1
|
Hong KS, Ryu KJ, Kim H, Kim M, Park SH, Kim T, Yang JW, Hwangbo C, Kim KD, Park YJ, Yoo J. MSK1 promotes colorectal cancer metastasis by increasing Snail protein stability through USP5-mediated Snail deubiquitination. Exp Mol Med 2025; 57:820-835. [PMID: 40164688 PMCID: PMC12046000 DOI: 10.1038/s12276-025-01433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
Mitogen- and stress-activated protein kinase 1 (MSK1), a Ser/Thr kinase, phosphorylates nuclear proteins to increase their stability and DNA-binding affinity. Despite the role of MSK1 in promoting cancer progression in colorectal cancer (CRC), the precise molecular mechanisms remain unelucidated. Here we show that MSK1 expression induces the epithelial-mesenchymal transition (EMT) process and increases CRC cell metastasis. Furthermore, we discovered that MSK1 interacts with Snail, a key EMT regulator, and increases its stability by inhibiting ubiquitin-mediated proteasomal degradation. Importantly, MSK1 increased Snail protein stability by promoting deubiquitination rather than inhibiting its ubiquitination. Finally, we identified USP5 as an essential deubiquitinase that binds to Snail protein phosphorylated by MSK1. Based on the experimental data, in CRC, MSK1-Snail-USP5 axis can promote EMT and metastasis of CRC. Together, our findings provide potential biomarkers and novel therapeutic targets for further research in CRC.
Collapse
Affiliation(s)
- Keun-Seok Hong
- Department of Bio and Medical Bigdata (Brain Korea 21 Four), Gyeongsang National University, Jinju, Republic of Korea
- Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki-Jun Ryu
- Department of Biochemistry and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hyemin Kim
- Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
2
|
Ryu KJ, Lee KW, Park SH, Kim T, Hong KS, Kim H, Kim M, Ok DW, Kwon GNB, Park YJ, Kwon HK, Hwangbo C, Kim KD, Lee JE, Yoo J. Chaperone-mediated autophagy modulates Snail protein stability: implications for breast cancer metastasis. Mol Cancer 2024; 23:227. [PMID: 39390584 PMCID: PMC11468019 DOI: 10.1186/s12943-024-02138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer remains a significant health concern, with triple-negative breast cancer (TNBC) being an aggressive subtype with poor prognosis. Epithelial-mesenchymal transition (EMT) is important in early-stage tumor to invasive malignancy progression. Snail, a central EMT component, is tightly regulated and may be subjected to proteasomal degradation. We report a novel proteasomal independent pathway involving chaperone-mediated autophagy (CMA) in Snail degradation, mediated via its cytosolic interaction with HSC70 and lysosomal targeting, which prevented its accumulation in luminal-type breast cancer cells. Conversely, Snail predominantly localized to the nucleus, thus evading CMA-mediated degradation in TNBC cells. Starvation-induced CMA activation downregulated Snail in TNBC cells by promoting cytoplasmic translocation. Evasion of CMA-mediated Snail degradation induced EMT, and enhanced metastatic potential of luminal-type breast cancer cells. Our findings elucidate a previously unrecognized role of CMA in Snail regulation, highlight its significance in breast cancer, and provide a potential therapeutic target for clinical interventions.
Collapse
Affiliation(s)
- Ki-Jun Ryu
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Ki Won Lee
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Taeyoung Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Hyemin Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Minju Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Dong Woo Ok
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Gu Neut Bom Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyuk-Kwon Kwon
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - J Eugene Lee
- Division of Biometrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (Brain Korea 21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
3
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
4
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
5
|
Cilleros-Rodríguez D, Toledo-Lobo MV, Martínez-Martínez D, Baquero P, Angulo JC, Chiloeches A, Iglesias T, Lasa M. Protein kinase D activity is a risk biomarker in prostate cancer that drives cell invasion by a Snail/ERK dependent mechanism. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166851. [PMID: 37611675 DOI: 10.1016/j.bbadis.2023.166851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Protein kinase D (PKD) family members play controversial roles in prostate cancer (PC). Thus, PKD1 is nearly absent in advanced tumours, where PKD2 and PKD3 are upregulated. Additionally, consequences of activation of these kinases on PC progression remain largely unclear. Here, we first investigated PKD function on PC cell motility, analysing the underlying molecular mechanisms. We find a striking decrease of Snail levels after PKD inhibition followed by cell migration and invasion impairment, demonstrating an unprecedented role of PKD activity on the regulation of this key transcription factor in PC progression. Specifically, we show that PKD2 activity mediates the effects of MEK/ERK pathway on Snail expression, establishing a joint function of ERK/PKD2/Snail cascade in PC cell invasion regulation. These results led us to address the clinical relevance of the correlation between PKD2 and ERK activities with Snail abundance in samples from PC patients at different stages, analysing its impact on tumour prognosis and patients´ survival. Importantly, this is the first study defining a direct correlation between active PKD2 and Snail levels, further linked to ERK activity. We also evidence that PKD2 activity is associated with important poor prognostic factors. Thus, PC patients with the expression pattern: active PKD2high/active ERKhigh/Snailhigh exhibit increased invasiveness and metastasis, and decreased survival. Our findings provide new insights for understanding the molecular mechanisms involved in PC progression, pinpointing the combination of active PKD2 and Snail levels, with the additional measurement of active ERK, as a confident biomarker to predict clinical outcome of patients with advanced PC.
Collapse
Affiliation(s)
- Darío Cilleros-Rodríguez
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Val Toledo-Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Madrid, Spain; IRYCIS, Instituto de Investigaciones Sanitarias Ramón y Cajal, Madrid, Spain
| | - Desirée Martínez-Martínez
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Baquero
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Javier C Angulo
- Servicio de Urología, Hospital Universitario de Getafe, Madrid, Spain
| | - Antonio Chiloeches
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - Teresa Iglesias
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neuro-degenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Lasa
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
6
|
Asante DM, Sreekumar A, Nathani S, Lee TJ, Sharma A, Patel N, Simmons MN, Saini S. miR-410 Is a Key Regulator of Epithelial-to-Mesenchymal Transition with Biphasic Role in Prostate Cancer. Cancers (Basel) 2023; 16:48. [PMID: 38201476 PMCID: PMC10777946 DOI: 10.3390/cancers16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The molecular basis of prostate cancer (PCa) progression from the primary disease to metastatic castration-resistant prostate cancer (CRPC) followed by therapy-induced neuroendocrine prostate cancer is not fully understood. In this study, we elucidate the role of miR-410, a little-studied microRNA located on chromosome 14q32.31 within the DLK1-DIO3 cluster, in PCa. miR-410 expression analyses in primary and metastatic PCa tissues and cell lines show that its levels are decreased in initial stages and increased in advanced PCa. Functional studies were performed in a series of PCa cell lines. In LNCaP cells, miR-410 overexpression led to decreases in cellular viability, proliferation, invasiveness, and migration. On the other hand, miR-410 overexpression in PC3 and C42B cells led to increased viability, proliferation, and invasiveness. Our data suggest that miR-410 represses epithelial-to-mesenchymal transition (EMT) in LNCaP cells by directly repressing SNAIL. However, it promotes EMT and upregulates PI3K/Akt signaling in PC3 and C42B cells. In vivo studies with PC3 xenografts support an oncogenic role of miR-410. These data suggest that miR-410 acts as a tumor suppressor in the initial stages of PCa and play an oncogenic role in advanced PCa. Our findings have important implications in understanding the molecular basis of PCa progression with potential translational implications.
