1
|
Aghova T, Lhotska H, Lizcova L, Svobodova K, Hodanova L, Janeckova K, Vucinic K, Gregor M, Konecna D, Kramar F, Soukup J, Netuka D, Zemanova Z. Diagnostic challenges in complicated case of glioblastoma. Pathol Oncol Res 2024; 30:1611875. [PMID: 39534304 PMCID: PMC11554483 DOI: 10.3389/pore.2024.1611875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma is the commonest primary malignant brain tumor, with a very poor prognosis and short overall survival. It is characterized by its high intra- and intertumoral heterogeneity, in terms of both the level of single-nucleotide variants, copy number alterations, and aneuploidy. Therefore, routine diagnosis can be challenging in some cases. We present a complicated case of glioblastoma, which was characterized with five cytogenomic methods: interphase fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, comparative genomic hybridization array and single-nucleotide polymorphism, targeted gene panel, and whole-genome sequencing. These cytogenomic methods revealed classical findings associated with glioblastoma, such as a lack of IDH and TERT mutations, gain of chromosome 7, and loss of chromosome 10. At least three pathological clones were identified, including one with whole-genome duplication, and one with loss of 1p and suspected loss of 19q. Deletion and mutation of the TP53 gene were detected with numerous breakends on 17p and 20q. Based on these findings, we recommend a combined approach to the diagnosis of glioblastoma involving the detection of copy number alterations, mutations, and aneuploidy. The choice of the best combination of methods is based on cost, time required, staff expertise, and laboratory equipment. This integrated strategy could contribute directly to tangible improvements in the diagnosis, prognosis, and prediction of the therapeutic responses of patients with brain tumors.
Collapse
Affiliation(s)
- Tatiana Aghova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Halka Lhotska
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Libuse Lizcova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Karla Svobodova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Lucie Hodanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Karolina Janeckova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| | - Kim Vucinic
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Dora Konecna
- Department of Neurosurgery, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
| | - Filip Kramar
- Department of Neurosurgery, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
| | - Jiri Soukup
- Department of Pathology, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czechia
- Department of Pathology, Charles University, First Faculty of Medicine and General University Hospital in Prague, Prague, Czechia
| | - David Netuka
- Department of Neurosurgery, 1st Faculty of Medicine of Charles University and Military University Hospital Prague, Prague, Czechia
| | - Zuzana Zemanova
- Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, Prague, Czechia
| |
Collapse
|
2
|
Kazancioglu E, Tug E, Ergun MA, Kazan HH, Karaoguz MY. The interrelation between the high expression level of MIR34a and the trisomic abortion materials. J Obstet Gynaecol Res 2024; 50:842-848. [PMID: 38452772 DOI: 10.1111/jog.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
AIMS The underlying mechanism and constitution of spontaneous abortions are complicated and heterogeneous. Many factors, including epigenetic scenarios like micro-ribonucleic acids (miRNAs, MIRs), can additively affect the progression of pregnancy losses. This study aimed to evaluate whether the expression levels of placental inhibitor and/or activator miRNAs had a difference between the numerically abnormal and normal karyotyped spontaneous abortions. METHODS The case-control study included 100 spontaneous abortion materials consisting of trophoblastic tissues with 42 disomies (controls), 43 aneuploidies (including trisomy 16, 21, 22, and monosomy X), and 15 triploidies. Disomic abortion materials with XX normal karyotypes were omitted from the study to exclude possible maternal decidual cell contamination. Total RNA isolation was performed with TRIzol™ reagent directly from frozen trophoblastic tissues, and the mature miRNAs were obtained by reverse transcription via quantitative real-time polymerase chain reaction (qRT-PCR). Then, the expression levels of placental activators MIR378a-5p, MIR376c, MIR195, and inhibitors MIR34a and MIR210 were relatively evaluated using MIR130 as a reference. RESULTS The expression level of placental inhibitor MIR34a was detected to be high in trisomic abortion materials (trisomy 16 and 21) when compared to the disomic ones (p = 0.0324). MIR195 (p = 0.0484) and MIR34a (p = 0.0346) expression levels were increased in numerically abnormal cases with advanced maternal age compared to the disomic ones within all maternal ages. CONCLUSIONS It seems likely that the high expression level of MIR34a and the coexistence of trisomic abortion materials are quite interrelated with the additive effect of advanced maternal age.
Collapse
Affiliation(s)
- Elvin Kazancioglu
- Department of Medical Genetics, Medical Faculty, Gazi University, Ankara, Turkey
| | - Esra Tug
- Department of Medical Genetics, Medical Faculty, Gazi University, Ankara, Turkey
| | - Mehmet Ali Ergun
- Department of Medical Genetics, Medical Faculty, Gazi University, Ankara, Turkey
| | - Hasan Huseyin Kazan
- Department of Medical Genetics, Medical Faculty, Near East University, Nicosia, Cyprus
| | | |
Collapse
|
3
|
Persson M, Andersson MK, Sahlin PE, Mitani Y, Brandwein-Weber MS, Frierson HF, Moskaluk C, Fonseca I, Ferrarotto R, Boecker W, Loening T, El-Naggar AK, Stenman G. Comprehensive molecular characterization of adenoid cystic carcinoma reveals tumor suppressors as novel drivers and prognostic biomarkers. J Pathol 2023; 261:256-268. [PMID: 37565350 DOI: 10.1002/path.6172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
Adenoid cystic carcinoma (ACC) is a MYB-driven head and neck malignancy with high rates of local recurrence and distant metastasis and poor long-term survival. New effective targeted therapies and clinically useful biomarkers for patient stratification are needed to improve ACC patient survival. Here, we present an integrated copy number and transcriptomic analysis of ACC to identify novel driver genes and prognostic biomarkers. A total of 598 ACCs were studied. Clinical follow-up was available from 366 patients, the largest cohort analyzed to date. Copy number losses of 1p36 (70/492; 14%) and of the tumor suppressor gene PARK2 (6q26) (85/343; 25%) were prognostic biomarkers; patients with concurrent losses (n = 20) had significantly shorter overall survival (OS) than those with one or no deletions (p < 0.0001). Deletion of 1p36 independently predicted short OS in multivariate analysis (p = 0.02). Two pro-apoptotic genes, TP73 and KIF1B, were identified as putative 1p36 tumor suppressor genes whose reduced expression was associated with poor survival and increased resistance to apoptosis. PARK2 expression was markedly reduced in tumors with 6q deletions, and PARK2 knockdown increased spherogenesis and decreased apoptosis, indicating that PARK2 is a tumor suppressor in ACC. Moreover, analysis of the global gene expression pattern in 30 ACCs revealed a transcriptomic signature associated with short OS, multiple copy number alterations including 1p36 deletions, and reduced expression of TP73. Taken together, the results indicate that TP73 and PARK2 are novel putative tumor suppressor genes and potential prognostic biomarkers in ACC. Our studies provide new important insights into the pathogenesis of ACC. The results have important implications for biomarker-driven stratification of patients in clinical trials. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Marta Persson
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Mattias K Andersson
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Per-Erik Sahlin
- Department of Plastic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Henry F Frierson
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher Moskaluk
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Isabel Fonseca
- Serviço de Anatomia Patológica, Instituto Português de Oncologia de Francisco Gentil - Lisboa and Instituto de Anatomia Patológica, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Renata Ferrarotto
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Werner Boecker
- Gerhard Domagk Institute of Pathology, University of Muenster, Muenster, Germany
- Gerhard-Seifert Reference Centre, Hamburg, Germany
| | | | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Göran Stenman
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Gao F, Liu H, Meng X, Liu J, Wang J, Yu J, Liu X, Liu X, Li L, Qiu L, Qian Z, Zhou S, Gong W, Meng B, Ren X, Golchehre Z, Chavoshzadeh Z, He J, Zhang H, Wang X. Integrative genomic and transcriptomic analysis reveals genetic alterations associated with the early progression of follicular lymphoma. Br J Haematol 2023; 202:1151-1164. [PMID: 37455019 DOI: 10.1111/bjh.18974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Follicular lymphoma (FL), the most common indolent lymphoma, is a clinically and genetically heterogeneous disease. However, the prognostic value of driver gene mutations and copy number alterations has not been systematically assessed. Here, we analysed the clinical-biological features of 415 FL patients to identify variables associated with disease progression within 24 months of first-line therapy (POD24). Patients with B symptoms, elevated lactate dehydrogenase and β2-microglobulin levels, unfavourable baseline haemoglobin levels, advanced stage, and high-risk FL International Prognostic Index (FLIPI) scores had an increased risk of POD24, with FLIPI being the most important factor in logistic regression. HIST1H1D, identified as a driver mutation, was correlated with POD24. Gains of 6p22.2 (HIST1H1D) and 18q21.33 (BCL2) and loss of 1p36.13 (NBPF1) predicted POD24 independent of FLIPI. Gene expression profiling of FL samples showed that the POD24 cohort was significantly enriched in the inflammatory response (mediated by interferon and tumour necrosis factor), cell cycle regulation (transcription, replication and proliferation) sets and PI3K-AKT-mTOR signalling. This result was further validated with transcriptome-wide information provided by RNA-seq at single-cell resolution. Our study, performed on a large cohort of FL patients, highlights the importance of distinctive genetic alterations and gene expression relevant to disease diagnosis and early progression.
Collapse
Affiliation(s)
- Fenghua Gao
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Hengqi Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xiangrui Meng
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jing Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Jiesong Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
- Department of Lymphoma & Head and Neck Oncology, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, China
| | - Jingwei Yu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xia Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianming Liu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Lihua Qiu
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Zhengzi Qian
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Shiyong Zhou
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Immunology/Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zahra Golchehre
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Department of Immunology/Allergy, Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jin He
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
5
|
Li J, Li S, Yu S, Yang J, Ke J, Li H, Chen H, Lu M, Sy MS, Gao Z, Li C. Persistent ER stress causes GPI anchor deficit to convert a GPI-anchored prion protein into pro-PrP via the ATF6-miR449c-5p-PIGV axis. J Biol Chem 2023; 299:104982. [PMID: 37390992 PMCID: PMC10388210 DOI: 10.1016/j.jbc.2023.104982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response are cells' survival strategies to thwart disruption of proteostasis. Tumor cells are continuously being challenged by ER stress. The prion protein, PrP, normally a glycosylphosphatidylinositol (GPI)-anchored protein exists as a pro-PrP retaining its GPI-peptide signal sequence in human pancreatic ductal cell adenocarcinoma (PDAC). Higher abundance of pro-PrP indicates poorer prognosis in PDAC patients. The reason why PDAC cells express pro-PrP is unknown. Here, we report that persistent ER stress causes conversion of GPI-anchored PrP to pro-PrP via a conserved ATF6-miRNA449c-5p-PIGV axis. Mouse neurons and AsPC-1, a PDAC cell line, express GPI-anchored PrP. However, continuous culture of these cells with the ER stress inducers thapsigargin or brefeldin A results in the conversion of a GPI-anchored PrP to pro-PrP. Such a conversion is reversible; removal of the inducers allows the cells to re-express a GPI-anchored PrP. Mechanistically, persistent ER stress increases the abundance of an active ATF6, which increases the level of miRNA449c-5p (miR449c-5p). By binding the mRNA of PIGV at its 3'-UTRs, miR449c-5p suppresses the level of PIGV, a mannosyltransferase pivotal in the synthesis of the GPI anchor. Reduction of PIGV leads to disruption of the GPI anchor assembly, causing pro-PrP accumulation and enhancing cancer cell migration and invasion. The importance of ATF6-miR449c-5p-PIGV axis is recapitulated in PDAC biopsies as the higher levels of ATF6 and miR449c-5p and lower levels of PIGV are markers of poorer outcome for patients with PDAC. Drugs targeting this axis may prevent PDAC progression.
Collapse
Affiliation(s)
- JingFeng Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - SaSa Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - ShuPei Yu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Jie Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - JingRu Ke
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Heng Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - MingJian Lu
- Department of Interventional Radiology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - ZhenXing Gao
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| | - Chaoyang Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| |
Collapse
|
6
|
Landen L, De Leener A, Le Roux M, Brichard B, Aydin S, Maiter D, Lysy PA. Case Report: Aggressive neural crest tumors in a child with familial von Hippel Lindau syndrome associated with a germline VHL mutation (c.414A>G) and a novel KIF1B gene mutation. Front Endocrinol (Lausanne) 2023; 14:1204793. [PMID: 37564981 PMCID: PMC10411570 DOI: 10.3389/fendo.2023.1204793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Von Hippel Lindau (VHL) syndrome is caused by an autosomal dominant hereditary or sporadic germline mutation of the VHL gene with more than five hundred pathogenic mutations identified. Pheochromocytomas and rarely paragangliomas occur in 10-50% of patients with VHL syndrome usually around 30 years of age and exceptionally before the age of 10. Case presentation We diagnosed a 9-year-old girl of normal appearance and severe refractory hypertension, with a norepinephrine-secreting pheochromocytoma related to VHL syndrome due to a known familial germline heterozygous mutation of VHL gene (c.414A>G), also present in three members of her family. At age 13, a pelvic tumor and a left adrenal pheochromocytoma that showed to be multi-metastatic to both lungs were discovered in the patient leading to left adrenalectomy and pelvic tumor resection. In addition to the germline VHL gene mutation, blood analysis using Next Generation Sequencing identified a novel heterozygous germline mutation of the KIF1B gene (c.3331_3332del; p.Asn1111Glnfs*21), which is only present in the girl and not the other family members. The patient is currently under steroid substitution therapy and leads a normal life. Discussion This family is notable by the early age of onset of multiple neural crest tumors associated with a high propensity for malignancy and metastatic spread. Most reports in the literature associated the VHL mutation with a later onset in adulthood and a benign course, which contrast with our findings and question the role of this mutation in the phenotype expressed in this kindred. Also, the presence of concomitant mutations in two susceptibility genes for neural crest tumors poses the question of their respective roles in the development of tumors in this family. Our familial case description illustrates the potential for systematic use of targeted Next Generation Sequencing with multi-gene panels in patients with neural crest tumors to confirm the role of known susceptibility genes as well as identifying new ones, but also to contribute to comprehensive databases on gene variants and their phenotypic counterparts in this specific area of medicine.
