1
|
Reichelt P, Bernhart S, Platzbecker U, Cross M. MicroRNA Screening Reveals Upregulation of FoxO-Signaling in Relapsed Acute Myeloid Leukemia Patients. Genes (Basel) 2024; 15:1625. [PMID: 39766892 PMCID: PMC11675194 DOI: 10.3390/genes15121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: AML is an aggressive malignant disease characterized by aberrant proliferation and accumulation of immature blast cells in the patient's bone marrow. Chemotherapeutic treatment can effectively induce remission and re-establish functional hematopoiesis. However, many patients experience chemoresistance-associated relapse and disease progression with a poor prognosis. The identification of molecular determinants of chemoresistance that could serve as potential targets for the therapeutic restoration of chemosensitivity has proven to be challenging. Methods: To address this, we have analyzed longitudinal changes in the expression of microRNAs during disease progression in a small set of four AML patients, combined with gene ontology (GO) pathway analysis and evaluation of gene expression data in patient databases. Results: MicroRNA profiling of bone marrow samples at diagnosis and after relapse revealed significant differential expression of a large number of microRNAs between the two time points. Subsequent GO pathway analysis identified 11 signal transduction pathways likely to be affected by the differential miRNA signatures. Exemplary validation of the FoxO signaling pathway by gene expression analysis confirmed significant upregulation of FOXO1 and the target genes GADD45 and SOD2. Conclusions: Here, we show how a microRNA-based pathway prediction strategy can be used to identify differentially regulated signaling pathways that represent potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Paula Reichelt
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany; (U.P.); (M.C.)
| | - Stephan Bernhart
- Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany;
| | - Uwe Platzbecker
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany; (U.P.); (M.C.)
| | - Michael Cross
- Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany; (U.P.); (M.C.)
| |
Collapse
|
2
|
Zhou Z, Cao Q, Diao Y, Wang Y, Long L, Wang S, Li P. Non-coding RNA-related antitumor mechanisms of marine-derived agents. Front Pharmacol 2022; 13:1053556. [PMID: 36532760 PMCID: PMC9752855 DOI: 10.3389/fphar.2022.1053556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 09/26/2023] Open
Abstract
In the last two decades, natural active substances have attracted great attention in developing new antitumor drugs, especially in the marine environment. A series of marine-derived compounds or derivatives with potential antitumor effects have been discovered and developed, but their mechanisms of action are not well understood. Emerging studies have found that several tumor-related signaling pathways and molecules are involved in the antitumor mechanisms of marine-derived agents, including noncoding RNAs (ncRNAs). In this review, we provide an update on the regulation of marine-derived agents associated with ncRNAs on tumor cell proliferation, apoptosis, cell cycle, invasion, migration, drug sensitivity and resistance. Herein, we also describe recent advances in marine food-derived ncRNAs as antitumor agents that modulate cross-species gene expression. A better understanding of the antitumor mechanisms of marine-derived agents mediated, regulated, or sourced by ncRNAs will provide new biomarkers or targets for potential antitumor drugs from preclinical discovery and development to clinical application.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qianqian Cao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yujing Diao
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linhai Long
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
4
|
Gleba JJ, Kłopotowska D, Banach J, Mielko KA, Turlej E, Maciejewska M, Kutner A, Wietrzyk J. Micro-RNAs in Response to Active Forms of Vitamin D3 in Human Leukemia and Lymphoma Cells. Int J Mol Sci 2022; 23:ijms23095019. [PMID: 35563410 PMCID: PMC9104187 DOI: 10.3390/ijms23095019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Non-coding micro-RNA (miRNAs) regulate the protein expression responsible for cell growth and proliferation. miRNAs also play a role in a cancer cells’ response to drug treatment. Knowing that leukemia and lymphoma cells show different responses to active forms of vitamin D3, we decided to investigate the role of selected miRNA molecules and regulated proteins, analyzing if there is a correlation between the selected miRNAs and regulated proteins in response to two active forms of vitamin D3, calcitriol and tacalcitol. A total of nine human cell lines were analyzed: five leukemias: MV-4-1, Thp-1, HL-60, K562, and KG-1; and four lymphomas: Raji, Daudi, Jurkat, and U2932. We selected five miRNA molecules—miR-27b, miR-32, miR-125b, miR-181a, and miR-181b—and the proteins regulated by these molecules, namely, CYP24A1, Bak1, Bim, p21, p27, p53, and NF-kB. The results showed that the level of selected miRNAs correlates with the level of proteins, especially p27, Bak1, NFκB, and CYP24A1, and miR-27b and miR-125b could be responsible for the anticancer activity of active forms of vitamin D3 in human leukemia and lymphoma.
Collapse
Affiliation(s)
- Justyna Joanna Gleba
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
- Correspondence: ; Tel.: +48-1-904-207-2571
| | - Dagmara Kłopotowska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| | - Karolina Anna Mielko
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
- Department of Experimental Biology, The Wroclaw University of Environmental and Life Sciences, Norwida 27 B, 50-375 Wroclaw, Poland
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| | - Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; (D.K.); (J.B.); (K.A.M.); (E.T.); (M.M.); (J.W.)
| |
Collapse
|
5
|
Singh VK, Thakral D, Gupta R. Regulatory noncoding RNAs: potential biomarkers and therapeutic targets in acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:504-519. [PMID: 34824883 PMCID: PMC8610797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The noncoding RNAs (ncRNA) comprise a substantial segment of the human transcriptome and have emerged as key elements of cellular homeostasis and disease pathogenesis. Dysregulation of these ncRNAs by alterations in the primary RNA motifs and/or aberrant expression levels is relevant in various diseases, especially cancer. The recent research advances indicate that ncRNAs regulate vital oncogenic processes, including hematopoietic cell differentiation, proliferation, apoptosis, migration, and angiogenesis. The ever-expanding role of ncRNAs in cancer progression and metastasis has sparked interest as potential diagnostic and prognostic biomarkers in acute myeloid leukemia. Moreover, advances in antisense oligonucleotide technologies and pharmacologic discoveries of small molecule inhibitors in targeting RNA structures and RNA-protein complexes have opened newer avenues that may help develop the next generation anti-cancer therapeutics. In this review, we have discussed the role of ncRNA in acute myeloid leukemia and their utility as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Deepshi Thakral
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Ritu Gupta
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| |
Collapse
|
6
|
Aberrant expression profile of miR-32, miR-98 and miR-374 in chronic lymphocytic leukemia. Leuk Res 2021; 111:106691. [PMID: 34455196 DOI: 10.1016/j.leukres.2021.106691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Leukemia is a malignant and progressive disease of hematopoiesis. The disease arises due to abnormal proliferation and development of white blood cells and their precursors in the blood and bone marrow. Chronic lymphoblastic leukemia (CLL) is a subtype of blood cancers, with the origin of B lymphocytes and the involvement of bone marrow, blood and lymph nodes. MicroRNAs (miRNAs) are small non-coding RNAs with pivotal roles in cellular and molecular processes related to different malignancies, including CLL. In this way, we aimed to evaluate the expression of miR-32-5p, miR-98-5p, and miR-374b-5p in CLL patients. We also investigated the signaling pathways regulated by the studied miRs and also frequently disturbed miRs in CLL. METHODS Blood samples were collected from 32 CLL patients from Kermanshah province, Iran and 34 age and sex-matched healthy individuals. RNA was extracted from PBMCs and then was subjected to cDNA synthesis. Using specifically designed primers and Real-Time PCR method the expression of miRNAs was detected and was statistically analyzed. Using mirPath v.3, systematic pathway enrichment analysis was performed for the three studied miRNAs here along with the frequently disturbed miRNAs in CLL. RESULTS The experiments indicated a significant reduction in the expression of all three miRs (p-value<0.0001) in CLL patients compared with healthy individuals. ROC analysis suggested that the three studied miRs can serve as potential biomarkers for early diagnosis of CLL. The in silico analysis suggested proteoglycans in cancer as a pathway regulated by the studied miRs and frequently dysregulated miRs in CLL. CONCLUSION The observed reduction in expression of miR-32-5p, miR-98-5p, and miR-374b-5p in treatment naïve CLL patients here might be suggestive of their modulatory protective role in CLL progression. Moreover, the candidate peripheral miRNAs could potentially serve as diagnostic biomarkers which warrant further investigation in a larger sample size.
