1
|
O'Rourke RL, Garner AL. Chemical Probes for Studying the Eukaryotic Translation Initiation Factor 4E (eIF4E)-Regulated Translatome in Cancer. ACS Pharmacol Transl Sci 2025; 8:621-635. [PMID: 40109752 PMCID: PMC11915038 DOI: 10.1021/acsptsci.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
The dysregulation of translation is a hallmark of cancer that enables rapid changes in the cell proteome to shape oncogenic phenotypes that promote tumor survival. The predominant signaling pathways leading to dysregulation of translational control in cancer are the PI3K-AKT-mTORC1, RAS-RAF-MAPK, and MYC pathways, which all converge on eukaryotic translation initiation factor 4E (eIF4E), an RNA-binding protein that binds to the m7GpppX cap structure at the 5' end of mRNAs to initiate cap-dependent translation. eIF4E is the rate-limiting factor of translation initiation, and its overexpression is known to drive oncogenic transformation, progression, and chemoresistance across many cancers, establishing it as an attractive therapeutic target. Over the last several decades, significant efforts have been made to inhibit eIF4E through the development of mechanistically distinct small-molecule inhibitors that both directly and indirectly act on eIF4E to prevent cap-dependent translation initiation. These inhibitors can serve as powerful chemical tools to improve our understanding of the mechanisms of cap-dependent translation in cancer and to ultimately predict specific cancers that may benefit from eIF4E-targeted therapeutics. This review discusses the progress made in the development of different classes of small-molecule eIF4E inhibitors, the challenges that remain, and their potential as chemical probes to elucidate the complexities of cap-dependent translation in cancer.
Collapse
Affiliation(s)
- Rachel L O'Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Lécuyer E, Sauvageau M, Kothe U, Unrau PJ, Damha MJ, Perreault J, Abou Elela S, Bayfield MA, Claycomb JM, Scott MS. Canada's contributions to RNA research: past, present, and future perspectives. Biochem Cell Biol 2024; 102:472-491. [PMID: 39320985 DOI: 10.1139/bcb-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Martin Sauvageau
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Jonathan Perreault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle S Scott
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Feng Y, Radaeva M, Amiri M, Deshpande AJ, Olson S, Jovanovic P, Pass I, Deng Q, Lazar I, Murad R, Molinolo A, Kim H, Sergienko E, Villaneuva J, Topisirovic I, Jackson M, Sonenberg N, Cherkasov A, Ronai ZA. Targeting eIF4G1-dependent translation in melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624566. [PMID: 39605602 PMCID: PMC11601521 DOI: 10.1101/2024.11.20.624566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Elevated expression of components of eIF4F translation initiation complex has been documented in cancer, resulting in enhanced translation of mRNAs encoding pro-tumorigenic factors, including oncogenic proteins. We previously identified SBI-756, a small molecule that interferes with the eIF4F assembly and overcomes melanoma resistance to BRAF inhibitors. SBI-756 enhanced anti-tumor immunity in pancreatic cancer and was effective in the treatment of diffuse large B cell lymphoma. Here, we identified the eIF4G1 MA3 (4G1-MA3) domain as the target of SBI-756, attenuating eIF4F complex assembly. Melanoma cells expressing a mutant form of 4G1-MA3 exhibited polysome profiles resembling those of melanoma cells treated with SBI-756. A structure-based in silico screen against the eIF4G1 MA3 domain identified M19, a small molecule inhibitor that exhibited anti-melanoma effects. RNA sequencing (RNA-seq) revealed upregulation of UPR, mTOR, p53, and ROS signaling in M19-treated melanoma cells. Ribosome sequencing identified changes in ribosomal structure and electron transport chain components following M19-6 treatment of melanoma cells. Autophagy and histone deacetylase inhibitors were found to enhance anti-neoplastic activities of M19 or its analog, M19-6. M19-6 conferred a greater effect on melanoma than melanocytes and overcame melanoma resistance to BRAF or MEK inhibitors. Alone, M19-6 reduced melanoma growth and metastasis in a xenograft model. M19-6 offers a new therapeutic modality to overcome resistance and metastasis.
Collapse
|
4
|
Shichino Y, Yamaguchi T, Kashiwagi K, Mito M, Takahashi M, Ito T, Ingolia NT, Kuba K, Iwasaki S. eIF4A1 enhances LARP1-mediated translational repression during mTORC1 inhibition. Nat Struct Mol Biol 2024; 31:1557-1566. [PMID: 38773334 DOI: 10.1038/s41594-024-01321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/18/2024] [Indexed: 05/23/2024]
Abstract
Eukaryotic translation initiation factor (eIF)4A-a DEAD-box RNA-binding protein-plays an essential role in translation initiation. Recent reports have suggested helicase-dependent and helicase-independent functions for eIF4A, but the multifaceted roles of eIF4A have not been fully explored. Here we show that eIF4A1 enhances translational repression during the inhibition of mechanistic target of rapamycin complex 1 (mTORC1), an essential kinase complex controlling cell proliferation. RNA pulldown followed by sequencing revealed that eIF4A1 preferentially binds to mRNAs containing terminal oligopyrimidine (TOP) motifs, whose translation is rapidly repressed upon mTORC1 inhibition. This selective interaction depends on a La-related RNA-binding protein, LARP1. Ribosome profiling revealed that deletion of EIF4A1 attenuated the translational repression of TOP mRNAs upon mTORC1 inactivation. Moreover, eIF4A1 increases the interaction between TOP mRNAs and LARP1 and, thus, ensures stronger translational repression upon mTORC1 inhibition. Our data show the multimodality of eIF4A1 in modulating protein synthesis through an inhibitory binding partner and provide a unique example of the repressive role of a universal translational activator.
Collapse
Affiliation(s)
- Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
- Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
5
|
Wu HT, Wu BX, Fang ZX, Wu Z, Hou YY, Deng Y, Cui YK, Liu J. Lomitapide repurposing for treatment of malignancies: A promising direction. Heliyon 2024; 10:e32998. [PMID: 38988566 PMCID: PMC11234027 DOI: 10.1016/j.heliyon.2024.e32998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
The development of novel drugs from basic science to clinical practice requires several years, much effort, and cost. Drug repurposing can promote the utilization of clinical drugs in cancer therapy. Recent studies have shown the potential effects of lomitapide on treating malignancies, which is currently used for the treatment of familial hypercholesterolemia. We systematically review possible functions and mechanisms of lomitapide as an anti-tumor compound, regarding the aspects of apoptosis, autophagy, and metabolism of tumor cells, to support repurposing lomitapide for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bing-Xuan Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Yu Deng
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yu-Kun Cui
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
6
|
Cencic R, Im YK, Naineni SK, Moustafa-Kamal M, Jovanovic P, Sabourin V, Annis MG, Robert F, Schmeing TM, Koromilas A, Paquet M, Teodoro JG, Huang S, Siegel PM, Topisirovic I, Ursini-Siegel J, Pelletier J. A second-generation eIF4A RNA helicase inhibitor exploits translational reprogramming as a vulnerability in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2318093121. [PMID: 38232291 PMCID: PMC10823175 DOI: 10.1073/pnas.2318093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Young K. Im
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Mohamed Moustafa-Kamal
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Matthew G. Annis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Antonis Koromilas
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Peter M. Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| |
Collapse
|
7
|
Bhin J, Yemelyanenko J, Chao X, Klarenbeek S, Opdam M, Malka Y, Hoekman L, Kruger D, Bleijerveld O, Brambillasca CS, Sprengers J, Siteur B, Annunziato S, van Haren MJ, Martin NI, van de Ven M, Peters D, Agami R, Linn SC, Boven E, Altelaar M, Jonkers J, Zingg D, Wessels LF. MYC is a clinically significant driver of mTOR inhibitor resistance in breast cancer. J Exp Med 2023; 220:e20211743. [PMID: 37642941 PMCID: PMC10465700 DOI: 10.1084/jem.20211743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Targeting the PI3K-AKT-mTOR pathway is a promising therapeutic strategy for breast cancer treatment. However, low response rates and development of resistance to PI3K-AKT-mTOR inhibitors remain major clinical challenges. Here, we show that MYC activation drives resistance to mTOR inhibitors (mTORi) in breast cancer. Multiomic profiling of mouse invasive lobular carcinoma (ILC) tumors revealed recurrent Myc amplifications in tumors that acquired resistance to the mTORi AZD8055. MYC activation was associated with biological processes linked to mTORi response and counteracted mTORi-induced translation inhibition by promoting translation of ribosomal proteins. In vitro and in vivo induction of MYC conferred mTORi resistance in mouse and human breast cancer models. Conversely, AZD8055-resistant ILC cells depended on MYC, as demonstrated by the synergistic effects of mTORi and MYCi combination treatment. Notably, MYC status was significantly associated with poor response to everolimus therapy in metastatic breast cancer patients. Thus, MYC is a clinically relevant driver of mTORi resistance that may stratify breast cancer patients for mTOR-targeted therapies.
Collapse
Affiliation(s)
- Jinhyuk Bhin
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
- Department of Biomedical System Informatics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Julia Yemelyanenko
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Xue Chao
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yuval Malka
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dinja Kruger
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Onno Bleijerveld
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Chiara S. Brambillasca
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Justin Sprengers
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bjørn Siteur
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Stefano Annunziato
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Matthijs J. van Haren
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dennis Peters
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Reuven Agami
- Oncode Institute, Utrecht, Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sabine C. Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Epie Boven
- Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam/Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Maarten Altelaar
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Daniel Zingg
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Lodewyk F.A. Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
8
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
9
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 608] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
10
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
11
|
Casanova-Maldonado I, Arancibia D, Lois P, Peña-Villalobos I, Palma V. Hyperbaric oxygen treatment increases intestinal stem cell proliferation through the mTORC1/S6K1 signaling pathway in Mus musculus. Biol Res 2023; 56:41. [PMID: 37438828 DOI: 10.1186/s40659-023-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.