Collapse
Affiliation(s)
- Lucie Landen
- Division of Pediatric Endocrinology, Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Anne De Leener
- Division of Clinical Genetics, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Manon Le Roux
- Division of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bénédicte Brichard
- Division of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Selda Aydin
- Division of Pathology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Dominique Maiter
- Division of Endocrinology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Philippe A. Lysy
- Division of Pediatric Endocrinology, Specialized Pediatrics Service, Cliniques Universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
7
|
Li L, Shu XS, Geng H, Ying J, Guo L, Luo J, Xiang T, Wu L, Ma BBY, Chan ATC, Zhu X, Ambinder RF, Tao Q. A novel tumor suppressor encoded by a 1p36.3 lncRNA functions as a phosphoinositide-binding protein repressing AKT phosphorylation/activation and promoting autophagy. Cell Death Differ 2023; 30:1166-1183. [PMID: 36813924 PMCID: PMC10154315 DOI: 10.1038/s41418-023-01129-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Peptides/small proteins, encoded by noncanonical open reading frames (ORF) of previously claimed non-coding RNAs, have recently been recognized possessing important biological functions, but largely uncharacterized. 1p36 is an important tumor suppressor gene (TSG) locus frequently deleted in multiple cancers, with critical TSGs like TP73, PRDM16, and CHD5 already validated. Our CpG methylome analysis identified a silenced 1p36.3 gene KIAA0495, previously thought coding long non-coding RNA. We found that the open reading frame 2 of KIAA0495 is actually protein-coding and translating, encoding a small protein SP0495. KIAA0495 transcript is broadly expressed in multiple normal tissues, but frequently silenced by promoter CpG methylation in multiple tumor cell lines and primary tumors including colorectal, esophageal and breast cancers. Its downregulation/methylation is associated with poor survival of cancer patients. SP0495 induces tumor cell apoptosis, cell cycle arrest, senescence and autophagy, and inhibits tumor cell growth in vitro and in vivo. Mechanistically, SP0495 binds to phosphoinositides (PtdIns(3)P, PtdIns(3,5)P2) as a lipid-binding protein, inhibits AKT phosphorylation and its downstream signaling, and further represses oncogenic AKT/mTOR, NF-κB, and Wnt/β-catenin signaling. SP0495 also regulates the stability of autophagy regulators BECN1 and SQSTM1/p62 through modulating phosphoinositides turnover and autophagic/proteasomal degradation. Thus, we discovered and validated a 1p36.3 small protein SP0495, functioning as a novel tumor suppressor regulating AKT signaling activation and autophagy as a phosphoinositide-binding protein, being frequently inactivated by promoter methylation in multiple tumors as a potential biomarker.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xing-Sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- School of Medicine, Shenzhen University Health Science Center, Shenzhen, China
| | - Hua Geng
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianming Ying
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Guo
- Department of Pathology, Cancer Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Luo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tingxiu Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Cancer Hospital, Chongqing, China
| | - Longtao Wu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Brigette B Y Ma
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaofeng Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Richard F Ambinder
- Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Johns Hopkins Singapore and Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Wirth AK, Wange L, Vosberg S, Henrich KO, Rausch C, Özdemir E, Zeller CM, Richter D, Feuchtinger T, Kaller M, Hermeking H, Greif PA, Senft D, Jurinovic V, Bahrami E, Jayavelu AK, Westermann F, Mann M, Enard W, Herold T, Jeremias I. In vivo PDX CRISPR/Cas9 screens reveal mutual therapeutic targets to overcome heterogeneous acquired chemo-resistance. Leukemia 2022; 36:2863-2874. [PMID: 36333584 PMCID: PMC9712105 DOI: 10.1038/s41375-022-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Resistance towards cancer treatment represents a major clinical obstacle, preventing cure of cancer patients. To gain mechanistic insights, we developed a model for acquired resistance to chemotherapy by treating mice carrying patient derived xenografts (PDX) of acute lymphoblastic leukemia with widely-used cytotoxic drugs for 18 consecutive weeks. In two distinct PDX samples, tumors initially responded to treatment, until stable disease and eventually tumor re-growth evolved under therapy, at highly similar kinetics between replicate mice. Notably, replicate tumors developed different mutations in TP53 and individual sets of chromosomal alterations, suggesting independent parallel clonal evolution rather than selection, driven by a combination of stochastic and deterministic processes. Transcriptome and proteome showed shared dysregulations between replicate tumors providing putative targets to overcome resistance. In vivo CRISPR/Cas9 dropout screens in PDX revealed broad dependency on BCL2, BRIP1 and COPS2. Accordingly, venetoclax re-sensitized derivative tumors towards chemotherapy, despite genomic heterogeneity, demonstrating direct translatability of the approach. Hence, despite the presence of multiple resistance-associated genomic alterations, effective rescue treatment for polychemotherapy-resistant tumors can be identified using functional testing in preclinical models.
Collapse
Affiliation(s)
- Anna-Katharina Wirth
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Lucas Wange
- Anthropology and Human Genomics, Faculty of Biology, Ludwig Maximilian University (LMU), Martinsried, Germany
| | - Sebastian Vosberg
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Kai-Oliver Henrich
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Christian Rausch
- Department of Medicine III, and Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Erbey Özdemir
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Christina M Zeller
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Daniel Richter
- Anthropology and Human Genomics, Faculty of Biology, Ludwig Maximilian University (LMU), Martinsried, Germany
| | - Tobias Feuchtinger
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University (LMU), Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilian University (LMU), Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, and Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partnering Site Munich, Munich, Germany
| | - Daniela Senft
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Vindi Jurinovic
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Medicine III, and Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Ehsan Bahrami
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center, Heidelberg, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig Maximilian University (LMU), Martinsried, Germany
| | - Tobias Herold
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany
- Department of Medicine III, and Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany.
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partnering Site Munich, Munich, Germany.
| |
Collapse
|
9
|
Mao C, Huang C, Hu Z, Qu S. Transcription factor CASZ1 increases an oncogenic transcriptional process in tumorigenesis and progression of glioma cells. MedComm (Beijing) 2022; 3:e182. [PMID: 36276925 PMCID: PMC9583698 DOI: 10.1002/mco2.182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
As a transcription factor, the role of CASZ1 in different entities is inconsistent. Glioma is one of the leading causes of cancer death worldwide. Its prognostic relevance and biological functions in glioma remain obscure. We focused on the role, mechanism, and prognostic value of CASZ1 in glioma cells. Herein, CASZ1 was identified as a novel potential oncogene in glioma tissues from GEO and TCGA datasets. CASZ1 was highly expressed in glioma tissues, predicting poor prognosis in glioma patients. Knockdown of CASZ1 inhibited proliferation and invasion in vitro, whereas upregulation of CASZ1 presented opposite results. Overexpression of CASZ1 increased transcriptional process of target gene p75NTR. CASZ1 was the potential transcriptional regulators for p75NTR. In addition, the p75NTR expression is essential for CASZ1 to exert its function as an oncogene. Our findings indicate that highly expressed CASZ1 in glioma cells acts as a pro-oncogene factor in gliomas via regulating transcriptional process of target gene p75NTR, which was identified as an unfavorable prognostic marker in patients with gliomas. CASZ1 is expected to become a novel target for the treatment of gliomas.
Collapse
Affiliation(s)
- Chaofu Mao
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongPeople's Republic of China
| | - Chengying Huang
- Department of Obstetrics and Gynecology, Baiyun BranchNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongPeople's Republic of China
| | - Zhicheng Hu
- Department of Burn SurgeryFirst Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdongPeople's Republic of China
| | - Shanqiang Qu
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
10
|
Alves G, Ornellas MH, Liehr T. The role of Calmodulin Binding Transcription Activator 1 (CAMTA1) gene and its putative genetic partners in the human nervous system. Psychogeriatrics 2022; 22:869-878. [PMID: 35949142 DOI: 10.1111/psyg.12881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
The Calmodulin Binding Transcription Activator 1 (CAMTA1) gene plays a central role in the human nervous system. Here evidence-based perspectives on its clinical value for the screening of CAMTA1 malfunction is provided and argued that in future, patients suffering from brain tumours and/or neurological disorders could benefit from this diagnostic. In neuroblastomas as well as in low-grade gliomas, the influence of reduced expression of CAMTA1 results in opposite prognosis, probably because of different carcinogenic pathways in which CAMTA1 plays different roles, but the exact genetics bases remains unsolved. Rearrangements, mutations and variants of CAMTA1 were associated with human neurodegenerative disorders, while some CAMTA1 single nucleotide polymorphisms were associated with poorer memory in clinical cases and also amyotrophic lateral sclerosis. So far, the follow-up of patients with neurological diseases with alterations in CAMTA1 indicates that defects (expression, mutations, and rearrangements) in CAMTA1 alone are not sufficient to drive carcinogenesis. It is necessary to continue studying CAMTA1 rearrangements and expression in more cases than done by now. To understand the influence of CAMTA1 variants and their role in nervous system tumours and in several psychiatric disorders is currently a challenge.
Collapse
Affiliation(s)
- Gilda Alves
- Circulating Biomarkers Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Helena Ornellas
- Circulating Biomarkers Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| |
Collapse
|
11
|
Loss of CASZ1 tumor suppressor linked to oncogenic subversion of neuroblastoma core regulatory circuitry. Cell Death Dis 2022; 13:871. [PMID: 36243768 PMCID: PMC9569368 DOI: 10.1038/s41419-022-05314-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The neural crest lineage regulatory transcription factors (TFs) form a core regulatory circuitry (CRC) in neuroblastoma (NB) to specify a noradrenergic tumor phenotype. Oncogenic subversion of CRC TFs is well documented, but the role of loss of tumor suppressors plays remains unclear. Zinc-finger TF CASZ1 is a chromosome 1p36 (chr1p36) tumor suppressor. Single-cell RNA sequencing data analyses indicate that CASZ1 is highly expressed in developing chromaffin cells coincident with an expression of NB CRC TFs. In NB tumor cells, the CASZ1 tumor suppressor is silenced while CRC components are highly expressed. We find the NB CRC component HAND2 directly represses CASZ1 expression. ChIP-seq and transcriptomic analyses reveal that restoration of CASZ1 upregulates noradrenergic neuronal genes and represses expression of CRC components by remodeling enhancer activity. Our study identifies that the restored CASZ1 forms a negative feedback regulatory circuit with the established NB CRC to induce noradrenergic neuronal differentiation of NB.
Collapse
|
12
|
Kuick CH, Tan JY, Jasmine D, Sumanty T, Ng AYJ, Venkatesh B, Chen H, Loh E, Jain S, Seow WY, Ng EHQ, Lian DWQ, Soh SY, Chang KTE, Chen ZX, Loh AHP. Mutations of 1p genes do not consistently abrogate tumor suppressor functions in 1p-intact neuroblastoma. BMC Cancer 2022; 22:717. [PMID: 35768791 PMCID: PMC9245282 DOI: 10.1186/s12885-022-09800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Deletion of 1p is associated with poor prognosis in neuroblastoma, however selected 1p-intact patients still experience poor outcomes. Since mutations of 1p genes may mimic the deleterious effects of chromosomal loss, we studied the incidence, spectrum and effects of mutational variants in 1p-intact neuroblastoma. Methods We characterized the 1p status of 325 neuroblastoma patients, and correlated the mutational status of 1p tumor suppressors and neuroblastoma candidate genes with survival outcomes among 100 1p-intact cases, then performed functional validation of selected novel variants of 1p36 genes identified from our patient cohort. Results Among patients with adverse disease characteristics, those who additionally had 1p deletion had significantly worse overall survival. Among 100 tumor-normal pairs sequenced, somatic mutations of 1p tumor suppressors KIF1Bβ and CHD5 were most frequent (2%) after ALK and ATRX (8%), and BARD1 (3%). Mutations of neuroblastoma candidate genes were associated with other synchronous mutations and concurrent 11q deletion (P = 0.045). In total, 24 of 38 variants identified were novel and predicted to be deleterious or pathogenic. Functional validation identified novel KIF1Bβ I1355M variant as a gain-of-function mutation with increased expression and tumor suppressive activity, correlating with indolent clinical behavior; another novel variant CHD5 E43Q was a loss-of-function mutation with decreased expression and increased long-term cell viability, corresponding with aggressive disease characteristics. Conclusions Our study showed that chromosome 1 gene mutations occurred frequently in 1p-intact neuroblastoma, but may not consistently abrogate the function of bonafide 1p tumor suppressors. These findings may augment the evolving model of compounding contributions of 1p gene aberrations toward tumor suppressor inactivation in neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09800-0.