Collapse
|
7
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
8
|
Eldecalcitol (ED-71)-induced exosomal miR-6887-5p suppresses squamous cell carcinoma cell growth by targeting heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1). In Vitro Cell Dev Biol Anim 2020; 56:222-233. [PMID: 32185608 DOI: 10.1007/s11626-020-00440-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) was purified from A431 cell-conditioned media based on its capacity to bind to fibroblast growth factor 1 and 2 (FGF-1 and FGF-2). HBp17/FGFBP-1 has been observed to induce the tumorigenic potential of epithelial cells and is highly expressed in oral cancer cell lines and tissues. HBp17/FGFBP-1 is also recognized as a pro-angiogenic molecule as a consequence of its interaction with FGF-2. We have previously reported that Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, downregulated the expression of HBp17/FGFBP-1 and inhibited the proliferation of squamous cell carcinoma (SCC) cells in vitro and in vivo through NF-κb inhibition. To explore the possibility of microRNA (miRNA) control of HBp17/FGFBP-1, we analyzed exosomal miRNAs from medium conditioned by A431 cells treated with ED-71. Microarray analysis revealed that 12 exosomal miRNAs were upregulated in ED-71-treated A431 cells. Among them, miR-6887-5p was identified to have a predicted mRNA target matching the 3' untranslated region (3'-UTR) of HBp17/FGFBP-1. The 3'-UTR of HBp17/FGFBP-1 was confirmed to be a direct target of miR-6887-5p in SCC/OSCC cells, as assessed with a luciferase reporter assay. Functional assessment revealed that overexpression of miR-6887-5p in SCC/OSCC cells inhibited cell proliferation and colony formation in vitro, and inhibited tumor growth in vivo compared with control. In conclusion, our present study supports a novel anti-cancer mechanism involving the regulation of HBp17/FGFBP-1 function by exosomal miR-6887-5p in SCC/OSCC cells, which has potential utility as a miRNA-based cancer therapy.
Collapse
|
9
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
10
|
Kumar N, Dougherty JA, Manring HR, Elmadbouh I, Mergaye M, Czirok A, Greta Isai D, Belevych AE, Yu L, Janssen PML, Fadda P, Gyorke S, Ackermann MA, Angelos MG, Khan M. Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Sci Rep 2019; 9:13188. [PMID: 31515494 PMCID: PMC6742647 DOI: 10.1038/s41598-019-49653-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ibrahim Elmadbouh
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paolo Fadda
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark G Angelos
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mahmood Khan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
11
|
MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol 2019; 20:21. [PMID: 31438862 PMCID: PMC6704591 DOI: 10.1186/s12867-019-0135-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background The current study aimed to investigate the effects of miR-32-5p on cardiac fibroblasts (CFs) that were induced with high levels of glucose; we also aimed to identify the potential mechanisms involved in the regulation of DUSP1 expression. Methods Human CFs were transfected with a miR-32-5p inhibitor or mimic and were treated with a normal concentration or a high concentration of glucose. Flow cytometry analysis was performed to identify cardiac fibroblasts by examining vimentin, fibronectin (FN) and α-actin expression in human CFs. qRT-PCR and western blot assays were performed to confirm the expression of miR-32-5p, DUSP1 and cardiac fibrosis relevant proteins. The proliferation of CFs was assessed by using MTT assay. An immunocytofluorescent staining assay was performed to determine the protein level of α-SMA and to investigate the degree of phenotypic changes in human CFs. The specific relationship between miR-32-5p and DUSP1 was investigated by a dual luciferase reporter assay. Cell apoptosis rates were measured with flow cytometry and the annexin V-FITC and propidine iodide (PI) staining method. Results A luciferase reporter assay indicated that miR-32-5p could directly target DUSP1. High glucose levels resulted in the overexpression of miR-32-5p, which downregulated DUSP1 expression. Both the upregulation of miR-32-5p and the downregulation of DUSP1 promoted cell apoptosis, proliferation and phenotypic changes in human CFs. Conclusions All findings in this study provide further evidence for the positive effects of miR-32-5p on cell proliferation and the phenotypic changes in CFs by inhibiting DUSP1 expression, and reveal that miR-32-5p could serve as prognostic diagnostic target for cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s12867-019-0135-x) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Wang X, Nachliely M, Harrison JS, Danilenko M, Studzinski GP. Participation of vitamin D-upregulated protein 1 (TXNIP)-ASK1-JNK1 signalosome in the enhancement of AML cell death by a post-cytotoxic differentiation regimen. J Steroid Biochem Mol Biol 2019; 187:166-173. [PMID: 30508644 PMCID: PMC6501208 DOI: 10.1016/j.jsbmb.2018.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023]
Abstract
Standard therapy for Acute Myeloid Leukemia (AML) is rarely curative, and several suggested improvements have had little success so far. We have reported that in an in vitro model of a potential therapeutic regimen for AML, the activity of cytarabine (AraC) is enhanced by a sequential treatment with a combination of the vitamin D2 analog Doxercalciferol (D2) and the plant-derived antioxidant carnosic acid (CA). Importantly, the enhancement occurred selectively in patient-derived AML blasts, but not in the normal bone marrow cells. We now demonstrate that TXNIP, previously known as Vitamin D up-regulated protein 1 (VDUP1) [PMID 808674] plays a part in signaling cell death (CD) in this regimen. This is shown by the reduced CD when TXNIP protein levels are decreased by the CRISPR/CAS9 or RNAi technology. Further, we show that direct activation of ASK1 kinase by TXNIP is required for the optimal transmission of the CD signal to apoptotic machinery, regulated by JNK and BIM. These studies provide a rationale for a projected clinical trial of this vitamin D-based new therapeutic regimen for AML.
Collapse
Affiliation(s)
- X Wang
- Department of Pathology & Laboratory Medicine, Rutgers NJ Medical School, Newark, NJ, United States
| | - M Nachliely
- Department of Clinical Biochemistry & Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - J S Harrison
- University of Connecticut School of Medicine, Farmington, CT, United States
| | - M Danilenko
- Department of Clinical Biochemistry & Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - G P Studzinski
- Department of Pathology & Laboratory Medicine, Rutgers NJ Medical School, Newark, NJ, United States.
| |
Collapse
|
14
|
He C, Luo B, Jiang N, Liang Y, He Y, Zeng J, Liu J, Zheng X. OncomiR or antioncomiR: Role of miRNAs in Acute Myeloid Leukemia. Leuk Lymphoma 2018; 60:284-294. [PMID: 30187809 DOI: 10.1080/10428194.2018.1480769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute Myeloid Leukemia (AML) is a hematopoietic progenitor/stem cell disorder in which neoplastic myeloblasts are stopped at an immature stage of differentiation and lost the normal ability of proliferation and apoptosis. MicroRNAs (miRNAs) are small noncoding, single-stranded RNA molecules that can mediate the expression of target genes. While miRNAs mean to contribute the developments of normal functions, abnormal expression of miRNAs and regulations on their corresponding targets have often been found in the developments of AML and described in recent years. In leukemia, miRNAs may function as regulatory molecules, acting as oncogenes or tumor suppressors. Overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to AML formation. Similarly, miRNAs can down-regulate different proteins with oncogenic activity as tumor suppressors. We herein review the current data on miRNAs, specifically their targets and their biological function based on apoptosis in the development of AML.
