1
|
Liu X, Ren H, Wang A, Liang Z, Min S, Yao S, Wan S, Gao Y, Wang H, Cai H. SIX1 enhances aerobic glycolysis and progression in cervical cancer through ENO1. Hum Cell 2025; 38:88. [PMID: 40234326 DOI: 10.1007/s13577-025-01215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
Cervical cancer is a significant threat to women's health, and its incidence in China has been increasing in recent years. Treating advanced and recurrent cervical cancer has become increasingly challenging, highlighting the urgent need to identify new therapeutic targets for this disease. SIX1 is associated with cell proliferation, metastasis, and chemoresistance in various human malignancies. SIX1 overexpression in cervical cancer tissues has been linked to increased clinical stage and lymph node metastasis; however, the regulatory function of SIX1 in cervical cancer remains largely unexplored. In this study, we found that SIX1 promotes cervical cancer cell proliferation, invasion, and migration by enhancing glucose metabolism. Additionally, SIX1 was shown to influence the glycolytic process in cervical cancer by upregulating GLUT1, PFK1, PGK1, ENO1, and PKM2 expression. Furthermore, we identified a binding site for SIX1 in the ENO1 promoter region, demonstrating that SIX1 has a regulatory effect. These results suggest that SIX1 regulates proliferation and glucose metabolism in cervical cancer cells by promoting the transcription of key glycolytic enzymes, such as ENO1. Understanding this regulatory mechanism is crucial for identifying potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Xuelian Liu
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hang Ren
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Su Min
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Shimeng Wan
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, 169 Donghu Rd, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, People's Republic of China.
- Hubei Cancer Clinical Study Center, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Jeong J, Hsu SJ, Horikami D, Utsumi T, Yang Y, Arefyev N, Zhang X, Cai SY, Boyer JL, Garcia-Milan R, Tanaka M, McConnell MJ, Huang HC, Iwakiri Y. Liver Lymphatic Dysfunction as a Driver of Fibrosis and Cirrhosis Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632552. [PMID: 39868144 PMCID: PMC11760260 DOI: 10.1101/2025.01.11.632552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The liver lymphatic system plays a critical role in maintaining interstitial fluid balance and immune regulation. Efficient lymphatic drainage is essential for liver homeostasis, but its role in liver disease progression remains poorly understood. In cirrhosis, lymphangiogenesis initially compensates for increased lymph production, but impaired lymphatic drainage in advanced stages may lead to complications such as ascites and portal hypertension. This study aimed to evaluate how liver lymphatic dysfunction affects disease progression and to assess therapeutic strategies. Using a surgical model to block liver lymphatic outflow, we found that impaired drainage accelerates liver injury, fibrosis, and immune cell infiltration, even in healthy livers. Mechanistically, enhanced TGF-β signaling in liver lymphatic endothelial cells (LyECs) contributed to reduced lymphatic vessel (LV) density and function in late-stage decompensated cirrhosis. This dysfunction was linked to the progression from compensated to decompensated cirrhosis, particularly in patients with primary sclerosing cholangitis (PSC). Conversely, liver-specific overexpression of VEGF-C via AAV8 improved lymphatic drainage, restored LV density, reduced fibrosis, mitigated liver injury, and alleviated portal hypertension in cirrhotic rats. These findings establish impaired liver lymphatic function as a pivotal driver of cirrhosis progression and identify VEGF-C as a promising therapeutic target to prevent decompensation.