Collapse
Affiliation(s)
- Diana M. Asante
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Sandip Nathani
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| | - Tae Jin Lee
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (T.J.L.); (A.S.)
| | - Ashok Sharma
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (T.J.L.); (A.S.)
| | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA 30912, USA;
| | | | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA; (D.M.A.); (A.S.); (S.N.)
| |
Collapse
|
7
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 PMCID: PMC10298523 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece;
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
8
|
Gutiérrez-Galindo E, Yilmaz ZH, Hausser A. Membrane trafficking in breast cancer progression: protein kinase D comes into play. Front Cell Dev Biol 2023; 11:1173387. [PMID: 37293129 PMCID: PMC10246754 DOI: 10.3389/fcell.2023.1173387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family that controls important cellular functions, most notably playing a key role in the secretory pathway at the trans-Golgi network. Aberrant expression of PKD isoforms has been found mainly in breast cancer, where it promotes various cellular processes such as growth, invasion, survival and stem cell maintenance. In this review, we discuss the isoform-specific functions of PKD in breast cancer progression, with a particular focus on how the PKD controlled cellular processes might be linked to deregulated membrane trafficking and secretion. We further highlight the challenges of a therapeutic approach targeting PKD to prevent breast cancer progression.
Collapse
Affiliation(s)
| | - Zeynep Hazal Yilmaz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
9
|
Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med (Berl) 2023; 101:341-349. [PMID: 36843036 DOI: 10.1007/s00109-023-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.
Collapse
|
10
|
Afatinib Reverses EMT via Inhibiting CD44-Stat3 Axis to Promote Radiosensitivity in Nasopharyngeal Carcinoma. Pharmaceuticals (Basel) 2022; 16:ph16010037. [PMID: 36678534 PMCID: PMC9864417 DOI: 10.3390/ph16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Afatinib, a second-generation tyrosine kinase inhibitor (TKI), exerts its radiosensitive effects in nasopharyngeal carcinoma (NPC). However, the detailed mechanism of afatinib-mediated sensitivity to radiation is still obscure in NPC. METHODS Quantitative phosphorylated proteomics and bioinformatics analysis were performed to illustrate the global phosphoprotein changes. The activity of the CD44-Stat3 axis and Epithelial-Mesenchymal Transition (EMT)-linked markers were evaluated by Western blotting. Wound healing and transwell assays were used to determine the levels of cell migration upon afatinib combined IR treatment. Cell proliferation was tested by CCK-8 assay. A pharmacological agonist by IL-6 was applied to activate Stat3. The xenograft mouse model was treated with afatinib, radiation or a combination of afatinib and radiation to detect the radiosensitivity of afatinib in vivo. RESULTS In the present study, we discovered that afatinib triggered global protein phosphorylation alterations in NPC cells. Further, bioinformatics analysis indicated that afatinib inhibited the CD44-Stat3 signaling and subsequent EMT process. Moreover, functional assays demonstrated that afatinib combined radiation treatment remarkably impeded cell viability, migration, EMT process and CD44-Stat3 activity in vitro and in vivo. In addition, pharmacological stimulation of Stat3 rescued radiosensitivity and biological functions induced by afatinib in NPC cells. This suggested that afatinib reversed the EMT process by blocking the activity of the CD44-Stat3 axis. CONCLUSION Collectively, this work identifies the molecular mechanism of afatinib as a radiation sensitizer, thus providing a potentially useful combination treatment and drug target for NPC radiosensitization. Our findings describe a new function of afatinib in radiosensitivity and cancer treatment.
Collapse
|
11
|
Wu J, Chen G, Wang W, Yang Y, Yuan Y, Shang A, Quan W, Wang L. GTPBP4: A New Therapeutic Target Gene Promotes Tumor Progression in Non-Small Cell Lung Cancer via EMT. JOURNAL OF ONCOLOGY 2022; 2022:2164897. [PMID: 36405249 PMCID: PMC9674418 DOI: 10.1155/2022/2164897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 09/03/2023]
Abstract
Lung cancer has a complex etiology involving multiple regulatory systems. Uncertainty about the biology and evolution of lung cancer has made it difficult to improve its poor prognosis. To create efficient therapeutic targets and optimal molecular screening tools for lung cancer, the most important task seems to be to understand how it develops and progresses. The expression and regulation of GTPBP4 in non-small cell lung cancer (NSCLC) are not well understood. Using methods such as knocking down GTPBP4 in lung cancer cells and establishing a mouse lung cancer model, we found that the expression of GTPBP4 was upregulated in human lung adenocarcinoma cells and tissues, and that knocking down the expression of the GTPBP4 gene in A549 and Calu-1 lung adenocarcinoma cells can inhibit the proliferation of lung adenocarcinoma cells and reduce their invasion ability. The results of the mouse lung cancer model showed that the lung weight and the number of lung surface nodules decreased significantly in the LLC-GTPBP4 KO group. The mechanism by which GTPBP4 regulation affects the progression of lung adenocarcinoma may be related to the regulation of EMT. From this study, new research ideas emerge to explore GTPBP4 as a biomarker and therapeutic target for early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Junlu Wu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Center for Laboratory Medicine and School of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan 750003, Ningxia, China
| | - Guofei Chen
- Department of Laboratory Medicine, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou 215101, China
| | - Weiwei Wang
- Department of Pathology, Tinghu People's Hospital of Yancheng City, Yancheng 224001, Jiangsu, China
| | - Yang Yang
- Department of Radiology, Luodian Hospital, Baoshan District, Shanghai 201908, China
| | - Yi Yuan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Anquan Shang
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Wenqiang Quan
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Lixin Wang
- Center for Laboratory Medicine and School of Clinical Medicine, General Hospital of Ningxia Medical University, Yinchuan 750003, Ningxia, China
- Center for Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
12
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 400] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Circulating and non-circulating proteins and nucleic acids as biomarkers and therapeutic molecules in ovarian cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Xie W, Jiang Q, Wu X, Wang L, Gao B, Sun Z, Zhang X, Bu L, Lin Y, Huang Q, Li J, Guo J. IKBKE phosphorylates and stabilizes Snail to promote breast cancer invasion and metastasis. Cell Death Differ 2022; 29:1528-1540. [PMID: 35066576 PMCID: PMC9345937 DOI: 10.1038/s41418-022-00940-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
IKBKE, a non-canonical inflammatory kinase, is frequently amplified or activated, and plays predominantly oncogenic roles in human cancers, especially in breast cancer. However, the potential function and underlying mechanism of IKBKE contributing to breast cancer metastasis remain largely elusive. Here, we report that depletion of Ikbke markedly decreases polyoma virus middle T antigen (PyVMT)-induced mouse mammary tumorigenesis and subsequent lung metastasis. Biologically, ectopic expression of IKBKE accelerates, whereas depletion of IKBKE attenuates breast cancer invasiveness and migration in vitro and tumor metastasis in vivo. Mechanistically, IKBKE tightly controls the stability of transcriptional factor Snail in different layers, in particular by directly phosphorylating Snail, which markedly blocks the E3 ligase β-TRCP1-mediated Snail degradation, resulting in breast cancer epithelial-mesenchymal transition (EMT) and metastasis. These findings together reveal a novel oncogenic function of IKBKE in promoting breast cancer metastasis by governing Snail abundance, and highlight the potential of targeting IKBKE for metastatic breast cancer therapies.
Collapse
|
15
|
Spano D, Colanzi A. Golgi Complex: A Signaling Hub in Cancer. Cells 2022; 11:1990. [PMID: 35805075 PMCID: PMC9265605 DOI: 10.3390/cells11131990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/01/2023] Open
Abstract
The Golgi Complex is the central hub in the endomembrane system and serves not only as a biosynthetic and processing center but also as a trafficking and sorting station for glycoproteins and lipids. In addition, it is an active signaling hub involved in the regulation of multiple cellular processes, including cell polarity, motility, growth, autophagy, apoptosis, inflammation, DNA repair and stress responses. As such, the dysregulation of the Golgi Complex-centered signaling cascades contributes to the onset of several pathological conditions, including cancer. This review summarizes the current knowledge on the signaling pathways regulated by the Golgi Complex and implicated in promoting cancer hallmarks and tumor progression.
Collapse
Affiliation(s)
- Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy;
| |
Collapse
|
16
|
Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 2022; 79:182. [PMID: 35278142 PMCID: PMC8918127 DOI: 10.1007/s00018-022-04199-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
The dynamic transition between epithelial-like and mesenchymal-like cell states has been a focus for extensive investigation for decades, reflective of the importance of Epithelial-Mesenchymal Transition (EMT) through development, in the adult, and the contributing role EMT has to pathologies including metastasis and fibrosis. Not surprisingly, regulation of the complex genetic networks that underlie EMT have been attributed to multiple transcription factors and microRNAs. What is surprising, however, are the sheer number of different regulators (hundreds of transcription factors and microRNAs) for which critical roles have been described. This review seeks not to collate these studies, but to provide a perspective on the fundamental question of whether it is really feasible that so many regulators play important roles and if so, what does this tell us about EMT and more generally, the genetic machinery that controls complex biological processes.