Collapse
Affiliation(s)
- Ignacio Casanova-Maldonado
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - David Arancibia
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
| | - Pablo Lois
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile
- Education Department, Faculty of Humanities, Universidad Mayor, Santiago de Chile, Providencia, Chile
| | - Isaac Peña-Villalobos
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Milenio Building Floor 3, 7800024, Santiago de Chile, Nunoa, Chile.
| |
Collapse
|
12
|
Alagar Boopathy L, Beadle E, Xiao A, Garcia-Bueno Rico A, Alecki C, Garcia de-Andres I, Edelmeier K, Lazzari L, Amiri M, Vera M. The ribosome quality control factor Asc1 determines the fate of HSP70 mRNA on and off the ribosome. Nucleic Acids Res 2023; 51:6370-6388. [PMID: 37158240 PMCID: PMC10325905 DOI: 10.1093/nar/gkad338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
Cells survive harsh environmental conditions by potently upregulating molecular chaperones such as heat shock proteins (HSPs), particularly the inducible members of the HSP70 family. The life cycle of HSP70 mRNA in the cytoplasm is unique-it is translated during stress when most cellular mRNA translation is repressed and rapidly degraded upon recovery. Contrary to its 5' untranslated region's role in maximizing translation, we discovered that the HSP70 coding sequence (CDS) suppresses its translation via the ribosome quality control (RQC) mechanism. The CDS of the most inducible Saccharomyces cerevisiae HSP70 gene, SSA4, is uniquely enriched with low-frequency codons that promote ribosome stalling during heat stress. Stalled ribosomes are recognized by the RQC components Asc1p and Hel2p and two novel RQC components, the ribosomal proteins Rps28Ap and Rps19Bp. Surprisingly, RQC does not signal SSA4 mRNA degradation via No-Go-Decay. Instead, Asc1p destabilizes SSA4 mRNA during recovery from heat stress by a mechanism independent of ribosome binding and SSA4 codon optimality. Therefore, Asc1p operates in two pathways that converge to regulate the SSA4 mRNA life cycle during stress and recovery. Our research identifies Asc1p as a critical regulator of the stress response and RQC as the mechanism tuning HSP70 synthesis.
Collapse
Affiliation(s)
| | - Emma Beadle
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Alan RuoChen Xiao
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Celia Alecki
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | | | - Kyla Edelmeier
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Luca Lazzari
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Mehdi Amiri
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| | - Maria Vera
- Department of Biochemistry. McGill University, Montreal, QuebecH3G 1Y6, Canada
| |
Collapse
|
13
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
14
|
Therapeutic targeting of eukaryotic initiation factor (eIF) 4E. Biochem Soc Trans 2023; 51:113-124. [PMID: 36661272 DOI: 10.1042/bst20220285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Fundamental studies unraveled the role of eukaryotic initiation factor (eIF) 4E in mRNA translation and its control. Under physiological conditions, regulation of translation by eIF4E is essential to cellular homeostasis. Under stress, gene flow information is parsed by eIF4E to support adaptive mechanisms that favor cell survival. Dysregulated eIF4E activity fuels tumor formation and progression and modulates response to therapy. Thus, there has been heightened interest in understanding eIF4E function in controlling gene expression as well as developing strategies to block its activity to treat disease.
Collapse
|
15
|
Gandin V, English BP, Freeman M, Leroux LP, Preibisch S, Walpita D, Jaramillo M, Singer RH. Cap-dependent translation initiation monitored in living cells. Nat Commun 2022; 13:6558. [PMID: 36323665 PMCID: PMC9630388 DOI: 10.1038/s41467-022-34052-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
mRNA translation is tightly regulated to preserve cellular homeostasis. Despite extensive biochemical, genetic, and structural studies, a detailed understanding of mRNA translation regulation is lacking. Imaging methodologies able to resolve the binding dynamics of translation factors at single-cell and single-mRNA resolution were necessary to fully elucidate regulation of this paramount process. Here live-cell spectroscopy and single-particle tracking were combined to interrogate the binding dynamics of endogenous initiation factors to the 5'cap. The diffusion of initiation factors (IFs) changed markedly upon their association with mRNA. Quantifying their diffusion characteristics revealed the sequence of IFs assembly and disassembly in cell lines and the clustering of translation in neurons. This approach revealed translation regulation at high spatial and temporal resolution that can be applied to the formation of any endogenous complex that results in a measurable shift in diffusion.
Collapse
Affiliation(s)
- Valentina Gandin
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Brian P. English
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Melanie Freeman
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Louis-Philippe Leroux
- grid.418084.10000 0000 9582 2314Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, QC Canada
| | - Stephan Preibisch
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Deepika Walpita
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Maritza Jaramillo
- grid.418084.10000 0000 9582 2314Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, QC Canada
| | - Robert H. Singer
- grid.443970.dJanelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| |
Collapse
|
16
|
Lee B, Park SJ, Lee S, Lee J, Lee E, Yoo ES, Chung WS, Sohn JW, Oh BC, Kim S. Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR. Cell Death Dis 2022; 13:603. [PMID: 35831271 PMCID: PMC9279289 DOI: 10.1038/s41419-022-05039-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Autophagy is a biological process that maintains cellular homeostasis and regulates the internal cellular environment. Hyperactivating autophagy to trigger cell death has been a suggested therapeutic strategy for cancer treatment. Mechanistic target of rapamycin (mTOR) is a crucial protein kinase that regulates autophagy; therefore, using a structure-based virtual screen analysis, we identified lomitapide, a cholesterol-lowering drug, as a potential mTOR complex 1 (mTORC1) inhibitor. Our results showed that lomitapide directly inhibits mTORC1 in vitro and induces autophagy-dependent cancer cell death by decreasing mTOR signaling, thereby inhibiting the downstream events associated with increased LC3 conversion in various cancer cells (e.g., HCT116 colorectal cancer cells) and tumor xenografts. Lomitapide also significantly suppresses the growth and viability along with elevated autophagy in patient-derived colorectal cancer organoids. Furthermore, a combination of lomitapide and immune checkpoint blocking antibodies synergistically inhibits tumor growth in murine MC38 or B16-F10 preclinical syngeneic tumor models. These results elucidate the direct, tumor-relevant immune-potentiating benefits of mTORC1 inhibition by lomitapide, which complement the current immune checkpoint blockade. This study highlights the potential repurposing of lomitapide as a new therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Boah Lee
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,Present Address: ERSTEQ co., Ltd, Daejeon, 34013 Korea
| | - Seung Ju Park
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,Present Address: ERSTEQ co., Ltd, Daejeon, 34013 Korea
| | - Seulgi Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,Present Address: ERSTEQ co., Ltd, Daejeon, 34013 Korea
| | - Jinwook Lee
- grid.256155.00000 0004 0647 2973Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, College of Medicine, Incheon, 21999 Korea
| | - Eunbeol Lee
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Eun-Seon Yoo
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Won-Suk Chung
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Jong-Woo Sohn
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea
| | - Byung-Chul Oh
- grid.256155.00000 0004 0647 2973Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, College of Medicine, Incheon, 21999 Korea
| | - Seyun Kim
- grid.37172.300000 0001 2292 0500Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for the BioCentury, KAIST, Daejeon, 34141 Korea ,grid.37172.300000 0001 2292 0500KAIST Stem Cell Center, KAIST, Daejeon, 34141 Korea
| |
Collapse
|
17
|
Almeida-Silva M, Cardoso J, Alemão C, Santos S, Monteiro A, Manteigas V, Marques-Ramos A. Impact of Particles on Pulmonary Endothelial Cells. TOXICS 2022; 10:toxics10060312. [PMID: 35736920 PMCID: PMC9227819 DOI: 10.3390/toxics10060312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
According to the WHO, air quality affects around 40 million people, contributing to around 21,000 premature deaths per year. Severe respiratory diseases, such as asthma and chronic obstructive pulmonary disorder, can be promoted by air pollution, which has already been documented; this is one of the reasons why air quality is a very relevant factor for human health and well-being. Aerosols are an aggregation of solid or liquid particles dispersed in the air and can be found in the form of dust or fumes. Aerosols can be easily inhaled or absorbed by the skin, which can lead to adverse health effects according to their sizes that range from the nanometre to the millimetre scale. Based on the PRISMA methodology and using the Rayyan QCRI platform, it was possible to assess more than four hundred research articles. This systematic review study aimed to understand the impact of particles on pulmonary endothelial cells, namely particulate matter in different sizes, cigarette smoke, diesel exhaust particles and carbon black. The main conclusions were that particles induce multiple health effects on endothelial cells, namely endothelial dysfunction, which can lead to apoptosis and necrosis, and it may also cause necroptosis in lung structure.