Collapse
Affiliation(s)
- Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Jia Ying Tan
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Deborah Jasmine
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tohari Sumanty
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Alvin Y J Ng
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Byrrappa Venkatesh
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Huiyi Chen
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Wan Yi Seow
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Zhi Xiong Chen
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,National University Cancer Institute, Singapore, 119074, Singapore.
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Duke NUS Medical School, Singapore, 169857, Singapore. .,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899, Singapore.
| |
Collapse
|
13
|
Barros JS, Aguiar TFM, Costa SS, Rivas MP, Cypriano M, Toledo SRC, Novak EM, Odone V, Cristofani LM, Carraro DM, Werneck da Cunha I, Costa CML, Vianna-Morgante AM, Rosenberg C, Krepischi ACV. Copy Number Alterations in Hepatoblastoma: Literature Review and a Brazilian Cohort Analysis Highlight New Biological Pathways. Front Oncol 2021; 11:741526. [PMID: 34956867 PMCID: PMC8692715 DOI: 10.3389/fonc.2021.741526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma (HB) is a rare embryonal tumor, although it is the most common pediatric liver cancer. The aim of this study was to provide an accurate cytogenomic profile of this type of cancer, for which information in cancer databases is lacking. We performed an extensive literature review of cytogenetic studies on HBs disclosing that the most frequent copy number alterations (CNAs) are gains of 1q, 2/2q, 8/8q, and 20; and losses at 1p and 4q. Furthermore, the CNA profile of a Brazilian cohort of 26 HBs was obtained by array-CGH; the most recurrent CNAs were the same as shown in the literature review. Importantly, HBs from female patients, high-risk stratification tumors, tumors who developed in older patients (> 3 years at diagnosis) or from patients with metastasis and/or deceased carried a higher diversity of chromosomal alterations, specifically chromosomal losses at 1p, 4, 11q and 18q. In addition, we distinguished three major CNA profiles: no detectable CNA, few CNAs and tumors with complex genomes. Tumors with simpler genomes exhibited a significant association with the epithelial fetal subtype of HBs; in contrast, the complex genome group included three cases with epithelial embryonal histology, as well as the only HB with HCC features. A significant association of complex HB genomes was observed with older patients who developed high-risk tumors, metastasis, and deceased. Moreover, two patients with HBs exhibiting complex genomes were born with congenital anomalies. Together, these findings suggest that a high load of CNAs, mainly chromosomal losses, particularly losses at 1p and 18, increases the tendency to HB aggressiveness. Additionally, we identified six hot-spot chromosome regions most frequently affected in the entire group: 1q31.3q42.3, 2q23.3q37.3, and 20p13p11.1 gains, besides a 5,3 Mb amplification at 2q24.2q24.3, and losses at 1p36.33p35.1, 4p14 and 4q21.22q25. An in-silico analysis using the genes mapped to these six regions revealed several enriched biological pathways such as ERK Signaling, MicroRNAs in Cancer, and the PI3K-Akt Signaling, in addition to the WNT Signaling pathway; further investigation is required to evaluate if disturbances of these pathways can contribute to HB tumorigenesis. The analyzed gene set was found to be associated with neoplasms, abnormalities of metabolism/homeostasis and liver morphology, as well as abnormal embryonic development and cytokine secretion. In conclusion, we have provided a comprehensive characterization of the spectrum of chromosomal alterations reported in HBs and identified specific genomic regions recurrently altered in a Brazilian HB group, pointing to new biological pathways, and relevant clinical associations.
Collapse
Affiliation(s)
- Juliana Sobral Barros
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Urology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Silvia Souza Costa
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Prates Rivas
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Institute of Pediatric Oncology, Support Group for Children and Adolescents with Cancer (IOP-GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada Toledo
- Department of Pediatrics, Institute of Pediatric Oncology, Support Group for Children and Adolescents with Cancer (IOP-GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Estela Maria Novak
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vicente Odone
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Research Center, AC Camargo Cancer Center (ACCCC), São Paulo, Brazil
| | | | | | - Angela M Vianna-Morgante
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Large 1p36 Deletions Affecting Arid1a Locus Facilitate Mycn-Driven Oncogenesis in Neuroblastoma. Cell Rep 2021; 30:454-464.e5. [PMID: 31940489 PMCID: PMC9022217 DOI: 10.1016/j.celrep.2019.12.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
Loss of heterozygosity (LOH) at 1p36 occurs in multiple cancers, including neuroblastoma (NBL). MYCN amplification and 1p36 deletions tightly correlate with markers of tumor aggressiveness in NBL. Although distal 1p36 losses associate with single-copy MYCN tumors, larger deletions correlate with MYCN amplification, indicating two tumor suppressor regions in 1p36, only one of which facilitates MYCN oncogenesis. To better define this region, we genome-edited the syntenic 1p36 locus in primary mouse neural crest cells (NCCs), a putative NBL cell of origin. In in vitro cell transformation assays, we show that Chd5 loss confers most of the MYCN-independent tumor suppressor effects of 1p36 LOH. In contrast, MYCN-driven tumorigenesis selects for NCCs with Arid1a deletions from a pool of NCCs with randomly sized 1p36 deletions, establishing Arid1a as the MYCN-associated tumor suppressor. Our findings reveal that Arid1a loss collaborates with oncogenic MYCN and better define the tumor suppressor functions of 1p36 LOH in NBL.
Collapse
|
15
|
Lin EPY, Huang BT, Lai WY, Tseng YT, Yang SC, Kuo HC, Yang PC. PINK1-Mediated Inhibition of EGFR Dimerization and Activation Impedes EGFR-Driven Lung Tumorigenesis. Cancer Res 2021; 81:1745-1757. [PMID: 33574089 DOI: 10.1158/0008-5472.can-20-2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
EGFR is established as a driver of lung cancer, yet the regulatory machinery underlying its oncogenic activity is not fully understood. PTEN-induced kinase 1 (PINK1) kinase is a key player in mitochondrial quality control, although its role in lung cancer and EGFR regulation is unclear. In this study, we show that PINK1 physically directly interacts with EGFR via the PINK1 C-terminal domain (PINK1-CTD) and the EGFR tyrosine kinase domain. This interaction constituted an endogenous steric hindrance to receptor dimerization and inhibited EGFR-mediated lung carcinogenesis. Depletion of PINK1 from lung cancer cells promoted EGFR dimerization, receptor activation, EGFR downstream signaling, and tumor growth. In contrast, overexpression of PINK1 or PINK1-CTD suppressed EGFR dimerization, activation, downstream signaling, and tumor growth. These findings identify key elements in the EGFR regulatory cascade and illustrate a new direction for the development of anti-EGFR therapeutics, suggesting translational potential of the PINK1-CTD in lung cancer. SIGNIFICANCE: This study identifies PINK1 as a critical tumor suppressor that impedes EGFR dimerization and highlights PINK1-CTD as a potential therapeutic agent in EGFR-driven lung cancer.
Collapse
Affiliation(s)
- Emily Pei-Ying Lin
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.,Departments of Medical Research and Internal Medicine, Fu Jen Catholic University Hospital and College of Medicine, Fu Jen Catholic University, Taipei, Taiwan.,Clinical Trial Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bo-Tsang Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Yun Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ting Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hao-Cheng Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
16
|
Campos Cogo S, Gradowski Farias da Costa do Nascimento T, de Almeida Brehm Pinhatti F, de França Junior N, Santos Rodrigues B, Regina Cavalli L, Elifio-Esposito S. An overview of neuroblastoma cell lineage phenotypes and in vitro models. Exp Biol Med (Maywood) 2020; 245:1637-1647. [PMID: 32787463 PMCID: PMC7802384 DOI: 10.1177/1535370220949237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This review was conducted to present the main neuroblastoma (NB) clinical characteristics and the most common genetic alterations present in these pediatric tumors, highlighting their impact in tumor cell aggressiveness behavior, including metastatic development and treatment resistance, and patients' prognosis. The distinct three NB cell lineage phenotypes, S-type, N-type, and I-type, which are characterized by unique cell surface markers and gene expression patterns, are also reviewed. Finally, an overview of the most used NB cell lines currently available for in vitro studies and their unique cellular and molecular characteristics, which should be taken into account for the selection of the most appropriate model for NB pre-clinical studies, is presented. These valuable models can be complemented by the generation of NB reprogrammed tumor cells or organoids, derived directly from patients' tumor specimens, in the direction toward personalized medicine.
Collapse
Affiliation(s)
- Sheron Campos Cogo
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | | | | | - Nilton de França Junior
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bruna Santos Rodrigues
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luciane Regina Cavalli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Selene Elifio-Esposito
- Graduate Program in Health Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| |
Collapse
|
17
|
Peng JM, Tseng RH, Shih TC, Hsieh SY. CAMK2N1 suppresses hepatoma growth through inhibiting E2F1-mediated cell-cycle signaling. Cancer Lett 2020; 497:66-76. [PMID: 33068700 DOI: 10.1016/j.canlet.2020.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 01/24/2023]
Abstract
Human kinome/phosphatome screen identified CAMK2N1 genes suppressing the development of human hepatocellular carcinoma (HCC). CAMK2N1 downregulation was found in 47% HCCs and associated with poor prognosis. The downregulation was mainly attributed to its genome deletion (28.4%) and DNA hypermethylation of its promoter (12.5%). Silencing and ectopic expression of CAMK2N1 respectively enhanced and suppressed cell proliferation, colony formation, and xenograft tumor growth in nude mice. Comparative proteomics revealed that CAMK2N1 silencing transcriptionally deregulated the genes regulated by E2F1 (89 out of the 114 E2F-signaling targets, P = 8.8E-240). The promoter assays revealed that CAMK2N1 suppressed E2F1-mediated transcriptional activities. CAMK2N1 silencing induced cyclins D/E expression, whereas its ectopic expression induced P27/KIP1 expression and suppressed the cell cycle. CAMK2N1 was translocated from the nuclei to the cytoplasm when cell proliferation reached the stationary phase, where its functions as an endogenous inhibitor of CAMK2. In conclusion, CAMK2NA is a novel 1p36 tumor suppressor gene that inhibits E2F1 transcriptional activities and induces P27/KIP1 expression. CAMK2N1-CAMK2 signaling forms a mechanism that restricts the cell cycle progression. Its deregulation could lead to tumorigenesis and might serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ruo-Han Tseng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Tsung-Chieh Shih
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Chang Gung University, Institute of Biomedical Sciences, College of Medicine, Taoyuan, 333, Taiwan.
| |
Collapse
|
18
|
Naderi A. Genomic and epigenetic aberrations of chromosome 1p36.13 have prognostic implications in malignancies. Chromosome Res 2020; 28:307-330. [PMID: 32816122 DOI: 10.1007/s10577-020-09638-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
Deletions of chromosome 1p36 are common in malignancies; however, there is limited information regarding the biological and prognostic implications of 1p36 in cancer. Steroid Receptor-Associated and Regulated Protein (SRARP) is a tumor suppressor on chromosome 1p36.13 that its inactivation predicts poor cancer outcome, indicating that the 1p36.13 segment requires further studies. Therefore, a comprehensive multi-omics analysis of The Cancer Genome Atlas (TCGA), the Pan-Cancer Analysis of Whole Genomes (PCAWD), the International Cancer Genome Consortium (ICGC), and the Genomic Data Commons (GDC) Pan-Cancer datasets was conducted to investigate the prognostic implications of 1p36.13 in malignancies. This study revealed that expression and DNA methylation of multiple genes on 1p36.13 are significantly associated with survival in primary tumors and normal adjacent tissues. In addition, copy-number loss in every gene on 1p36.13 predicts poor cancer outcome. Importantly, copy-number loss and somatic mutations of chromosome 1p36.13 segment are associated with worse survival in primary tumors, and DNA hypermethylation of 1p36.13 predicts poor outcome in normal adjacent tissues. Therefore, genomic and epigenetic aberrations of chromosome 1p36.13 have promising prognostic implications in cancer.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA. .,Queensland University of Technology, Gardens Point, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
19
|
Naderi A. Steroid receptor-associated and regulated protein is a biomarker in predicting the clinical outcome and treatment response in malignancies. Cancer Rep (Hoboken) 2020; 3:e1267. [PMID: 32706923 DOI: 10.1002/cnr2.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Steroid receptor-associated and regulated protein (SRARP) has recently been identified as a novel tumor suppressor in malignancies of multiple tissue origins. SRARP is located on chromosome 1p36.13 and is widely inactivated by deletions and epigenetic silencing in malignancies. Therefore, additional studies are required to explore SRARP as a potential cancer biomarker. AIM This study explores the application of SRARP as a novel biomarker in malignancies of multiple tissue origins using the analysis of large genomic datasets. METHODS AND RESULTS A comprehensive genomic analysis of large cancer datasets was carried out to examine the association of SRARP expression and copy-number with molecular and clinical features in malignancies of multiple tissue origins. This study demonstrated that SRARP under-expression and copy-number loss are strongly associated with the loss of other tumor suppressors such as TP53 and NF1 mutations and oncogenic gains, including N-MYC amplification and ERG rearrangement, suggesting that SRARP inactivation is associated with wider genomic instability in malignancies. Importantly, SRARP under-expression and copy-number loss are strong predictors of poor clinical and/or pathological features in breast, colorectal, lung, prostate, gastric, endometrial, cervical, brain, ovarian, bladder, thyroid, and hepatocellular cancers as well as neuroblastoma, uveal melanoma, and acute myeloid leukemia with highly significant odds ratios. Finally, higher SRARP expression and copy-number predict a better response to several cancer drugs. CONCLUSION This study suggests that the SRARP inactivation presents a robust biomarker in predicting molecular and clinicopathological features, and treatment response in malignancies.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
20
|
Shi H, Tao T, Abraham BJ, Durbin AD, Zimmerman MW, Kadoch C, Look AT. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. SCIENCE ADVANCES 2020; 6:eaaz3440. [PMID: 32832616 PMCID: PMC7439613 DOI: 10.1126/sciadv.aaz3440] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Mutations in genes encoding SWI/SNF chromatin remodeling complexes are found in approximately 20% of all human cancers, with ARID1A being the most frequently mutated subunit. Here, we show that disruption of ARID1A homologs in a zebrafish model accelerates the onset and increases the penetrance of MYCN-driven neuroblastoma by increasing cell proliferation in the sympathoadrenal lineage. Depletion of ARID1A in human NGP neuroblastoma cells promoted the adrenergic-to-mesenchymal transition with changes in enhancer-mediated gene expression due to alterations in the genomic occupancies of distinct SWI/SNF assemblies, BAF and PBAF. Our findings indicate that ARID1A is a haploinsufficient tumor suppressor in MYCN-driven neuroblastoma, whose depletion enhances tumor development and promotes the emergence of the more drug-resistant mesenchymal cell state.