Collapse
|
17
|
Hamidi AA, Zangoue M, Kashani D, Zangouei AS, Rahimi HR, Abbaszadegan MR, Moghbeli M. MicroRNA-217: a therapeutic and diagnostic tumor marker. Expert Rev Mol Diagn 2021; 22:61-76. [PMID: 34883033 DOI: 10.1080/14737159.2022.2017284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cancer as one of the most common causes of death has always been one of the major health challenges globally. Since, the identification of tumors in the early tumor stages can significantly reduce mortality rates; it is required to introduce novel early detection tumor markers. MicroRNAs (miRNAs) have pivotal roles in regulation of cell proliferation, migration, apoptosis, and tumor progression. Moreover, due to the higher stability of miRNAs than mRNAs in body fluids, they can be considered as non-invasive diagnostic or prognostic markers in cancer patients. AREAS COVERED In the present review we have summarized the role of miR-217 during tumor progressions. The miR-217 functions were categorized based on its target molecular mechanisms and signaling pathways. EXPERT OPINION It was observed that miR-217 mainly exerts its function by regulation of the transcription factors during tumor progressions. The WNT, MAPK, and PI3K/AKT signaling pathways were also important molecular targets of miR-217 in different cancers. The present review clarifies the molecular biology of miR-217 and paves the way of introducing miR-217 as a non-invasive diagnostic marker and therapeutic target in cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Daniel Kashani
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
LncRNA PTPRG-AS1 Promotes the Metastasis of Hepatocellular Carcinoma by Enhancing YWHAG. JOURNAL OF ONCOLOGY 2021; 2021:3624306. [PMID: 34876904 PMCID: PMC8645374 DOI: 10.1155/2021/3624306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
Objectives Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. LncRNA PTPRG-AS1 (PTPRG-AS1) has been confirmed to function as a regulator in various cancers, whose function during HCC tumorigenesis is still not clear now. Thus, we aim to dig out the biological function and its mechanisms of PTPRG-AS1 in HCC. Methods PTPRG-AS1 relative expression in tissues and cells was detected and analyzed using real-time quantitative PCR (qRT-PCR). Subcellular distribution of PTPRG-AS1 was examined by FISH experiments. The effects of PTPRG-AS1 in the growth of HCC were studied by in vitro CCK-8 experiments, transwell invasion experiments, and in vivo xenograft tumor experiments. Dual-Luciferase reporter assay was performed to verify the interaction between PTPRG-AS1 and miR-199a-3p or miR-199a-3p and its target gene, YWHAG. Results PTPRG-AS1 was upregulated in HCC tissues compared with adjacent normal tissues. We identified PTPRG-AS1 mainly localized in the cytoplasm of HCC cells. Downregulation of PTPRG-AS1 suppressed HCC progression, while overexpression of PTPRG-AS1 showed the opposite effects. Furthermore, PTPRG-AS1 served as a miR-199a-3p sponge and positively regulated YWHAG expression. Besides, PTPRG-AS1 could promote HCC through miR-199a-3p/YWHAG axis. Conclusions Taken together, we demonstrated PTPRG-AS1 may serve as a ceRNA and reversely regulates the expression of miR-199a-3p, thus facilitating HCC tumorigenesis and metastasis, which is expected to provide new clues for the treatment of HCC.
Collapse
|
19
|
Du Y, Lv D, Cui B, Li X, Chen H, Kang Y, Chen Q, Feng Y, Zhang P, Chen J, Zhou X. Protein kinase D1 induced epithelial-mesenchymal transition and invasion in salivary adenoid cystic carcinoma via E-cadherin/Snail regulation. Oral Dis 2021; 28:1539-1554. [PMID: 34351044 DOI: 10.1111/odi.13991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Salivary adenoid cystic carcinoma (SACC) is a malignant tumor, which is characterized by a higher incidence of distant metastasis. The aim of this study was to investigate the role and mechanism of protein kinase D1 (PKD1) in regulating the epithelial-mesenchymal transition (EMT) and promotes the metastasis in SACC. We analyzed the expression of PKD1 in 40 SACC patients and different metastatic potential cell lines. Then, we investigated whether the migration and growth of SACC were regulated by PKD1 using shRNA interference or inhibition of kinase active in vitro cell. Moreover, the mechanism by which PKD1 regulates the stability of Snail protein was determined. Finally, nude mice were used to testify the function of PKD1 via tail vein injection. PKD1 was correlated with metastasis and poor prognosis of SACC patients. PKD1 inhibition attenuated proliferation, migration, invasion, and EMT of SACC cells. Conversely, kinase active PKD1 could induce EMT and promoted cell migration in human HSG cell. Furthermore, downregulation of PKD1 regulated Snail via phosphorylation at Ser-11 on Snail protein and promotion of proteasome-mediated degradation, and reduced lung metastasis in vivo. Our results suggest that PKD1 induces the EMT and promotes the metastasis, which illustrate that PKD1 may be a potential prognostic biomarker and serve as a potential therapeutic target for SACC patients.
Collapse
Affiliation(s)
- Yue Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Die Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Zhang X, Hu Z, Wang X, Li L, Zhu B, Lin X, Zhang J, Hua Z. ANXA10 promotes melanoma metastasis by suppressing E3 ligase TRIM41-directed PKD1 degradation. Cancer Lett 2021; 519:237-249. [PMID: 34324862 DOI: 10.1016/j.canlet.2021.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Melanoma is a highly metastatic cancer that requires effective and targeted curative therapy. Annexin A10 (ANXA10), a member of the annexin family, is a calcium- and phospholipid-binding protein. Considerable evidence indicates that ANXA10 is involved in tumour progression, but little is known about its role in melanoma development. In this study, we find that ANXA10 expression is significantly upregulated, and correlates with melanoma progression. ANXA10 knockout profoundly reduces cell migration and the metastatic activity of melanoma. In addition, ANXA10 knockout induces the N- to E-cadherin switch by upregulating SMAD6, an inhibitory SMAD in the TGF-β/SMAD pathway. The negative regulation of SMAD6 by ANXA10 is dependent on PKD1. ANXA10 interacts with PKD1 and inhibits E3 ligase TRIM41-targeted PKD1 degradation. In B16F10 melanoma cells, protein levels of ANXA10 and PKD1 are inversely correlated with SMAD6 level, but correlated with cell migration. Interestingly, ANXA10 and SMAD6 levels are inversely correlated in clinical samples of melanoma progression. Our findings suggest that the ANXA10-PKD1-SMAD6 axis is a new target for therapeutic strategies against melanoma metastasis.