Collapse
Affiliation(s)
- Marina Almeida-Silva
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Jéssica Cardoso
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Catarina Alemão
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Sara Santos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Ana Monteiro
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Vítor Manteigas
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Ana Marques-Ramos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Correspondence: ; Tel.: +351-966087971
| |
Collapse
|
18
|
Vittori C, Jeansonne D, Yousefi H, Faia C, Lin Z, Reiss K, Peruzzi F. Mechanisms of miR-3189-3p-mediated inhibition of c-MYC translation in triple negative breast cancer. Cancer Cell Int 2022; 22:204. [PMID: 35642054 PMCID: PMC9158314 DOI: 10.1186/s12935-022-02620-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the lack of estrogen receptor, progesterone receptor, and HER2. Our lab previously characterized miR-3189-3p as a microRNA with potent anti-cancer activity against glioblastoma. Here, we hypothesized a similar activity in TNBC cells. As miR-3189-3p is predicted to target a variety of RNA binding proteins, we further hypothesized an inhibitory effect of this miRNA on protein synthesis. METHODS MDA-MB-231 and MDA-MB-468 cells were used to investigate the effect of miR-3189-3p on cell proliferation, migration, and invasion. TGCA database was used to analyze the expression of miR-3189-3p, c-MYC, 4EPB1, and eIF4E in breast cancer. Western blotting and RT-qPCR assays were used to assess the expression of selected proteins and RNAs after transfections. RESULTS Although c-MYC is not a predicted gene target for miR-3189-3p, we discovered that c-MYC protein is downregulated in miRNA-treated TNBC cells. We found that the downregulation of c-MYC by miR-3189-3p occurs in both normal growth conditions and in the absence of serum. The mechanism involved the direct inhibition of eIF4EBP1 by miR-3189-3p. Additionally, we found that miR-3189-3p could negatively affect cap-independent translation mediated by internal ribosome entry sites (IRES) or by m6A. Finally, miR-3189-3p sensitized TNBC cells to doxorubicin. CONCLUSION Overall, results indicated that miR-3189-3p exerts its anti-tumor activity through targeting translational regulatory proteins leading to an impairment in c-MYC translation, and possibly other oncogenic factors, suggesting that miR-3189-3p, alone or in combination, could be a valuable therapeutic approach against a malignancy with few treatment options.
Collapse
Affiliation(s)
- Cecilia Vittori
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Duane Jeansonne
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Hassan Yousefi
- Department of Biochemistry, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA, USA
| | - Celeste Faia
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Zhen Lin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center and Tulane Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Krzysztof Reiss
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA
| | - Francesca Peruzzi
- Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA, USA.
| |
Collapse
|
19
|
An eIF3d-dependent switch regulates HCMV replication by remodeling the infected cell translation landscape to mimic chronic ER stress. Cell Rep 2022; 39:110767. [PMID: 35508137 PMCID: PMC9127984 DOI: 10.1016/j.celrep.2022.110767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Regulated loading of eIF3-bound 40S ribosomes on capped mRNA is generally dependent upon the translation initiation factor eIF4E; however, mRNA translation often proceeds during physiological stress, such as virus infection, when eIF4E availability and activity are limiting. It remains poorly understood how translation of virus and host mRNAs are regulated during infection stress. While initially sensitive to mTOR inhibition, which limits eIF4E-dependent translation, we show that protein synthesis in human cytomegalovirus (HCMV)-infected cells unexpectedly becomes progressively reliant upon eIF3d. Targeting eIF3d selectively inhibits HCMV replication, reduces polyribosome abundance, and interferes with expression of essential virus genes and a host gene expression signature indicative of chronic ER stress that fosters HCMV reproduction. This reveals a strategy whereby cellular eIF3d-dependent protein production is hijacked to exploit virus-induced ER stress. Moreover, it establishes how switching between eIF4E and eIF3d-responsive cap-dependent translation can differentially tune virus and host gene expression in infected cells. Instead of eIF4E-regulated ribosome loading, Thompson et al. show capped mRNA translation in HCMV-infected cells becomes reliant upon eIF3d. Depleting eIF3d inhibits HCMV replication, reduces polyribosomes, and restricts virus late gene and host chronic ER stress-induced gene expression. Thus, switching to eIF3d-responsive translation tunes gene expression to support virus replication.
Collapse
|
20
|
Alagar Boopathy LR, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem 2022; 298:101796. [PMID: 35248532 PMCID: PMC9065632 DOI: 10.1016/j.jbc.2022.101796] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.
Collapse
|
21
|
Voutsadakis IA. Biomarkers of everolimus efficacy in breast cancer therapy. J Oncol Pharm Pract 2022; 28:945-959. [PMID: 35018844 DOI: 10.1177/10781552211073673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Everolimus is an inhibitor of serine/ threonine kinase mTOR. The drug is approved for the treatment of metastatic ER positive, HER2 negative breast cancers and benefits a subset of patients with these breast cancers in combination with hormonal therapies. Despite extensive efforts, no additional predictive biomarkers to guide therapeutic decisions for everolimus have been introduced in clinical practice. DATA SOURCES This paper discusses predictive biomarkers for everolimus efficacy in breast cancer. A search of the medline and web of science databases was performed using the words "everolimus" and "biomarkers". References of retrieved articles were manually scanned for additional relevant articles. DATA SUMMARY Everolimus benefits a subset of patients with metastatic ER positive, HER2 negative breast cancers in combination with hormonal therapies. Despite extensive efforts no additional predictive biomarkers to guide therapeutic decisions for everolimus therapy have been confirmed for use in clinical practice. However, promising biomarker leads for everolimus efficacy in breast cancer have been suggested and include expression of proteins in the mTOR pathway in ER positive, HER2 negative breast cancers. In HER2 positive cancers PIK3CA mutations, and PTEN expression loss are prognostic. Other clinical predictive biomarkers with more limited data include characteristics derived from whole genome sequencing, subsets of circulating leukocytes and changes in Standardized Uptake Values (SUV) of Positron Emission Tomography (PET) scans. CONCLUSIONS Putative predictive biomarkers for everolimus efficacy in breast cancer patients, both genomic and clinical, deserve further study and could lead to a better selection of responsive patients.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, 10066Sault Area Hospital, Sault Ste. Marie, Ontario, Canada, and Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
22
|
Jee HY, Lee YG, Lee S, Elvira R, Seo HE, Lee JY, Han J, Lee K. Activation of ERK and p38 Reduces AZD8055-Mediated Inhibition of Protein Synthesis in Hepatocellular Carcinoma HepG2 Cell Line. Int J Mol Sci 2021; 22:ijms222111824. [PMID: 34769253 PMCID: PMC8584319 DOI: 10.3390/ijms222111824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Protein synthesis is important for maintaining cellular homeostasis under various stress responses. In this study, we screened an anticancer drug library to select compounds with translational repression functions. AZD8055, an ATP-competitive mechanistic target of rapamycin complex 1/2 (mTORC1/2) inhibitor, was selected as a translational suppressor. AZD8055 inhibited protein synthesis in mouse embryonic fibroblasts and hepatocellular carcinoma HepG2 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were activated during the early phase of mTORC1/2 inhibition by AZD8055 treatment. Combined treatment of AZD8055 with the MAPK kinase1/2 (MEK1/2) inhibitor refametinib or the p38 inhibitor SB203580 markedly decreased translation in HepG2 cells. Thus, the inhibition of ERK1/2 or p38 may enhance the efficacy of AZD8055-mediated inhibition of protein synthesis. In addition, AZD8055 down-regulated the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AZD8055-induced phosphorylation of ERK1/2 and p38 had no effect on phosphorylation status of 4E-BP1. Interestingly, AZD8055 modulated the 4E-BP1 mRNA pool by up-regulating ERK1/2 and p38 pathways. Together, these results suggest that AZD8055-induced activation of MAPKs interferes with inhibition of protein synthesis at an early stage of mTORC1/2 inhibition, and that it may contribute to the development of resistance to mTORC1/2 inhibitors.
Collapse
Affiliation(s)
- Ha-yeon Jee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Yoon-Gyeong Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Sol Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Hye-eun Seo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Ji-Yeon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Korea; (R.E.); (J.H.)
| | - Kyungho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (H.-y.J.); (Y.-G.L.); (S.L.); (H.-e.S.); (J.-Y.L.)
- Korea Hemp Institute, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3423; Fax: +82-2-3436-5432
| |
Collapse
|
23
|
Tamaddondoust RN, Wang Y, Jafarnejad SM, Graber TE, Alain T. The highs and lows of ionizing radiation and its effects on protein synthesis. Cell Signal 2021; 89:110169. [PMID: 34662715 DOI: 10.1016/j.cellsig.2021.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 10/06/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation (IR) is a constant feature of our environment and one that can dramatically affect organismal health and development. Although the impacts of high-doses of IR on mammalian cells and systems have been broadly explored, there are still challenges in accurately quantifying biological responses to IR, especially in the low-dose range to which most individuals are exposed in their lifetime. The resulting uncertainty has led to the entrenchment of conservative radioprotection policies around the world. Thus, uncovering long-sought molecular mechanisms and tissue responses that are targeted by IR could lead to more informed policymaking and propose new therapeutic avenues for a variety of pathologies. One often overlooked target of IR is mRNA translation, a highly regulated cellular process that consumes more than 40% of the cell's energy. In response to environmental stimuli, regulation of mRNA translation allows for precise and rapid changes to the cellular proteome, and unsurprisingly high-dose of IR was shown to trigger a severe reprogramming of global protein synthesis allowing the cell to conserve energy by preventing the synthesis of unneeded proteins. Nonetheless, under these conditions, certain mRNAs encoding specific proteins are translationally favoured to produce the factors essential to repair the cell or send it down the path of no return through programmed cell death. Understanding the mechanisms controlling protein synthesis in response to varying doses of IR could provide novel insights into how this stress-mediated cellular adaptation is regulated and potentially uncover novel targets for radiosensitization or radioprotection. Here, we review the current literature on the effects of IR at both high- and low-dose on the mRNA translation machinery.