Collapse
Affiliation(s)
- Chengcheng He
- a People's Hospital of Zhongjiang , Deyang , Sichuan , P. R. China.,b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Bo Luo
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Nan Jiang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yu Liang
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Yancheng He
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jingyuan Zeng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Jiajia Liu
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| | - Xiaoli Zheng
- b College of Preclinical Medicine , Southwest Medical University , Luzhou , Sichuan , P. R. China
| |
Collapse
|
15
|
The role of VDR and BIM in potentiation of cytarabine-induced cell death in human AML blasts. Oncotarget 2017; 7:36447-36460. [PMID: 27144333 PMCID: PMC5095012 DOI: 10.18632/oncotarget.8998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
Acute Myeloid Leukemia (AML) has grave prognosis due to aggressive nature of the disease, the toxicity of standard treatment, and overall low cure rates. We recently showed that AML cells in established culture treated with cytarabine (AraC) and a differentiation agent combination show enhancement of AraC cytotoxicity. Here we elucidate molecular changes which underlie this observation with focus on AML blasts in primary culture. The cells were treated with AraC at concentrations achievable in clinical settings, and followed by the addition of Doxercalciferol, a vitamin D2 derivative (D2), together with Carnosic acid (CA), a plant-derived antioxidant. Importantly, although AraC is also toxic to normal bone marrow cell population, the enhanced cell kill by D2/CA was limited to malignant blasts. This enhancement of cell death was associated with activation of the monocytic differentiation program as shown by molecular markers, and the increased expression of vitamin D receptor (VDR). Apoptosis elicited by this treatment is caspase-dependent, and the optimal blast killing required the increased expression of the apoptosis regulator Bim. These data suggest that testing of this regimen in the clinic is warranted.
Collapse
|
16
|
Yan T, Zhang F, Sun C, Sun J, Wang Y, Xu X, Shi J, Shi G. miR-32-5p-mediated Dusp5 downregulation contributes to neuropathic pain. Biochem Biophys Res Commun 2017; 495:506-511. [PMID: 29108992 DOI: 10.1016/j.bbrc.2017.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that microRNAs (miRNAs) play important roles in the pathogenesis of neuropathic pain. In the present study, we found that miR-32-5p was significantly upregulated in rats after spinal nerve ligation (SNL), specifically in the spinal microglia of rats with SNL. Functional assays showed that knockdown of miR-32-5p greatly suppressed mechanical allodynia and heat hyperalgesia, and decreased inflammatory cytokine (IL-1β, TNF-α and IL-6) protein expression in rats after SNL. Similarly, miR-32-5p knockdown alleviated cytokine production in lipopolysaccharide (LPS)-treated spinal microglial cells, whereas its overexpression had the opposite effect. Mechanistic investigations revealed Dual-specificity phosphatase 5 (Dusp5) as a direct target of miR-32-5p, which is involved in the miR-32-5p-mediated effects on neuropathic pain and neuroinflammation. We demonstrated for the first time that miR-32-5p promotes neuroinflammation and neuropathic pain development through regulation of Dusp5. Our findings highlight a novel contribution of miR-32-5p to the process of neuropathic pain, and suggest possibilities for the development of novel therapeutic options for neuropathic pain.
Collapse
Affiliation(s)
- Tingfei Yan
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fuguo Zhang
- Department of Spine Surgery, Taizhou First People's Hospital, Taizhou 318020, China
| | - Chenxi Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yuan Wang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ximing Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guodong Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
17
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
18
|
Bikle DD. Extraskeletal actions of vitamin D. Ann N Y Acad Sci 2017; 1376:29-52. [PMID: 27649525 DOI: 10.1111/nyas.13219] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
The vitamin D receptor (VDR) is found in nearly all, if not all, cells in the body. The enzyme that produces the active metabolite of vitamin D and ligand for VDR, namely CYP27B1, likewise is widely expressed in many cells of the body. These observations indicate that the role of vitamin D is not limited to regulation of bone and mineral homeostasis, as important as that is. Rather, the study of its extraskeletal actions has become the major driving force behind the significant increase in research articles on vitamin D published over the past several decades. A great deal of information has accumulated from cell culture studies, in vivo animal studies, and clinical association studies that confirms that extraskeletal effects of vitamin D are truly widespread and substantial. However, randomized, placebo-controlled clinical trials, when done, have by and large not produced the benefits anticipated by the in vitro cell culture and in vivo animal studies. In this review, I will examine the role of vitamin D signaling in a number of extraskeletal tissues and assess the success of translating these findings into treatments of human diseases affecting those extracellular tissues.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology, Veterans Affairs Medical Center and University of California, San Francisco, San Francisco, California.
| |
Collapse
|
19
|
Bandera Merchan B, Morcillo S, Martin-Nuñez G, Tinahones FJ, Macías-González M. The role of vitamin D and VDR in carcinogenesis: Through epidemiology and basic sciences. J Steroid Biochem Mol Biol 2017; 167:203-218. [PMID: 27913313 DOI: 10.1016/j.jsbmb.2016.11.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/31/2022]
Abstract
In the last two decades vitamin D (VD) research has demonstrated new extraskeletal actions of this pre-hormone, suggesting a protective role of this secosteroid in the onset, progression and prognosis of several chronic noncommunicable diseases, such as cardiovascular disease, diabetes mellitus or cancer. Regarding carcinogenesis, both preclinical and epidemiological evidence available show oncoprotective actions of VD and its receptor, the VDR. However, in late neoplastic stages the VD system (VDS) seems to be less functional, which appears to be due to an epigenetic silencing of the system. In preclinical experimental studies, VD presents oncoprotective actions through modulation of inflammation, cell proliferation, cell differentiation, angiogenesis, invasive and metastatic potential, apoptosis, miRNA expression regulation and modulation of the Hedgehog signalling pathway. Moreover, epidemiological evidence points towards an oncoprotective role of vitamin D and VDR in colorectal cancer. This association is more controversial with breast, ovarian and prostate cancers, although with a few adverse effects. Nonetheless, we should consider other factors to determine the benefit of increased serum concentration of VD. Much of the epidemiological evidence is still inconclusive, and we will have to wait for new, better-designed ongoing RCTs and their results to discern the real effect of vitamin D in cancer risk reduction and therapy. The objective of this literature review is to offer an up-to-date analysis of the role of the VD and VDR, in the onset, progression and prognosis of all types of cancer. We further discuss the available literature and suggest new hypotheses and future challenges in the field of VD research.