Collapse
Affiliation(s)
- Xuerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| | - Zhaoqing Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinran Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Banghui Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaolei Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China; School of Biopharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
21
|
Winter M, Rokavec M, Hermeking H. 14-3-3σ Functions as an Intestinal Tumor Suppressor. Cancer Res 2021; 81:3621-3634. [PMID: 34224368 DOI: 10.1158/0008-5472.can-20-4192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/09/2022]
Abstract
Although the 14-3-3σ gene was initially identified as a p53 target gene in colorectal cancer cells, its potential role in intestinal tumorigenesis has remained unknown. Here we determined that 14-3-3σ expression is significantly downregulated in primary human colorectal cancer when compared with adjacent normal colonic tissue in patient samples. Downregulation of 14-3-3σ in primary colorectal cancers was significantly associated with p53 mutation, increasing tumor stage, distant metastasis, and poor patient survival. Poor survival was more significantly associated with decreased 14-3-3σ expression in p53 wild-type than in p53-mutant colorectal cancers. 14-3-3σ expression was detected in enterocytes of the transit amplifying zone and gradually increased towards the apical villi in the small intestinal epithelium. In small and large intestinal epithelia and adenomas, 14-3-3σ expression was upregulated in differentiated areas. Deletion of 14-3-3σ in ApcMin mice increased the number and size of adenomas in the small intestine and colon, shortening the median survival by 64 days. 14-3-3σ-deficient adenomas displayed increased proliferation and decreased apoptosis, as well as increased dysplasia. In adenomas, loss of 14-3-3σ promoted acquisition of a mesenchymal-like gene expression signature, which was also found in colorectal cancers from patients with poor relapse-free survival. The transcriptional programs controlled by the 14-3-3σ-interacting factors SNAIL, c-JUN, YAP1, and FOXO1 were activated by deletion of 14-3-3σ, potentially contributing to the enhanced tumor formation and growth. Taken together, these results provide genetic evidence of a tumor-suppressor function of 14-3-3σ in the intestine. SIGNIFICANCE: Downregulation of 14-3-3σ in colorectal cancer is associated with metastasis and poor survival of patients, and its inactivation in a murine tumor model drives intestinal tumor formation and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Markus Winter
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany
| | - Matjaž Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University München, Munich, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Kang E, Seo J, Yoon H, Cho S. The Post-Translational Regulation of Epithelial-Mesenchymal Transition-Inducing Transcription Factors in Cancer Metastasis. Int J Mol Sci 2021; 22:3591. [PMID: 33808323 PMCID: PMC8037257 DOI: 10.3390/ijms22073591] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is generally observed in normal embryogenesis and wound healing. However, this process can occur in cancer cells and lead to metastasis. The contribution of EMT in both development and pathology has been studied widely. This transition requires the up- and down-regulation of specific proteins, both of which are regulated by EMT-inducing transcription factors (EMT-TFs), mainly represented by the families of Snail, Twist, and ZEB proteins. This review highlights the roles of key EMT-TFs and their post-translational regulation in cancer metastasis.
Collapse
Affiliation(s)
| | | | | | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (E.K.); (J.S.); (H.Y.)
| |
Collapse
|
23
|
Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules 2021; 11:biom11030483. [PMID: 33807058 PMCID: PMC8005150 DOI: 10.3390/biom11030483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine protein kinases operating in the signaling network of the second messenger diacylglycerol. The three family members, PKD1, PKD2, and PKD3, are activated by a variety of extracellular stimuli and transduce cell signals affecting many aspects of basic cell functions including secretion, migration, proliferation, survival, angiogenesis, and immune response. Dysregulation of PKD in expression and activity has been detected in many human diseases. Further loss- or gain-of-function studies at cellular levels and in animal models provide strong support for crucial roles of PKD in many pathological conditions, including cancer, metabolic disorders, cardiac diseases, central nervous system disorders, inflammatory diseases, and immune dysregulation. Complexity in enzymatic regulation and function is evident as PKD isoforms may act differently in different biological systems and disease models, and understanding the molecular mechanisms underlying these differences and their biological significance in vivo is essential for the development of safer and more effective PKD-targeted therapies. In this review, to provide a global understanding of PKD function, we present an overview of the PKD family in several major human diseases with more focus on cancer-associated biological processes.
Collapse
|
24
|
Stabilization of snail maintains the sorafenib resistance of hepatocellular carcinoma cells. Arch Biochem Biophys 2021; 699:108754. [PMID: 33450239 DOI: 10.1016/j.abb.2021.108754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance is one of the major challenges for treatment of hepatocellular carcinoma (HCC) with sorafenib. Our present study found that sorafenib resistant (SR) HCC cells showed epithelial-mesenchymal transition (EMT) characteristics with the downregulation of epithelial marker and upregulation of mesenchymal makers. The expression of Snail, a core factor of EMT, was increased in HCC/SR cells, while knockdown of Snail can restore sorafenib sensitivity and EMT potential of HCC/SR cells. Further, the upregulation of protein stability was responsible for the upregulation of Snail in HCC/SR cells. ATM and CSN2, which can stabilize Snail protein, were increased in HCC/SR cells. Knockdown of ATM and CSN2 can suppress the expression of Snail and increase sorafenib sensitivity of HCC/SR cells. It indicated that targeted inhibition of Snail might be helpful to overcome sorafenib resistance of HCC patients.
Collapse
|
25
|
Liu Y, Song H, Zhou Y, Ma X, Xu J, Yu Z, Chen L. The oncogenic role of protein kinase D3 in cancer. J Cancer 2021; 12:735-739. [PMID: 33403031 PMCID: PMC7778554 DOI: 10.7150/jca.50899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/30/2020] [Indexed: 01/12/2023] Open
Abstract
Protein kinase D3 (PRKD3), a serine/threonine kinase, belongs to protein kinase D family, which contains three members: PRKD1, PRKD2, and PRKD3. PRKD3 is activated by many stimuli including phorbol esters, and G-protein-coupled receptor agonists. PRKD3 promotes cancer cell proliferation, growth, migration, and invasion in various tumor types including colorectal, gastric, hepatic, prostate, and breast cancer. Accumulating data supports that PRKD3 is a promising therapeutic target for treatment of cancer. This review discusses the functions and mechanisms of PRKD3 in promoting tumorigenesis and tumor progression of various tumor types as well as the latest developments of small-molecule inhibitors selection for PRKD/PRKD3.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of cancer, Department of biochemistry, College of Life Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, P. R.China
| | - Yehui Zhou
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, P. R. China
| | - Xinxing Ma
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, P. R. China
| | - Jing Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, P. R.China
| | - Zhenghong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P. R.China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Institute of cancer, Department of biochemistry, College of Life Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
26
|
Huang H, Fu Y, Zhang Y, Peng F, Lu M, Feng Y, Chen L, Chen Z, Li M, Chen Y. Dissection of Anti-tumor Activity of Histone Deacetylase Inhibitor SAHA in Nasopharyngeal Carcinoma Cells via Quantitative Phosphoproteomics. Front Cell Dev Biol 2020; 8:577784. [PMID: 33324635 PMCID: PMC7726116 DOI: 10.3389/fcell.2020.577784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA), a pan HDAC inhibitor, has been approved by the Food and Drug Administration (FDA) to treat cutaneous T cell lymphoma (CTCL). Nevertheless, the mechanisms underlying the therapeutic effects of SAHA on tumors are yet not fully understood. Protein phosphorylation is one of the most important means to regulate key biological processes (BPs), such as cell division, growth, migration, differentiation, and intercellular communication. Thus, investigation on the impacts of SAHA treatment on global cellular phosphorylation covering major signaling pathways deepens our understanding on its anti-tumor mechanisms. Here we comprehensively identified and quantified protein phosphorylation for the first time in nasopharyngeal carcinoma (NPC) cells upon SAHA treatment by combining tandem mass tags (TMTs)-based quantitative proteomics and titanium dioxide (TiO2)-based phosphopeptide enrichment. In total, 7,430 phosphorylation sites on 2,456 phosphoproteins were identified in the NPC cell line 5-8F, of which 1,176 phosphorylation sites on 528 phosphoproteins were significantly elevated upon SAHA treatment. Gene ontology (GO) analysis showed that SAHA influenced several BPs, including mRNA/DNA processing and cell cycle. Furthermore, signaling pathway analysis and immunoblotting demonstrated that SAHA activated tumor suppressors like p53 and Rb1 via phosphorylation and promoted cell apoptosis in NPC cells but inactivated energetic pathways such as AMPK signaling. Overall, our study indicated that SAHA exerted anti-tumor roles in NPC cells, which may serve as novel therapeutic for NPC patients.