Collapse
Affiliation(s)
- Rosette Niloufar Tamaddondoust
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada.
| | - Yi Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tyson E Graber
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
24
|
Bryan de la Peña J, Kunder N, Lou TF, Chase R, Stanowick A, Barragan-Iglesias P, Pancrazio JJ, Campbell ZT. A Role for Translational Regulation by S6 Kinase and a Downstream Target in Inflammatory Pain. Br J Pharmacol 2021; 178:4675-4690. [PMID: 34355805 DOI: 10.1111/bph.15646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Translational controls pervade neurobiology. Nociceptors play an integral role in the detection and propagation of pain signals. Nociceptors can undergo persistent changes in their intrinsic excitability. Pharmacologic disruption of nascent protein synthesis diminishes acute and chronic forms of pain-associated behaviors. Yet, the targets of translational controls that facilitate plasticity in nociceptors are unclear. EXPERIMENTAL APPROACH We used ribosome profiling to probe the translational landscape in DRG neurons after treatment of the inflammatory mediators NGF and IL-6. We validated the expression dynamics of c-Fos using immunoblotting and immunohistochemistry. Given that inflammation is known to stimulate mTOR signaling, we reasoned that downstream factors (e.g., ribosomal protein S6 kinase 1, S6K1) might control c-Fos levels. We utilized small-molecule inhibitors of S6K1 (DG2) or c-Fos (T-5224) to probe their effects on nociceptor activity in vitro using multi-electrode arrays (MEAs) and pain behavior in vivo using a hyperalgesic priming model. KEY RESULTS We demonstrate that c-Fos is expressed in sensory neurons. Inflammatory mediators that promote pain in both humans and rodents promote c-Fos translation. We demonstrate that the mTOR effector S6K1 is essential for c-Fos biosynthesis. Inhibition of S6K1 or c-Fos with small molecules diminish mechanical and thermal hypersensitivity in response to inflammatory cues. Additionally, both inhibitors reduce evoked nociceptor activity. CONCLUSION Our data reveal a novel role of S6K1 in modulating rapid response to inflammatory mediators, with c-Fos being one key downstream target. Targeting the S6 kinase pathway or c-Fos is an exciting new avenue for pain-modulating compounds.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Alexander Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Paulino Barragan-Iglesias
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.,Department of Physiology and Pharmacology, Center for Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA.,Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
25
|
Zhang J, Wu N, Shi D. The Involvement of the Mammalian Target of Rapamycin, Protein Tyrosine Phosphatase 1b and Dipeptidase 4 Signaling Pathways in Cancer and Diabetes: A Narrative Review. Mini Rev Med Chem 2021; 21:803-815. [PMID: 33185160 DOI: 10.2174/1389557520666201113110406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes. METHODOLOGY We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer. RESULTS We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases. CONCLUSION There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.
Collapse
Affiliation(s)
- Jiajia Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| |
Collapse
|
26
|
Xie J, Kusnadi EP, Furic L, Selth LA. Regulation of mRNA Translation by Hormone Receptors in Breast and Prostate Cancer. Cancers (Basel) 2021; 13:3254. [PMID: 34209750 PMCID: PMC8268847 DOI: 10.3390/cancers13133254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Breast and prostate cancer are the second and third leading causes of death amongst all cancer types, respectively. Pathogenesis of these malignancies is characterised by dysregulation of sex hormone signalling pathways, mediated by the estrogen receptor-α (ER) in breast cancer and androgen receptor (AR) in prostate cancer. ER and AR are transcription factors whose aberrant function drives oncogenic transcriptional programs to promote cancer growth and progression. While ER/AR are known to stimulate cell growth and survival by modulating gene transcription, emerging findings indicate that their effects in neoplasia are also mediated by dysregulation of protein synthesis (i.e., mRNA translation). This suggests that ER/AR can coordinately perturb both transcriptional and translational programs, resulting in the establishment of proteomes that promote malignancy. In this review, we will discuss relatively understudied aspects of ER and AR activity in regulating protein synthesis as well as the potential of targeting mRNA translation in breast and prostate cancer.
Collapse
Affiliation(s)
- Jianling Xie
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Eric P Kusnadi
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luc Furic
- Translational Prostate Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
27
|
Majeed ST, Batool A, Majeed R, Bhat NN, Zargar MA, Andrabi KI. mTORC1 induces eukaryotic translation initiation factor 4E interaction with TOS-S6 kinase 1 and its activation. Cell Cycle 2021; 20:839-854. [PMID: 33938392 DOI: 10.1080/15384101.2021.1901038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.
Collapse
Affiliation(s)
- Sheikh Tahir Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Asiya Batool
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Division of Cancer Pharmacology, Indian Institute of Integrative Medicine, Srinagar, India
| | - Rabiya Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India.,Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Nadiem Nazir Bhat
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| | | | - Khurshid Iqbal Andrabi
- Growth Factor Signaling Laboratory, Department of Biotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
28
|
Herzog LO, Walters B, Buono R, Lee JS, Mallya S, Fung A, Chiu H, Nguyen N, Li B, Pinkerton AB, Jackson MR, Schneider RJ, Ronai ZA, Fruman DA. Targeting eIF4F translation initiation complex with SBI-756 sensitises B lymphoma cells to venetoclax. Br J Cancer 2021; 124:1098-1109. [PMID: 33318657 PMCID: PMC7960756 DOI: 10.1038/s41416-020-01205-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/30/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The BCL2 inhibitor venetoclax has shown efficacy in several hematologic malignancies, with the greatest response rates in indolent blood cancers such as chronic lymphocytic leukaemia. There is a lower response rate to venetoclax monotherapy in diffuse large B-cell lymphoma (DLBCL). METHODS We tested inhibitors of cap-dependent mRNA translation for the ability to sensitise DLBCL and mantle cell lymphoma (MCL) cells to apoptosis by venetoclax. We compared the mTOR kinase inhibitor (TOR-KI) MLN0128 with SBI-756, a compound targeting eukaryotic translation initiation factor 4G1 (eIF4G1), a scaffolding protein in the eIF4F complex. RESULTS Treatment of DLBCL and MCL cells with SBI-756 synergised with venetoclax to induce apoptosis in vitro, and enhanced venetoclax efficacy in vivo. SBI-756 prevented eIF4E-eIF4G1 association and cap-dependent translation without affecting mTOR substrate phosphorylation. In TOR-KI-resistant DLBCL cells lacking eIF4E binding protein-1, SBI-756 still sensitised to venetoclax. SBI-756 selectively reduced translation of mRNAs encoding ribosomal proteins and translation factors, leading to a reduction in protein synthesis rates in sensitive cells. When normal lymphocytes were treated with SBI-756, only B cells had reduced viability, and this correlated with reduced protein synthesis. CONCLUSIONS Our data highlight a novel combination for treatment of aggressive lymphomas, and establishes its efficacy and selectivity using preclinical models.
Collapse
Affiliation(s)
- Lee-or Herzog
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Beth Walters
- grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY USA
| | - Roberta Buono
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - J. Scott Lee
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA ,grid.418185.10000 0004 0627 6737Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121 USA
| | - Sharmila Mallya
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Amos Fung
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Honyin Chiu
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA ,grid.416879.50000 0001 2219 0587Benaroya Research Institute, Seattle, WA 98101 USA
| | - Nancy Nguyen
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Boyang Li
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| | - Anthony B. Pinkerton
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Michael R. Jackson
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Robert J. Schneider
- grid.137628.90000 0004 1936 8753New York University School of Medicine, New York, NY USA
| | - Ze’ev A. Ronai
- grid.479509.60000 0001 0163 8573Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - David A. Fruman
- grid.266093.80000 0001 0668 7243Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697 USA
| |
Collapse
|
29
|
Prabhu SA, Moussa O, Miller WH, del Rincón SV. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int J Mol Sci 2020; 21:E4055. [PMID: 32517051 PMCID: PMC7312468 DOI: 10.3390/ijms21114055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
: Melanoma is a type of skin cancer that originates in the pigment-producing cells of the body known as melanocytes. Most genetic aberrations in melanoma result in hyperactivation of the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. We and others have shown that a specific protein synthesis pathway known as the MNK1/2-eIF4E axis is often dysregulated in cancer. The MNK1/2-eIF4E axis is a point of convergence for these signaling pathways that are commonly constitutively activated in melanoma. In this review we consider the functional implications of aberrant mRNA translation in melanoma and other malignancies. Moreover, we discuss the consequences of inhibiting the MNK1/2-eIF4E axis on the tumor and tumor-associated cells, and we provide important avenues for the utilization of this treatment modality in combination with other targeted and immune-based therapies. The past decade has seen the increased development of selective inhibitors to block the action of the MNK1/2-eIF4E pathway, which are predicted to be an effective therapy regardless of the melanoma subtype (e.g., cutaneous, acral, and mucosal).