Collapse
|
3
|
Xu Z, Zhu M, Xie H, Zhu J, Zheng H, Liu X, Zhang Y, Liu J. SIX1 aggravates the progression of spinal cord injury in mice by promoting M1 polarization of microglia. Sci Rep 2025; 15:1283. [PMID: 39779741 PMCID: PMC11711668 DOI: 10.1038/s41598-024-82121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammation aggravates secondary damage following spinal cord injury (SCI). M1 microglia induce inflammation and exert neurotoxic effects, whereas M2 microglia exert anti-inflammatory and neuroprotective effects. The sine oculis homeobox (SIX) gene family consists of six members, including sine oculis homeobox homolog 1 (SIX1)-SIX6. SIX1 is expressed in microglia and promotes inflammation. This study aimed to evaluate the role and underlying mechanisms of SIX1 in microglia polarization in vitro (LPS-treated mouse microglia; BV2 cells) and in vivo (a mouse model of SCI). SIX1 expression was increased in the microglia of mice with SCI. SIX1 was positively correlated with the M1 microglia marker inducible nitric oxide synthase (iNOS) and negatively correlated with the M2 microglia marker arginase 1 (Arg1) in mice with SCI. Knockdown of SIX1 promoted functional recovery by enhancing M2 microglia polarization in mice with SCI. The transcription, expression, and activity of enhancer of zeste homolog 2 (EZH2) were decreased in LPS-stimulated BV2 cells. Downregulation of EZH2 promoted SIX1 expression in LPS-treated BV2 cells by inhibiting the methylation of the SIX1 promoter. SIX1 enhanced the transcription of vascular endothelial growth factor-C (VEGF-C) in LPS-stimulated BV2 cells with downregulated EZH2. VEGF-C promoted M1 polarization and inhibited M2 polarization in BV2 cells by binding to vascular endothelial growth factor receptor 3 (VEGFR3). Overall, the results suggest that SIX1 promotes M1 polarization of microglia following SCI by upregulating the VEGF-C/VEGFR3 axis, whereas the blockade of SIX1 can improve the recovery of locomotor function following SCI, demonstrating a novel strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Zhonghua Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Manhui Zhu
- Department of Pathology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua Xie
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Jiacheng Zhu
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Hongming Zheng
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yuting Zhang
- Department of Pathology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jinbo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
4
|
Bian Z, Benjamin MM, Bialousow L, Tian Y, Hobbs GA, Karan D, Choo YM, Hamann MT, Wang X. Targeting sine oculis homeoprotein 1 (SIX1): A review of oncogenic roles and potential natural product therapeutics. Heliyon 2024; 10:e33204. [PMID: 39022099 PMCID: PMC11252760 DOI: 10.1016/j.heliyon.2024.e33204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Sine oculis homeoprotein 1 (SIX1), a prominent representative of the homeodomain transcription factors within the SIX family, has attracted significant interest owing to its role in tumorigenesis, cancer progression, and prognostic assessments. Initially recognized for its pivotal role in embryonic development, SIX1 has emerged as a resurgent factor across a diverse set of mammalian cancers. Over the past two decades, numerous investigations have emphasized SIX1's dual significance as a developmental regulator and central player in oncogenic processes. A mounting body of evidence links SIX1 to the initiation of diverse cancers, encompassing enhanced cellular metabolism and advancement. This review provides an overview of the multifaceted roles of SIX1 in both normal development and oncogenic processes, emphasizing its importance as a possible therapeutic target and prognostic marker. Additionally, this review discusses the natural product agents that inhibit various pro-oncogenic mechanisms associated with SIX1.
Collapse
Affiliation(s)
- Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Menny M. Benjamin
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lucas Bialousow
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yintai Tian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - G. Aaron Hobbs
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Dev Karan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mark T. Hamann
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
5
|
Peng R, Huang Y, Huang P, Liu L, Cheng L, Peng X. The paradoxical role of transforming growth factor-β in controlling oral squamous cell carcinoma development. Cancer Biomark 2024; 40:241-250. [PMID: 39213051 PMCID: PMC11380267 DOI: 10.3233/cbm-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that plays a vital role in regulating cell growth, differentiation and survival in various tissues. It participates in a variety of cellular processes, including cell apoptosis, cell migration and evasion, and plays a paradoxical role in tumor genesis and development. In the early stage of tumor, TGF-β inhibits the occurrence of tumor by inhibiting cell proliferation and regulating cell apoptosis. In the advanced stage of tumor, TGF-β promotes tumor development and affects prognosis by promoting cell survival and proliferation, cell migration and invasion, participates in immune escape, etc. In this article, we will review the paradoxical role of TGF-β on the occurrence and development of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Ruiting Peng
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Yun Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Ping Huang
- Department of Stomatology, The General Hospital of Western Theater Command PLA, Chengdu, China
| | - Linyi Liu
- Maine Health Institute for Research, Scarborough, ME, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontic, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Koi Y, Yamamoto Y, Fukunaga S, Kajitani K, Ohara M, Daimaru Y, Tahara H, Tamada R. Assessment of the expression of microRNAs‑221‑3p, ‑146a‑5p, ‑16‑5p and BCL2 in oncocytic carcinoma of the breast: A case report. Oncol Lett 2023; 26:535. [PMID: 38020289 PMCID: PMC10655050 DOI: 10.3892/ol.2023.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/06/2023] [Indexed: 12/01/2023] Open
Abstract
Oncocytic carcinoma of the breast is rare and its molecular profiles remain poorly understood. MicroRNAs (miRNAs/miRs) have been identified as contributors to carcinogenesis at the post-transcriptional level; thus, an aberrant expression of miRNAs has attracted attention as a potential biomarker of numerous diseases, including cancer. The present study reports the case of a 76-year-old woman diagnosed with oncocytic carcinoma of the breast. Considering the distinctive feature of oncocytic carcinoma of the breast, which is the presence of granular eosinophilic cytoplasm containing numerous mitochondria, the present study hypothesized that the expression of mitochondria-related miRNAs could be altered in oncocytic carcinomas. Aberrant expression levels of the miRNAs previously reported as mitochondria-related miRNAs, such as miR-221-3p, -146a-5p and -16-5p, were revealed in tissue from specimens of oncocytic carcinoma of the breast, compared with that of a more typical type of invasive ductal carcinoma of the breast. The present study highlights the changes in miRNA expression in oncocytic carcinoma of the breast, suggesting its potential as a biomarker for diagnosis.