Collapse
Affiliation(s)
- Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Ying Fu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Fang Peng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Yilu Feng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.,Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.,Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Gilles P, Kashyap RS, Freitas MJ, Ceusters S, Van Asch K, Janssens A, De Jonghe S, Persoons L, Cobbaut M, Daelemans D, Van Lint J, Voet AR, De Borggraeve WM. Design, synthesis and biological evaluation of pyrazolo[3,4-d]pyrimidine-based protein kinase D inhibitors. Eur J Med Chem 2020; 205:112638. [DOI: 10.1016/j.ejmech.2020.112638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
|
28
|
Alter S, Zimmer AD, Park M, Gong J, Caliebe A, Fölster-Holst R, Torrelo A, Colmenero I, Steinberg SF, Fischer J. Telangiectasia-ectodermal dysplasia-brachydactyly-cardiac anomaly syndrome is caused by de novo mutations in protein kinase D1. J Med Genet 2020; 58:415-421. [PMID: 32817298 DOI: 10.1136/jmedgenet-2019-106564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND We describe two unrelated patients who display similar clinical features including telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. METHODS We performed trio whole exome sequencing and functional analysis using in vitro kinase assays with recombinant proteins. RESULTS We identified two different de novo mutations in protein kinase D1 (PRKD1, NM_002742.2): c.1774G>C, p.(Gly592Arg) and c.1808G>A, p.(Arg603His), one in each patient. PRKD1 (PKD1, HGNC:9407) encodes a kinase that is a member of the protein kinase D (PKD) family of serine/threonine protein kinases involved in diverse cellular processes such as cell differentiation and proliferation and cell migration as well as vesicle transport and angiogenesis. Functional analysis using in vitro kinase assays with recombinant proteins showed that the mutation c.1808G>A, p.(Arg603His) represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The mutation c.1774G>C, p.(Gly592Arg) in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation. CONCLUSION The present cases represent a syndrome, which associates symptoms from several different organ systems: skin, teeth, bones and heart, caused by heterozygous de novo mutations in PRKD1 and expands the clinical spectrum of PRKD1 mutations, which have hitherto been linked to syndromic congenital heart disease and limb abnormalities.
Collapse
Affiliation(s)
- Svenja Alter
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas David Zimmer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Misun Park
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Jianli Gong
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regina Fölster-Holst
- Department of Dermatology, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Isabel Colmenero
- Department of Pathology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Judith Fischer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
An P, Chen F, Li Z, Ling Y, Peng Y, Zhang H, Li J, Chen Z, Wang H. HDAC8 promotes the dissemination of breast cancer cells via AKT/GSK-3β/Snail signals. Oncogene 2020; 39:4956-4969. [PMID: 32499521 DOI: 10.1038/s41388-020-1337-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022]
Abstract
The mechanistic action of histone deacetylase 8 (HDAC8) in cancer motility, including epithelial-mesenchymal transition (EMT), remains largely undefined. We found that the expression of HDAC8 was upregulated in breast cancer (BC) cells and tissues as compared to the controls. Further, BC tissues had the highest values of HDAC8 expression among 31 kinds of cancers. Cellular study indicated that HDAC8 can positively regulate the dissemination and EMT of BC cells. It increased the protein stability of Snail, an important regulator of EMT, by phosphorylation of its motif 2 in serine-rich regions. There are 21 factors that have been reported to regulate the protein stability of Snail. Among them, HDAC8 can decrease the expression of GSK-3β through increasing its Ser9-phosphorylation. Mass spectrum analysis indicated that HDAC8 interact with AKT1 to decrease its acetylation while increase its phosphorylation, which further increased Ser9-phosphorylation of GSK-3β. The C-terminal of AKT1 was responsible for the interaction between HDAC8 and AKT1. Further, Lys426 was the key residue for HDAC8-regulated deacetylation of AKT1. Moreover, HDAC8/Snail axis acted as adverse prognosis factors for in vivo progression and overall survival (OS) rate of BC patients. Collectively, we found that HDAC8 can trigger the dissemination of BC cells via AKT/GSK-3β/Snail signals, which imposed that inhibition of HDAC8 is a potential approach for BC treatment.
Collapse
Affiliation(s)
- Panpan An
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China
| | - Feng Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China
| | - Zihan Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China
| | - Yuyi Ling
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China
| | - Yanxi Peng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China
| | - Haisheng Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China
| | - Jiexin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, 510006, China.
| |
Collapse
|
31
|
Hybrid Epithelial/Mesenchymal State in Cancer Metastasis: Clinical Significance and Regulatory Mechanisms. Cells 2020; 9:cells9030623. [PMID: 32143517 PMCID: PMC7140395 DOI: 10.3390/cells9030623] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been well recognized for its essential role in cancer progression as well as normal tissue development. In cancer cells, activation of EMT permits the cells to acquire migratory and invasive abilities and stem-like properties. However, simple categorization of cancer cells into epithelial and mesenchymal phenotypes misleads the understanding of the complicated metastatic process, and contradictory results from different studies also indicate the limitation of application of EMT theory in cancer metastasis. Nowadays, growing evidence suggests the existence of an intermediate status between epithelial and mesenchymal phenotypes, i.e., the "hybrid epithelial-mesenchymal (hybrid E/M)" state, provides a possible explanation for those conflicting results. Appearance of hybrid E/M phenotype offers a more plastic status for cancer cells to adapt the stressful environment for proceeding metastasis. In this article, we review the biological importance of the dynamic changes between the epithelial and the mesenchymal states. The regulatory mechanisms encompassing the translational, post-translational, and epigenetic control for this complex and plastic status are also discussed.
Collapse
|
32
|
Leightner AC, Mello Guimaraes Meyers C, Evans MD, Mansky KC, Gopalakrishnan R, Jensen ED. Regulation of Osteoclast Differentiation at Multiple Stages by Protein Kinase D Family Kinases. Int J Mol Sci 2020; 21:ijms21031056. [PMID: 32033440 PMCID: PMC7036879 DOI: 10.3390/ijms21031056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Balanced osteoclast and osteoblast activity is necessary for skeletal health, whereas unbalanced osteoclast activity causes bone loss in many skeletal conditions. A better understanding of pathways that regulate osteoclast differentiation and activity is necessary for the development of new therapies to better manage bone resorption. The roles of Protein Kinase D (PKD) family of serine/threonine kinases in osteoclasts have not been well characterized. In this study we use immunofluorescence analysis to reveal that PKD2 and PKD3, the isoforms expressed in osteoclasts, are found in the nucleus and cytoplasm, the mitotic spindle and midbody, and in association with the actin belt. We show that PKD inhibitors CRT0066101 and CID755673 inhibit several distinct aspects of osteoclast formation. Treating bone marrow macrophages with lower doses of the PKD inhibitors had little effect on M-CSF + RANKL-dependent induction into committed osteoclast precursors, but inhibited their motility and subsequent differentiation into multinucleated mature osteoclasts, whereas higher doses of the PKD inhibitors induced apoptosis of the preosteoclasts. Treating post-fusion multinucleated osteoclasts with the inhibitors disrupted the osteoclast actin belts and impaired their resorptive activity. In conclusion, these data implicate PKD kinases as positive regulators of osteoclasts, which are essential for multiple distinct processes throughout their formation and function.