Collapse
Affiliation(s)
- Sathyen A. Prabhu
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Omar Moussa
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Rossy Cancer Network, McGill University, 1980 Sherbrooke Ouest, #1101, Montreal, QC H3H 1E8, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
30
|
Jewer M, Lee L, Leibovitch M, Zhang G, Liu J, Findlay SD, Vincent KM, Tandoc K, Dieters-Castator D, Quail DF, Dutta I, Coatham M, Xu Z, Puri A, Guan BJ, Hatzoglou M, Brumwell A, Uniacke J, Patsis C, Koromilas A, Schueler J, Siegers GM, Topisirovic I, Postovit LM. Translational control of breast cancer plasticity. Nat Commun 2020; 11:2498. [PMID: 32427827 PMCID: PMC7237473 DOI: 10.1038/s41467-020-16352-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022] Open
Abstract
Plasticity of neoplasia, whereby cancer cells attain stem-cell-like properties, is required for disease progression and represents a major therapeutic challenge. We report that in breast cancer cells NANOG, SNAIL and NODAL transcripts manifest multiple isoforms characterized by different 5' Untranslated Regions (5'UTRs), whereby translation of a subset of these isoforms is stimulated under hypoxia. The accumulation of the corresponding proteins induces plasticity and "fate-switching" toward stem cell-like phenotypes. Mechanistically, we observe that mTOR inhibitors and chemotherapeutics induce translational activation of a subset of NANOG, SNAIL and NODAL mRNA isoforms akin to hypoxia, engendering stem-cell-like phenotypes. These effects are overcome with drugs that antagonize translational reprogramming caused by eIF2α phosphorylation (e.g. ISRIB), suggesting that the Integrated Stress Response drives breast cancer plasticity. Collectively, our findings reveal a mechanism of induction of plasticity of breast cancer cells and provide a molecular basis for therapeutic strategies aimed at overcoming drug resistance and abrogating metastasis.
Collapse
Affiliation(s)
- Michael Jewer
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Laura Lee
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Matthew Leibovitch
- Lady Davis Institute, Departments of Oncology and Biochemistry, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Guihua Zhang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Liu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Scott D Findlay
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Krista M Vincent
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kristofferson Tandoc
- Lady Davis Institute, Departments of Oncology and Biochemistry, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Dylan Dieters-Castator
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Daniela F Quail
- Goodman Cancer Center, McGill University, Montreal, QC, Canada
| | - Indrani Dutta
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | | - Zhihua Xu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Aakshi Puri
- Lady Davis Institute, Departments of Oncology and Biochemistry, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Bo-Jhih Guan
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Maria Hatzoglou
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Andrea Brumwell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - James Uniacke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Christos Patsis
- Lady Davis Institute, Departments of Oncology and Biochemistry, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Antonis Koromilas
- Lady Davis Institute, Departments of Oncology and Biochemistry, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Julia Schueler
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | | | - Ivan Topisirovic
- Lady Davis Institute, Departments of Oncology and Biochemistry, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
31
|
Zhai S, Lin S, Lin Z, Xu J, Ji T, Chen K, Wu K, Liu H, Ying H, Fei W, Wang J, Fu G, Wang Y, Hu X, Cai X. eIF4EBP3 was downregulated by methylation and acted as a tumor suppressor by targeting eIF4E/β-catenin in gastric cancer. Gastric Cancer 2020; 23:483-496. [PMID: 31853750 DOI: 10.1007/s10120-019-01030-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epigenetic aberrations of tumor suppressor genes (TSGs), particularly DNA methylation, are frequently involved in the pathogenesis of gastric cancer (GC). Through a methylome study, we identified eIF4EBP3 as a methylated gene in GC. However, the role of eIF4EBP3 in GC progression has not been explored. METHODS The expression and promoter region methylation of eIF4EBP3 in GC and healthy tissues were analyzed in public datasets. eIF4EBP3 expression in GC was detected by semi-quantitative RT-PCR, western blot and immunohistochemistry. We also studied epigenetic alterations and functions in GC. The effects of eIF4EBP3 on cell proliferation, migration and invasion were conducted by functional experiments in vitro and in vivo. Label-free proteomic analysis was applied to identify targets of eIF4EBP3. RESULTS The expression level of eIF4EBP3 was downregulated in gastric cancer due to promoter region methylation, and was associated with poor survival and tumor progression. Ectopic expression of eIF4EBP3 significantly inhibited tumor cell growth, migration and invasion both in vitro and in vivo. Label-free proteomic analysis indicated eIF4EBP3 downregulated the protein level of β-catenin, which was confirmed by western blot. Overexpression of β-catenin reversed the inhibitory effects of eIF4EBP3 on cell growth and migration, indicating that eIF4EBP3 acts on GC cells by targeting the eIF4E/β-catenin axis. CONCLUSION These results suggest that eIF4EBP3 is a novel TSG methylated in gastric cancer that may play important roles in GC development and liver metastasis and indicate eIF4EBP3 as a potential metastasis and survival biomarker for GC.
Collapse
Affiliation(s)
- Shuting Zhai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Shuang Lin
- Department of Lung Transplantation, Department of Thoracic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhongjie Lin
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Tong Ji
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Chen
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Ke Wu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hui Liu
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Hanning Ying
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Weiqiang Fei
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Jin Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Guoxiang Fu
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Yifan Wang
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
32
|
Lee S, Micalizzi D, Truesdell SS, Bukhari SIA, Boukhali M, Lombardi-Story J, Kato Y, Choo MK, Dey-Guha I, Ji F, Nicholson BT, Myers DT, Lee D, Mazzola MA, Raheja R, Langenbucher A, Haradhvala NJ, Lawrence MS, Gandhi R, Tiedje C, Diaz-Muñoz MD, Sweetser DA, Sadreyev R, Sykes D, Haas W, Haber DA, Maheswaran S, Vasudevan S. A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells. Genome Biol 2020; 21:33. [PMID: 32039742 PMCID: PMC7011231 DOI: 10.1186/s13059-020-1936-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. RESULTS We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. CONCLUSIONS These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.
Collapse
Affiliation(s)
- Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Douglas Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Syed I A Bukhari
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Jennifer Lombardi-Story
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Yasutaka Kato
- Laboratory of Oncology, Hokuto Hospital, Obihiro, Japan
| | - Min-Kyung Choo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ipsita Dey-Guha
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin T Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
| | - David T Myers
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
| | - Dongjun Lee
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, 1257-1258, South Korea
| | - Maria A Mazzola
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Radhika Raheja
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Nicholas J Haradhvala
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Broad Institute of Harvard & MIT, Cambridge, MA, 02142, USA
| | - Roopali Gandhi
- Center for Neurological Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher Tiedje
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Manuel D Diaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - David A Sweetser
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Pediatrics, Divisions of Pediatric Hematology/Oncology and Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - David Sykes
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 185 Cambridge St, CPZN4202, Boston, MA, 02114, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
33
|
Inhibition of Growth of TSC2-Null Cells by a PI3K/mTOR Inhibitor but Not by a Selective MNK1/2 Inhibitor. Biomolecules 2019; 10:biom10010028. [PMID: 31878201 PMCID: PMC7022412 DOI: 10.3390/biom10010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare metastatic cystic lung disease due to a mutation in a TSC tumor suppressor, resulting in hyperactive mTOR growth pathways. Sirolimus (rapamycin), an allosteric mTORC1 inhibitor, is a therapeutic option for women with LAM but it only maintains lung volume during treatment and does not provide benefit for all LAM patients. The two major mTORC1 protein synthesis pathways are via S6K/S6 or 4E-BP/eIF4E activation. We aimed to investigate rapamycin in combination with compounds that target associated growth pathways, with the potential to be additive to rapamycin. In this study we demonstrated that rapamycin, at a clinically tolerable concentration (10 nM), inhibited the phosphorylation of S6, but not the critical eIF4E releasing Thr 37/46 phosphorylation sites of 4E-BP1 in TSC2-deficient LAM-derived cells. We also characterized the abundant protein expression of peIF4E within LAM lesions. A selective MNK1/2 inhibitor eFT508 inhibited the phosphorylation of eIF4E but did not reduce TSC2-null cell growth. In contrast, a PI3K/mTOR inhibitor omipalisib blocked the phosphorylation of Akt and both S6K/S6 and 4E-BP/eIF4E branches, and additively decreased the growth of TSC2-null cells with rapamycin. Omipalisib, or another inhibitor of both major mTORC1 growth pathways and pAkt, might provide therapeutic options for TSC2-deficient cancers including, but not limited to, LAM.
Collapse
|
34
|
Müller D, Shin S, Goullet de Rugy T, Samain R, Baer R, Strehaiano M, Masvidal-Sanz L, Guillermet-Guibert J, Jean C, Tsukumo Y, Sonenberg N, Marion F, Guilbaud N, Hoffmann JS, Larsson O, Bousquet C, Pyronnet S, Martineau Y. eIF4A inhibition circumvents uncontrolled DNA replication mediated by 4E-BP1 loss in pancreatic cancer. JCI Insight 2019; 4:121951. [PMID: 31672935 DOI: 10.1172/jci.insight.121951] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/20/2019] [Indexed: 01/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) relies on hyperactivated protein synthesis. Consistently, human and mouse PDAC lose expression of the translational repressor and mTOR target 4E-BP1. Using genome-wide polysome profiling, we here explore mRNAs whose translational efficiencies depend on the mTOR/4E-BP1 axis in pancreatic cancer cells. We identified a functional enrichment for mRNAs encoding DNA replication and repair proteins, including RRM2 and CDC6. Consequently, 4E-BP1 depletion favors DNA repair and renders DNA replication insensitive to mTOR inhibitors, in correlation with a sustained protein expression of CDC6 and RRM2, which is inversely correlated with 4E-BP1 expression in PDAC patient samples. DNA damage and pancreatic lesions induced by an experimental pancreatitis model uncover that 4E-BP1/2-deleted mice display an increased acinar cell proliferation and a better recovery than WT animals. Targeting translation, independently of 4E-BP1 status, using eIF4A RNA helicase inhibitors (silvestrol derivatives) selectively modulates translation and limits CDC6 expression and DNA replication, leading to reduced PDAC tumor growth. In summary, 4E-BP1 expression loss during PDAC development induces selective changes in translation of mRNA encoding DNA replication and repair protein. Importantly, targeting protein synthesis by eIF4A inhibitors circumvents PDAC resistance to mTOR inhibition.