Collapse
Affiliation(s)
- Yumiko Koi
- Department of Breast Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka 811-1395, Japan
- Department of Breast Surgery, Japan Agricultural Co-operatives Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Saori Fukunaga
- Department of Cellular and Molecular Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Keiko Kajitani
- Department of Breast Surgery, Japan Agricultural Co-operatives Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503, Japan
| | - Masahiro Ohara
- Department of Breast Surgery, Japan Agricultural Co-operatives Hiroshima General Hospital, Hatsukaichi, Hiroshima 738-8503, Japan
| | - Yutaka Daimaru
- Section of Pathological Research and Laboratory, Japan Agricultural Co-operatives Hiroshima General Hospital, Hiroshima 738-8503, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima 734-8553, Japan
| | - Ryuichiro Tamada
- Department of Surgery, Nishiki Hospital, Yamaguchi 741-0061, Japan
| |
Collapse
|
7
|
Guo L, Li F, Liu H, Kong D, Chen C, Sun S. SIX1 amplification modulates stemness and tumorigenesis in breast cancer. J Transl Med 2023; 21:866. [PMID: 38031089 PMCID: PMC10685563 DOI: 10.1186/s12967-023-04679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Sine oculis homeobox homolog 1 (SIX1) is a transcription factor that has recently been identified as a crucial regulator of embryonic development and tumorigenesis. SIX1 is upregulated in different types of tumors, including breast cancer. However, the role and mechanism of SIX1 upregulation in breast cancer carcinogenesis remains uncertain. METHODS In this study, we utilized various databases such as UALCAN, TCGA, STRING, and Kaplan-Meier Plotter to investigate the mRNA expression, prognosis, transcriptional profile changes, signal pathway rewiring, and interaction with cancer stem cells of SIX1 in breast cancer. We also conducted both in vitro and in vivo experiments to validate its positive regulation effect on breast cancer stem cells. RESULTS Our findings demonstrated that the expression of SIX1 varies among different subtypes of breast cancer and that it upregulates breast cancer grading and lymph node metastasis. Besides, SIX1 participates in the rewiring of several cancer signaling pathways, including estrogen, WNT, MAPK, and other pathways, and interacts with cancer stem cells. SIX1 showed a significant positive correlation with breast cancer stem cell markers such as ALDH1A1, EPCAM, ITGB1, and SOX2. Moreover, our in vitro and in vivo experiments confirmed that SIX1 can promote the increase in the proportion of stem cells and tumor progression. CONCLUSIONS Altogether, our results suggest that SIX1 plays an essential regulatory role in breast cancer's occurrence, and its amplification can be utilized as a diagnostic and prognostic predictor. The interaction between SIX1 and cancer stem cells may play a critical role in regulating breast cancer's initiation and metastasis.
Collapse
Affiliation(s)
- Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Faminzi Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Hanqing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Deguang Kong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
8
|
Li Z, Lu T, Chen Z, Yu X, Wang L, Shen G, Huang H, Li Z, Ren Y, Guo W, Hu Y. HOXA11 promotes lymphatic metastasis of gastric cancer via transcriptional activation of TGFβ1. iScience 2023; 26:107346. [PMID: 37539033 PMCID: PMC10393827 DOI: 10.1016/j.isci.2023.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Most gastric cancer (GC) patients with early stage often have no lymph node (LN) metastases, while LN metastases appear in the advanced stage. However, there are some patients who present with early stage LN metastases and no LN metastases in the advanced stage. To explore the deeper molecular mechanisms involved, we collected clinical samples from early and advanced stage GC with and without LN metastases, as well as metastatic lymph nodes. Herein, we identified a key target, HOXA11, that was upregulated in GC tissues and closely associated with lymphatic metastases. HOXA11 transcriptionally regulates TGFβ1 expression and activates the TGFβ1/Smad2 pathway, which not only promotes EMT development but also induces VEGF-C secretion and lymphangiogenesis. These findings provide a plausible mechanism for HOXA11-modulated tumor in lymphatic metastasis and suggest that HOXA11 may represent a potential therapeutic target for clinical intervention in LN-metastatic gastric cancer.