Collapse
Affiliation(s)
- Hui Shi
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ting Tao
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Adam D. Durbin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
21
|
Liu TT, Ewald JA, Ricke EA, Bell R, Collins C, Ricke WA. Modeling human prostate cancer progression in vitro. Carcinogenesis 2020; 40:893-902. [PMID: 30590461 DOI: 10.1093/carcin/bgy185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Indexed: 01/24/2023] Open
Abstract
Detailed mechanisms involved in prostate cancer (CaP) development and progression are not well understood. Current experimental models used to study CaP are not well suited to address this issue. Previously, we have described the hormonal progression of non-tumorigenic human prostate epithelial cells (BPH1) into malignant cells via tissue recombination. Here, we describe a method to derive human cell lines from distinct stages of CaP that parallel cellular, genetic and epigenetic changes found in patients with cancers. This BPH1-derived Cancer Progression (BCaP) model represents different stages of cancer. Using diverse analytical strategies, we show that the BCaP model reproduces molecular characteristics of CaP in human patients. Furthermore, we demonstrate that BCaP cells have altered gene expression of shared pathways with human and transgenic mouse CaP data, as well as, increasing genomic instability with TMPRSS2-ERG fusion in advanced tumor cells. Together, these cell lines represent a unique model of human CaP progression providing a novel tool that will allow the discovery and experimental validation of mechanisms regulating human CaP development and progression. This BPH1-derived Cancer Progression (BCaP) model represents different stages of cancer. The BCaP model reproduces molecular characteristics of prostate cancer. The cells have altered gene expression with TMPRSS2-ERG fusion representing a unique model for prostate cancer progression.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan A Ewald
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Bell
- Vancouver Prostate Center, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Colin Collins
- Vancouver Prostate Center, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - William A Ricke
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
22
|
Agostini M, Ganini C, Candi E, Melino G. The role of noncoding RNAs in epithelial cancer. Cell Death Discov 2020; 6:13. [PMID: 32194993 PMCID: PMC7067833 DOI: 10.1038/s41420-020-0247-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Regulatory noncoding RNAs (ncRNAs) are a class of RNAs transcribed by regions of the human genome that do not encode for proteins. The three main members of this class, named microRNA, long noncoding RNA, and circular RNA play a key role in the regulation of gene expression, eventually shaping critical cellular processes. Compelling experimental evidence shows that ncRNAs function either as tumor suppressors or oncogenes by participating in the regulation of one or several cancer hallmarks, including evading cell death, and their expression is frequently deregulated during cancer onset, progression, and dissemination. More recently, preclinical and clinical studies indicate that ncRNAs are potential biomarkers for monitoring cancer progression, relapse, and response to cancer therapy. Here, we will discuss the role of noncoding RNAs in regulating cancer cell death, focusing on those ncRNAs with a potential clinical relevance.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carlo Ganini
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- IDI-IRCCS, Via Monti di Creta 106, 00166 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy
- MRC Toxicology Unit, University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP UK
| |
Collapse
|
23
|
Oh JM, Venters CC, Di C, Pinto AM, Wan L, Younis I, Cai Z, Arai C, So BR, Duan J, Dreyfuss G. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun 2020; 11:1. [PMID: 31911652 PMCID: PMC6946686 DOI: 10.1038/s41467-019-13993-7] [Citation(s) in RCA: 3369] [Impact Index Per Article: 673.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Stimulated cells and cancer cells have widespread shortening of mRNA 3'-untranslated regions (3'UTRs) and switches to shorter mRNA isoforms due to usage of more proximal polyadenylation signals (PASs) in introns and last exons. U1 snRNP (U1), vertebrates' most abundant non-coding (spliceosomal) small nuclear RNA, silences proximal PASs and its inhibition with antisense morpholino oligonucleotides (U1 AMO) triggers widespread premature transcription termination and mRNA shortening. Here we show that low U1 AMO doses increase cancer cells' migration and invasion in vitro by up to 500%, whereas U1 over-expression has the opposite effect. In addition to 3'UTR length, numerous transcriptome changes that could contribute to this phenotype are observed, including alternative splicing, and mRNA expression levels of proto-oncogenes and tumor suppressors. These findings reveal an unexpected role for U1 homeostasis (available U1 relative to transcription) in oncogenic and activated cell states, and suggest U1 as a potential target for their modulation.
Collapse
Affiliation(s)
- Jung-Min Oh
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Christopher C Venters
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Chao Di
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Anna Maria Pinto
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Lili Wan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Ihab Younis
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Zhiqiang Cai
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Chie Arai
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Jingqi Duan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104-6148, USA.
| |
Collapse
|
24
|
Ho N, Peng H, Mayoh C, Liu PY, Atmadibrata B, Marshall GM, Li J, Liu T. Delineation of the frequency and boundary of chromosomal copy number variations in paediatric neuroblastoma. Cell Cycle 2019; 17:749-758. [PMID: 29353549 DOI: 10.1080/15384101.2017.1421875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neuroblastoma, the most common solid tumour in early childhood, is characterized by very frequent chromosomal copy number variations (CNVs). While chromosome 2p amplification, 17q gain, 1p and 11q deletion in human neuroblastoma tissues are well-known, the exact frequencies and boundaries of the chromosomal CNVs have not been delineated. We analysed the publicly available single nucleotide polymorphism (SNP) array data which were originally generated by the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative, defined the frequencies and boundaries of chromosomes 2p11.2 - 2p25.3 amplification, 17q11.1-17q25.3 gain, 1p13.3-1p36.33 deletion and 11q13.3-11q25 deletion in neuroblastoma tissues, and identified chromosome 7q14.1 (Chr7:38254795-38346971) and chromosome 14q11.2 (Chr14:21637401-22024617) deletion in blood and bone marrow samples from neuroblastoma patients, but not in tumour tissues. Kaplan Meier analysis showed that double deletion of Chr7q14.1 and Chr14q11.2 correlated with poor prognosis in MYCN gene amplified neuroblastoma patients. In conclusion, the oncogenes amplified or gained and tumour suppressor genes deleted within the boundaries of chromosomal CNVs in tumour tissues should be studied for their roles in tumourigenesis and as therapeutic targets. Focal deletions of Chr7q14.1 and Chr14q11.2 together in blood and bone marrow samples from neuroblastoma patients can be used as a marker for poorer prognosis and more aggressive therapies.
Collapse
Affiliation(s)
- Nicholas Ho
- a Children's Cancer Institute Australia for Medical Research , University of New South Wales , Sydney , Australia
| | - Hui Peng
- b Advanced Analytics Institute , University of Technology , Broadway, Sydney , NSW 2007 , Australia
| | - Chelsea Mayoh
- a Children's Cancer Institute Australia for Medical Research , University of New South Wales , Sydney , Australia
| | - Pei Y Liu
- a Children's Cancer Institute Australia for Medical Research , University of New South Wales , Sydney , Australia
| | - Bernard Atmadibrata
- a Children's Cancer Institute Australia for Medical Research , University of New South Wales , Sydney , Australia
| | - Glenn M Marshall
- a Children's Cancer Institute Australia for Medical Research , University of New South Wales , Sydney , Australia.,c Kids Cancer Centre, Sydney Children's Hospital , Randwick , NSW 2031 , Australia
| | - Jinyan Li
- b Advanced Analytics Institute , University of Technology , Broadway, Sydney , NSW 2007 , Australia
| | - Tao Liu
- a Children's Cancer Institute Australia for Medical Research , University of New South Wales , Sydney , Australia.,d Centre for Childhood Cancer Research, UNSW Medicine, UNSW Australia , Kensington, Sydney , NSW 2052 , Australia
| |
Collapse
|
25
|
Ramírez-Ramírez R, Gutiérrez-Angulo M, Peregrina-Sandoval J, Moreno-Ortiz JM, Franco-Topete RA, Cerda-Camacho FDJ, Ayala-Madrigal MDLL. Somatic deletion of KDM1A/LSD1 gene is associated to advanced colorectal cancer stages. J Clin Pathol 2019; 73:107-111. [PMID: 31471467 PMCID: PMC7027028 DOI: 10.1136/jclinpath-2019-206128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Aims KDM1A/LSD1 and ZNF217 are involved in a protein complex that participates in transcriptional regulation. ZNF217 has been analysed in numerous cancers and its amplification has been associated with advanced stages of disease; however, a similar role for KDM1A/LSD1 has not been uncovered. In this study, we estimated the number of KDM1A/LSD1 and ZNF217 gene copies in tissue samples from patients diagnosed with colorectal cancer (CRC), as well as its association with clinicopathological features in patients with CRC. Methods Paraffin-embedded tumour samples from 50 patients with CRC with a histopathological diagnosis of CRC were included. The number of copies of KDM1A/LSD1 and ZNF217 genes was determined by fluorescence in situ hybridisation (FISH). We also analysed the association between copy numbers of selected genes and clinicopathological data based on multivariate analysis. Results Deletion of the KDM1A/LSD1 gene occurred in 19 samples (38%), whereas ZNF217 gene amplification was identified in 11 samples (22%). We found a significant association between lymph node metastasis or advanced tumour stage and KDM1A/LSD1 gene deletion (p value=0.0003 and p value=0.011, respectively). Conclusions KDM1A/LSD1 gene deletion could be considered a novel prognostic biomarker of late-stage CRC.
Collapse
Affiliation(s)
- Ruth Ramírez-Ramírez
- Laboratorio de Inmunología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México
| | - Melva Gutiérrez-Angulo
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, México.,Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Jorge Peregrina-Sandoval
- Laboratorio de Inmunología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, México.,Laboratorio de Patología Clínica, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, México
| | - José Miguel Moreno-Ortiz
- Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México.,Instituto de Genética Humana "Dr. Enrique Corona Rivera", Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Ramon Antonio Franco-Topete
- Servicio de Anatomía Patológica, Hospital Civil de Guadalajara "Dr. Juan I Menchaca", Guadalajara, México.,Departamento de Microbiología y Patología, Universidad de Guadalajara, Guadalajara, México
| | | | - Maria de la Luz Ayala-Madrigal
- Programa de Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México .,Instituto de Genética Humana "Dr. Enrique Corona Rivera", Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
26
|
Thole TM, Toedling J, Sprüssel A, Pfeil S, Savelyeva L, Capper D, Messerschmidt C, Beule D, Groeneveld-Krentz S, Eckert C, Gambara G, Henssen AG, Finkler S, Schulte JH, Sieber A, Bluethgen N, Regenbrecht CRA, Künkele A, Lodrini M, Eggert A, Deubzer HE. Reflection of neuroblastoma intratumor heterogeneity in the new OHC-NB1 disease model. Int J Cancer 2019; 146:1031-1041. [PMID: 31304977 DOI: 10.1002/ijc.32572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80-540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with four clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system.