Collapse
Affiliation(s)
- David Müller
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Sauyeun Shin
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Théo Goullet de Rugy
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France
| | - Rémi Samain
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Romain Baer
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France
| | - Manon Strehaiano
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Laia Masvidal-Sanz
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Julie Guillermet-Guibert
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France
| | - Christine Jean
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Yoshinori Tsukumo
- Molecular Diagnostics Section, Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, Japan
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Frédéric Marion
- Research and Development Center, Laboratoires Pierre Fabre, Toulouse, France
| | - Nicolas Guilbaud
- Research and Development Center, Laboratoires Pierre Fabre, Toulouse, France
| | - Jean-Sébastien Hoffmann
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Yvan Martineau
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France.,Equipe Labellisée Ligue Contre le Cancer and Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| |
Collapse
|
35
|
Robichaud N, Sonenberg N, Ruggero D, Schneider RJ. Translational Control in Cancer. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032896. [PMID: 29959193 DOI: 10.1101/cshperspect.a032896] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The translation of messenger RNAs (mRNAs) into proteins is a key event in the regulation of gene expression. This is especially true in the cancer setting, as many oncogenes and transforming events are regulated at this level. Cancer-promoting factors that are translationally regulated include cyclins, antiapoptotic factors, proangiogenic factors, regulators of cell metabolism, prometastatic factors, immune modulators, and proteins involved in DNA repair. This review discusses the diverse means by which cancer cells deregulate and reprogram translation, and the resulting oncogenic impacts, providing insights into the complexity of translational control in cancer and its targeting for cancer therapy.
Collapse
Affiliation(s)
- Nathaniel Robichaud
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, and Departments of Urology and of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Robert J Schneider
- NYU School of Medicine, Alexandria Center for Life Science, New York, New York 10016
| |
Collapse
|
36
|
Hernández-Prat A, Rodriguez-Vida A, Juanpere-Rodero N, Arpi O, Menéndez S, Soria-Jiménez L, Martínez A, Iarchouk N, Rojo F, Albanell J, Brake R, Rovira A, Bellmunt J. Novel Oral mTORC1/2 Inhibitor TAK-228 Has Synergistic Antitumor Effects When Combined with Paclitaxel or PI3Kα Inhibitor TAK-117 in Preclinical Bladder Cancer Models. Mol Cancer Res 2019; 17:1931-1944. [DOI: 10.1158/1541-7786.mcr-18-0923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/14/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022]
|
37
|
Frosi Y, Usher R, Lian DTG, Lane DP, Brown CJ. Monitoring flux in signalling pathways through measurements of 4EBP1-mediated eIF4F complex assembly. BMC Biol 2019; 17:40. [PMID: 31118010 PMCID: PMC6530213 DOI: 10.1186/s12915-019-0658-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023] Open
Abstract
Background The most commonly occurring cancer mutations, including oncogenes such as MYC, Ras and PIK3C, are found in signal transductions pathways feeding into the translational machinery. A broad range of translation initiation factors are also commonly found to be either amplified or mis-regulated in tumours, including eIF4E (elongation initiation factor 4E). eIF4E is a subunit of the eIF4F protein initiation complex and required for its recruitment. Here we measure the formation of the eIF4F complex through interactions of eIF4E and eIF4G subunits, and the effect of oncogenic signalling pathways on complex formation. Results We developed a protein fragment complementation (PCA) assay that can accurately measure the status of the eIF4E-eIF4G interaction in cells and quantify the signalling flux through the RAS/ERK and PI3K/AKT pathways regulating eIF4F assembly. Complex disruption induced by inhibition of either pathway was shown to be a function of the phosphorylation status of 4EBP1, a key mediator of eIF4F assembly that interacts directly with eIF4E, confirming 4EBP1’s ability to integrate multiple signals affecting cap-dependent translation. Maximal measured disruption of the eIF4F complex occurred under combined mTORC1 and mTORC2 inhibition, whilst combined inhibition of both RAS/ERK and PI3K/AKT pathways in parallel resulted in greater inhibition of eIF4F formation than individually. v-Myc-mediated resistance to dual mTORC/PI3K inhibition was also principally demonstrated to depend on the lack of competent 4EBP1 available in the cell to bind eIF4E. Conclusions We show that 4EBP1 is a critical regulator of the mitogen responsive RAS/ERK and PI3K/AKT pathways and a key transducer of resistance mechanisms that affect small molecule inhibition of these pathways, principally by attenuating their effects on cap-dependent translation. These findings highlight the importance of highly efficacious direct inhibitors of eIF4E and eIF4F assembly, which could potentially target a wide spectrum of tumours containing differing mutations that effect these pathways and which confer chemo-resistance. Electronic supplementary material The online version of this article (10.1186/s12915-019-0658-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuri Frosi
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore, 138648, Singapore
| | - Rachael Usher
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore, 138648, Singapore
| | - Dawn Thean Gek Lian
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore, 138648, Singapore
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore, 138648, Singapore
| | - Christopher J Brown
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore, 138648, Singapore.
| |
Collapse
|
38
|
William M, Leroux LP, Chaparro V, Graber TE, Alain T, Jaramillo M. Translational repression of Ccl5 and Cxcl10 by 4E-BP1 and 4E-BP2 restrains the ability of mouse macrophages to induce migration of activated T cells. Eur J Immunol 2019; 49:1200-1212. [PMID: 31032899 DOI: 10.1002/eji.201847857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 12/27/2022]
Abstract
Signaling through the mechanistic target of rapamycin complex 1 (mTORC1) is a major regulatory node of pro-inflammatory mediator production by macrophages (MΦs). However, it is still unclear whether such regulation relies on selective translational control by two of the main mTORC1 effectors, the eIF4E-binding proteins 1 and 2 (4E-BP1/2). By comparing translational efficiencies of immune-related transcripts of MΦs from WT and 4E-BP1/2 double-KO (DKO) mice, we found that translation of mRNAs encoding the pro-inflammatory chemokines CCL5 and CXCL10 is controlled by 4E-BP1/2. Macrophages deficient in 4E-BP1/2 produced higher levels of CCL5 and CXCL10 upon LPS stimulation, which enhanced chemoattraction of activated T cells. Consistent with this, treatment of WT cells with mTORC1 inhibitors promoted the activation of 4E-BP1/2 and reduced CCL5 and CXCL10 secretion. In contrast, the phosphorylation status of eIF4E did not affect the synthesis of these chemokines since MΦs derived from mice harboring a non-phosphorylatable form of the protein produced similar levels of CCL5 and CXCL10 to WT counterparts. These data provide evidence that the mTORC1-4E-BP1/2 axis contributes to regulate the production of chemoattractants by MΦs by limiting translation efficiency of Ccl5 and Cxcl10 mRNAs, and suggest that 4E-BP1/2 act as immunological safeguards by fine-tuning inflammatory responses in MΦs.
Collapse
Affiliation(s)
| | | | | | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
39
|
Ingolia NT, Hussmann JA, Weissman JS. Ribosome Profiling: Global Views of Translation. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032698. [PMID: 30037969 DOI: 10.1101/cshperspect.a032698] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The translation of messenger RNA (mRNA) into protein and the folding of the resulting protein into an active form are prerequisites for virtually every cellular process and represent the single largest investment of energy by cells. Ribosome profiling-based approaches have revolutionized our ability to monitor every step of protein synthesis in vivo, allowing one to measure the rate of protein synthesis across the proteome, annotate the protein coding capacity of genomes, monitor localized protein synthesis, and explore cotranslational folding and targeting. The rich and quantitative nature of ribosome profiling data provides an unprecedented opportunity to explore and model complex cellular processes. New analytical techniques and improved experimental protocols will provide a deeper understanding of the factors controlling translation speed and its impact on protein function and cell physiology as well as the role of ribosomal RNA and mRNA modifications in regulating translation.
Collapse
Affiliation(s)
- Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| | - Jeffrey A Hussmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158.,Howard Hughes Medical Institute, San Francisco, California 94158
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158.,Howard Hughes Medical Institute, San Francisco, California 94158
| |
Collapse
|
40
|
Uchenunu O, Pollak M, Topisirovic I, Hulea L. Oncogenic kinases and perturbations in protein synthesis machinery and energetics in neoplasia. J Mol Endocrinol 2019; 62:R83-R103. [PMID: 30072418 PMCID: PMC6347283 DOI: 10.1530/jme-18-0058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
Abstract
Notwithstanding that metabolic perturbations and dysregulated protein synthesis are salient features of cancer, the mechanism underlying coordination of cellular energy balance with mRNA translation (which is the most energy consuming process in the cell) is poorly understood. In this review, we focus on recently emerging insights in the molecular underpinnings of the cross-talk between oncogenic kinases, translational apparatus and cellular energy metabolism. In particular, we focus on the central signaling nodes that regulate these processes (e.g. the mechanistic/mammalian target of rapamycin MTOR) and the potential implications of these findings on improving the anti-neoplastic efficacy of oncogenic kinase inhibitors.