Collapse
Affiliation(s)
- Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Tailiang Lu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xiang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
9
|
Wei WF, Zhou HL, Chen PY, Huang XL, Huang L, Liang LJ, Guo CH, Zhou CF, Yu L, Fan LS, Wang W. Cancer-associated fibroblast-derived PAI-1 promotes lymphatic metastasis via the induction of EndoMT in lymphatic endothelial cells. J Exp Clin Cancer Res 2023; 42:160. [PMID: 37415190 DOI: 10.1186/s13046-023-02714-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndoMT) is an emerging adaptive process that modulates lymphatic endothelial function to drive aberrant lymphatic vascularization in the tumour microenvironment (TME); however, the molecular determinants that govern the functional role of EndoMT remain unclear. Here, we show that cancer-associated fibroblast (CAF)-derived PAI-1 promoted the EndoMT of lymphatic endothelial cells (LECs) in cervical squamous cell carcinoma (CSCC). METHODS Immunofluorescent staining of α-SMA, LYVE-1 and DAPI were examined in primary tumour samples obtained from 57 CSCC patients. Assessment of cytokines secreted by CAFs and normal fibroblasts (NFs) was performed using human cytokine antibody arrays. The phenotype of EndoMT in lymphatic endothelial cells (LECs), gene expression levels, protein secretion and activity of signaling pathways were measured by real-time RT-PCR, ELISA or western blotting. The function of lymphatic endothelial monolayers was examined by transwell, tube formation assay, transendothelial migration assay in vitro. Lymphatic metastasis was measured using popliteal lymph node metastasis model. Furthermore, association between PAI-1 expression and EndoMT in CSCC was analyzed by immunohistochemistry. The Cancer Genome Atlas (TCGA) databases was used to assess the association of PAI-1 with survival rate in CSCC. RESULTS CAF-derived PAI-1 promoted the EndoMT of LECs in CSCC. LECs undergoing EndoMT could initiate tumour neolymphangiogenesis that facilitated cancer cell intravasation/extravasation, which in turn promoted lymphatic metastasis in CSCC. Mechanistically, PAI-1 activated the AKT/ERK1/2 pathways by directly interacting with low-density lipoprotein receptor-related protein (LRP1), thereby leading to elevated EndoMT activity in LECs. Blockade of PAI-1 or inhibition of LRP1/AKT/ERK1/2 abrogated EndoMT and consequently attenuated CAF-induced tumour neolymphangiogenesis. Furthermore, clinical data revealed that increased PAI-1 levels positively correlated with EndoMT activity and poor prognosis in CSCC patients. CONCLUSION Our data indicate that CAF-derived PAI-1 acts as an important neolymphangiogenesis-initiating molecular during CSCC progression through modulating the EndoMT of LECs, resulting in promotion of metastasis ability in primary site. PAI-1 could serve as an effective prognostic biomarker and therapeutic target for CSCC metastasis.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Gynaecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Hui-Ling Zhou
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pei-Yu Chen
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Lan Huang
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chu-Hong Guo
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chen-Fei Zhou
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Lan Yu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Gynaecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, 519000, Guangdong, China.
- Department of Obstetrics and Gynaecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Li Y, Gao X, Huang Y, Zhu X, Chen Y, Xue L, Zhu Q, Wang B, Wu M. Tumor microenvironment promotes lymphatic metastasis of cervical cancer: its mechanisms and clinical implications. Front Oncol 2023; 13:1114042. [PMID: 37234990 PMCID: PMC10206119 DOI: 10.3389/fonc.2023.1114042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although previous studies have shed light on the etiology of cervical cancer, metastasis of advanced cervical cancer remains the main reason for the poor outcome and high cancer-related mortality rate. Cervical cancer cells closely communicate with immune cells recruited to the tumor microenvironment (TME), such as lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. The crosstalk between tumors and immune cells has been clearly shown to foster metastatic dissemination. Therefore, unraveling the mechanisms of tumor metastasis is crucial to develop more effective therapies. In this review, we interpret several characteristics of the TME that promote the lymphatic metastasis of cervical cancer, such as immune suppression and premetastatic niche formation. Furthermore, we summarize the complex interactions between tumor cells and immune cells within the TME, as well as potential therapeutic strategies to target the TME.