Collapse
Affiliation(s)
- Amanda C. Leightner
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Carina Mello Guimaraes Meyers
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Michael D. Evans
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D. Jensen
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +1-612-626-4159
| |
Collapse
|
33
|
Yuan B, Yang J, Gu H, Ma C. Down-Regulation of LINC00460 Represses Metastasis of Colorectal Cancer via WWC2. Dig Dis Sci 2020; 65:442-456. [PMID: 31541369 DOI: 10.1007/s10620-019-05801-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most prevalent cancers and a common cause of cancer-related death. Long noncoding RNAs have been reported to play an essential role in the development of CRC. AIMS This study aimed to investigate the possible function of LINC00460 in CRC. METHODS Initially, microarray-based gene expression profiling of CRC was employed to identify differentially expressed genes. Next, the expression of LINC00460 was examined and the cell line presenting with the highest LINC00460 expression was selected for subsequent experimentation. Then, the interaction among LINC00460, ERG, and WWC2 was identified. The effect of LINC00460 on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT)-related factors as well as tumorigenicity of transfected cells was examined with gain- and loss-of-function experiments. RESULTS LINC00460 was robustly induced while WWC2 was poorly expressed in CRC. In addition, LINC00460 could down-regulate WWC2 through interaction with ERG, which led to promoted invasion, migration, and EMT of CRC cells in addition to tumor growth in vivo. Besides, down-regulation of LINC00460 exerted inhibitory effect on these biological activities. CONCLUSION Taken together, the key findings of the current study provided evidence suggesting that silencing of LINC00460 could potentially suppress EMT of CRC cells by increasing WWC2 via ERG, and highlighting that knockdown of LINC00460 could serve as a therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Bao Yuan
- Department of Anorectal Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, People's Republic of China
| | - Jing Yang
- Department of General Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, People's Republic of China
| | - Hong Gu
- Department of Anorectal Surgery, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, People's Republic of China
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155, Hanzhong Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| |
Collapse
|
34
|
Palacios-García J, Sanz-Flores M, Asensio A, Alvarado R, Rojo-Berciano S, Stamatakis K, Paramio JM, Cano A, Nieto MÁ, García-Escudero R, Mayor F, Ribas C. G-protein-coupled receptor kinase 2 safeguards epithelial phenotype in head and neck squamous cell carcinomas. Int J Cancer 2020; 147:218-229. [PMID: 31850518 DOI: 10.1002/ijc.32838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/14/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the mucosal lining of the upper aerodigestive tract and display few treatment options in advanced stages. Despite increased knowledge of HNSCC molecular biology, the identification of new players involved in triggering HNSCC recurrence and metastatic disease is needed. We uncover that G-protein-coupled receptor kinase-2 (GRK2) expression is reduced in undifferentiated, high-grade human HNSCC tumors, whereas its silencing in model human HNSCC cells is sufficient to trigger epithelial-to-mesenchymal transition (EMT) phenotypic features, an EMT-like transcriptional program and enhanced lymph node colonization from orthotopic tongue tumors in mice. Conversely, enhancing GRK2 expression counteracts mesenchymal cells traits by mechanisms involving phosphorylation and decreased functionality of the key EMT inducer Snail1. Our results suggest that GRK2 safeguards the epithelial phenotype, whereas its downregulation contributes to the activation of EMT programs in HNSCC.
Collapse
Affiliation(s)
- Julia Palacios-García
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - María Sanz-Flores
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alejandro Asensio
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Raúl Alvarado
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
| | - Susana Rojo-Berciano
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Konstantinos Stamatakis
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, CIEMAT, Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Amparo Cano
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain.,Departamento de Bioquímica e Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - M Ángela Nieto
- Unidad de Neurobiología del Desarrollo, Instituto de Neurociencias CSIC-UMH, Alicante, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Institute of Oncology Research (IOR), and Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| |
Collapse
|
35
|
Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell 2020; 49:361-374. [PMID: 31063755 DOI: 10.1016/j.devcel.2019.04.010] [Citation(s) in RCA: 668] [Impact Index Per Article: 133.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process, mesenchymal-to-epithelial transition (MET), are fundamental processes in embryonic development and tissue repair but confer malignant properties to carcinoma cells, including invasive behavior, cancer stem cell activity, and greater resistance to chemotherapy and immunotherapy. Understanding the molecular and cellular basis of EMT provides fundamental insights into the etiology of cancer and may, in the long run, lead to new therapeutic strategies. Here, we discuss the regulatory mechanisms and pathological roles of epithelial-mesenchymal plasticity, with a focus on recent insights into the complexity and dynamics of this phenomenon in cancer.
Collapse
|
36
|
Llorens MC, Rossi FA, García IA, Cooke M, Abba MC, Lopez-Haber C, Barrio-Real L, Vaglienti MV, Rossi M, Bocco JL, Kazanietz MG, Soria G. PKCα Modulates Epithelial-to-Mesenchymal Transition and Invasiveness of Breast Cancer Cells Through ZEB1. Front Oncol 2019; 9:1323. [PMID: 31828042 PMCID: PMC6890807 DOI: 10.3389/fonc.2019.01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.
Collapse
Affiliation(s)
- María Candelaria Llorens
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabiana Alejandra Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - María Victoria Vaglienti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
37
|
Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol 2019; 234:14535-14555. [PMID: 30723913 DOI: 10.1002/jcp.28160] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key step in transdifferentiation process in solid cancer development. Forthcoming evidence suggest that the stratified program transforms polarized, immotile epithelial cells to migratory mesenchymal cells associated with enhancement of breast cancer stemness, metastasis, and drug resistance. It involves primarily several signaling pathways, such as transforming growth factor-β (TGF-β), cadherin, notch, plasminogen activator protein inhibitor, urokinase plasminogen activator, and WNT/beta catenin pathways. However, current understanding on the crosstalk of multisignaling pathways and assemblies of key transcription factors remain to be explored. In this review, we focus on the crosstalk of signal transduction pathways linked to the current therapeutic and drug development strategies. We have also performed the computational modeling on indepth the structure and conformational dynamic studies of regulatory proteins and analyze molecular interactions with their associate factors to understand the complicated process of EMT in breast cancer progression and metastasis. Electrostatic potential surfaces have been analyzed that help in optimization of electrostatic interactions between the protein and its ligand. Therefore, understanding the biological implications underlying the EMT process through molecular biology with biocomputation and structural biology approaches will enable the development of new therapeutic strategies to sensitize tumors to conventional therapy and suppress their metastatic phenotype.
Collapse
Affiliation(s)
- Vishal Das
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Sourya Bhattacharya
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| | - Saugata Hazra
- Department of Biotechnology, Centre for Nanotechnology, Indian Institute of Technology Roorkee (IITR), Roorkee, Uttarakhand, India
| | - Mintu Pal
- Biological Sciences and Technology Division (Biotechnology Group), CSIR-North East Institute of Science and Technology, Academy of Scientific and Innovative Research, Jorhat, Assam, India
| |
Collapse
|
38
|
Ryu KJ, Park SM, Park SH, Kim IK, Han H, Kim HJ, Kim SH, Hong KS, Kim H, Kim M, Yoon SJ, Asaithambi K, Lee KH, Park JY, Hah YS, Cho HJ, Yook JI, Yang JW, Ko GH, Lee G, Kang YJ, Hwangbo C, Kim KD, Park YJ, Yoo J. p38 Stabilizes Snail by Suppressing DYRK2-Mediated Phosphorylation That Is Required for GSK3β-βTrCP-Induced Snail Degradation. Cancer Res 2019; 79:4135-4148. [PMID: 31209060 DOI: 10.1158/0008-5472.can-19-0049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/07/2019] [Accepted: 06/11/2019] [Indexed: 11/16/2022]
Abstract
Snail is a key regulator of epithelial-mesenchymal transition (EMT), which is a major step in tumor metastasis. Although the induction of Snail transcription precedes EMT, posttranslational regulation, especially phosphorylation of Snail, is critical for determining Snail protein levels or stability, subcellular localization, and the ability to induce EMT. To date, several kinases are known that enhance the stability of Snail by preventing its ubiquitination; however, the molecular mechanism(s) underlying this are still unclear. Here, we identified p38 MAPK as a crucial posttranslational regulator that enhances the stability of Snail. p38 directly phosphorylated Snail at Ser107, and this effectively suppressed DYRK2-mediated Ser104 phosphorylation, which is critical for GSK3β-dependent Snail phosphorylation and βTrCP-mediated Snail ubiquitination and degradation. Importantly, functional studies and analysis of clinical samples established a crucial role for the p38-Snail axis in regulating ovarian cancer EMT and metastasis. These results indicate the potential therapeutic value of targeting the p38-Snail axis in ovarian cancer. SIGNIFICANCE: These findings identify p38 MAPK as a novel regulator of Snail protein stability and potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Ki-Jun Ryu