Collapse
Affiliation(s)
- Oro Uchenunu
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
| | - Michael Pollak
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Department of Experimental Medicine, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Biochemistry Department, McGill University, Montreal, Quebec, Canada
| | - Laura Hulea
- Lady Davis Institute, SMBD JGH, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, Montreal, Quebec, Canada
- Correspondence should be addressed to L Hulea:
| |
Collapse
|
41
|
Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 2019; 21:63-71. [PMID: 30602761 DOI: 10.1038/s41556-018-0205-1] [Citation(s) in RCA: 721] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022]
Abstract
The highly conserved protein kinase mechanistic target of rapamycin (mTOR; originally known as mammalian target of rapamycin) is a central cell growth regulator connecting cellular metabolism and growth with a wide range of environmental inputs as part of mTOR complex 1 (mTORC1) and mTORC2. In this Review, we introduce the landmark discoveries in the mTOR field, starting from the isolation of rapamycin to the molecular characterizations of key components of the mTORC signalling network with an emphasis on amino acid sensing, and discuss the perspectives of mTORC inhibitors in therapeutic applications.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Korea.
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Grafanaki K, Anastasakis D, Kyriakopoulos G, Skeparnias I, Georgiou S, Stathopoulos C. Translation regulation in skin cancer from a tRNA point of view. Epigenomics 2018; 11:215-245. [PMID: 30565492 DOI: 10.2217/epi-2018-0176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protein synthesis is a central and dynamic process, frequently deregulated in cancer through aberrant activation or expression of translation initiation factors and tRNAs. The discovery of tRNA-derived fragments, a new class of abundant and, in some cases stress-induced, small Noncoding RNAs has perplexed the epigenomics landscape and highlights the emerging regulatory role of tRNAs in translation and beyond. Skin is the biggest organ in human body, which maintains homeostasis of its multilayers through regulatory networks that induce translational reprogramming, and modulate tRNA transcription, modification and fragmentation, in response to various stress signals, like UV irradiation. In this review, we summarize recent knowledge on the role of translation regulation and tRNA biology in the alarming prevalence of skin cancer.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece.,Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Anastasakis
- National Institute of Musculoskeletal & Arthritis & Skin, NIH, 50 South Drive, Room 1152, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ilias Skeparnias
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
43
|
Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, Gallo S, Müller R, Pagani M, Abrignani S, Biffo S. The Translational Machinery of Human CD4 + T Cells Is Poised for Activation and Controls the Switch from Quiescence to Metabolic Remodeling. Cell Metab 2018; 28:895-906.e5. [PMID: 30197303 PMCID: PMC6773601 DOI: 10.1016/j.cmet.2018.08.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/24/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Naive T cells respond to T cell receptor (TCR) activation by leaving quiescence, remodeling metabolism, initiating expansion, and differentiating toward effector T cells. The molecular mechanisms coordinating the naive to effector transition are central to the functioning of the immune system, but remain elusive. Here, we discover that T cells fulfill this transitional process through translational control. Naive cells accumulate untranslated mRNAs encoding for glycolysis and fatty acid synthesis factors and possess a translational machinery poised for immediate protein synthesis. Upon TCR engagement, activation of the translational machinery leads to synthesis of GLUT1 protein to drive glucose entry. Subsequently, translation of ACC1 mRNA completes metabolic reprogramming toward an effector phenotype. Notably, inhibition of the eIF4F complex abrogates lymphocyte metabolic activation and differentiation, suggesting ACC1 to be a key regulatory node. Thus, our results demonstrate that translation is a direct mediator of T cell metabolism and indicate translation factors as targets for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Sara Ricciardi
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Nicola Manfrini
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Maria Cristina Crosti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Simone Gallo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy, Saarland University Campus, Building C2.3, Saarbrücken 66123, Germany
| | - Massimiliano Pagani
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Via Francesco Sforza 35, Milan 20122, Italy; Bioscience Department, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
44
|
RACK1 Specifically Regulates Translation through Its Binding to Ribosomes. Mol Cell Biol 2018; 38:MCB.00230-18. [PMID: 30201806 PMCID: PMC6234289 DOI: 10.1128/mcb.00230-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022] Open
Abstract
The translational capability of ribosomes deprived of specific nonfundamental ribosomal proteins may be altered. Physiological mechanisms are scanty, and it is unclear whether free ribosomal proteins can cross talk with the signaling machinery. The translational capability of ribosomes deprived of specific nonfundamental ribosomal proteins may be altered. Physiological mechanisms are scanty, and it is unclear whether free ribosomal proteins can cross talk with the signaling machinery. RACK1 (receptor for activated C kinase 1) is a highly conserved scaffold protein, located on the 40S subunit near the mRNA exit channel. RACK1 is involved in a variety of intracellular contexts, both on and off the ribosomes, acting as a receptor for proteins in signaling, such as the protein kinase C (PKC) family. Here we show that the binding of RACK1 to ribosomes is essential for full translation of capped mRNAs and efficient recruitment of eukaryotic initiation factor 4E (eIF4E). In vitro, when RACK1 is partially depleted, supplementing the ribosome machinery with wild-type RACK1 restores the translational capability, whereas the addition of a RACK1 mutant that is unable to bind ribosomes does not. Outside the ribosome, RACK1 has a reduced half-life. By accumulating in living cells, free RACK1 exerts an inhibitory phenotype, impairing cell cycle progression and repressing global translation. Here we present RACK1 binding to ribosomes as a crucial way to regulate translation, possibly through interaction with known partners on or off the ribosome that are involved in signaling.
Collapse
|
45
|
Fechter K, Feichtinger J, Prochazka K, Unterluggauer JJ, Pansy K, Steinbauer E, Pichler M, Haybaeck J, Prokesch A, Greinix HT, Beham-Schmid C, Neumeister P, Thallinger GG, Deutsch AJA. Cytoplasmic location of NR4A1 in aggressive lymphomas is associated with a favourable cancer specific survival. Sci Rep 2018; 8:14528. [PMID: 30266952 PMCID: PMC6162226 DOI: 10.1038/s41598-018-32972-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
The nuclear orphan receptor NR4A1 functions as tumour suppressor in aggressive lymphomas by pro-apoptotic genomic and non-genomic effects. Here, we immunohistochemically studied the clinico-pathological relevance of NR4A1 protein expression patterns in a cohort of 60 diffuse large B cell lymphoma (DLBCL) patients and non-neoplastic lymph nodes. We observed a significant association between high cytoplasmic NR4A1 and favourable cancer-specific survival and the germinal centre B cell-like subtype, respectively. Moreover, the percentage of lymphoma cells exhibiting cytoplasmic NR4A1 significantly correlated to those showing cleaved caspase 3. Complementary, functional profiling using gene set enrichment of Reactome pathways based on publicly available microarray data was applied to determine pathways potentially implicated in cytoplasmic localization of NR4A1 and validated by means of semi quantitative real-time PCR. The pathway analysis revealed changes in the ERK1/2 pathway, and this was corroborated by the finding that high cytoplasmic NR4A1 was associated with higher expression of ERK1/2 targets in our cohort. These data indicate that high cytoplasmic NR4A1 is associated with a favourable lymphoma-specific survival and highlights the importance of NR4A1 expression patterns as potential prognostic marker for risk assessment in aggressive lymphomas.
Collapse
MESH Headings
- Aged
- Cohort Studies
- Cytoplasm/genetics
- Cytoplasm/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Nuclear Receptor Subfamily 4, Group A, Member 1/analysis
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Survival Analysis
Collapse
Affiliation(s)
- Karoline Fechter
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Julia Feichtinger
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
- BioTechMed Omics Center Graz, Graz, Austria
| | - Katharina Prochazka
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | | | - Katrin Pansy
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | | | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University Graz, Graz, Austria
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Pathology, Medical University Innsbruck, Innsbruck, Austria
| | - Andreas Prokesch
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Graz, Austria
| | - Hildegard T Greinix
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | | | - Peter Neumeister
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria.
- BioTechMed Omics Center Graz, Graz, Austria.
| | - Alexander J A Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria.
| |
Collapse
|
46
|
Zakaria C, Sean P, Hoang HD, Leroux LP, Watson M, Workenhe ST, Hearnden J, Pearl D, Truong VT, Robichaud N, Yanagiya A, Tahmasebi S, Jafarnejad SM, Jia JJ, Pelin A, Diallo JS, Le Boeuf F, Bell JC, Mossman KL, Graber TE, Jaramillo M, Sonenberg N, Alain T. Active-site mTOR inhibitors augment HSV1-dICP0 infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathog 2018; 14:e1007264. [PMID: 30138450 PMCID: PMC6124814 DOI: 10.1371/journal.ppat.1007264] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 09/05/2018] [Accepted: 08/07/2018] [Indexed: 12/21/2022] Open
Abstract
Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis. Dysregulated mRNA translation occurs frequently in tumours due to elevated eIF4E expression or a hyperactive mTOR complex 1 (mTORC1) signaling pathway that results in the inactivation of the eIF4E binding proteins (4E-BPs). Targeting the mTORC1/4E-BPs/eIF4E axis is a promising strategy in cancer therapies and for preventing resistance to treatment. Enhanced mTORC1 activity also drives innate immune responses by modulating protein expression of antiviral genes. It was previously shown that the mTORC1 inhibitor rapamycin limits antiviral responses and promotes replication of oncolytic viruses within tumour tissues. Active-site dual mTORC1 and mTORC2 inhibitors (asTORi) have been developed for superior mTOR inhibition and anti-cancer potency but have not been studied in the context of oncolytic viral infection. We show here that prolonged treatment with asTORi strongly augments infection of HSV1-dICP0 in cancer cells, but not in normal cells, an effect modulated via eIF4E/4E-BP expression. Thus, cancer cells with dysregulated translation could be amenable to the pharmacoviral combination of HSV1 and asTORi treatment.