Collapse
Affiliation(s)
- Borja Bandera Merchan
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Sonsoles Morcillo
- CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Gracia Martin-Nuñez
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain
| | - Francisco José Tinahones
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Macías-González
- Unidad de Gestiòn Clìnica y Endocrinologìa y Nutriciòn, Instituto de Investigaciòn Biomèdica de Màlaga (IBIMA),Complejo Hospitalario de Màlaga (Virgen de la Victoria), Universidad de Màlaga, 29010 Malaga, Spain; CIBER Pathophysiology of Obesity and Nutrition (CB06/03),Instituto Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
20
|
Zeljic K, Supic G, Magic Z. New insights into vitamin D anticancer properties: focus on miRNA modulation. Mol Genet Genomics 2017; 292:511-524. [DOI: 10.1007/s00438-017-1301-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
|
21
|
A SNP in pri-miR-10a is associated with recurrent spontaneous abortion in a Han-Chinese population. Oncotarget 2016; 7:8208-22. [PMID: 26824181 PMCID: PMC4884987 DOI: 10.18632/oncotarget.7002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022] Open
Abstract
MicroRNA-10a (miR-10a) has a wide range of functions in nearly all mammalian tissues and is involved in the occurrence of many diseases. However, it remains unknown whether miR-10a is associated with human recurrent spontaneous abortion (RSA). In this study, we found that rs3809783 A > T in miR-10a coding region was significantly associated with the increase of the risk of human unexplained RSA (URSA) acquisition in a Han-Chinese population. The T allele of rs3809783 hindered the production of mature miR-10a. A to T substitution in miR-10a rs3809783 repressed cell proliferation and migratory capacity. Further investigation discovered that Bcl-2-interacting mediator (Bim) was the functional target of miR-10a and inversely regulated Bim expression. Dual-luciferase assay indicated that A allele in miR-10a rs3809783 could more effectively suppress Bim expression than T allele. In addition, A to T substitution in miR-10a rs3809783 attenuated the sensibility of cells to progesterone and its antagonist mifepristone. Collectively, our data suggest that rs3809783 A > T in pri-miR-10a may be conductive to the genetic predisposition to RSA by disrupting the production of mature miR-10a and reinforcing the expression of Bim.
Collapse
|
22
|
Zebisch A, Hatzl S, Pichler M, Wölfler A, Sill H. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs. Int J Mol Sci 2016; 17:2080. [PMID: 27973410 PMCID: PMC5187880 DOI: 10.3390/ijms17122080] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is caused by malignant transformation of hematopoietic stem or progenitor cells and displays the most frequent acute leukemia in adults. Although some patients can be cured with high dose chemotherapy and allogeneic hematopoietic stem cell transplantation, the majority still succumbs to chemoresistant disease. Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA fragments and act as key players in the regulation of both physiologic and pathologic gene expression profiles. Aberrant expression of various non-coding RNAs proved to be of seminal importance in the pathogenesis of AML, as well in the development of resistance to chemotherapy. In this review, we discuss the role of miRNAs and lncRNAs with respect to sensitivity and resistance to treatment regimens currently used in AML and provide an outlook on potential therapeutic targets emerging thereof.
Collapse
Affiliation(s)
- Armin Zebisch
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| | - Stefan Hatzl
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| | - Martin Pichler
- Division of Oncology, Medical University of Graz, 8036 Graz, Austria.
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, 8036 Graz, Austria.
| |
Collapse
|
23
|
Commonalities in the Association between PPARG and Vitamin D Related with Obesity and Carcinogenesis. PPAR Res 2016; 2016:2308249. [PMID: 27579030 PMCID: PMC4992792 DOI: 10.1155/2016/2308249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
The PPAR nuclear receptor family has acquired great relevance in the last decade, which is formed by three different isoforms (PPARα, PPARβ/δ, and PPAR ϒ). Those nuclear receptors are members of the steroid receptor superfamily which take part in essential metabolic and life-sustaining actions. Specifically, PPARG has been implicated in the regulation of processes concerning metabolism, inflammation, atherosclerosis, cell differentiation, and proliferation. Thus, a considerable amount of literature has emerged in the last ten years linking PPARG signalling with metabolic conditions such as obesity and diabetes, cardiovascular disease, and, more recently, cancer. This review paper, at crossroads of basic sciences, preclinical, and clinical data, intends to analyse the last research concerning PPARG signalling in obesity and cancer. Afterwards, possible links between four interrelated actors will be established: PPARG, the vitamin D/VDR system, obesity, and cancer, opening up the door to further investigation and new hypothesis in this fascinating area of research.
Collapse
|
24
|
Biersack B. Current state of phenolic and terpenoidal dietary factors and natural products as non-coding RNA/microRNA modulators for improved cancer therapy and prevention. Noncoding RNA Res 2016; 1:12-34. [PMID: 30159408 PMCID: PMC6096431 DOI: 10.1016/j.ncrna.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
The epigenetic regulation of cancer cells by small non-coding RNA molecules, the microRNAs (miRNAs), has raised particular interest in the field of oncology. These miRNAs play crucial roles concerning pathogenic properties of cancer cells and the sensitivity of cancer cells towards anticancer drugs. Certain miRNAs are responsible for an enhanced activity of drugs, while others lead to the formation of tumor resistance. In addition, miRNAs regulate survival and proliferation of cancer cells, in particular of cancer stem-like cells (CSCs), that are especially drug-resistant and, thus, cause tumor relapse in many cases. Various small molecule compounds were discovered that target miRNAs that are known to modulate tumor aggressiveness and drug resistance. This review comprises the effects of naturally occurring small molecules (phenolic compounds and terpenoids) on miRNAs involved in cancer diseases.
Collapse
Key Words
- 1,25-D, 1,25-dihydroxyvitamin D3
- 18-AGA, 18α-glycyrrhetinic acid
- 3,6-DHF, 3,6-dihydroxyflavone
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- CAPE, caffeic acid phenethyl ester
- CDODA-Me, methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate
- Dox, doxorubicin
- EGCG, (−)-epigallocatechin-3-O-gallate
- MicroRNA
- PEG, polyethylene glycol
- PPAP, polycyclic polyprenylated acylphloroglucinol
- Polyphenols
- RA, retinoic acid
- ROS, reactive oxygen species
- TQ, thymoquinone
- Terpenes
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
25
|
Chang S, Gao L, Yang Y, Tong D, Guo B, Liu L, Li Z, Song T, Huang C. miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget 2016; 6:7675-85. [PMID: 25762621 PMCID: PMC4480708 DOI: 10.18632/oncotarget.3048] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022] Open
Abstract
VitaminD3 signaling is involved in inhibiting the development and progression of gastric cancer (GC), while the active vitamin D metabolite 1-alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3)-mediated gene regulatory mechanisms in GC remain unclear. We found that miR-145 is induced by 1,25(OH)2D3 in a dose- and vitamin D receptor (VDR)-dependent manner in GC cells. Inhibition of miR-145 reverses the antiproliferative effect of 1,25(OH)2D3. Furthermore, miR-145 expression was lower in tumors compared with matched normal samples and correlated with increased the E2F3 transcription factor protein staining. Overexpression of miR-145 inhibited colony formation, cell viability and induced cell arrest in S-phase in GC cells by targeting E2F3 and CDK6. miR-145 inhibition consistently abrogates the 1,25(OH)2D3-mediated suppression of E2F3, CDK6, CDK2 and CCNA2 genes. Altogether, our results indicate that miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 in GC cells and might hold promise for prognosis and therapeutic strategies for GC treatment.
