348731 DOI: 10.3390/cells9061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Natural adaptive immunity co-evolved with pathogens over millions of years, and adoptive transfer of non-engineered T cells to fight infections or cancer so far exhibits an exceptionally safe and functional therapeutic profile in clinical trials. However, the personalized nature of therapies using virus-specific T cells, donor lymphocyte infusion, or tumor-infiltrating lymphocytes makes implementation in routine clinical care difficult. In principle, genetic engineering can be used to make T-cell therapies more broadly applicable, but so far it significantly alters the physiology of cells. We recently demonstrated that orthotopic T-cell receptor (TCR) replacement (OTR) by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) can be used to generate engineered T cells with preservation of near-physiological function. In this review, we present the current status of OTR technology development and discuss its potential for TCR-based therapies. By providing the means to combine the therapeutic efficacy and safety profile of physiological T cells with the versatility of cell engineering, OTR can serve as an "enabler" for TCR-based therapies.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Thomas R. Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| |
Collapse
|
29
|
Kawamura K, Tanaka Y, Nakasone H, Ishihara Y, Kako S, Kobayashi S, Tanaka Y, Ohmori T, Uchimaru K, Okamoto S, Mineno J, Shiku H, Nishimura S, Kanda Y. Development of a Unique T Cell Receptor Gene-Transferred Tax-Redirected T Cell Immunotherapy for Adult T Cell Leukemia. Biol Blood Marrow Transplant 2020; 26:1377-1385. [PMID: 32311478 DOI: 10.1016/j.bbmt.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 11/28/2022]
Abstract
Adult T cell leukemia/lymphoma (ATL) is an aggressive peripheral T cell neoplasm caused by infection with human T cell lymphotropic virus type-1 (HTLV-1). Its prognosis remains extremely poor. Tax, the most important regulatory protein for HTLV-1, is associated with the aggressive proliferation of host cells and is also a major target antigen for CD8+ cytotoxic T cells (CTLs). Based on our previous findings that Tax-specific CTLs with a T cell receptor (TCR) containing a unique amino-acid sequence motif exhibit strong HLA-A*24:02-restricted, Tax301-309-specific activity against HTLV-1, we aimed to develop a Tax-redirected T cell immunotherapy for ATL. TCR-ɑ/β genes were cloned from a previously established CTL clone and transduced into peripheral blood mononuclear cells (PBMCs) of healthy volunteers using a retroviral siTCR vector. Then the cytotoxic efficacy against HTLV-1-infected T cells or primary ATL cells was assessed both in vitro and in vivo. The redirected CTLs (Tax-siCTLs) produced a large amount of cytokines and showed strong killing activity against ATL/HTLV-1-infected T cells in vitro, although they did not have universal activity against ATL cells. Next, in a xenograft mouse model using an HTLV-1-infected T cell line (MT-2), in all mice treated with Tax-siCTLs, the tumor rapidly diminished and finally disappeared without normal tissue damage, although all mice that were untreated or treated with non-gene-modified PBMCs died because of tumor progression. Our findings confirm that Tax-siCTLs can exert strong anti-ATL/HTLV-1 effects without a significant reaction against normal cells and have the potential to be a novel immunotherapy for ATL patients.
Collapse
Affiliation(s)
- Koji Kawamura
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yukie Tanaka
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan; Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Research Core, Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideki Nakasone
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yuko Ishihara
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shinichi Kako
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Seiichiro Kobayashi
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | - Hiroshi Shiku
- Department for Immuno-Gene Therapy, Mie University Graduate School of Medicine, Mie, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Saitama, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Saitama Medical Center, Jichi Medical University, Saitama, Japan; Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
30
|
Akatsuka Y. TCR-Like CAR-T Cells Targeting MHC-Bound Minor Histocompatibility Antigens. Front Immunol 2020; 11:257. [PMID: 32184779 PMCID: PMC7058980 DOI: 10.3389/fimmu.2020.00257] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
Abstract
Minor histocompatibility antigens (mHAgs) in allogeneic hematopoietic stem cell transplantation are highly immunogenic as they are foreign antigens and cause polymorphism between donors and recipients. Adoptive cell therapy with mHAg-specific T cells may be an effective option for therapy against recurring hematological malignancies following transplantation. Genetically modified T cells with T cell receptors (TCRs) specific to mHAgs have been developed, but formation of mispaired chimeric TCRs between endogenous and exogenous TCR chains may compromise their function. An alternative approach is the development of chimeric antigen receptor (CAR)-T cells with TCR-like specificity whose CAR transmembrane and intracellular domains do not compete with endogenous TCR for CD3 complexes and transmit their own activation signals. However, it has been shown that the recognition of low-density antigens by high-affinity CAR-T cells has poor sensitivity and specificity. This mini review focuses on the potential for and limitations of TCR-like CAR-T cells in targeting human leukocyte antigen-bound peptide antigens, based on their recognition mechanisms and their application in targeting mHAgs.