Collapse
Affiliation(s)
- Yuting Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaofan Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yingying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Bo Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
11
|
Liu Y, Shen S, Yan Z, Yan L, Ding H, Wang A, Xu Q, Sun L, Yuan Y. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer 2023; 23:371. [PMID: 37088808 PMCID: PMC10124011 DOI: 10.1186/s12885-023-10832-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Insulin-like growth factor binding proteins (IGFBPs) are critical regulators of the biological activities of insulin-like growth factors. The IGFBP family plays diverse roles in different types of cancer, which we still lack comprehensive and pleiotropic understandings so far. METHODS Multi-source and multi-dimensional data, extracted from The Cancer Genome Atlas (TCGA), Oncomine, Cancer Cell Line Encyclopedia (CCLE), and the Human Protein Atlas (HPA) was used for bioinformatics analysis by R language. Immunohistochemistry and qRT-PCR were performed to validate the results of the database analysis results. Bibliometrics and literature review were used for summarizing the research progress of IGFBPs in the field of tumor. RESULTS The members of IGFBP gene family are differentially expressed in various cancer types. IGFBPs expression can affect prognosis of different cancers. The expression of IGFBPs expression is associated with multiple signal transduction pathways. The expression of IGFBPs is significantly correlated with tumor mutational burden, microsatellite instability, tumor stemness and tumor immune microenvironment. The qRT-PCR experiments verified the lower expression of IGFBP2 and IGFBP6 in gastric cancer and the lower expression of IGFBP6 in colorectal cancer. Immunohistochemistry validated a marked downregulation of IGFBP2 protein in gastric cancer tissues. The keywords co-occurrence analysis of IGFBP related publications in cancer showed relative research have been more concentrating on the potential of IGFBPs as tumor diagnostic and prognostic markers and developing cancer therapies. CONCLUSIONS These findings provide frontier trend of IGFBPs related research and new clues for identifying novel therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanxi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
12
|
Shi F, Wu L, Cui D, Sun M, Shen Y, Zhou Z, Deng Z, Han B, Xia S, Zhu Z, Sun F. LncFALEC recruits ART5/PARP1 and promotes castration-resistant prostate cancer through enhancing PARP1-meditated self PARylation. Cell Oncol (Dordr) 2023; 46:761-776. [PMID: 36913068 DOI: 10.1007/s13402-023-00783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/14/2023] Open
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are abnormal expression in various malignant tumors. Our previous research demonstrated that focally amplified long non-coding RNA (lncRNA) on chromosome 1 (FALEC) is an oncogenic lncRNA in prostate cancer (PCa). However, the role of FALEC in castration-resistant prostate cancer (CRPC) is poorly understood. In this study, we showed FALEC was upregulated in post-castration tissues and CRPC cells, and increased FALEC expression was associated with poor survival in post-castration PCa patients. RNA FISH demonstrated FALEC was translocated into nucleus in CRPC cells. RNA pulldown and followed Mass Spectrometry (MS) assay demonstrated FALEC directly interacted with PARP1 and loss of function assay showed FALEC depletion sensitized CRPC cells to castration treatment and restored NAD+. Specific PARP1 inhibitor AG14361 and NAD+ endogenous competitor NADP+ sensitized FALEC-deleted CRPC cells to castration treatment. FALEC increasing PARP1 meditated self PARylation through recruiting ART5 and down regulation of ART5 decreased CRPC cell viability and restored NAD+ through inhibiting PARP1meditated self PARylation in vitro. Furthermore, ART5 was indispensable for FALEC directly interaction and regulation of PARP1, loss of ART5 impaired FALEC and PARP1 associated self PARylation. In vivo, FALEC depleted combined with PARP1 inhibitor decreased CRPC cell derived tumor growth and metastasis in a model of castration treatment NOD/SCID mice. Together, these results established that FALEC may be a novel diagnostic marker for PCa progression and provides a potential new therapeutic strategy to target the FALEC/ART5/PARP1 complex in CRPC patients.