Collapse
Affiliation(s)
- Su'e Chang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ling Gao
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China.,Department of Oral Maxillofacial Surgery, Stomatology Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, P. R. China
| | - Yang Yang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Dongdong Tong
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Bo Guo
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Liying Liu
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zongfang Li
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Tusheng Song
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Huang
- Department of Genetics and Molecular Biology/Key Laboratory of Environment and Genes Related to Diseases, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
26
|
Gocek E, Studzinski GP. DNA Repair in Despair-Vitamin D Is Not Fair. J Cell Biochem 2016; 117:1733-44. [PMID: 27122067 DOI: 10.1002/jcb.25552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 02/06/2023]
Abstract
The role of vitamin D as a treatment option for neoplastic diseases, once considered to have a bright future, remains controversial. The preclinical studies discussed herein show compelling evidence that Vitamin D Derivatives (VDDs) can convert some cancer and leukemia cells to a benign phenotype, by differentiation/maturation, cell cycle arrest, or induction of apoptosis. Furthermore, there is considerable, though still evolving, knowledge of the molecular mechanisms underlying these changes. However, the attempts to clearly document that the treatment outcomes of human neoplastic diseases can be positively influenced by VDDs have been, so far, disappointing. The clinical trials to date of VDDs, alone or combined with other agents, have not shown consistent results. It is our contention, shared by others, that there were limitations in the design or execution of these trials which have not yet been fully addressed. Based on the connection between upregulation of JNK by VDDs and DNA repair, we propose a new avenue of attack on cancer cells by increasing the toxicity of the current, only partially effective, cancer chemotherapeutic drugs by combining them with VDDs. This can impair DNA repair and thus kill the malignant cells, warranting a comprehensive study of this novel concept. J. Cell. Biochem. 117: 1733-1744, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elżbieta Gocek
- Faculty of Biotechnology, Department of Proteins Biotechnology, University of Wrocław, Joliot-Curie 14A Street, Wrocław 50-383, Poland
| | - George P Studzinski
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, 07103, New Jersey, USA
| |
Collapse
|
27
|
Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016; 37:8471-86. [PMID: 27059734 DOI: 10.1007/s13277-016-5035-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Collapse
|
28
|
Danilenko M, Studzinski GP. Keep Harm at Bay: Oxidative Phosphorylation Induces Nrf2-Driven Antioxidant Response Via ERK5/MEF2/miR-23a Signaling to Keap-1. EBioMedicine 2016; 3:4-5. [PMID: 26870832 PMCID: PMC4739434 DOI: 10.1016/j.ebiom.2016.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
| | - George P Studzinski
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, 185 South Orange Ave., Newark, NJ 07103, USA
| |
Collapse
|
29
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1166] [Impact Index Per Article: 129.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Sarkar S, Hewison M, Studzinski GP, Li YC, Kalia V. Role of vitamin D in cytotoxic T lymphocyte immunity to pathogens and cancer. Crit Rev Clin Lab Sci 2015; 53:132-45. [PMID: 26479950 DOI: 10.3109/10408363.2015.1094443] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The discovery of vitamin D receptor (VDR) expression in immune cells has opened up a new area of research into immunoregulation by vitamin D, a niche that is distinct from its classical role in skeletal health. Today, about three decades since this discovery, numerous cellular and molecular targets of vitamin D in the immune system have been delineated. Moreover, strong clinical associations between vitamin D status and the incidence/severity of many immune-regulated disorders (e.g. infectious diseases, cancers and autoimmunity) have prompted the idea of using vitamin D supplementation to manipulate disease outcome. While much is known about the effects of vitamin D on innate immune responses and helper T (T(H)) cell immunity, there has been relatively limited progress on the frontier of cytotoxic T lymphocyte (CTL) immunity--an arm of host cellular adaptive immunity that is crucial for the control of such intracellular pathogens as human immunodeficiency virus (HIV), tuberculosis (TB), malaria, and hepatitis C virus (HCV). In this review, we discuss the strong historical and clinical link between vitamin D and infectious diseases that involves cytotoxic T lymphocyte (CTL) immunity, present our current understanding as well as critical knowledge gaps in the realm of vitamin D regulation of host CTL responses, and highlight potential regulatory connections between vitamin D and effector and memory CD8 T cell differentiation events during infections.
Collapse
Affiliation(s)
- Surojit Sarkar
- a Department of Pediatrics, Division of Hematology and Oncology , University of Washington School of Medicine , Seattle , WA , USA .,b Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| | - Martin Hewison
- c Centre for Endocrinology, Diabetes and Metabolism (CEDAM), The University of Birmingham , Birmingham , UK
| | - George P Studzinski
- d Department of Pathology and Laboratory Medicine , Rutgers New Jersey Medical School , Newark , NJ , USA , and
| | - Yan Chun Li
- e Department of Medicine, Division of Biological Sciences , The University of Chicago , Chicago , IL , USA
| | - Vandana Kalia
- a Department of Pediatrics, Division of Hematology and Oncology , University of Washington School of Medicine , Seattle , WA , USA .,b Seattle Children's Research Institute, Ben Towne Center for Childhood Cancer Research , Seattle , WA , USA
| |
Collapse
|
31
|
Yang Z, Liu F, Qu H, Wang H, Xiao X, Deng H. 1, 25(OH)2D3 protects β cell against high glucose-induced apoptosis through mTOR suppressing. Mol Cell Endocrinol 2015. [PMID: 26213322 DOI: 10.1016/j.mce.2015.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus is a leading cause of death and disability worldwide, which presents a serious public health crisis in China nowadays. It has been well recognized that excessive β-cell apoptosis is the key pathogenesis of diabetes, of which the mammalian target of rapamycin (mTOR) serves as the critical signaling pathway. Emerging evidence indicates that vitamin D deficiency acts as a potential risk factor for diabetes. The present study aims to test the hypothesis that 1 alpha, 25-dihydroxyvitamin D(3) [1, 25(OH)2D3] can inhibit β-cell apoptosis via the suppression of mTOR signaling pathway. β-cells (INS-1) were cultured in the context of normal glucose or high glucose media with or without 1, 25(OH)2D3 treatment. β-cell apoptosis was evaluated by inverted fluorescence microscope, flow cytometry and electron microscope, respectively. Quantitative RT-PCR and Western blotting were performed to assess the possible perturbations in mTOR signaling pathway. High glucose significantly increased β-cell apoptosis. Of importance, RT-PCR and Western blotting demonstrated that high glucose inhibited DNA-damage-inducible transcript 4 (DDIT4) and TSC1/TSC2, up-regulated Rheb/mTOR/p70S6K and enhanced expression of the apoptosis regulating proteins, such as phospho-Bcl-2, cytochrome C and cleaved caspase. Interestingly, 1, 25(OH)2D3 treatment reversed high glucose induced pathological changes in mTOR signaling pathway, restored expression of DDIT4 and TSC1/TSC2, blocked aberrant up-regulation of Rheb/mTOR/p70S6K and the apoptosis regulating proteins, and effectively inhibited β-cell apoptosis. Therefore, 1, 25(OH)2D3 treatment can effectively protects β cell against high glucose-induced apoptosis mainly via the suppression of mTOR signaling pathway, which may be considered as a potential therapy for patients with diabetes.