Collapse
Affiliation(s)
- Yoshiki Akatsuka
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
31
|
Wang J, Shen F, Yao Y, Wang LL, Zhu Y, Hu J. Adoptive Cell Therapy: A Novel and Potential Immunotherapy for Glioblastoma. Front Oncol 2020; 10:59. [PMID: 32083009 PMCID: PMC7005203 DOI: 10.3389/fonc.2020.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults with very poor prognosis and few advances in its treatment. Recently, fast-growing cancer immunotherapy provides a glimmer of hope for GBM treatment. Adoptive cell therapy (ACT) aims at infusing immune cells with direct anti-tumor activity, including tumor-infiltrating lymphocyte (TIL) transfer and genetically engineered T cells transfer. For example, complete regressions in patients with melanoma and refractory lymphoma have been shown by using naturally tumor-reactive T cells and genetically engineered T cells expressing the chimeric anti-CD19 receptor, respectively. Recently, the administration of ACT showed therapeutic potentials for GBM treatment as well. In this review, we summarize the success of ACT in the treatment of cancer and provide approaches to overcome some challenges of ACT to allow its adoption for GBM treatment.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Shen
- Department of Orthopaedic Surgery's Spine Division, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Ying Yao
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Hu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
32
|
Wälchli S, Sioud M. Next Generation of Adoptive T Cell Therapy Using CRISPR/Cas9 Technology: Universal or Boosted? Methods Mol Biol 2020; 2115:407-417. [PMID: 32006413 DOI: 10.1007/978-1-0716-0290-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Adoptive T cell therapy (ACT) using either chimeric antigen receptor (CAR)- or T cell receptor (TCR)-engineered lymphocytes has emerged as a promising strategy to treat cancer. However, this therapy is still facing enormous challenges such as poor quality of autologous T cells, T cell exhaustion, and the immune suppressive tumor microenvironments. Additionally, graft-versus-host disease is an issue that must be addressed to allow the use of allogeneic T cells. Strategies to overcome these therapeutic challenges using gene editing technology are now being developed. One strategy is to disrupt TCR and/or MHC expression in healthy donor T cells to generate T cells for universal use. Another strategy is to improve the quality of patient's T cells by eliminating either the expression of selected immune checkpoint receptors or negative regulators of TCR signaling and/or T-cell homeostasis. Here, we review the use of CRISPR-Cas9 platform in T cell engineering with a focus on the development of universal T cells and boosted autologous cells for next-generation ACT.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Cellular Therapy, Department of Oncology, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
| |
Collapse
|
33
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
34
|
Abstract
The adoptive cell transfer (ACT) of genetically engineered T cell receptor (TCR) T cells is one of the burgeoning fields of immunotherapy, with promising results in current clinical trials. Presently, clinicaltrials.gov has over 200 active trials involving adoptive cell therapy. The ACT of genetically engineered T cells not only allows the ability to select for TCRs with desired properties such as high-affinity receptors and tumor reactivity but to further enhance those receptors allowing for better targeting and killing of cancer cells in patients. Moreover, the addition of genetic material, including cytokines and cytokine receptors, can increase the survival and persistence of the T cell allowing for complete and sustained remission of cancer targets. The potential for improvement in adoptive cell therapy is limitless, with genetic modifications targeting to improve weaknesses of ACT and to thus enhance receptor affinity and functional avidity of the genetically engineered T cells.