Collapse
Affiliation(s)
- Theresa M Thole
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joern Toedling
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Sprüssel
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Pfeil
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Savelyeva
- Research Group Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Clemens Messerschmidt
- Core Unit Bioinformatics, Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | | | - Cornelia Eckert
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Guido Gambara
- CELLPhenomics GmbH, Berlin, Germany.,Charité Comprehensive Cancer Center (CCCC), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anton G Henssen
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Sabine Finkler
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Anja Sieber
- Computational Modelling in Medicine, Charité - Universitätsmedizin Berlin, Institute for Pathology, Berlin, Germany.,IRI Life Sciences, Humboldt University Berlin, Berlin, Germany
| | - Nils Bluethgen
- Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,Computational Modelling in Medicine, Charité - Universitätsmedizin Berlin, Institute for Pathology, Berlin, Germany.,IRI Life Sciences, Humboldt University Berlin, Berlin, Germany
| | - Christian R A Regenbrecht
- CELLPhenomics GmbH, Berlin, Germany.,Department for Pathology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Annette Künkele
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Marco Lodrini
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Hematology and Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Berliner Institut für Gesundheitsforschung (BIH), Berlin, Germany.,Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
27
|
Ai B, Kong X, Wang X, Zhang K, Yang X, Zhai J, Gao R, Qi Y, Wang J, Wang Z, Fang Y. LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1. Cell Death Dis 2019; 10:502. [PMID: 31243265 PMCID: PMC6594972 DOI: 10.1038/s41419-019-1741-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/19/2023]
Abstract
Previously, several protein-coding tumor suppressors localized at 1p36 have been reported. In the present work, we focus on functional long non-coding RNAs (lncRNAs) embedded in this locus. Small interfering RNA was used to identify lncRNA candidates with growth-suppressive activities in breast cancer. The mechanism involved was also explored. LINC01355 were downregulated in breast cancer cells relative to non-malignant breast epithelial cells. Overexpression of LINC01355 significantly inhibited proliferation, colony formation, and tumorigenesis of breast cancer cells. LINC01355 arrested breast cancer cells at the G0/G1 phase by repressing CCND1. Moreover, LINC01355 interacted with and stabilized FOXO3 protein, leading to transcriptional repression of CCND1. Importantly, LINC01355-mediated suppression of breast cancer growth was reversed by knockdown of FOXO3 or overexpression of CCND1. Clinically, LINC01355 was downregulated in breast cancer specimens and correlated with more aggressive features. There was a negative correlation between LINC01355 and CCND1 expression in breast cancer samples. LINC01355 acts as a tumor suppressor in breast cancer, which is ascribed to enhancement of FOXO3-mediated transcriptional repression of CCND1. Re-expression of LINC01355 may provide a potential therapeutic strategy to block breast cancer growth and progression.
Collapse
Affiliation(s)
- Bolun Ai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Zhang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
28
|
Exner ND, Valenzuela JAC, Abou-El-Ardat K, Miletic H, Huszthy PC, Radehaus PM, Schröck E, Bjerkvig R, Kaderali L, Klink B, Nigro JM. Deep sequencing of a recurrent oligodendroglioma and the derived xenografts reveals new insights into the evolution of human oligodendroglioma and candidate driver genes. Oncotarget 2019; 10:3641-3653. [PMID: 31217899 PMCID: PMC6557204 DOI: 10.18632/oncotarget.26950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/04/2019] [Indexed: 12/23/2022] Open
Abstract
We previously reported the establishment of a rare xenograft derived from a recurrent oligodendroglioma with 1p/19q codeletion. Here, we analyzed in detail the exome sequencing datasets from the recurrent oligodendroglioma (WHO grade III, recurrent O2010) and the first-generation xenograft (xenograft1). Somatic SNVs and small InDels (n = 80) with potential effects at the protein level in recurrent O2010 included variants in IDH1 (NM_005896:c.395G>A; p. Arg132His), FUBP1 (NM_003902:c.1307_1310delTAGA; p.Ile436fs), and CIC (NM_015125:c.4421T>G; p.Val1474Gly). All but 2 of these 80 variants were also present in xenograft1, along with 7 new variants. Deep sequencing of the 87 SNVs and InDels in the original tumor (WHO grade III, primary O2005) and in a second-generation xenograft (xenograft2) revealed that only 11 variants, including IDH1 (NM_005896:c.395G>A; p. Arg132His), PSKH1 (NM_006742.2:c.650G>A; p.Arg217Gln), and SNX12 (NM_001256188:c.470G>A; p.Arg157His), along with a variant in the TERT promoter (C250T, NM_198253.2: c.-146G>A), were already present in primary O2005. Allele frequencies of the 11 variants were calculated to assess their potential as putative driver genes. A missense change in NDST4 (NM_022569:c.2392C>G; p.Leu798Val) on 4q exhibited an increasing allele frequency (~ 20%, primary O2005, 80%, recurrent O2010 and 100%, xenograft1), consistent with a selection event. Sequencing of NDST4 in a cohort of 15 oligodendrogliomas, however, revealed no additional cases with potential protein disrupting variants. Our analysis illuminated a tumor evolutionary series of events, which included 1p/19q codeletion, IDH1 R132H, and TERT C250T as early events, followed by loss of function of NDST4 and mutations in FUBP1 and CIC as late events.
Collapse
Affiliation(s)
- Nadin D Exner
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,University of Applied Sciences Mittweida, Department of Applied Informatics & Biosciences, Mittweida, Germany
| | - Jaime Alberto Campos Valenzuela
- Institut für Medizinische Informatik und Biometrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Khalil Abou-El-Ardat
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hrvoje Miletic
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Peter C Huszthy
- Oslo University Hospital-Rikshospitalet, Department of Immunology, Oslo, Norway
| | - Petra M Radehaus
- University of Applied Sciences Mittweida, Department of Applied Informatics & Biosciences, Mittweida, Germany
| | - Evelin Schröck
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Molecular Tumor Diagnostics, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Oncology Department, Luxembourg Institute of Health, Val Fleuri, Luxembourg
| | - Lars Kaderali
- University Medicine Greifswald, Institute of Bioinformatics, Greifswald, Germany
| | - Barbara Klink
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Molecular Tumor Diagnostics, National Center for Tumor Diseases (NCT), Dresden, Germany.,Centre national de Génétique, Laboratoire National de Santé, Dudelange, Luxembourg.,Co-senior authors
| | - Janice M Nigro
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Co-senior authors
| |
Collapse
|
29
|
Zenonos GA, Fernandez-Miranda JC, Mukherjee D, Chang YF, Panayidou K, Snyderman CH, Wang EW, Seethala RR, Gardner PA. Prospective validation of a molecular prognostication panel for clival chordoma. J Neurosurg 2019; 130:1528-1537. [PMID: 29905508 DOI: 10.3171/2018.3.jns172321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/12/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE There are currently no reliable means to predict the wide variability in behavior of clival chordoma so as to guide clinical decision-making and patient education. Furthermore, there is no method of predicting a tumor's response to radiation therapy. METHODS A molecular prognostication panel, consisting of fluorescence in situ hybridization (FISH) of the chromosomal loci 1p36 and 9p21, as well as immunohistochemistry for Ki-67, was prospectively evaluated in 105 clival chordoma samples from November 2007 to April 2016. The results were correlated with overall progression-free survival after surgery (PFSS), as well as progression-free survival after radiotherapy (PFSR). RESULTS Although Ki-67 and the percentages of tumor cells with 1q25 hyperploidy, 1p36 deletions, and homozygous 9p21 deletions were all found to be predictive of PFSS and PFSR in univariate analyses, only 1p36 deletions and homozygous 9p21 deletions were shown to be independently predictive in a multivariate analysis. Using a prognostication calculator formulated by a separate multivariate Cox model, two 1p36 deletion strata (0%-15% and > 15% deleted tumor cells) and three 9p21 homozygous deletion strata (0%-3%, 4%-24%, and ≥ 25% deleted tumor cells) accounted for a range of cumulative hazard ratios of 1 to 56.1 for PFSS and 1 to 75.6 for PFSR. CONCLUSIONS Homozygous 9p21 deletions and 1p36 deletions are independent prognostic factors in clival chordoma and can account for a wide spectrum of overall PFSS and PFSR. This panel can be used to guide management after resection of clival chordomas.
Collapse
Affiliation(s)
- Georgios A Zenonos
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
| | | | - Debraj Mukherjee
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
| | - Yue-Fang Chang
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
- 2Department of Biostatistics and Epidemiology, University of Pittsburgh
| | - Klea Panayidou
- 3Department of Statistics, Carnegie Mellon University, Pittsburgh
| | - Carl H Snyderman
- 4Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh; and
| | - Eric W Wang
- 4Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh; and
| | - Raja R Seethala
- 5Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Paul A Gardner
- 1Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh
| |
Collapse
|
30
|
Van Nieuwenhuysen E, Busschaert P, Laenen A, Moerman P, Han SN, Neven P, Lambrechts D, Vergote I. Loss of 1p36.33 Frequent in Low-Grade Serous Ovarian Cancer. Neoplasia 2019; 21:582-590. [PMID: 31054497 PMCID: PMC6500912 DOI: 10.1016/j.neo.2019.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND: Low-grade serous ovarian cancer (LGSOC) is a rare subtype of epithelial ovarian carcinoma. Limited data regarding the molecular-genetic background exist beyond mutations in the RAS signaling pathway. There is a growing need to better characterize these tumors due to chemoresistance and limited therapeutic options in advanced or recurrent disease. METHODS: We performed genome-wide copy number aberration (CNA) profiles and mutation hotspot screening (KRAS, BRAF, NRAS, ERBB2, PIK3CA, TP53) in 38 LGSOC tumor samples. RESULTS: We detected mutations in the RAS-signaling pathway in 36.8% of cases, including seven KRAS, four BRAF, and three NRAS mutations. We identified two mutations in PIK3CA and one mutation in MAP3K1, EGFR, and TP53. CNAs were detected in 86.5% of cases. None of the focal aberrations was correlated with specific clinical characteristics. The most frequently detected CNA was loss of 1p36.33 in 54.1% of cases, with a trend towards lower progression-free survival and overall survival in patients with 1p36.33 loss. CONCLUSIONS: Activating RAS mutations were dominant in our series, with supplementary detection of two PIK3CA mutations which may lead to therapeutic options. Furthermore, we detected 1p36.33 deletions in half of the cases, indicating a role in tumorigenesis, and these deletions may serve as a prognostic marker.
Collapse
Affiliation(s)
- Els Van Nieuwenhuysen
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium; Division of Gynaecological Oncology, Leuven Cancer Institute, Kuleuven, Leuven, Belgium.
| | - Pieter Busschaert
- Laboratory for Translational Genetics Department of Oncology, KU, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Annouschka Laenen
- Leuven Biostatistics and Statistical Bioinformatics Centre, KULeuven, Leuven, Belgium
| | - Philippe Moerman
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sileny N Han
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics Department of Oncology, KU, Leuven, Belgium; Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ignace Vergote
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium; Division of Gynaecological Oncology, Leuven Cancer Institute, Kuleuven, Leuven, Belgium
| |
Collapse
|
31
|
Goeppert B. [Biliary tract cancers : Molecular characterization and identification of novel prognostic markers]. DER PATHOLOGE 2019; 38:192-197. [PMID: 29063951 DOI: 10.1007/s00292-017-0359-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Bile duct cancers (BTCs) are highly aggressive tumors with a dismal prognosis and an increasing incidence. BTC is a tumorbiologically and clinically heterogeneous tumor group and can be subdivided according to anatomical aspects into intrahepatic cholangiocarcinomas (iCCA), extrahepatic cholangiocarcinomas (eCCA) and gallbladder carcinomas (GBC). NEW THERAPY OPTIONS Chronic inflammatory processes of the biliary system seem to play a role in the development of these tumors. Insights into molecular cholangiocarcinogenesis could make an important contribution to novel and more precise classification attempts and to the development of new, targeted therapies for BTC. EPIGENETIC AND GENETIC ALTERATIONS IN CHOLANGIOCARCINOMAS The first description of genome-wide DNA methylation patterns in CCA showed drastic global methylation differences between CCA and corresponding non-neoplastic tissue (matched-pair analyses). Moreover, significant methylation differences between the CCA subtypes (eCCA and iCCA) could be found. Using immunohistochemistry and Sanger sequencing, it was shown that the actual BRAF V600E mutation rate seems to be significantly lower (1.3%) than previously described in the literature. IMMUNEPHENOTYPING IN BILIARY TRACT CANCERS A comprehensive, subtype-specific characterization of tumor-infiltrating immune cells as well as an expression analysis of Major Histocompatibility Complex I was performed in a large and well-characterized BTC cohort. For further studies on the efficacy of immunomodulatory therapy approaches for BTC, the presented results provide a solid basis.