Collapse
Affiliation(s)
- Zesong Yang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, PR China
| | - Fang Liu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, PR China
| | - Hua Qu
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, PR China
| | - Hang Wang
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, PR China
| | - Xiaoqiu Xiao
- Laboratory of Lipid and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, PR China
| | - Huacong Deng
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, PR China.
| |
Collapse
|
32
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
33
|
Xia H, Long J, Zhang R, Yang X, Ma Z. MiR-32 contributed to cell proliferation of human breast cancer cells by suppressing of PHLPP2 expression. Biomed Pharmacother 2015; 75:105-10. [PMID: 26276160 DOI: 10.1016/j.biopha.2015.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/26/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have been identified as important regulators that potentially play critical roles in various biological and pathological processes of cancer cells. The aim of the present study was to investigate the expression of miR-32 in breast cancer and its biological role in tumor progression. MiR-32 expression was markedly upregulated in breast cancer tissues and breast cancer cells. Ectopic expression of miR-32 promoted cell proliferation of breast cancer, whereas miR-32-in suppressed this function. Mechanically, data from luciferase reporter assays revealed that miR-32 directly targeted to the 3'-untranslated region (3'-UTR) of PHLPP2. Overexpression of miR-32 led to downregulation of PHLPP2 protein, which resulted in the downregulation of p21 and upregulation of cyclin D1 and p-Rb. In functional assays, PHLPP2-silenced in miR-32-in-transfected ZR-75-30 cells have positive effect to promote cell proliferation, suggesting that direct PHLPP2 downregulation is required for miR-32-induced cell proliferation of breast cancer. Our findings highlighted the importance of miR-32 in promoting tumor progression, and implicate miR-32 as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Haoming Xia
- Breast Disease Center, Department of Surgery, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China
| | - Jianting Long
- Department of Medicinal Oncology, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China
| | - Ruifen Zhang
- Department of Endocrinology, Shenzhen Luohu People's Hospital, Shenzhen, 518001, China
| | - Xiaosong Yang
- Breast Disease Center, Department of Surgery, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China
| | - Zhefu Ma
- Breast Disease Center, Department of Surgery, The First Affiliated Hospital, SUN Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
34
|
Zhu D, Chen H, Yang X, Chen W, Wang L, Xu J, Yu L. miR-32 functions as a tumor suppressor and directly targets SOX9 in human non-small cell lung cancer. Onco Targets Ther 2015; 8:1773-83. [PMID: 26229485 PMCID: PMC4516199 DOI: 10.2147/ott.s72457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose MicroRNA-32 (miR-32) is dysregulated in certain human malignancies and correlates with tumor progression. However, its expression and function in non-small cell lung cancer (NSCLC) remain unclear. Thus, the aim of this study was to explore the effects of miR-32 expression on NSCLC tumorigenesis and development. Methods Using real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR), we detected miR-32 expression in NSCLC cell lines and primary tumor tissues. The association of miR-32 expression with clinicopathological factors and prognosis was also analyzed. Then, the effects of miR-32 expression on the biological behavior of NSCLC cells were investigated. Finally, the potential regulatory effect of miR-32 on SOX9 expression was confirmed. Results miR-32 expression levels were significantly downregulated in NSCLC compared with the corresponding noncancerous lung tissues (P<0.001). In addition, decreased miR-32 expression was significantly associated with lymph node metastasis (P=0.002), advanced tumor/nodes/metastasis (TNM) classification stages (P<0.001), and shorter overall survival (P<0.001). Multivariate regression analysis corroborated that downregulated miR-32 expression was an independent unfavorable prognostic factor for NSCLC patients. In vitro studies demonstrated that miR-32 overexpression reduced A549 cell proliferation, migration, and invasion, and promoted apoptosis. Furthermore, SOX9 was confirmed as a direct target of miR-32, using a luciferase reporter assay. Conclusion These findings indicate that miR-32 may act as a tumor suppressor in NSCLC and could serve as a novel therapeutic agent for miR-based therapy.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Hui Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Xiguang Yang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Weisong Chen
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Linying Wang
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Jilin Xu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| | - Long Yu
- Department of Respiratory Medicine, Jinhua Municipal Central Hospital, Jinhua, People's Republic of China
| |
Collapse
|
35
|
MicroRNA-551b is highly expressed in hematopoietic stem cells and a biomarker for relapse and poor prognosis in acute myeloid leukemia. Leukemia 2015; 30:742-6. [PMID: 26108690 DOI: 10.1038/leu.2015.160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
González-Duarte RJ, Cázares-Ordoñez V, Romero-Córdoba S, Díaz L, Ortíz V, Freyre-González JA, Hidalgo-Miranda A, Larrea F, Avila E. Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells. Biochem Cell Biol 2015; 93:376-84. [PMID: 26111345 DOI: 10.1139/bcb-2015-0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs play important roles in cancer biology. Calcitriol, the hormonal form of vitamin D3, regulates microRNAs expression in tumor cells. In the present study we asked if calcitriol would modify some of the components of the microRNA processing machinery, namely, Drosha and Dicer, in calcitriol-responsive cervical cancer cells. We found that calcitriol treatment did not affect Drosha mRNA; however, it significantly increased Dicer mRNA and protein expression in VDR-positive SiHa and HeLa cells. In VDR-negative C33-A cells, calcitriol had no effect on Dicer mRNA. We also found a vitamin D response element in Dicer promoter that interacts in vitro to vitamin D and retinoid X receptors. To explore the biological plausibility of these results, we asked if calcitriol alters the microRNA expression profile in SiHa cells. Our results revealed that calcitriol regulates the expression of a subset of microRNAs with potential regulatory functions in cancer pathways, such as miR-22, miR-296-3p, and miR-498, which exert tumor-suppressive effects. In summary, the data indicate that in SiHa cells, calcitriol stimulates the expression of Dicer possibly through the vitamin D response element located in its promoter. This may explain the calcitriol-dependent modulation of microRNAs whose target mRNAs are related to anticancer pathways, further adding to the various anticancer mechanisms of calcitriol.
Collapse
Affiliation(s)
- Ramiro José González-Duarte
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México.,e School of Medicine, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Av. Universidad # 3000, México, D.F. 04510, México
| | - Verna Cázares-Ordoñez
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México.,e School of Medicine, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Av. Universidad # 3000, México, D.F. 04510, México
| | - Sandra Romero-Córdoba
- b Laboratory of Cancer Genomics, Instituto Nacional de Medicina Genómica, Periférico Sur # 4809, Col. Arenal Tepepan, México, D.F. 14610, México
| | - Lorenza Díaz
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| | - Víctor Ortíz
- c Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| | - Julio Augusto Freyre-González
- d Evolutionary Genomics Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos 62210, México
| | - Alfredo Hidalgo-Miranda
- b Laboratory of Cancer Genomics, Instituto Nacional de Medicina Genómica, Periférico Sur # 4809, Col. Arenal Tepepan, México, D.F. 14610, México
| | - Fernando Larrea
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| | - Euclides Avila
- a Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Col. Sección XVI, México, D.F. 14000, México
| |
Collapse
|
37
|
Oridonin triggers apoptosis in colorectal carcinoma cells and suppression of microRNA-32 expression augments oridonin-mediated apoptotic effects. Biomed Pharmacother 2015; 72:125-34. [DOI: 10.1016/j.biopha.2015.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022] Open
|
38
|
Ross SA, Davis CD. The emerging role of microRNAs and nutrition in modulating health and disease. Annu Rev Nutr 2015; 34:305-36. [PMID: 25033062 DOI: 10.1146/annurev-nutr-071813-105729] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the molecular mechanisms that inform how diet and dietary supplements influence health and disease is an active research area. One such mechanism concerns the role of diet in modulating the activity and function of microRNAs (miRNAs). miRNAs are small noncoding RNA molecules that are involved in posttranscriptional gene silencing and have been shown to control gene expression in diverse biological processes including development, differentiation, cell proliferation, metabolism, and inflammation as well as in human diseases. Recent evidence described in this review highlights how dietary factors may influence cancer, cardiovascular disease, type 2 diabetes mellitus, obesity, and nonalcoholic fatty liver disease through modulation of miRNA expression. Additionally, circulating miRNAs are emerging as putative biomarkers of disease, susceptibility, and perhaps dietary exposure. Research needs to move beyond associations in cells and animals to understanding the direct effects of diet and dietary supplements on miRNA expression and function in human health and disease.