Collapse
|
35
|
Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:109-131. [PMID: 32483735 DOI: 10.1007/978-3-030-43032-0_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen-presenting cells ex vivo is time-consuming and often results in T-cell products with a low frequency of tumor-specific T cells. Furthermore, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models; however, early clinical phase trials are in progress. In this chapter, we will review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.
Collapse
|
36
|
He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol 2019; 12:139. [PMID: 31852498 PMCID: PMC6921533 DOI: 10.1186/s13045-019-0812-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy has achieved dramatic success in a clinic, and the Food and Drug Administration approved two chimeric antigen receptor-engineered T cell (CAR-T) therapies that target hematological cancers in 2018. A significant issue faced by CAR-T therapies is the lack of tumor-specific biomarkers on the surfaces of solid tumor cells, which hampers the application of CAR-T therapies to solid tumors. Intracellular tumor-related antigens can be presented as peptides in the major histocompatibility complex (MHC) on the cell surface, which interact with the T cell receptors (TCR) on antigen-specific T cells to stimulate an anti-tumor response. Multiple immunotherapy strategies have been developed to eradicate tumor cells through targeting the TCR-peptide/MHC interactions. Here, we summarize the current status of TCR-based immunotherapy strategies, with particular focus on the TCR structure, activated signaling pathways, the effects and toxicity associated with TCR-based therapies in clinical trials, preclinical studies examining immune-mobilizing monoclonal TCRs against cancer (ImmTACs), and TCR-fusion molecules. We propose several TCR-based therapeutic strategies to achieve optimal clinical responses without the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China
| | - Xianhan Jiang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China. .,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Sun Q, Zhang X, Wang L, Gao X, Xiong Y, Liu L, Wei F, Yang L, Ren X. T-cell receptor gene therapy targeting melanoma-associated antigen-A4 by silencing of endogenous TCR inhibits tumor growth in mice and human. Cell Death Dis 2019; 10:475. [PMID: 31209257 PMCID: PMC6572850 DOI: 10.1038/s41419-019-1717-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022]
Abstract
Genetically engineered T cells expressing a T-cell receptor (TCR) are powerful tools for cancer treatment and have shown significant clinical effects in sarcoma patients. However, mismatch of the introduced TCR α/β chains with endogenous TCR may impair the expression of transduced TCR, resulting in an insufficient antitumor capacity of modified T cells. Here, we report the development of immunotherapy using human lymphocytes transduced with a codon-optimized melanoma-associated antigen (MAGE)-A4 and HLA-A*2402-restricted TCR, which specifically downregulate endogenous TCR by small interfering RNA (si-TCR). We evaluated the efficacy of this immunotherapy in both NOD-SCID mice and uterine leiomyosarcoma patients. Our results revealed that transduced human lymphocytes exhibited high surface expression of the introduced tumor-specific TCR, enhanced cytotoxic activity against antigen-expressing tumor cells, and increased interferon-γ production by specific MAGE-A4 peptide stimulation. Retarded tumor growth was also observed in NOD-SCID mice inoculated with human tumor cell lines expressing both MAGE-A4 and HLA-A*2402. Furthermore, we report the successful management of a case of uterine leiomyosarcoma treated with MAGE-A4 si-TCR/HLA-A*2402 gene-modified T cells. Our results indicate that the TCR-modified T cell therapy is a promising novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Qian Sun
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiying Zhang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Limei Wang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xujie Gao
- Department of Radiology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanjuan Xiong
- Department of Biotherapy, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liang Liu
- Department of Biotherapy, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Wei
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lili Yang
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Xiubao Ren