Collapse
Affiliation(s)
- B Goeppert
- Pathologisches Institut, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Deutschland.
| |
Collapse
|
32
|
Donner DB, Ruan DT, Toriguchi K, Bergsland EK, Nakakura EK, Lin MH, Antonia RJ, Warren RS. Mitogen Inducible Gene-6 Is a Prognostic Marker for Patients with Colorectal Liver Metastases. Transl Oncol 2019; 12:550-560. [PMID: 30639964 PMCID: PMC6328378 DOI: 10.1016/j.tranon.2018.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Prognostic schemes that rely on clinical variables to predict outcome after resection of colorectal metastases remain imperfect. We hypothesized that molecular markers can improve the accuracy of prognostic schemes. METHODS We screened the transcriptome of matched colorectal liver metastases (CRCLM) and primary tumors from 42 patients with unresected CRCLM to identify differentially expressed genes. Among the differentially expressed genes identified, we looked for associations between expression and time to disease progression or overall survival. To validate such associations, mRNA levels of the candidate genes were assayed by qRT-PCR from CRCLM in 56 additional patients who underwent hepatectomy. RESULTS Seven candidate genes were selected for validation based on their differential expression between metastases and primary tumors and a correlation between expression and surgical outcome: lumican; tissue inhibitor metalloproteinase 1; basic helix-loop-helix domain containing class B2; fibronectin; transmembrane 4 superfamily member 1; mitogen inducible gene 6 (MIG-6); and serpine 2. In the hepatectomy group, only MIG-6 expression was predictive of poor survival after hepatectomy. Quantitative PCR of MIG-6 mRNA was performed on 25 additional hepatectomy patients to determine if MIG-6 expression could substratify patients beyond the clinical risk score. Patients within defined clinical risk score categories were effectively substratified into distinct groups by relative MIG-6 expression. CONCLUSIONS MIG-6 expression is inversely associated with survival after hepatectomy and may be used to improve traditional prognostic schemes that rely on clinicopathologic data such as the Clinical Risk Score.
Collapse
Affiliation(s)
- David B Donner
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143.
| | - Dan T Ruan
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Kan Toriguchi
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Emily K Bergsland
- The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; Department of Medicine, Division of Hematology/Oncology, The University of California San Francisco, San Francisco, CA. 94143
| | - Eric K Nakakura
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Meng Hsun Lin
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Ricardo J Antonia
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| | - Robert S Warren
- Department of Surgery, Division of Surgical Oncology, and The Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143; The Helen Diller Family Comprehensive Cancer Center, The University of California San Francisco, San Francisco, CA. 94143
| |
Collapse
|
33
|
Bieńkowski M, Wöhrer A, Moser P, Kitzwögerer M, Ricken G, Ströbel T, Hainfellner JA. Molecular diagnostic testing of diffuse gliomas in the real-life setting: A practical approach. Clin Neuropathol 2018; 37:166-177. [PMID: 29923492 PMCID: PMC6102559 DOI: 10.5414/np301110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Typing of diffuse gliomas according to the WHO 2016 Classification of Tumors of the Central Nervous System is based on the integration of histology with molecular biomarkers. However, the choice of appropriate methods for molecular analysis and criteria for interpretation of test results is left to each diagnostic laboratory. In the present study, we tested the applicability of combined immunohistochemistry, direct sequencing, and multiplex ligation-dependent probe amplification (MLPA) for diagnostic assessment of IDH1/2 mutation status, chromosome 1p/19q status, and TERT promoter mutations. To this end, we analyzed a consecutive series of 165 patients with diffuse low- and high-grade gliomas (WHO grade II and III) from three Austrian centers in which tissue specimens were routinely processed. We could reliably detect IDH1/2 mutations by combining immunohistochemistry, direct sequencing, and MLPA analysis. MLPA analysis also allowed reliable detection of combined whole chromosomal arm 1p/19q codeletion when using carefully selected criteria providing an optimal balance between sensitivity and specificity. Direct sequencing proved to be suitable for identification of TERT promoter mutations, although its analytical performance remains to be assessed. To conclude, we propose a practicable combination of methods and criteria which allow reliable molecular diagnostic testing of diffuse gliomas in the real-life setting.
.
Collapse
Affiliation(s)
- Michał Bieńkowski
- Institute of Neurology, Medical University of Vienna, Austria
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Poland
| | - Adelheid Wöhrer
- Institute of Neurology, Medical University of Vienna, Austria
| | | | - Melitta Kitzwögerer
- Department of Pathology, University Hospital of St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Gerda Ricken
- Institute of Neurology, Medical University of Vienna, Austria
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, Austria
| | | |
Collapse
|
34
|
Aygun N, Altungoz O. MYCN is amplified during S phase, and c‑myb is involved in controlling MYCN expression and amplification in MYCN‑amplified neuroblastoma cell lines. Mol Med Rep 2018; 19:345-361. [PMID: 30483774 PMCID: PMC6297758 DOI: 10.3892/mmr.2018.9686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma derived from primitive sympathetic neural precursors is a common type of solid tumor in infants. MYCN proto-oncogene bHLH transcription factor (MYCN) amplification and 1p36 deletion are important factors associated with the poor prognosis of neuroblastoma. Expression levels of MYCN and c-MYB proto-oncogene transcription factor (c-myb) decline during the differentiation of neuroblastoma cells; E2F transcription factor 1 (E2F1) activates the MYCN promoter. However, the underlying mechanism of MYCN overexpression and amplification requires further investigation. In the present study, potential c-Myb target genes, and the effect of c-myb RNA interference (RNAi) on MYCN expression and amplification were investigated in MYCN-amplified neuroblastoma cell lines. The mRNA expression levels and MYCN gene copy number in five neuroblastoma cell lines were determined by quantitative polymerase chain reaction. In addition, variations in potential target gene expression and MYCN gene copy number between pre- and post-c-myb RNAi treatment groups in MYCN-amplified Kelly, IMR32, SIMA and MHH-NB-11 cell lines, normalized to those of non-MYCN-amplified SH-SY5Y, were examined. To determine the associations between gene expression levels and chromosomal aberrations, MYCN amplification and 1p36 alterations in interphases/metaphases were analyzed using fluorescence in situ hybridization. Statistical analyses revealed correlations between 1p36 alterations and the expression of c-myb, MYB proto-oncogene like 2 (B-myb) and cyclin dependent kinase inhibitor 1A (p21). Additionally, the results of the present study also demonstrated that c-myb may be associated with E2F1 and L3MBTL1 histone methyl-lysine binding protein (L3MBTL1) expression, and that E2F1 may contribute to MYCN, B-myb, p21 and chromatin licensing and DNA replication factor 1 (hCdt1) expression, but to the repression of geminin (GMNN). On c-myb RNAi treatment, L3MBTL1 expression was silenced, while GMNN was upregulated, indicating G2/M arrest. In addition, MYCN gene copy number increased following treatment with c-myb RNAi. Notably, the present study also reported a 43.545% sequence identity between upstream of MYCN and Drosophila melanogaster amplification control element 3, suggesting that expression and/or amplification mechanisms of developmentally-regulated genes may be evolutionarily conserved. In conclusion, c-myb may be associated with regulating MYCN expression and amplification. c-myb, B-myb and p21 may also serve a role against chromosome 1p aberrations. Together, it was concluded that MYCN gene is amplified during S phase, potentially via a replication-based mechanism.
Collapse
Affiliation(s)
- Nevim Aygun
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Oguz Altungoz
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| |
Collapse
|
35
|
Yuniarti L, Mustofa M, Aryandono T, Haryana SM. Synergistic Action of 1,2-Epoxy-3 (3- (3,4-dimethoxyphenyl)- 4H-1-benzopiyran-4-on) Propane with Doxorubicin and Cisplatin through Increasing of p53, TIMP-3, and MicroRNA-34a in Cervical Cancer Cell Line (HeLa). Asian Pac J Cancer Prev 2018; 19:2955-2962. [PMID: 30362332 PMCID: PMC6291055 DOI: 10.22034/apjcp.2018.19.10.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022] Open
Abstract
Objective: Cervical cancer is the second most common cancer among women worldwide, with a high mortality rate especially in developing countries. Insufficient treatment for cervical cancer, multiple side effects, and high drug prices encourage researchers to look for effective and selective cancer drugs with appropriate molecular targets. This study explored the cytotoxicity of (1,2-epoxy-3(3-(3,4-dimethoxyphenyl)-4H-1-benzopyran-4-on) propane (EPI) synthesized from clove leaves oil on HeLa cells, its combination with doxorubicin (DOX) and cisplatin (CIS), and also their influence on p53, TIMP-3, and miR-34a as therapeutic targets. Materials and Methods: This research was an experimental in vitro study on cervical cancer uteri culture. The cytotoxicity was analyzed by MTT assay. The drug combination synergisms were indicated by the combination index (CI) (using CompuSyn 1.4). HeLa cells in 32 wells were divided into eight groups as negative control, which were given EPI ½IC50, EPI IC50, EPI 2IC50, DOX IC50, combination of EPI+DOX, CIS, and the combination of EPI+CIS. The p53 and TIMP-3 concentrations were measured using ELISA, and expressions of miR-34a with qRT-PCR. One-way ANOVA and post hoc Tukey tests were performed to determine the mean difference of all variables between the study groups. Results: IC50 for EPI was 33.24 (±3.01) μg/ml, while DOX and CIS were 4.8 μg/ml (±0.1), and 23.34 μg/ml (±3.01), respectively, while CI values for EPI-DOX were <0.1 and for EPI-CIS <0.9. Expression of p53 in group 6 (1.67±0.31) μg/ml and 8 (1.18±0.18) μg/ml, TIMP-3 6 (3.81±0.49) μg/ml and 8 (2.93±0.42) μg/ml were significantly higher compared to the control group (p<0.05). All treatment groups showed significantly increased miR-34a expressions compared to the control group (p<0.05). Conclusion: The combinations showed a very strong synergism and a moderate slight synergism for EPI-DOX and EPI-CIS. Both combinations were able to increase the expressions of p53, TIMP-3 proteins, and MiR-34a in the HeLa cells.
Collapse
Affiliation(s)
- Lelly Yuniarti
- Department of Biochemistry, Faculty of Medicine Universitas Islam Bandung, Bandung, Indonesia
- Doctorate Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Teguh Aryandono
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology Faculty of Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
36
|
Remo A, Manfrin E, Parcesepe P, Ferrarini A, Han HS, Mickys U, Laudanna C, Simbolo M, Malanga D, Oliveira DM, Baritono E, Colangelo T, Sabatino L, Giuliani J, Molinari E, Garonzi M, Xumerle L, Delledonne M, Giordano G, Ghimenton C, Lonardo F, D'angelo F, Grillo F, Mastracci L, Viglietto G, Ceccarelli M, Colantuoni V, Scarpa A, Pancione M. Centrosome Linker-induced Tetraploid Segregation Errors Link Rhabdoid Phenotypes and Lethal Colorectal Cancers. Mol Cancer Res 2018; 16:1385-1395. [PMID: 29784668 DOI: 10.1158/1541-7786.mcr-18-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 05/01/2018] [Indexed: 02/05/2023]
Abstract
Centrosome anomalies contribute to tumorigenesis, but it remains unclear how they are generated in lethal cancer phenotypes. Here, it is demonstrated that human microsatellite instable (MSI) and BRAFV600E-mutant colorectal cancers with a lethal rhabdoid phenotype are characterized by inactivation of centrosomal functions. A splice site mutation that causes an unbalanced dosage of rootletin (CROCC), a centrosome linker component required for centrosome cohesion and separation at the chromosome 1p36.13 locus, resulted in abnormally shaped centrosomes in rhabdoid cells from human colon tissues. Notably, deleterious deletions at 1p36.13 were recurrent in a subgroup of BRAFV600E-mutant and microsatellite stable (MSS) rhabdoid colorectal cancers, but not in classical colorectal cancer or pediatric rhabdoid tumors. Interfering with CROCC expression in near-diploid BRAFV600E-mutant/MSI colon cancer cells disrupts bipolar mitotic spindle architecture, promotes tetraploid segregation errors, resulting in a highly aggressive rhabdoid-like phenotype in vitro Restoring near-wild-type levels of CROCC in a metastatic model harboring 1p36.13 deletion results in correction of centrosome segregation errors and cell death, revealing a mechanism of tolerance to mitotic errors and tetraploidization promoted by deleterious 1p36.13 loss. Accordingly, cancer cells lacking 1p36.13 display far greater sensitivity to centrosome spindle pole stabilizing agents in vitro These data shed light on a previously unknown link between centrosome cohesion defects and lethal cancer phenotypes providing new insight into pathways underlying genome instability.Implications: Mis-segregation of chromosomes is a prominent feature of chromosome instability and intratumoral heterogeneity recurrent in metastatic tumors for which the molecular basis is unknown. This study provides insight into the mechanism by which defects in rootletin, a centrosome linker component causes tetraploid segregation errors and phenotypic transition to a clinically devastating form of malignant rhabdoid tumor. Mol Cancer Res; 16(9); 1385-95. ©2018 AACR.