Collapse
Affiliation(s)
- Chadi Zakaria
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Polen Sean
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Huy-Dung Hoang
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Margaret Watson
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathology and Molecular Medicine, MG DeGroote Institute for Infectious Disease, McMaster University, Hamilton, Ontario, Canada
| | - Jaclyn Hearnden
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Dana Pearl
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Vinh Tai Truong
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Nathaniel Robichaud
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Akiko Yanagiya
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | - Soroush Tahmasebi
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Jian-Jun Jia
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Adrian Pelin
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Fabrice Le Boeuf
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John Cameron Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, MG DeGroote Institute for Infectious Disease, McMaster University, Hamilton, Ontario, Canada
| | - Tyson Ernst Graber
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Maritza Jaramillo
- INRS Institut Armand-Frappier Research Centre, Laval, Quebec, Canada
| | - Nahum Sonenberg
- Goodman Cancer Centre, Department of Biochemistry, McGill University, Montreal, Canada
- * E-mail: (NS); (TA)
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (NS); (TA)
| |
Collapse
|
47
|
Chen HH, Yu HI, Yang MH, Tarn WY. DDX3 Activates CBC-eIF3-Mediated Translation of uORF-Containing Oncogenic mRNAs to Promote Metastasis in HNSCC. Cancer Res 2018; 78:4512-4523. [PMID: 29921696 DOI: 10.1158/0008-5472.can-18-0282] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
Mutated or dysregulated DDX3 participates in the progression and metastasis of cancer via its multiple roles in regulating gene expression and cellular signaling. Here, we show that the high expression levels of DDX3 in head and neck squamous cell carcinoma (HNSCC) correlate with lymph node metastasis and poor prognosis and demonstrate that DDX3 is essential for the proliferation, invasion, and metastasis of oral squamous cell carcinoma (OSCC) cells. Microarray analyses revealed that DDX3 is required for the expression of a set of pro-metastatic genes, including ATF4-modulated genes in an aggressive OSCC cell line. DDX3 activated translation of ATF4 and a set of its downstream targets, all of which contain upstream open reading frames (uORF). DDX3 promoted translation of these targets, likely by skipping the inhibitory uORF. DDX3 specifically enhanced the association of the cap-binding complex (CBC) with uORF-containing mRNAs and facilitated recruitment of the eukaryotic initiation factor 3 (eIF3). CBC and certain eIF3 subunits contributed to the expression of metastatic-related gene expression. Taken together, our results indicate a role for the novel DDX3-CBC-eIF3 translational complex in promoting metastasis.Significance: The discovery of DDX3-mediated expression of oncogenic uORF-containing genes expands knowledge on translational control mechanisms and provides potential targets for cancer therapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4512/F1.large.jpg Cancer Res; 78(16); 4512-23. ©2018 AACR.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
48
|
Chu J, Pelletier J. Therapeutic Opportunities in Eukaryotic Translation. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032995. [PMID: 29440069 DOI: 10.1101/cshperspect.a032995] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to block biological processes with selective small molecules provides advantages distinct from most other experimental approaches. These include rapid time to onset, swift reversibility, ability to probe activities in manners that cannot be accessed by genetic means, and the potential to be further developed as therapeutic agents. Small molecule inhibitors can also be used to alter expression and activity without affecting the stoichiometry of interacting partners. These tenets have been especially evident in the field of translation. Small molecule inhibitors were instrumental in enabling investigators to capture short-lived complexes and characterize specific steps of protein synthesis. In addition, several drugs that are the mainstay of modern antimicrobial drug therapy are potent inhibitors of prokaryotic translation. Currently, there is much interest in targeting eukaryotic translation as decades of research have revealed that deregulated protein synthesis in cancer cells represents a targetable vulnerability. In addition to being potential therapeutics, small molecules that manipulate translation have also been shown to influence cognitive processes such as memory. In this review, we focus on small molecule modulators that target the eukaryotic translation initiation apparatus and provide an update on their potential application to the treatment of disease.
Collapse
Affiliation(s)
- Jennifer Chu
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Department of Oncology, McGill University, Montreal, Quebec H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
49
|
Jastrzebski K, Thijssen B, Kluin RJC, de Lint K, Majewski IJ, Beijersbergen RL, Wessels LFA. Integrative Modeling Identifies Key Determinants of Inhibitor Sensitivity in Breast Cancer Cell Lines. Cancer Res 2018; 78:4396-4410. [PMID: 29844118 DOI: 10.1158/0008-5472.can-17-2698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/26/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Cancer cell lines differ greatly in their sensitivity to anticancer drugs as a result of different oncogenic drivers and drug resistance mechanisms operating in each cell line. Although many of these mechanisms have been discovered, it remains a challenge to understand how they interact to render an individual cell line sensitive or resistant to a particular drug. To better understand this variability, we profiled a panel of 30 breast cancer cell lines in the absence of drugs for their mutations, copy number aberrations, mRNA, protein expression and protein phosphorylation, and for response to seven different kinase inhibitors. We then constructed a knowledge-based, Bayesian computational model that integrates these data types and estimates the relative contribution of various drug sensitivity mechanisms. The resulting model of regulatory signaling explained the majority of the variability observed in drug response. The model also identified cell lines with an unexplained response, and for these we searched for novel explanatory factors. Among others, we found that 4E-BP1 protein expression, and not just the extent of phosphorylation, was a determinant of mTOR inhibitor sensitivity. We validated this finding experimentally and found that overexpression of 4E-BP1 in cell lines that normally possess low levels of this protein is sufficient to increase mTOR inhibitor sensitivity. Taken together, our work demonstrates that combining experimental characterization with integrative modeling can be used to systematically test and extend our understanding of the variability in anticancer drug response.Significance: By estimating how different oncogenic mutations and drug resistance mechanisms affect the response of cancer cells to kinase inhibitors, we can better understand and ultimately predict response to these anticancer drugs.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4396/F1.large.jpg Cancer Res; 78(15); 4396-410. ©2018 AACR.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomic Sequencing Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Klaas de Lint
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ian J Majewski
- Division of Cancer and Haematology, The Walter and Eliza Hall Institute, Parkville Victoria, Australia
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
50
|
William M, Leroux LP, Chaparro V, Lorent J, Graber TE, M'Boutchou MN, Charpentier T, Fabié A, Dozois CM, Stäger S, van Kempen LC, Alain T, Larsson O, Jaramillo M. eIF4E-Binding Proteins 1 and 2 Limit Macrophage Anti-Inflammatory Responses through Translational Repression of IL-10 and Cyclooxygenase-2. THE JOURNAL OF IMMUNOLOGY 2018; 200:4102-4116. [PMID: 29712774 DOI: 10.4049/jimmunol.1701670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 01/10/2023]
Abstract
Macrophages represent one of the first lines of defense during infections and are essential for resolution of inflammation following pathogen clearance. Rapid activation or suppression of protein synthesis via changes in translational efficiency allows cells of the immune system, including macrophages, to quickly respond to external triggers or cues without de novo mRNA synthesis. The translational repressors eIF4E-binding proteins 4E-BP1 and 4E-BP2 (4E-BP1/2) are central regulators of proinflammatory cytokine synthesis during viral and parasitic infections. However, it remains to be established whether 4E-BP1/2 play a role in translational control of anti-inflammatory responses. By comparing translational efficiencies of immune-related transcripts in macrophages from wild-type and 4E-BP1/2 double-knockout mice, we found that translation of mRNAs encoding two major regulators of inflammation, IL-10 and PG-endoperoxide synthase 2/cyclooxygenase-2, is controlled by 4E-BP1/2. Genetic deletion of 4E-BP1/2 in macrophages increased endogenous IL-10 and PGE2 protein synthesis in response to TLR4 stimulation and reduced their bactericidal capacity. The molecular mechanism involves enhanced anti-inflammatory gene expression (sIl1ra, Nfil3, Arg1, Serpinb2) owing to upregulation of IL-10-STAT3 and PGE2-C/EBPβ signaling. These data provide evidence that 4E-BP1/2 limit anti-inflammatory responses in macrophages and suggest that dysregulated activity of 4E-BP1/2 might be involved in reprogramming of the translational and downstream transcriptional landscape of macrophages during pathological conditions, such as infections and cancer.
Collapse
Affiliation(s)
- Mirtha William
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Julie Lorent
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Marie-Noël M'Boutchou
- Department of Pathology, McGill University, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; and.,Department of Pathology and Medical Biology, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Tania Charpentier
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Aymeric Fabié
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Charles M Dozois
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada
| | - Léon C van Kempen
- Department of Pathology, McGill University, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada; and.,Department of Pathology and Medical Biology, University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique-Institut Armand-Frappier et Centre de Recherche sur les Interactions Hôte-Parasite, Laval, Quebec H7V 1B7, Canada;
| |
Collapse
|