- Department of Immunology, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Department of Biotherapy, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
38
|
Veatch JR, Jesernig BL, Kargl J, Fitzgibbon M, Lee SM, Baik C, Martins R, Houghton AM, Riddell SR. Endogenous CD4 + T Cells Recognize Neoantigens in Lung Cancer Patients, Including Recurrent Oncogenic KRAS and ERBB2 ( Her2) Driver Mutations. Cancer Immunol Res 2019; 7:910-922. [PMID: 31043415 PMCID: PMC6584616 DOI: 10.1158/2326-6066.cir-18-0402] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/12/2018] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune-checkpoint inhibitor therapy or adoptive cell transfer. Much of the focus has been on identifying epitopes presented to CD8+ T cells by class I MHC. However, CD4+ class II MHC-restricted T cells have been shown to have an important role in antitumor immunity. Unfortunately, the vast majority of neoantigens recognized by CD8+ or CD4+ T cells in cancer patients result from random mutations and are patient-specific. Here, we screened the blood of 5 non-small cell lung cancer (NSCLC) patients for T-cell responses to candidate mutation-encoded neoepitopes. T-cell responses were detected to 8.8% of screened antigens, with 1 to 7 antigens identified per patient. A majority of responses were to random, patient-specific mutations. However, CD4+ T cells that recognized the recurrent KRAS G12V and the ERBB2 (Her2) internal tandem duplication (ITD) oncogenic driver mutations, but not the corresponding wild-type sequences, were identified in two patients. Two different T-cell receptors (TCR) specific for KRAS G12V and one T-cell receptor specific for Her2-ITD were isolated and conferred antigen specificity when transfected into T cells. Deep sequencing identified the Her2-ITD-specific TCR in the tumor but not nonadjacent lung. Our results showed that CD4+ T-cell responses to neoantigens, including recurrent driver mutations, can be derived from the blood of NSCLC patients. These data support the use of adoptive transfer or vaccination to augment CD4+ neoantigen-specific T cells and elucidate their role in human antitumor immunity.
Collapse
Affiliation(s)
- Joshua R Veatch
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Brenda L Jesernig
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Julia Kargl
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Otto Loewi Research Center, Pharmacology, Medical University of Graz, Graz, Austria
| | - Matthew Fitzgibbon
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sylvia M Lee
- Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Christina Baik
- Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Renato Martins
- Division of Medical Oncology, University of Washington, Seattle, Washington
| | - A McGarry Houghton
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
39
|
Parlar A, Sayitoglu EC, Ozkazanc D, Georgoudaki AM, Pamukcu C, Aras M, Josey BJ, Chrobok M, Branecki S, Zahedimaram P, Ikromzoda L, Alici E, Erman B, Duru AD, Sutlu T. Engineering antigen-specific NK cell lines against the melanoma-associated antigen tyrosinase via TCR gene transfer. Eur J Immunol 2019; 49:1278-1290. [PMID: 31054264 DOI: 10.1002/eji.201948140] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 05/02/2019] [Indexed: 11/11/2022]
Abstract
Introduction of Chimeric Antigen Receptors to NK cells has so far been the main practical method for targeting NK cells to specific surface antigens. In contrast, T cell receptor (TCR) gene delivery can supply large populations of cytotoxic T-lymphocytes (CTL) targeted against intracellular antigens. However, a major barrier in the development of safe CTL-TCR therapies exists, wherein the mispairing of endogenous and genetically transferred TCR subunits leads to formation of TCRs with off-target specificity. To overcome this and enable specific intracellular antigen targeting, we have tested the use of NK cells for TCR gene transfer to human cells. Our results show that ectopic expression of TCR α/β chains, along with CD3 subunits, enables the functional expression of an antigen-specific TCR complex on NK cell lines NK-92 and YTS, demonstrated by using a TCR against the HLA-A2-restricted tyrosinase-derived melanoma epitope, Tyr368-377 . Most importantly, the introduction of a TCR complex to NK cell lines enables MHC-restricted, antigen-specific killing of tumor cells both in vitro and in vivo. Targeting of NK cells via TCR gene delivery stands out as a novel tool in the field of adoptive immunotherapy which can also overcome the major hurdle of "mispairing" in TCR gene therapy.