Collapse
Affiliation(s)
- Fei Shi
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Di Cui
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Menghao Sun
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Yuanhao Shen
- School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Zhou
- Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China
| | - Zheng Deng
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Bangmin Han
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Shujie Xia
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China.,Department of Urology, Shanghai General Hospital, Nanjing Medical University, Shanghai, 200080, China.,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zheng Zhu
- Department of Internal Medicine, Division of Hematology/Oncology, University of California Davis, Sacramento, CA, 95817, USA.
| | - Feng Sun
- Department of Urology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China. .,Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
13
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Lymphatic Tissue Bioengineering for the Treatment of Postsurgical Lymphedema. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9040162. [PMID: 35447722 PMCID: PMC9025804 DOI: 10.3390/bioengineering9040162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 01/28/2023]
Abstract
Lymphedema is characterized by progressive and chronic tissue swelling and inflammation from local accumulation of interstitial fluid due to lymphatic injury or dysfunction. It is a debilitating condition that significantly impacts a patient's quality of life, and has limited treatment options. With better understanding of the molecular mechanisms and pathophysiology of lymphedema and advances in tissue engineering technologies, lymphatic tissue bioengineering and regeneration have emerged as a potential therapeutic option for postsurgical lymphedema. Various strategies involving stem cells, lymphangiogenic factors, bioengineered matrices and mechanical stimuli allow more precisely controlled regeneration of lymphatic tissue at the site of lymphedema without subjecting patients to complications or iatrogenic injuries associated with surgeries. This review provides an overview of current innovative approaches of lymphatic tissue bioengineering that represent a promising treatment option for postsurgical lymphedema.
Collapse
|
15
|
Cai C, Wang X, Fu Q, Chen A. The VEGF expression associated with prognosis in patients with intrahepatic cholangiocarcinoma: a systematic review and meta-analysis. World J Surg Oncol 2022; 20:40. [PMID: 35189920 PMCID: PMC8859901 DOI: 10.1186/s12957-022-02511-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023] Open
Abstract
Abstract
Objective
To systematically evaluate the relationship between vascular endothelial growth factor (VEGF) and prognosis of intrahepatic cholangiocarcinoma by meta-analysis.
Methods
We systematically searched relevant studies in the databases of PubMed, Embase, Cochrane Library, CNKI, Wangfang, and Web of Science, with search dates limited to September 1, 2021. We extracted relevant data, including prognosis and clinicopathological features of patients with different expressions of VEGF in intrahepatic cholangiocarcinoma. The combined hazard ratio (HR), odds ratio (OR), and 95% confidence interval (CI) were calculated to evaluate the link strength between VEGF and prognosis of cholangiocarcinoma patients.
Results
A total of 7 eligible studies with 495 patients were included in this meta-analysis. The results showed that the high expression of VEGF was significantly related to poor overall survival (OS) (HR = 1.93, 95% CI 1.52–2.46, P < 0.05) in patients with intrahepatic cholangiocarcinoma. Moreover, high expression of VEGF in tumor tissues associated with lymph node metastasis (LNM) (OR = 6.79, 95% CI 3.93–11.73, P < 0.05) and advanced TNM stage (OR = 4.35, 95% CI 2.34–8.07, P < 0.05) in intrahepatic cholangiocarcinoma. Sensitivity analysis shows that the meta-analysis results are stable and reliable.
Conclusion
The expression of VEGF is related to the OS of patients with intrahepatic cholangiocarcinoma, and the OS of patients with high expression of VEGF is shorter. VEGF may be a novel predictor of intrahepatic cholangiocarcinoma patients.
Trial registration
PROSPERO (CRD42022297443).
Collapse
|
16
|
Rafiq A, Aashaq S, Jan I, Beigh MA. SIX1 transcription factor: A review of cellular functions and regulatory dynamics. Int J Biol Macromol 2021; 193:1151-1164. [PMID: 34742853 DOI: 10.1016/j.ijbiomac.2021.10.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Sine Oculis Homeobox 1 (SIX1) is a member of homeobox transcription factor family having pivotal roles in organismal development and differentiation. This protein functionally acts to regulate the expression of different proteins that are involved in organ development during embryogenesis and in disorders like cancer. Aberrant expression of this homeoprotein has therefore been reported in multiple pathological complexities like hearing impairment and renal anomalies during development and tumorigenesis in adult life. Most of the cellular effects mediated by it are mostly due to its role as a transcription factor. This review presents a concise narrative of its structure, interaction partners and cellular functions vis a vis its role in cancer. We thoroughly discuss the reported molecular mechanisms that govern its function in cellular milieu. Its post-translational regulation by phosphorylation and ubiquitination are also discussed with an emphasis on yet to be explored mechanistic insights regulating its molecular dynamics to fully comprehend its role in development and disease.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar JK-190011, India
| | - Iqra Jan
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India.