Collapse
Affiliation(s)
- Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892;
| | | |
Collapse
|
39
|
Gocek E, Studzinski GP. The Potential of Vitamin D-Regulated Intracellular Signaling Pathways as Targets for Myeloid Leukemia Therapy. J Clin Med 2015; 4:504-34. [PMID: 26239344 PMCID: PMC4470153 DOI: 10.3390/jcm4040504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/06/2015] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
The current standard regimens for the treatment of acute myeloid leukemia (AML) are curative in less than half of patients; therefore, there is a great need for innovative new approaches to this problem. One approach is to target new treatments to the pathways that are instrumental to cell growth and survival with drugs that are less harmful to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of signaling pathways and those that are known to, or potentially can, interact with MAPKs, such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with specific relevance to vitamin D and its derivatives, since they have featured prominently in recent scientific literature as having anti-cancer properties. Since microRNAs also are known to be regulated by activated vitamin D, this is also briefly discussed here, as are the implications of the emerging acquisition of transcriptosome data and potentiation of the biological effects of vitamin D by other compounds. While there are ongoing clinical trials of various compounds that affect signaling pathways, more studies are needed to establish the clinical utility of vitamin D in the treatment of cancer.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| | - George P Studzinski
- Department of Pathology, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Ave., Newark, NJ 17101, USA.
| |
Collapse
|
40
|
Liu N, Li P, Zang S, Liu Q, Ma D, Sun X, Ji C. Novel agent nitidine chloride induces erythroid differentiation and apoptosis in CML cells through c-Myc-miRNAs axis. PLoS One 2015; 10:e0116880. [PMID: 25647305 PMCID: PMC4315404 DOI: 10.1371/journal.pone.0116880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
The proto-oncogene c-Myc plays critical roles in human malignancies including chronic myeloid leukemia (CML), suggesting that the discovery of specific agents targeting c-Myc would be extremely valuable for CML treatment. Nitidine Chloride (NC), a natural bioactive alkaloid, is suggested to possess anti-tumor effects. However, the function of NC in leukemia and the underlying molecular mechanisms have not been established. In this study, we found that NC induced erythroid differentiation, accompanied by increased expression of erythroid differentiation markers, e. g. α-, ε-, γ-globin, CD235a, CD71 and α-hemoglobin stabilizing protein (AHSP) in CML cells. We also observed that NC induced apoptosis and upregulated cleaved caspase-3 and Parp-1 in K562 cells. These effects were associated with concomitant attenuation of c-Myc. Our study showed that NC treatment in CML cells enhanced phosphorylation of Thr58 residue and subsequently accelerated degradation of c-Myc. A specific group of miRNAs, which had been reported to be activated by c-Myc, mediated biological functions of c-Myc. We found that most of these miRNAs, especially miR-17 and miR-20a showed strong decrement after NC treatment or c-Myc interference. Furthermore, overexpression of c-Myc or miR-17/20a alleviated NC induced differentiation and apoptosis in K562 cells. More importantly, NC enhanced the effects of imatinib in K562 and primary CML cells. We further found that even imatinib resistant CML cell line (K562/G01) and CML primary cells exhibited high sensitivity to NC, which showed potential possibility to overcome imatinib resistance. Taken together, our results clearly suggested that NC promoted erythroid differentiation and apoptosis through c-Myc-miRNAs regulatory axis, providing potential possibility to overcome imatinib resistance.
Collapse
Affiliation(s)
- Na Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Shaolei Zang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Liu
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- Key Lab of Otolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
41
|
Chen Y, Fu LL, Wen X, Liu B, Huang J, Wang JH, Wei YQ. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis 2015; 19:1177-89. [PMID: 24850099 DOI: 10.1007/s10495-014-0999-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), small and non-coding endogenous RNAs ∼22 nucleotides (nt) in length, have been known to regulate approximately 30 % of human gene expression at the post-transcriptional and translational levels. Accumulating data have demonstrated that certain miRNAs could exert an oncogenic and/or tumor suppressive function and might play essential roles in the regulation of apoptosis and autophagy in cancer. In this review, we summarize that certain oncogenic and tumor suppressive miRNAs could modulate apoptotic pathways in different types of cancer. Subsequently, we demonstrate that other miRNAs might play regulatory roles in the autophagic pathways of cancer. A limited number of oncogenic/tumor suppressive miRNAs could regulate apoptosis and autophagy, respectively, and cooperatively. Taken together, these findings would provide a new clue to elucidate more apoptotic and/or autophagic mechanisms of miRNAs for designing potential novel therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Y Chen
- State Key Laboratory of Biotherapy, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Köpke S, Buhrke T, Lampen A. miRNA expression in human intestinal Caco-2 cells is comparably regulated by cis- and trans-fatty acids. Lipids 2015; 50:227-39. [PMID: 25612549 DOI: 10.1007/s11745-015-3988-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/06/2015] [Indexed: 01/13/2023]
Abstract
Trans-fatty acids are unsaturated fatty acids with at least one double bond in trans configuration. While their role in the development of coronary heart disease is broadly accepted, a potential impact of these fatty acids on colon carcinogenesis is still under discussion. MiRNAs are small non-coding RNAs that regulate the gene expression at a post-transcriptional level by inhibiting the translation of target mRNAs. We investigated the effect of 16 different C 18 fatty acid isomers on the expression of 84 cancer-related miRNAs in the human colorectal adenocarcinoma cell line Caco-2 by using a qRT-PCR array. 66 of these 84 miRNAs were deregulated by at least one fatty acid, however, there was no trans-specific impact on miRNA expression as the corresponding cis isomer of a given fatty acid generally had comparable effects on the miRNA expression profile. The most pronounced effects were observed for hsa-miR-146a-5p, which was upregulated by four of the 16 investigated fatty acids, and hsa-miR-32-5p, which was strongly downregulated by five fatty acids. As hsa-miR-32-5p was described to target genes being involved in the regulation of apoptosis, the effect of α-eleostearic acid on the expression of the apoptosis-associated genes BCL2L11, BCL-2, and BCL-XL was examined. The qPCR results indicate that fatty acid-mediated downregulation of hsa-miR-32-5p is accompanied by a downregulation of BCL-2 and BCL2L11 mRNA whereas BCL-XL was shown to be simultaneously upregulated. In conclusion, our data indicate that several fatty acids are able to regulate miRNA expression of human colon cancer cells. However, no trans-specific regulation was observed.
Collapse
Affiliation(s)
- Solveigh Köpke
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | | | | |
Collapse
|
43
|
Drug resistance-related microRNAs in hematological malignancies: Translating basic evidence into therapeutic strategies. Blood Rev 2015; 29:33-44. [DOI: 10.1016/j.blre.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
|
44
|
Liu MZ, McLeod HL, He FZ, Chen XP, Zhou HH, Shu Y, Zhang W. Epigenetic perspectives on cancer chemotherapy response. Pharmacogenomics 2014; 15:699-715. [PMID: 24798726 DOI: 10.2217/pgs.14.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epigenetic programs are now widely recognized as being critical to the biological processes of cancer genesis. However, it has not been comprehensively understood how and to what degree they can influence anticancer drugs responses. The development of drugs targeting epigenetic regulation has generated great enthusiasm, with a growing number in clinical development. We highlight here that epigenetic modifications can be involved in the regulation of genes responsible for the absorption, distribution, metabolism and excretion of drugs and for the pathological progression of cancer, thereby affecting anticancer drug responses. The major epigenetic regulatory mechanisms are reviewed, including DNA methylation, miRNA regulation and histone modification, with the aim of promoting rational use of anticancer drugs in the clinic and epigenetic drug development.