Collapse
Affiliation(s)
- Ayhan Parlar
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ece Canan Sayitoglu
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Didem Ozkazanc
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Anna-Maria Georgoudaki
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Cevriye Pamukcu
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Mertkaya Aras
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Benjamin J Josey
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Michael Chrobok
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Suzanne Branecki
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Pegah Zahedimaram
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Lolai Ikromzoda
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Evren Alici
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Batu Erman
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Adil D Duru
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tolga Sutlu
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey
| |
Collapse
|
40
|
Tendeiro Rego R, Morris EC, Lowdell MW. T-cell receptor gene-modified cells: past promises, present methodologies and future challenges. Cytotherapy 2019; 21:341-357. [PMID: 30655164 DOI: 10.1016/j.jcyt.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Immunotherapy constitutes an exciting and rapidly evolving field, and the demonstration that genetically modified T-cell receptors (TCRs) can be used to produce T-lymphocyte populations of desired specificity offers new opportunities for antigen-specific T-cell therapy. Overall, TCR-modified T cells have the ability to target a wide variety of self and non-self targets through the normal biology of a T cell. Although major histocompatibility complex (MHC)-restricted and dependent on co-receptors, genetically engineered TCRs still present a number of characteristics that ensure they are an important alternative strategy to chimeric antigen receptors (CARs), and high-affinity TCRs can now be successfully engineered with the potential to enhance therapeutic efficacy while minimizing adverse events. This review will focus on the main characteristics of TCR gene-modified cells, their potential clinical application and promise to the field of adoptive cell transfer (ACT), basic manufacturing procedures and characterization protocols and overall challenges that need to be overcome so that redirection of TCR specificity may be successfully translated into clinical practice, beyond early-phase clinical trials.
Collapse
Affiliation(s)
- Rita Tendeiro Rego
- UCL Institute of Immunity and Transplantation, London, UK; Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, UK
| | - Emma C Morris
- UCL Institute of Immunity and Transplantation, London, UK
| | - Mark W Lowdell
- UCL Cancer Institute, Department of Haematology, London, UK
| |
Collapse
|
41
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
42
|
Wolf B, Zimmermann S, Arber C, Irving M, Trueb L, Coukos G. Safety and Tolerability of Adoptive Cell Therapy in Cancer. Drug Saf 2019; 42:315-334. [DOI: 10.1007/s40264-018-0779-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Minagawa A, Yoshikawa T, Yasukawa M, Hotta A, Kunitomo M, Iriguchi S, Takiguchi M, Kassai Y, Imai E, Yasui Y, Kawai Y, Zhang R, Uemura Y, Miyoshi H, Nakanishi M, Watanabe A, Hayashi A, Kawana K, Fujii T, Nakatsura T, Kaneko S. Enhancing T Cell Receptor Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell 2018; 23:850-858.e4. [PMID: 30449714 DOI: 10.1016/j.stem.2018.10.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/31/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022]
Abstract
Limited T cell availability and proliferative exhaustion present major barriers to successful T cell-based immunotherapies and may potentially be overcome through the use of "rejuvenated" induced pluripotent stem cells derived from antigen-specific T cells (T-iPSCs). However, strict antigen specificity is essential for safe and efficient T cell immunotherapy. Here, we report that CD8αβ T cells from human T-iPSCs lose their antigen specificity through additional rearrangement of the T cell receptor (TCR) α chain gene during the CD4/CD8 double positive stage of in vitro differentiation. CRISPR knockout of a recombinase gene in the T-iPSCs prevented this additional TCR rearrangement. Moreover, when CD8αβ T cells were differentiated from monocyte-derived iPSCs that were transduced with an antigen-specific TCR, they showed monoclonal expression of the transduced TCR. TCR-stabilized, regenerated CD8αβ T cells effectively inhibit tumor growth in xenograft cancer models. These approaches could contribute to safe and effective regenerative T cell immunotherapies.