| |
Collapse
|
17
|
Liu W, Gao M, Li L, Chen Y, Fan H, Cai Q, Shi Y, Pan C, Liu J, Cheng LS, Yang H, Cheng G. Homeoprotein SIX1 compromises antitumor immunity through TGF-β-mediated regulation of collagens. Cell Mol Immunol 2021; 18:2660-2672. [PMID: 34782761 PMCID: PMC8633173 DOI: 10.1038/s41423-021-00800-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME), including infiltrated immune cells, is known to play an important role in tumor growth; however, the mechanisms underlying tumor immunogenicity have not been fully elucidated. Here, we discovered an unexpected role for the transcription factor SIX1 in regulating the tumor immune microenvironment. Based on analyses of patient datasets, we found that SIX1 was upregulated in human tumor tissues and that its expression levels were negatively correlated with immune cell infiltration in the TME and the overall survival rates of cancer patients. Deletion of Six1 in cancer cells significantly reduced tumor growth in an immune-dependent manner with enhanced antitumor immunity in the TME. Mechanistically, SIX1 was required for the expression of multiple collagen genes via the TGFBR2-dependent Smad2/3 activation pathway, and collagen deposition in the TME hampered immune cell infiltration and activation. Thus, our study uncovers a crucial role for SIX1 in modulating tumor immunogenicity and provides proof-of-concept evidence for targeting SIX1 in cancer immunotherapy.
Collapse
Affiliation(s)
- Wancheng Liu
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Meiling Gao
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Lili Li
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Yu Chen
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Huimin Fan
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Qiaomei Cai
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Yueyue Shi
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Chaohu Pan
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Junxiao Liu
- grid.506261.60000 0001 0706 7839Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005 China ,grid.494590.5Suzhou Institute of Systems Medicine, Suzhou, 215123 China
| | - Lucy S. Cheng
- grid.412689.00000 0001 0650 7433Department of Dermatology, University of Pittsburgh Medical Center, 3708 Fifth Avenue, Suite 500.68, Pittsburgh, PA 15213 USA
| | - Heng Yang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China. .,Suzhou Institute of Systems Medicine, Suzhou, 215123, China.
| | - Genhong Cheng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Meurer L, Ferdman L, Belcher B, Camarata T. The SIX Family of Transcription Factors: Common Themes Integrating Developmental and Cancer Biology. Front Cell Dev Biol 2021; 9:707854. [PMID: 34490256 PMCID: PMC8417317 DOI: 10.3389/fcell.2021.707854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
The sine oculis (SIX) family of transcription factors are key regulators of developmental processes during embryogenesis. Members of this family control gene expression to promote self-renewal of progenitor cell populations and govern mechanisms of cell differentiation. When the function of SIX genes becomes disrupted, distinct congenital defects develops both in animal models and humans. In addition to the embryonic setting, members of the SIX family have been found to be critical regulators of tumorigenesis, promoting cell proliferation, epithelial-to-mesenchymal transition, and metastasis. Research in both the fields of developmental biology and cancer research have provided an extensive understanding of SIX family transcription factor functions. Here we review recent progress in elucidating the role of SIX family genes in congenital disease as well as in the promotion of cancer. Common themes arise when comparing SIX transcription factor function during embryonic and cancer development. We highlight the complementary nature of these two fields and how knowledge in one area can open new aspects of experimentation in the other.
Collapse
Affiliation(s)
- Logan Meurer
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Leonard Ferdman
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| | - Beau Belcher
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, United States
| | - Troy Camarata
- Department of Basic Sciences, NYIT College of Osteopathic Medicine at Arkansas State University, Jonesboro, AR, United States
| |
Collapse
|
19
|
Rezzola S, Sigmund EC, Halin C, Ronca R. The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev 2021; 42:576-614. [PMID: 34486138 PMCID: PMC9291933 DOI: 10.1002/med.21855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
The lymphatic vasculature has been widely described and explored for its key functions in fluid homeostasis and in the organization and modulation of the immune response. Besides transporting immune cells, lymphatic vessels play relevant roles in tumor growth and tumor cell dissemination. Cancer cells that have invaded into afferent lymphatics are propagated to tumor‐draining lymph nodes (LNs), which represent an important hub for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites. In recent years many studies have reported new mechanisms by which the lymphatic vasculature affects cancer progression, ranging from induction of lymphangiogenesis to metastatic niche preconditioning or immune modulation. In this review, we provide an up‐to‐date description of lymphatic organization and function in peripheral tissues and in LNs and the changes induced to this system by tumor growth and progression. We will specifically focus on the reported interactions that occur between tumor cells and lymphatic endothelial cells (LECs), as well as on interactions between immune cells and LECs, both in the tumor microenvironment and in tumor‐draining LNs. Moreover, the most recent prognostic and therapeutic implications of lymphatics in cancer will be reported and discussed in light of the new immune‐modulatory roles that have been ascribed to LECs.