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Sun-Mi Park
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - In-Kyu Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyeontak Han
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seon-Hee Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Minju Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Killivalavan Asaithambi
- Department of Convergence Medical Science (BK21 Plus), Graduate School Gyeongsang National University, Jinju, Korea
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Kon Ho Lee
- Department of Convergence Medical Science (BK21 Plus), Graduate School Gyeongsang National University, Jinju, Korea
- Department of Microbiology, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Korea
- Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
| | - Gyung-Hyuck Ko
- Department of Pathology, Gyeongsang National University Hospital, Jinju, Korea
- Department of Pathology, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Gyemin Lee
- Department of Information and Statistics, College of Natural Sciences, Gyeongsang National University, Jinju, Korea
| | - Yang Jae Kang
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
39
|
Chen DD, Cheng JT, Chandoo A, Sun XW, Zhang L, Lu MD, Sun WJ, Huang YP. microRNA-33a prevents epithelial-mesenchymal transition, invasion, and metastasis of gastric cancer cells through the Snail/Slug pathway. Am J Physiol Gastrointest Liver Physiol 2019; 317:G147-G160. [PMID: 30943047 DOI: 10.1152/ajpgi.00284.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invasion and metastasis are responsible for the majority of deaths in gastric cancer (GC). microRNA-33a (miR-33a) might function as a tumor suppressor in multiple cancers. Here, we describe the regulation and function of miR-33a in GC and mechanisms involved in epithelial-mesenchymal transition (EMT) and metastasis. First, GC tissues and adjacent normal tissues were collected. miR-33a upregulation or SNAI2 depletion on GC cells were introduced to assess the detailed regulatory mechanism of them. We assessed the expression of miR-33a, SNAI2, Snail/Slug signaling pathway-related genes, and EMT-related markers in GC tissues and cells. miR-33a distribution in GC tissues and adjacent normal tissues was measured. Cell proliferation, migration and invasion, and cell cycle distribution were assessed. In nude mice, GC tumor growth and lymph node metastasis were observed. Furthermore, the predicative value of miR-33a in the prognosis of GC patients was evaluated. The obtained results indicated that lowly expressed miR-33a, highly expressed SNAI2, activated Snail/Slug, and increased EMT were identified in GC tissues. miR-33a was located mainly in the cytoplasm. miR-33a targeted and negatively regulated SNAI2. MKN-45 and MKN-28 cell lines were selected for in vitro experiments. Upregulated miR-33a expression or siRNA-mediated silencing of SNAI2 suppressed the activation of Snail/Slug, whereby GC cell proliferation, invasion and migration, EMT, tumor growth, and lymph node metastasis were inhibited. High expression of miR-33a was a protective factor influencing the prognosis of GC. This study suggests that miR-33a inhibited EMT, invasion, and metastasis of GC through the Snail/Slug signaling pathway by modulating SNAI2 expression.NEW & NOTEWORTHY miR-33a targets and inhibits the expression of SNAI2, overexpression of SNAI2 activates the Snail/Slug signaling pathway, the Snail/Slug signaling pathway promotes GC cell proliferation, invasion, and metastasis, and overexpression of miR-33a inhibits cell proliferation, invasion, and metastasis. This study provides a new therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Di-Di Chen
- Department of Radiotherapy and Chemotherapy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Arvine Chandoo
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang-Wei Sun
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhang
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming-Dong Lu
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei-Jian Sun
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying-Peng Huang
- Department of General Surgery, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2019; 2019:5810465. [PMID: 31275381 PMCID: PMC6582791 DOI: 10.1155/2019/5810465] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is the first step in the development of the invasive and migratory properties of cancer metastasis. Since the transcriptional reprogramming of a number of genes occurs in EMT, the regulation of EMT transcription factors has been intensively investigated. EMT transcriptional factors are commonly classified by the direct or indirect repression of E-cadherin because one of hallmarks of EMT is the loss of E-cadherin. This facilitates the expression of genes for EMT, tumor invasion, and metastasis. The posttranslational modification of EMT transcriptional factors, such as Snail and Slug, directly regulates their functions, including their stability, nuclear localization, protein-protein interaction, and ubiquitination for the promotion or termination of EMT at the specific points. Here, we discuss how posttranslational modifications regulate gene expression in a dynamic and reversible manner by modifying upstream signaling pathways, focusing in particular on the posttranslational modifications of Snail, Slug, ZEB1, ZEB2, and TWIST1. This review demonstrates that EMT transcription factors regulate metastasis through their posttranslational modifications and that the flexibility and reversibility of EMT can be modified by phosphorylation.
Collapse
|
41
|
Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ 2019; 27:255-268. [PMID: 31114028 DOI: 10.1038/s41418-019-0353-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
The mechanistic action of bromodomain-containing protein 4 (BRD4) in cancer motility, including epithelial-mesenchymal transition (EMT), remains largely undefined. We found that targeted inhibition of BRD4 reduces migration, invasion, in vivo growth of patient-derived xenograft (PDX), and lung colonization of breast cancer (BC) cells. Inhibition of BRD4 rapidly decreases the expression of Snail, a powerful EMT transcription factor (EMT-TF), via diminishing its protein stability and transcription. Protein kinase D1 (PRKD1) is responsible for BRD4-regulated Snail protein stability by triggering phosphorylation at Ser11 of Snail and then inducing proteasome-mediated degradation. BRD4 inhibition also suppresses the expression of Gli1, a key transductor of Hedgehog (Hh) required to activate the transcription of SNAI1, in BC cells. The GACCACC sequence (-341 to -333) in the SNAI1 promoter is responsible for Gli1-induced transcription of SNAI1. Clinically, BRD4 and Snail levels are increased in lung-metastasized, estrogen receptor-negative (ER-), and progesterone receptor-negative (PR-) breast cancers and correlate with the expression of mesenchymal markers. Collectively, BRD4 can regulate malignancy of breast cancer cells via both transcriptional and post-translational regulation of Snail.
Collapse
|
42
|
Cooke M, Casado-Medrano V, Ann J, Lee J, Blumberg PM, Abba MC, Kazanietz MG. Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Sci Rep 2019; 9:6041. [PMID: 30988374 PMCID: PMC6465381 DOI: 10.1038/s41598-019-42581-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specific modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic efforts had recently led to the identification of AJH-836, a DAG-lactone with preferential affinity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profiling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an effect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics efforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identified major differences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the differential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of differentially regulating PKC isozyme-specific function in cellular models.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900, La Plata, Argentina.
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Park SM, Park SH, Ryu KJ, Kim IK, Han H, Kim HJ, Kim SH, Hong KS, Kim H, Kim M, Cho BI, Heo JD, Kim NH, Hwang EM, Park JY, Yook JI, Cho HJ, Hwangbo C, Kim KD, Song H, Yoo J. Downregulation of CHIP promotes ovarian cancer metastasis by inducing Snail-mediated epithelial-mesenchymal transition. Mol Oncol 2019; 13:1280-1295. [PMID: 30927556 PMCID: PMC6487736 DOI: 10.1002/1878-0261.12485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/03/2019] [Accepted: 03/29/2019] [Indexed: 01/19/2023] Open
Abstract
The epithelial–mesenchymal transition (EMT) plays a pivotal role in the conversion of early‐stage tumors into invasive malignancies. The transcription factor Snail, an extremely unstable protein whose subcellular levels are regulated by many E3 ubiquitin ligases, promotes EMT as well as associated pathological characteristics including migration, invasion, and metastasis. Through yeast two‐hybrid screening, we identified the carboxyl terminus of Hsc70‐interacting protein (CHIP) as a novel Snail ubiquitin ligase that interacts with Snail to induce ubiquitin‐mediated proteasomal degradation. Inhibition of CHIP expression increases Snail protein levels, induces EMT, and enhances in vitro migration and invasion as well as in vivo metastasis of ovarian cancer cells. In turn, Snail depletion abrogates all phenomena induced by CHIP depletion. Finally, Snail and CHIP expression is inversely correlated in ovarian tumor tissues. These findings establish the CHIP–Snail axis as a post‐translational mechanism of EMT and cancer metastasis regulation.