Collapse
Affiliation(s)
- Atsutaka Minagawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Toshiaki Yoshikawa
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| | - Akitsu Hotta
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, Japan
| | - Mihoko Kunitomo
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan
| | - Maiko Takiguchi
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Yoshiaki Kassai
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Eri Imai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, Japan
| | - Akira Hayashi
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Regenerative Medicine Unit, Takeda Pharmaceutical Company, Fujisawa, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Japan; Facility for iPS Cell Therapy, CiRA, Kyoto University, Kyoto, Japan.
| |
Collapse
|
44
|
Echchannaoui H, Petschenka J, Ferreira EA, Hauptrock B, Lotz-Jenne C, Voss RH, Theobald M. A Potent Tumor-Reactive p53-Specific Single-Chain TCR without On- or Off-Target Autoimmunity In Vivo. Mol Ther 2018; 27:261-271. [PMID: 30528087 DOI: 10.1016/j.ymthe.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022] Open
Abstract
Genetic engineering of T cells with a T cell receptor (TCR) targeting tumor antigen is a promising strategy for cancer immunotherapy. Inefficient expression of the introduced TCR due to TCR mispairing may limit the efficacy and adversely affect the safety of TCR gene therapy. Here, we evaluated the safety and therapeutic efficiency of an optimized single-chain TCR (scTCR) specific for an HLA-A2.1-restricted (non-mutated) p53(264-272) peptide in adoptive T cell transfer (ACT) models using our unique transgenic mice expressing human p53 and HLA-A2.1 that closely mimic the human setting. Specifically, we showed that adoptive transfer of optimized scTCR-redirected T cells does not induce on-target and off-target autoimmunity. Furthermore, ACT resulted in full tumor protection and led to a long-lived effective, antigen-specific memory T cell response in syngeneic and xenograft models. Taken together, the study demonstrated that our scTCR specific for the broadly expressed tumor-associated antigen p53(264-272) can eradicate p53+A2.1+ tumor cells without inducing off-target or self-directed toxicities in mouse models of ACT. These data strongly support the improved safety and therapeutic efficacy of high-affinity p53scTCR for TCR-based immunotherapy of p53-associated malignancies.
Collapse
Affiliation(s)
- Hakim Echchannaoui
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center (UMC), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; German Consortium for Translational Cancer Research (DKTK), Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jutta Petschenka
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Edite Antunes Ferreira
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Beate Hauptrock
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carina Lotz-Jenne
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ralf-Holger Voss
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Theobald
- Department of Hematology, Oncology, and Pneumology, University Medical Center (UMC) and University Cancer Center (UCT), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center (UMC), Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany; German Consortium for Translational Cancer Research (DKTK), Frankfurt/Mainz, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
Campillo-Davo D, Fujiki F, Van den Bergh JMJ, De Reu H, Smits ELJM, Goossens H, Sugiyama H, Lion E, Berneman ZN, Van Tendeloo V. Efficient and Non-genotoxic RNA-Based Engineering of Human T Cells Using Tumor-Specific T Cell Receptors With Minimal TCR Mispairing. Front Immunol 2018; 9:2503. [PMID: 30464762 PMCID: PMC6234959 DOI: 10.3389/fimmu.2018.02503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic engineering of T cells with tumor specific T-cell receptors (TCR) is a promising strategy to redirect their specificity against cancer cells in adoptive T cell therapy protocols. Most studies are exploiting integrating retro- or lentiviral vectors to permanently introduce the therapeutic TCR, which can pose serious safety issues when treatment-related toxicities would occur. Therefore, we developed a versatile, non-genotoxic transfection method for human unstimulated CD8+ T cells. We describe an optimized double sequential electroporation platform whereby Dicer-substrate small interfering RNAs (DsiRNA) are first introduced to suppress endogenous TCR α and β expression, followed by electroporation with DsiRNA-resistant tumor-specific TCR mRNA. We demonstrate that double sequential electroporation of human primary unstimulated T cells with DsiRNA and TCR mRNA leads to unprecedented levels of transgene TCR expression due to a strongly reduced degree of TCR mispairing. Importantly, superior transgenic TCR expression boosts epitope-specific CD8+ T cell activation and killing activity. Altogether, DsiRNA and TCR mRNA double sequential electroporation is a rapid, non-integrating and highly efficient approach with an enhanced biosafety profile to engineer T cells with antigen-specific TCRs for use in early phase clinical trials.