Collapse
Affiliation(s)
- Mou-Ze Liu
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang D, Ni Z, Xu X, Xiao J. MiR-32 functions as a tumor suppressor and directly targets EZH2 in human oral squamous cell carcinoma. Med Sci Monit 2014; 20:2527-35. [PMID: 25472588 PMCID: PMC4266205 DOI: 10.12659/msm.892636] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background MicroRNA-32 (miR-32) is dysregulated in certain human malignancies and correlates with tumor progression. However, its expression and function in oral squamous cell carcinoma (OSCC) remain unclear. Thus, the aim of this study was to explore the effects of miR-32 expression on OSCC tumorigenesis and development. Material/Methods Real-time quantitative PCR was applied to evaluate the expression level of miR-32 in OSCC cell lines and primary tumor tissues. The association of miR-32 expression with clinicopathological factors and prognosis was also analyzed. In vitro cell proliferation, apoptosis, invasion, and migration assays were executed to elucidate biological effects of miR-32. Western blotting and luciferase assays were performed to confirm the regulation of EZH2 by miR-32. Results Down-regulation of miR-32 was found in OSCC tissues compared with corresponding noncancerous tissues (P<0.001). Decreased miR-32 expression was significantly associated with advanced T classifications, positive N classification, advanced TNM stage, and shorter overall survival (all P<0.05). Multivariate regression analysis corroborated that low-level expression of miR-32 was an independent unfavorable prognostic factor for OSCC patients. In vitro functional assays showed that overexpression of miR-32 reduced OSCC cell proliferation, migration, and invasion, and promoted cell apoptosis. In contrast, miR-32 knock-down resulted in an increase in cell growth and invasiveness. Finally, we identified EZH2 as the functional downstream target of miR-32 by directly targeting the 3′-UTR of EZH2. Conclusions These findings indicate that miR-32 may act as a tumor suppressor in OSCC and could serve as a novel therapeutic agent for miR-based therapy.
Collapse
Affiliation(s)
- Dafeng Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Zhenyu Ni
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Xingqiao Xu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jin Xiao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
46
|
Pan Y, Ren F, Zhang W, Liu G, Yang D, Hu J, Feng K, Feng Y. Regulation of BGC-823 cell sensitivity to adriamycin via miRNA-135a-5p. Oncol Rep 2014; 32:2549-56. [PMID: 25322930 DOI: 10.3892/or.2014.3546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/26/2014] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the genesis and development of gastric cancer. In the present study, we determined whether miRNA-135a-5p expression was increased in gastric cancer compared with adjacent non-tumor tissues using 20 pairs of gastric cancer and para-carcinoma tissue samples which were assessed via microarray and bioinformatics analysis, and western blotting. The protein content detection showed that miRNA‑135a-5p expression was inversely correlated with AP-2α. Bioinformatics analysis revealed that AP-2α contains a putative miRNA-135a-5p target, which was confirmed as a direct target using the 3'-UTR luciferase reporter system. Additionally, an increase and decrease of miRNA-135a-5p inhi-bited or impaired adriamycin-induced apoptosis in BGC-823 cells (p<0.05, compared with the group without gene intervention), respectively. Luciferase reporter experiments confirmed that AP-2α bound to the BCL-2 promoter and affected its transcription. Therefore, miRNA-135a-5p increased BCL-2 via AP-2α and consequently enhanced cell resistance to apoptosis. This newly identified miRNA-135a-5p-AP-2α-BCL-2 pathway provides insight for the treatment of gastric cancer and solution for insensitivity of gastric cancer to chemotherapy drugs.
Collapse
Affiliation(s)
- Yanming Pan
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Fengyun Ren
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Wei Zhang
- Department of Respiration, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Guibo Liu
- School of Basic Medical Science, Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Dan Yang
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Jing Hu
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Kejian Feng
- School of Basic Medical Science, Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Yukuan Feng
- Key Laboratory of Tumor Prevention and Treatment (Heilongjiang Higher Education Institutions), Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| |
Collapse
|
47
|
Eom HJ, Chatterjee N, Lee J, Choi J. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions. Toxicol Lett 2014; 229:311-8. [PMID: 24974767 DOI: 10.1016/j.toxlet.2014.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
Abstract
In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the mechanism of differential toxicity. Overall results suggest that epigenetic mechanism is involved in toxicity of AgNPs and Ag ions in Jurkat T cells.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea
| | - Jeongsoo Lee
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Jinhee Choi
- School of Environmental Engineering, Graduate School of Energy and Environmental system Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 130-743, South Korea.
| |
Collapse
|
48
|
Weng H, Huang H, Dong B, Zhao P, Zhou H, Qu L. Inhibition of miR-17 and miR-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing BIM-S. Cancer Res 2014; 74:4409-19. [PMID: 24872388 DOI: 10.1158/0008-5472.can-13-1748] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer cell chemoresistance arises in part through the acquisition of apoptotic resistance. Leukemia cells resistant to chemotherapy-induced apoptosis have been found to be sensitive to oridonin, a natural agent with potent anticancer activity. To investigate its mechanisms of action in reversing chemoresistance, we compared the response of human leukemia cells with oridonin and the antileukemia drugs Ara-C and VP-16. Compared with HL60 cells, K562 and K562/ADR cells displayed resistance to apoptosis stimulated by Ara-C and VP-16 but sensitivity to oridonin. Mechanistic investigations revealed that oridonin upregulated BIM-S by diminishing the expression of miR-17 and miR-20a, leading to mitochondria-dependent apoptosis. In contrast, neither Ara-C nor VP-16 could reduce miR-17 and miR-20a expression or could trigger BIM-S-mediated apoptosis. Notably, silencing miR-17 or miR-20a expression by treatment with microRNA (miRNA; miR) inhibitors or oridonin restored sensitivity of K562 cells to VP-16. Synergistic effects of oridonin and VP-16 were documented in cultured cells as well as mouse tumor xenograft assays. Inhibiting miR-17 or miR-20a also augmented the proapoptotic activity of oridonin. Taken together, our results identify a miRNA-dependent mechanism underlying the anticancer effect of oridonin and provide a rationale for its combination with chemotherapy drugs in addressing chemoresistant leukemia cells.
Collapse
Affiliation(s)
- Hengyou Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Huilin Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Bowen Dong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Panpan Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| | - Lianghu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
49
|
Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer 2014; 14:342-57. [PMID: 24705652 DOI: 10.1038/nrc3691] [Citation(s) in RCA: 899] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D is not really a vitamin but the precursor to the potent steroid hormone calcitriol, which has widespread actions throughout the body. Calcitriol regulates numerous cellular pathways that could have a role in determining cancer risk and prognosis. Although epidemiological and early clinical trials are inconsistent, and randomized control trials in humans do not yet exist to conclusively support a beneficial role for vitamin D, accumulating results from preclinical and some clinical studies strongly suggest that vitamin D deficiency increases the risk of developing cancer and that avoiding deficiency and adding vitamin D supplements might be an economical and safe way to reduce cancer incidence and improve cancer prognosis and outcome.
Collapse
Affiliation(s)
- David Feldman
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Aruna V Krishnan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Srilatha Swami
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Edward Giovannucci
- Departments of Epidemiology and Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian J Feldman
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
50
|
Attar R, Gasparri ML, Di Donato V, Yaylim I, Halim TA, Zaman F, Farooqi AA. Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action. Asian Pac J Cancer Prev 2014; 15:3359-62. [DOI: 10.7314/apjcp.2014.15.8.3359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|