Collapse
Affiliation(s)
- Andrea Remo
- Pathology Unit, "Mater Salutis" Hospital AULSS9, Legnago (Verona), Italy
| | - Erminia Manfrin
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Pietro Parcesepe
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | | | - Hye Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Korea
| | - Ugnius Mickys
- National Center of Pathology, Affiliate of Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
| | - Carmelo Laudanna
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | - Duarte Mendes Oliveira
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | | | - Tommaso Colangelo
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Casa Sollievo della Sofferenza-IRCCS, San Giovanni Rotondo, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Jacopo Giuliani
- Pathology Unit, "Mater Salutis" Hospital AULSS9, Legnago (Verona), Italy
| | - Enrico Molinari
- Pathology Unit, "Mater Salutis" Hospital AULSS9, Legnago (Verona), Italy
| | - Marianna Garonzi
- Functional Genomics Center, Department of Biotechnology, University of Verona, Verona, Italy
| | - Luciano Xumerle
- Functional Genomics Center, Department of Biotechnology, University of Verona, Verona, Italy
| | - Massimo Delledonne
- Functional Genomics Center, Department of Biotechnology, University of Verona, Verona, Italy
- Personal Genomics S.r.l., Verona, Italy
| | - Guido Giordano
- CRO Aviano National Cancer Center, Aviano, Italy
- Medical Oncology Unit, San Filippo Neri Hospital, Rome, Italy
| | - Claudio Ghimenton
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Fortunato Lonardo
- Medical Cytogenetics and Molecular Genetics Unit, AORN "Gaetano Rummo," Benevento, Italy
| | - Fulvio D'angelo
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences (DISC), University of Genova and S. Martino Polyclinic Hospital, Genova, Italy
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC), University of Genova and S. Martino Polyclinic Hospital, Genova, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine "Gaetano Salvatore", University "Magna Grecia", Catanzaro, Italy
| | - Michele Ceccarelli
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Bioinformatics Laboratory, BIOGEM scrl, Ariano Irpino, Avellino, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, Madrid, Spain
| |
Collapse
|
37
|
Xiao Q, Chen L, Luo H, Li H, Kong Q, Jiao F, Pang S, Zhang M, Lan F, Fan W, Luo H, Tao T, Zhu X. A rare CHD5 haplotype and its interactions with environmental factors predicting hepatocellular carcinoma risk. BMC Cancer 2018; 18:658. [PMID: 29907144 PMCID: PMC6003142 DOI: 10.1186/s12885-018-4551-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/24/2018] [Indexed: 01/10/2023] Open
Abstract
Background CHD5 is a conventional tumour-suppressing gene in many tumours. The aim of this study was to determine whether CHD5 variants contribute to the risk of hepatocellular carcinoma (HCC). Methods Gene variants were identified using next-generation sequencing targeted on referenced mutations followed by TaqMan genotyping in two case-control studies. Results We discovered a rare variant (haplotype AG) in CHD5 (rs12564469-rs9434711) that was markedly associated with the risk of HCC in a Chinese population. A logistical regression model and permutation test confirmed the association. Indeed, the association quality increased in a gene dose-dependent manner as the number of samples increased. In the stratified analysis, this haplotype risk effect was statistically significant in a subgroup of alcohol drinkers. The false-positive report probability and multifactor dimensionality reduction further supported the finding. Conclusions Our results suggest that the rare CHD5 gene haplotype and alcohol intake contribute to the risk of HCC. Our findings can be valuable to researchers of cancer precision medicine looking to improve diagnosis and treatment of HCC. Electronic supplementary material The online version of this article (10.1186/s12885-018-4551-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qin Xiao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lianzhou Chen
- Digestive System Tumor Tissue Bank, Center of Surgery Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haiqing Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,The Affiliated Hospital Cancer Center, Guangdong Medical University, Zhanjiang, China
| | - Hongmei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.,Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Qingming Kong
- Immunity and Biochemical Research Lab, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shifeng Pang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Ming Zhang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Feifei Lan
- Forensic Identification Institute, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hui Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China.
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
38
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
39
|
Naderi A. SRARP and HSPB7 are epigenetically regulated gene pairs that function as tumor suppressors and predict clinical outcome in malignancies. Mol Oncol 2018; 12:724-755. [PMID: 29577611 PMCID: PMC5928383 DOI: 10.1002/1878-0261.12195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Deletions of chromosome 1p36 are common in cancers; however, despite extensive studies, there has been limited success for discovering candidate tumor suppressors in this region. SRARP has recently been identified as a novel corepressor of the androgen receptor (AR) and is located on chromosome 1p36. Here, bioinformatics analysis of large tumor datasets was performed to study SRARP and its gene pair, HSPB7. In addition, using cancer cell lines, mechanisms of SRARP and HSPB7 regulation and their molecular functions were investigated. This study demonstrated that SRARP and HSPB7 are a gene pair located 5.2 kb apart on 1p36.13 and are inactivated by deletions and epigenetic silencing in malignancies. Importantly, SRARP and HSPB7 have tumor suppressor functions in clonogenicity and cell viability associated with the downregulation of Akt and ERK. SRARP expression is inversely correlated with genes that promote cell proliferation and signal transduction, which supports its functions as a tumor suppressor. In addition, AR exerts dual regulatory effects on SRARP, and although an increased AR activity suppresses SRARP transcription, a minimum level of AR activity is required to maintain baseline SRARP expression in AR+ cancer cells. Furthermore, as observed with SRARP, HSPB7 interacts with the 14-3-3 protein, presenting a shared molecular feature between SRARP and HSPB7. Of note, genome- and epigenome-wide associations of SRARP and HSPB7 with survival strongly support their tumor suppressor functions. In particular, DNA hypermethylation, lower expression, somatic mutations, and lower copy numbers of SRARP are associated with worse cancer outcome. Moreover, DNA hypermethylation and lower expression of SRARP in normal adjacent tissues predict poor survival, suggesting that SRARP inactivation is an early event in carcinogenesis. In summary, SRARP and HSPB7 are tumor suppressors that are commonly inactivated in malignancies. SRARP inactivation is an early event in carcinogenesis that is strongly associated with worse survival, presenting potential translational applications.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
40
|
Šteiner P, Andreasen S, Grossmann P, Hauer L, Vaněček T, Miesbauerová M, Santana T, Kiss K, Slouka D, Skálová A. Prognostic significance of 1p36 locus deletion in adenoid cystic carcinoma of the salivary glands. Virchows Arch 2018; 473:471-480. [PMID: 29619555 DOI: 10.1007/s00428-018-2349-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 11/26/2022]
Abstract
Adenoid cystic carcinoma (AdCC) of the salivary glands is characterized by MYB-NFIB or MYBL1-NFIB fusion, prolonged but relentlessly progressive clinical course with frequent recurrences, and development of distant metastasis resulting in high long-term mortality. Currently, no effective therapy is available for patients with advanced non-resectable and/or metastatic disease. Complicating the clinical management of this patient group is the lack of prognostic markers. The purpose of this study is to investigate the prognostic value of 1p36 loss in patients with AdCC. The presence of 1p36 deletion and gene fusions involving the MYB, NFIB, and MYBL1 genes in a cohort of 93 salivary gland AdCCs was studied using fluorescence in situ hybridization. These results were statistically correlated with clinical data and outcome. Deletion of 1p36 in AdCC was identified in 13 of 85 analyzable cases (15.29%). MYB-NFIB fusion was detected in 57/85 (67.1%), MYBL1-NFIB fusion in 12/85 (14.1%), MYB-X fusion in 4/85 (4.7%), MYBL1-X in 4/85 (4.7%), and NFIB-X in 2/85 (2.4%) of AdCC cases. None of the 1p36-deleted samples showed MYBL1 rearrangement. Statistical analysis demonstrated a significant correlation between 1p36 deletion and advanced tumor stage and solid histology (p = 0.0061 and 0.0007, respectively). Kaplan-Meier survival curves showed statistically significant correlations between 1p36 deletion and decreased overall survival, disease-specific survival, recurrence-free interval, and recurrence-free survival, all of which were maintained in multivariate analysis. We demonstrate that 1p36 deletion can serve as an indicator of unfavorable outcome of patients with salivary gland AdCC.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Carcinoma, Adenoid Cystic/genetics
- Carcinoma, Adenoid Cystic/mortality
- Carcinoma, Adenoid Cystic/secondary
- Carcinoma, Adenoid Cystic/therapy
- Chromosome Deletion
- Chromosomes, Human, Pair 1
- Disease Progression
- Disease-Free Survival
- Gene Fusion
- Genetic Predisposition to Disease
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Kaplan-Meier Estimate
- Male
- Middle Aged
- NFI Transcription Factors/genetics
- Neoplasm Grading
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Oncogene Proteins, Fusion/genetics
- Phenotype
- Proportional Hazards Models
- Proto-Oncogene Proteins/genetics
- Risk Factors
- Salivary Gland Neoplasms/genetics
- Salivary Gland Neoplasms/mortality
- Salivary Gland Neoplasms/pathology
- Salivary Gland Neoplasms/therapy
- Time Factors
- Trans-Activators/genetics
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Petr Šteiner
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic.
- Bioptic Laboratory, Ltd, Molecular Pathology Laboratory, Mikulášské náměstí 4, 326 00, Plzen, Czech Republic.
| | - Simon Andreasen
- Department of Otorhinolaryngology Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark
| | - Petr Grossmann
- Bioptic Laboratory, Ltd, Molecular Pathology Laboratory, Mikulášské náměstí 4, 326 00, Plzen, Czech Republic
| | - Lukáš Hauer
- Department of Maxillofacial Surgery, Faculty of Medicine in Plzen, Clinic of Dentistry, Charles University, Plzen, Czech Republic
| | - Tomáš Vaněček
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
- Bioptic Laboratory, Ltd, Molecular Pathology Laboratory, Mikulášské náměstí 4, 326 00, Plzen, Czech Republic
| | - Markéta Miesbauerová
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Thalita Santana
- Department of Oral Pathology, Faculty of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Slouka
- Department of Otorhinolaryngology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| | - Alena Skálová
- Department of Pathology, Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic
| |
Collapse
|
41
|
Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD, Wu M. GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol 2018; 20:492-502. [DOI: 10.1038/s41556-018-0066-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
|
42
|
Wang JL, Yang MY, Xiao S, Sun B, Li YM, Yang LY. Downregulation of castor zinc finger 1 predicts poor prognosis and facilitates hepatocellular carcinoma progression via MAPK/ERK signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:45. [PMID: 29506567 PMCID: PMC5836448 DOI: 10.1186/s13046-018-0720-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/22/2018] [Indexed: 12/15/2022]
Abstract
Background Castor zinc finger 1 (CASZ1) plays critical roles in various biological processes and pathologic conditions, including cancer. However, the prognostic importance and biologic functions of CASZ1 in hepatocellular carcinoma (HCC) are still unclear. Methods qRT-PCR, western blot and immunohistochemistry analyses were used to determine CASZ1 expression in HCC samples and cell lines. The clinical significance of CASZ1 was assessed in two independent study cohorts containing 232 patients with HCC. A series of in vitro and in vivo experiments were performed to explore the role and molecular mechanism of CASZ1 in HCC progression. Results Here we report that CASZ1 expression was downregulated in HCC tissues and cell lines. Low CASZ1 expression was closely correlated with aggressive clinicopathological features, poor clinical outcomes and early recurrence of HCC patients. Moreover, overexpression of CASZ1 in HCCLM3 cells significantly inhibited cell proliferation, migration, invasion in vitro and tumor growth and metastasis in vivo, whereas silencing CASZ1 significantly enhanced the above abilities of PLC/PRF/5 cells. Further mechanism study indicated that these phenotypic changes were mediated by MAPK/ERK signaling pathway and involved altered expression of MMP2, MMP9 and cyclinD1. Finally, we proved that CASZ1 exerted its tumor-suppressive effect by directly interacting with RAF1 and reducing the protein stability of RAF1. Conclusions Our study for the first time demonstrated that CASZ1 is a tumor suppressor in HCC, which may serve as a novel prognostic predictor and therapeutic target for HCC patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0720-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Long Wang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Meng-Yuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuai Xiao
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China.,Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Sun
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Yi-Ming Li
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Lian-Yue Yang
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China. .,Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
43
|
Bhaskaran N, Liu Z, Saravanamuthu SS, Yan C, Hu Y, Dong L, Zelenka P, Zheng L, Bletsos V, Harris R, Harrington B, Weinberg A, Thiele CJ, Ye F, Pandiyan P. Identification of Casz1 as a Regulatory Protein Controlling T Helper Cell Differentiation, Inflammation, and Immunity. Front Immunol 2018; 9:184. [PMID: 29467767 PMCID: PMC5808336 DOI: 10.3389/fimmu.2018.00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 11/17/2022] Open
Abstract
While T helper (Th) cells play a crucial role in host defense, an imbalance in Th effector subsets due to dysregulation in their differentiation and expansion contribute to inflammatory disorders. Here, we show that Casz1, whose function is previously unknown in CD4+ T cells, coordinates Th differentiation in vitro and in vivo. Casz1 deficiency in CD4+ T cells lowers susceptibility to experimental autoimmune encephalomyelitis, consistent with the reduced frequency of Th17 cells, despite an increase in Th1 cells in mice. Loss of Casz1 in the context of mucosal Candida infection severely impairs Th17 and Treg responses, and lowers the ability of the mice to clear the secondary infection. Importantly, in both the models, absence of Casz1 causes a significant diminution in IFN-γ+IL-17A+ double-positive inflammatory Th17 cells (Th1* cells) in tissues in vivo. Transcriptome analyses of CD4+ T cells lacking Casz1 show a signature consistent with defective Th17 differentiation. With regards to Th17 differentiation, Casz1 limits repressive histone marks and enables acquisition of permissive histone marks at Rorc, Il17a, Ahr, and Runx1 loci. Taken together, these data identify Casz1 as a new Th plasticity regulator having important clinical implications for autoimmune inflammation and mucosal immunity.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Zhihui Liu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Senthil S. Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD, United States
| | - Chunhua Yan
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Ying Hu
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Lijin Dong
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD, United States
| | - Peggy Zelenka
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD, United States
| | - Lixin Zheng
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Vassili Bletsos
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Rachel Harris
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Brenna Harrington
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Carol J. Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Fengchun Ye
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
44
|
Durinck K, Speleman F. Epigenetic regulation of neuroblastoma development. Cell Tissue Res 2018; 372:309-324. [PMID: 29350283 DOI: 10.1007/s00441-017-2773-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
Abstract
In recent years, technological advances have enabled a detailed landscaping of the epigenome and the mechanisms of epigenetic regulation that drive normal cell function, development and cancer. Rather than merely a structural entity to support genome compaction, we now look at chromatin as a very dynamic and essential constellation that is actively participating in the tight orchestration of transcriptional regulation as well as DNA replication and repair. The unique feature of chromatin flexibility enabling fast switches towards more or less restricted epigenetic cellular states is, not surprisingly, intimately connected to cancer development and treatment resistance, and the central role of epigenetic alterations in cancer is illustrated by the finding that up to 50% of all mutations across cancer entities affect proteins controlling the chromatin status. We summarize recent insights into epigenetic rewiring underlying neuroblastoma (NB) tumor formation ranging from changes in DNA methylation patterns and mutations in epigenetic regulators to global effects on transcriptional regulatory circuits that involve key players in NB oncogenesis. Insights into the disruption of the homeostatic epigenetic balance contributing to developmental arrest of sympathetic progenitor cells and subsequent NB oncogenesis are rapidly growing and will be exploited towards the development of novel therapeutic strategies to increase current survival rates of patients with high-risk NB.