Collapse
Affiliation(s)
- Diana Campillo-Davo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Johan M J Van den Bergh
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Evelien L J M Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Faculty of Medicine and Health Sciences, Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Division of Clinical Biology, Antwerp University Hospital, Edegem, Belgium
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Division of Hematology, Antwerp University Hospital, Edegem, Belgium
| | - Viggo Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
46
|
Consonni M, Dellabona P, Casorati G. Potential advantages of CD1-restricted T cell immunotherapy in cancer. Mol Immunol 2018; 103:200-208. [PMID: 30308433 DOI: 10.1016/j.molimm.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-specific "conventional" MHC-restricted T cells obtained from tumor-infiltrating lymphocytes, or derived ex vivo by either antigen-specific expansion or genetic engineering of polyclonal T cell populations, shows great promise for cancer treatment. However, the wide applicability of this therapy finds limits in the high polymorphism of MHC molecules that restricts the use in the autologous context. CD1 antigen presenting molecules are nonpolymorphic and specialized for lipid antigen presentation to T cells. They are often expressed on malignant cells and, therefore, may represent an attractive target for ACT. We provide a brief overview of the CD1-resticted T cell response in tumor immunity and we discuss the pros and cons of ACT approaches based on unconventional CD1-restricted T cells.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy.
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
47
|
Morimoto S, Fujiki F, Kondo K, Nakajima H, Kobayashi Y, Inatome M, Aoyama N, Nishida Y, Tsuboi A, Oka Y, Nishida S, Nakata J, Hosen N, Oji Y, Sugiyama H. Establishment of a novel platform cell line for efficient and precise evaluation of T cell receptor functional avidity. Oncotarget 2018; 9:34132-34141. [PMID: 30344927 PMCID: PMC6183340 DOI: 10.18632/oncotarget.26139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Adoptive T-cell therapy with T cell receptor (TCR) -engineered T cells is an attractive strategy for cancer treatment and the success in this therapy is dependent on the functional avidity of the transduced TCRs against targeted tumor antigens. Therefore, the establishment of the methodology of the efficient and precise evaluation of TCR functional avidity has been awaited. Here, we show a novel platform cell line, named 2D3, which enables the functional avidity of transduced TCRs to be evaluated efficiently and precisely. In the 2D3, the precise TCR functional avidity of transduced TCRs is easily evaluable by the expression of green fluorescent protein (GFP) reporter gene driven by nuclear factor of activated T cells (NFAT) activation via TCR signaling. Four different TCRs of HLA-A*24:02-restricted Wilms’ tumor gene 1 (WT1)-specific CD8+ cytotoxic T lymphocytes (CTLs) were transduced into 2D3 cells and the functional avidities of these four TCRs were evaluated. The evaluated functional avidity of these TCRs positively correlated with cell proliferation, cytokine production, and WT1-specific cytotoxicity of the TCR-transduced CD8+ T cells in response to WT1 antigen. These results showed that 2D3 cell line was a novel and stable tool useful for the efficient and precise evaluation of the functional avidity of isolated and transduced TCRs in developing TCR-based immunotherapy.
Collapse
Affiliation(s)
- Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenta Kondo
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Kobayashi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miki Inatome
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nao Aoyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuya Nishida
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Immunopathology, Immunology Frontier Research Center (World Premier International Research Center), Osaka University, Osaka, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakata
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
48
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
49
|
Prevention and treatment of relapse after stem cell transplantation by cellular therapies. Bone Marrow Transplant 2018; 54:26-34. [PMID: 29795426 DOI: 10.1038/s41409-018-0227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/27/2022]
Abstract
Despite recent advances in reducing therapy-related mortality after allogeneic stem cell transplantation (alloSCT) relapse remains the major cause of treatment failure and little progress has been achieved in the last decades. At the 3rd International Workshop on Biology, Prevention, and Treatment of Relapse held in Hamburg/Germany in November 2016 international experts presented and discussed recent developments in the field. Here, the potential of cellular therapies including unspecific and specific T cells, genetically modified T cells, CAR-T cells, NK-cells, and second allografting in prevention and treatment of relapse after alloSCT are summarized.
Collapse
|
50
|
Liu X, Zhao Y. CRISPR/Cas9 genome editing: Fueling the revolution in cancer immunotherapy. Curr Res Transl Med 2018; 66:39-42. [DOI: 10.1016/j.retram.2018.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
|