Collapse
Affiliation(s)
- Sun-Mi Park
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Ki-Jun Ryu
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - In-Kyu Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyeontak Han
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyo-Jin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Seon-Hee Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Keun-Seok Hong
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Hyemin Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Minju Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea
| | - Bok Im Cho
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Na Hyun Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Toxicology Screening Center, Korea Institute of Toxicology, Jinju, Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| | - Hoseok Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Research Institute of Life Sciences, Gyeongsang National University, Jinju, Korea.,Division of Life Science, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
44
|
Jang D, Kwon H, Choi M, Lee J, Pak Y. Sumoylation of Flotillin-1 promotes EMT in metastatic prostate cancer by suppressing Snail degradation. Oncogene 2019; 38:3248-3260. [PMID: 30631151 PMCID: PMC6756018 DOI: 10.1038/s41388-018-0641-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/03/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
Flotillin-1 (Flot-1) has been shown to regulate cancer progression, but the regulatory role of post-translational modifications of Flot-1 on cancers remains elusive. Herein, we show that up-regulated E2 conjugating enzyme UBC9 sumoylates Flot-1 at Lys-51 and Lys-195 with small ubiquitin-like modifier (SUMO)-2/3 modification in metastatic prostate cancer. Mitogen induced the sumoylation and nuclear translocation of Flot-1. The nuclear-targeted Flot-1 physically interacted with Snail, and inhibited Snail degradation through the proteasome in a sumoylation-dependent manner, thereby promoting epithelial-to-mesenchymal transition (EMT). Sumoylation of Flot-1 by up-regulated UBC9 in human metastatic prostate cancer tissues and prostate cancer cells with high metastatic potential positively correlated with the stabilization of Snail and the induction of Snail-mediated EMT genes in the metastatic prostate cancer. Our study reveals a new mechanism of sumoylated Flot-1-mediating Snail stabilization, and identifies a novel sumoylated Flot-1-Snail signaling axis in EMT of metastatic prostate cancer.
Collapse
Affiliation(s)
- Donghwan Jang
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, South Korea
| | - Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jaewoong Lee
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
45
|
Epithelial-To-Mesenchymal Transition Markers and CD44 Isoforms Are Differently Expressed in 2D and 3D Cell Cultures of Prostate Cancer Cells. Cells 2019; 8:cells8020143. [PMID: 30754655 PMCID: PMC6406374 DOI: 10.3390/cells8020143] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) cell cultures allow the mimic of functions of living tissues and provide key information encoded in tissue architecture. Considered the pivotal role of epithelial-to-mesenchymal transition (EMT) in carcinoma progression, including prostate cancer (PCa), we aimed at investigating the effect of the 3D arrangement on the expression of some key markers of EMT in cultured human prostate cancer (PCa) cells, to better understand PCa cell behavior. PC3 and DU145 PCa cells were cultured in RPMI cell culture medium either in 2D-monolayers or in 3D-spheroids. The main EMT markers E-cadherin, N-cadherin, α-smooth muscle actin (αSMA), vimentin, Snail, Slug, Twist and Zeb1 were evaluated by confocal microscopy, real-time PCR and Western blot. Confocal microscopy revealed that E-cadherin was similarly expressed at the cell boundaries on the plasma membrane of PCa cells grown in 2D-monolayers, as well as in 3D-spheroids, but resulted up-regulated in 3D-spheroids, compared to 2D-monolayers, at the mRNA and protein level. Moreover, markers of the mesenchymal phenotype were expressed at very low levels in 3D-spheroids, suggesting important differences in the phenotype of PCa cells grown in 3D-spheroids or in 2D-monolayers. Considered as a whole, our findings contribute to a clarification of the role of EMT in PCa and confirm that a 3D cell culture model could provide deeper insight into the understanding of the biology of PCa.
Collapse
|
46
|
Durand N, Borges S, Hall T, Bastea L, Döppler H, Edenfield BH, Thompson EA, Geiger X, Storz P. The phosphorylation status of PIP5K1C at serine 448 can be predictive for invasive ductal carcinoma of the breast. Oncotarget 2018; 9:36358-36370. [PMID: 30555634 PMCID: PMC6284740 DOI: 10.18632/oncotarget.26357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/31/2018] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinositol-4-phosphate 5-kinase type-1C (PIP5K1C) is a lipid kinase that regulates focal adhesion dynamics and cell attachment through site-specific formation of phosphatidylinositol-4,5-bisphosphate (PI4,5P2). By comparing normal breast tissue to carcinoma in situ and invasive ductal carcinoma subtypes, we here show that the phosphorylation status of PIP5K1C at serine residue 448 (S448) can be predictive for breast cancer progression to an aggressive phenotype, while PIP5K1C expression levels are not indicative for this event. PIP5K1C phosphorylation at S448 is downregulated in invasive ductal carcinoma, and similarly, the expression levels of PKD1, the kinase that phosphorylates PIP5K1C at this site, are decreased. Overall, since PKD1 is a negative regulator of cell migration and invasion in breast cancer, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tavia Hall
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ligia Bastea
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
47
|
Zhou Y, Lu L, Jiang G, Chen Z, Li J, An P, Chen L, Du J, Wang H. Targeting CDK7 increases the stability of Snail to promote the dissemination of colorectal cancer. Cell Death Differ 2018; 26:1442-1452. [PMID: 30451989 DOI: 10.1038/s41418-018-0222-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/09/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Targeted inhibition of cyclin-dependent kinase 7 (CDK7) via its covalent inhibitor THZ1 can suppress the growth of various cancers, while its roles on colorectal cancer (CRC) remain obscure. Here we report that the expression of CDK7 is upregulated in CRC cells and tissues. THZ1 exhibits high potency and selectivity against CRC cells both in vitro and in vivo via induction of cell apoptosis rather than cell cycle disruption. Intriguingly, THZ1 treatment increases the ability of epithelial mesenchymal transition (EMT) and in vivo metastasis to liver of CRC cells. Mechanistical studies reveal that THZ1 increases the expression of Snail, while not other EMT-transcription factors, via enhancing its protein stability rather than mRNA expression or translation. By screening Snail stability related factors via qRT-PCR, results indicate THZ1 and si-CDK7 decrease the expression of protein kinase D1 (PKD1) in CRC cells. Down regulation of PKD1 mediates THZ1 up regulated Snail via dephosphorylation of Snail Ser 11 and prevention of proteasome mediated degradation. Clinical analysis confirms that CDK7 is significantly (p < 0.05) negatively correlated with the expression of mesenchymal markers including FN1, VIM, and MMP2. CRC patients whose tumors expressing less CDK7/SNAI1 or PKD1/SNAI1 showed significant (p < 0.05) poorer overall survival (OS) rate as compared with those with greater levels. Collectively, our data suggest that targeted inhibition of CDK7 can trigger the metastasis of CRC during cancer development via PKD1/Snail axis, which imposes great challenge that inhibition of CDK7 is a potential approach for cancer treatment.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Linlin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China.,Central Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jiexin Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Panpan An
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Likun Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
48
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
49
|
Cypripedin diminishes an epithelial-to-mesenchymal transition in non-small cell lung cancer cells through suppression of Akt/GSK-3β signalling. Sci Rep 2018; 8:8009. [PMID: 29789636 PMCID: PMC5964153 DOI: 10.1038/s41598-018-25657-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer appears to have the highest rate of mortality among cancers due to its metastasis capability. To achieve metastasis, cancer cells acquire the ability to undergo a switch from epithelial to mesenchymal behaviour, termed the epithelial-to-mesenchymal transition (EMT), which is associated with poor clinical outcomes. Drug discovery attempts have been made to find potent compounds that will suppress EMT. Cypripedin, a phenanthrenequinone isolated from Thai orchid, Dendrobium densiflorum, exhibits diverse pharmacological activities. In this study, we found that cypripedin attenuated typical mesenchymal phenotypes, including migratory behaviour, of non-small cell lung cancer H460 cells, with a significant reduction of actin stress fibres and focal adhesion and with weakened anchorage-independent growth. Western blot analysis revealed that the negative activity of this compound on EMT was a result of the down-regulation of the EMT markers Slug, N-Cadherin and Vimentin, which was due to ATP-dependent tyrosine kinase (Akt) inactivation. As a consequence, the increase in the Slug degradation rate via a ubiquitin-proteasomal mechanism was encouraged. The observation in another lung cancer H23 cell line also supported this finding, indicating that cypripedin exhibits a promising pharmacological action on lung cancer metastasis that could provide scientific evidence for the further development of this compound.
Collapse
|
50
|
Protein kinase D1: gatekeeper of the epithelial phenotype and key regulator of cancer metastasis? Br J Cancer 2018; 118:459-461. [PMID: 29465085 PMCID: PMC5830601 DOI: 10.1038/bjc.2018.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|