Collapse
Affiliation(s)
- Kaat Durinck
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
45
|
Angelina C, Tan ISY, Choo Z, Lee OZJ, Pervaiz S, Chen ZX. KIF1Bβ increases ROS to mediate apoptosis and reinforces its protein expression through O 2- in a positive feedback mechanism in neuroblastoma. Sci Rep 2017; 7:16867. [PMID: 29203804 PMCID: PMC5715000 DOI: 10.1038/s41598-017-17192-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/22/2017] [Indexed: 01/15/2023] Open
Abstract
Relapse-prone, poor prognosis neuroblastoma is frequently characterized by deletion of chr1p36 where tumor suppressor gene KIF1Bβ resides. Interestingly, many 1p36-positive patients failed to express KIF1Bβ protein. Since altered cellular redox status has been reported to be involved in cell death and protein modification, we investigated the relationship between reactive oxygen species (ROS) and KIF1Bβ. Here, we showed that wild-type KIF1Bβ protein expression positively correlates with superoxide (O2-) and total ROS levels in neuroblastoma cells, unlike apoptotic loss-of-function KIF1Bβ mutants. Overexpression of KIF1Bβ apoptotic domain variants increases total ROS and, specifically O2-, whereas knockdown of endogenous KIF1Bβ decreases ROS and O2-. Interestingly, O2- increases KIF1Bβ protein expression, independent of the proteasomal degradation pathway. Scavenging O2- or ROS decreases KIF1Bβ protein expression and subsequent apoptosis. Moreover, treatment with investigational redox compound Gliotoxin increases O2-, KIF1Bβ protein expression, apoptosis and colony formation inhibition. Overall, our findings suggest that ROS and O2- may be important downstream effectors of KIF1Bβ-mediated apoptosis. Subsequently, O2- produced may increase KIF1Bβ protein expression in a positive feedback mechanism. Therefore, ROS and, specifically O2-, may be critical regulators of KIF1Bβ-mediated apoptosis and its protein expression in neuroblastoma.
Collapse
Affiliation(s)
- Clara Angelina
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irene Sze Ying Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhang'e Choo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oswald Zhao Jian Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Singapore-MIT Alliance, Singapore, Singapore
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,KK Women's and Children's Hospital, Singapore, Singapore.
| |
Collapse
|
46
|
Chuang LSH, Ito K, Ito Y. Roles of RUNX in Solid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:299-320. [PMID: 28299665 DOI: 10.1007/978-981-10-3233-2_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All RUNX genes have been implicated in the development of solid tumors, but the role each RUNX gene plays in the different tumor types is complicated by multiple interactions with major signaling pathways and tumor heterogeneity. Moreover, for a given tissue type, the specific role of each RUNX protein is distinct at different stages of differentiation. A regulatory function for RUNX in tissue stem cells points sharply to a causal effect in tumorigenesis. Understanding how RUNX dysregulation in cancer impinges on normal biological processes is important for identifying the molecular mechanisms that lead to malignancy. It will also indicate whether restoration of proper RUNX function to redirect cell fate is a feasible treatment for cancer. With the recent advances in RUNX research, it is time to revisit the many mechanisms/pathways that RUNX engage to regulate cell fate and decide whether cells proliferate, differentiate or die.
Collapse
Affiliation(s)
- Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599, Singapore
| | - Kosei Ito
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599, Singapore.
| |
Collapse
|
47
|
Deconvolution of DNA methylation identifies differentially methylated gene regions on 1p36 across breast cancer subtypes. Sci Rep 2017; 7:11594. [PMID: 28912426 PMCID: PMC5599639 DOI: 10.1038/s41598-017-10199-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a complex disease consisting of four distinct molecular subtypes. DNA methylation-based (DNAm) studies in tumors are complicated further by disease heterogeneity. In the present study, we compared DNAm in breast tumors with normal-adjacent breast samples from The Cancer Genome Atlas (TCGA). We constructed models stratified by tumor stage and PAM50 molecular subtype and performed cell-type reference-free deconvolution to control for cellular heterogeneity. We identified nineteen differentially methylated gene regions (DMGRs) in early stage tumors across eleven genes (AGRN, C1orf170, FAM41C, FLJ39609, HES4, ISG15, KLHL17, NOC2L, PLEKHN1, SAMD11, WASH5P). These regions were consistently differentially methylated in every subtype and all implicated genes are localized to the chromosomal cytoband 1p36.3. Seventeen of these DMGRs were independently validated in a similar analysis of an external data set. The identification and validation of shared DNAm alterations across tumor subtypes in early stage tumors advances our understanding of common biology underlying breast carcinogenesis and may contribute to biomarker development. We also discuss evidence of the specific importance and potential function of 1p36 in cancer.
Collapse
|
48
|
Vetter NS, Kolb EA, Mills CC, Sampson VB. The Microtubule Network and Cell Death Are Regulated by an miR-34a/Stathmin 1/βIII-Tubulin Axis. Mol Cancer Res 2017; 15:953-964. [PMID: 28275089 PMCID: PMC5500423 DOI: 10.1158/1541-7786.mcr-16-0372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/06/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
MicroRNA-34a (miR-34a) is a master regulator of signaling networks that maintains normal physiology and disease and is currently in development as a miRNA-based therapy for cancer. Prior studies have reported low miR-34a expression in osteosarcoma; however, the molecular mechanisms underlying miR-34a activity in osteosarcoma are not well-defined. Therefore, this study evaluated the role of miR-34a in regulating signal transduction pathways that influence cell death in osteosarcoma. Levels of miR-34a were attenuated in human osteosarcoma cells and xenografts of the Pediatric Preclinical Testing Consortium (PPTC). Bioinformatics predictions identified stathmin 1 (STMN1) as a potential miR-34a target. Biotin pull-down assay and luciferase reporter analysis confirmed miR-34a target interactions within the STMN1 mRNA 3'-untranslated region. Overexpression of miR-34a in osteosarcoma cells suppressed STMN1 expression and reduced cell growth in vitro Restoration of miR-34a led to microtubule destabilization and increased βIII-tubulin expression, with corresponding G1-G2 phase cell-cycle arrest and apoptosis. Knockdown of the Sp1 transcription factor, by siRNA silencing, also upregulated βIII-tubulin expression in osteosarcoma cells, suggesting that miR-34a indirectly affects Sp1. Validating the coordinating role of miR-34a in microtubule destabilization, when miR-34a was combined with either microtubule inhibitors or chemotherapy, STMN1 phosphorylation was suppressed and there was greater cytotoxicity in osteosarcoma cells. These results demonstrate that miR-34a directly represses STMN1 gene and protein expression and upregulates βIII-tubulin, leading to disruption of the microtubule network and cell death.Implications: The miR-34a/STMN1/βIII-tubulin axis maintains the microtubule cytoskeleton in osteosarcoma, and combining miR-34a with microtubule inhibitors can be investigated as a novel therapeutic strategy. Mol Cancer Res; 15(7); 953-64. ©2017 AACR.
Collapse
Affiliation(s)
- Nancy S Vetter
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - E A Kolb
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | | | - Valerie B Sampson
- Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware.
| |
Collapse
|
49
|
Tsai SC, Lin CC, Shih TC, Tseng RJ, Yu MC, Lin YJ, Hsieh SY. The miR-200b-ZEB1 circuit regulates diverse stemness of human hepatocellular carcinoma. Mol Carcinog 2017; 56:2035-2047. [PMID: 28383782 DOI: 10.1002/mc.22657] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Accumulating evidence suggests that human hepatocellular carcinoma (HCC) can be derived from cancer stem cells (CSCs), which contribute to tumor initiation, metastasis, chemoresistance, and recurrence. A great variety of HCC CSCs resulting in diverse clinical manifestations have been reported. However, how CSC diversity is regulated and generated remains unclear. Here we report that the miR-200b-ZEB1 circuit is closely involved with the induction and maintenance of a diverse group of CSCs. We found that miR-200b downregulation occurred in early HCC and associated with poor prognosis. The downregulation was attributable to genome deletion and promoter methylation of the miR-200a/b/429 gene. Ectopic expression of miR-200b or silencing of ZEB1 led to a decrease in CD13+ and CD24+ HCC CSCs and an increase in EpCAM+ HCC CSCs. Mechanistically, miR-200b directly suppressed BMI1 and ZEB1 expressions. ZEB1 recognized promoters of CD13, CD24, and EpCAM genes resulting in CD13 and CD24 upregulation and EpCAM downregulation. Neither miR-200b nor ZEB1 had obvious effects on CD133 or CD90 expression. Silencing CD13 or CD24 expression suppressed tumorigenicity of HCC cells. Ectopic expression of CD24 reversed the suppression of tumorigenicity by ectopic expression of miR-200b. Clinically, miR-200b downregulation was coupled with ZEB1 upregulation in approximately two-thirds of HCC patients. ZEB1 expression was positively correlated with CD13 and CD24 expressions in HCCs, while miR-200b expression was positively correlated with EpCAM. Our findings suggest that the miR-200b-ZEB1 circuit is a master regulator of diverse stemness of HCC, which differentiates HCCs into those containing CD13+ /CD24+ CSCs from those containing EpCAM+ CSCs.
Collapse
Affiliation(s)
- Shu-Chun Tsai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chen-Chun Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Chieh Shih
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, California
| | - Rong-Jeng Tseng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yu-Jr Lin
- Medical Statistics and Clinical Informatics Lab, Chang Gung University, Taoyuan, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
50
|
Baykara O, Tansarikaya M, Bulut P, Demirkaya A, Buyru N. CHD5 is a potential tumor suppressor in non small cell lung cancer (NSCLC). Gene 2017; 618:65-68. [PMID: 28400267 DOI: 10.1016/j.gene.2017.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/17/2017] [Accepted: 04/07/2017] [Indexed: 01/17/2023]
Abstract
Lung cancer is one of the deadliest types of cancers and genetic and epigenetic alterations play major roles in its development. Chromodomain (CHD) protein family acts in chromatin organization, regulation of transcription and also genomic stability and cancer prevention. Although CHD5, a member of this family was shown to contribute to major cellular events and functions as a tumor suppressor gene in various types of cancer, it is not clear whether CHD5 plays a role in lung carcinogenesis. The aim of this study was to investigate the possible role of CHD5 in progression of non-small cell lung cancer (NSCLC). Expression levels of CHD5 gene in 59 tumor and corresponding non-cancerous lung tissue samples were analyzed by qRT-PCR and the methylation status of the promoter region was investigated by methylation specific PCR (MS-PCR). The Akt phosphorylation levels were investigated by Western Blot (WB). CHD5 was down-regulated in 17 (39.5%) and up-regulated in 24 (55.8%) of tumor specimens. Even though the promoter of CHD5 was hypermethylated in 8 patients, it was not found associated with CHD5 gene expression (p=0.08). Akt phosphorylation was increased in 14 (53.8%) and decreased in 12 (46.2%) of the samples but no significant association was found between p-Akt phosphorylation and CHD5 expression (p=0.67). We suggest that CHD5 may act as a tumor suppressor gene in NSCLC.
Collapse
Affiliation(s)
- Onur Baykara
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey
| | - Merve Tansarikaya
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey
| | - Pelin Bulut
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey
| | - Ahmet Demirkaya
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Thoracic Surgery, Istanbul 34098, Turkey
| | - Nur Buyru
- Istanbul University Cerrahpasa Medical Faculty, Dept. of Medical Biology and Genetics, Istanbul 34098, Turkey.
| |
Collapse
|