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Zhou C, Zhang Y, Yan R, Huang L, Mellor AL, Yang Y, Chen X, Wei W, Wu X, Yu L, Liang L, Zhang D, Wu S, Wang W. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ 2021; 28:715-729. [PMID: 32929219 PMCID: PMC7862304 DOI: 10.1038/s41418-020-00618-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Clinical response to immunotherapy is closely associated with the immunosuppressive tumour microenvironment (TME), and influenced by the dynamic interaction between tumour cells and lymphatic endothelial cells (LECs). Here, we show that high levels of miR-142-5p positively correlate with indoleamine 2,3-dioxygenase (IDO) expression in tumour-associated lymphatic vessels in advanced cervical squamous cell carcinoma (CSCC). The miR-142-5p is transferred by CSCC-secreted exosomes into LECs to exhaust CD8+ T cells via the up-regulation of lymphatic IDO expression, which was abrogated by an IDO inhibitor. Mechanistically, miR-142-5p directly down-regulates lymphatic AT-rich interactive domain-containing protein 2 (ARID2) expression, inhibits DNA methyltransferase 1 (DNMT1) recruitment to interferon (IFN)-γ promoter, and enhances IFN-γ transcription by suppressing promoter methylation, thereby leading to elevated IDO activity. Furthermore, increased serum exosomal miR-142-5p levels and the consequent IDO activity positively correlate with CSCC progression. In conclusion, exosomes secreted by CSCC cells deliver miR-142-5p to LECs and induce IDO expression via ARID2-DNMT1-IFN-γ signalling to suppress and exhaust CD8+ T cells. Our study suggests that LECs act as an integral component of the immune checkpoint(s) in the TME and may serve as a potential new target for CSCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chenfei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yanmei Zhang
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruiming Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Andrew L Mellor
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaojing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenfei Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiangguang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Luojiao Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Dan Zhang
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
21
|
Kong D, Zhou H, Neelakantan D, Hughes CJ, Hsu JY, Srinivasan RR, Lewis MT, Ford HL. VEGF-C mediates tumor growth and metastasis through promoting EMT-epithelial breast cancer cell crosstalk. Oncogene 2021; 40:964-979. [PMID: 33299122 PMCID: PMC7867573 DOI: 10.1038/s41388-020-01539-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
It is well established that a subset of cells within primary breast cancers can undergo an epithelial-to-mesenchymal transition (EMT), although the role of EMT in metastasis remains controversial. We previously demonstrated that breast cancer cells that had undergone an oncogenic EMT could increase metastasis of neighboring cancer cells via non-canonical paracrine-mediated activation of GLI activity that is dependent on SIX1 expression in the EMT cancer cells. However, the mechanism by which these SIX1-expressing EMT cells activate GLI signaling remained unclear. In this study, we demonstrate a novel mechanism for activation of GLI-mediated signaling in epithelial breast tumor cells via EMT cell-induced production and secretion of VEGF-C. We show that VEGF-C, secreted by breast cancer cells that have undergone an EMT, promotes paracrine-mediated increases in proliferation, migration, and invasion of epithelial breast cancer cells, via non-canonical activation of GLI-signaling. We further show that the aggressive phenotypes, including metastasis, imparted by EMT cells on adjacent epithelial cancer cells can be disrupted by either inhibiting VEGF-C in EMT cells or by knocking down NRP2, a receptor which interacts with VEGF-C, in neighboring epithelial cancer cells. Interrogation of TCGA and GEO public datasets supports the relevance of this pathway in human breast cancer, demonstrating that VEGF-C strongly correlates with activation of Hedgehog signaling and EMT in the human disease. Our study suggests that the VEGF-C/NRP2/GLI axis is a novel and conserved paracrine means by which EMT cells enhance metastasis, and provides potential targets for therapeutic intervention in this heterogeneous disease.
Collapse
Affiliation(s)
- Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepika Neelakantan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Connor J Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Cancer Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Program in Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
22
|
Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther 2021; 29:1512-1528. [PMID: 33388421 PMCID: PMC8058488 DOI: 10.1016/j.ymthe.2020.12.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated lymphatic endothelial cells (LECs) are an active barrier to the effector arm of the anti-tumor immune response; however, it remains unclear how LECs become immunosuppressive in the tumor microenvironment (TME). Exosomal microRNAs (miRNAs) have recently been implicated in intercellular crosstalk within the TME. Here, we report a mechanistic model via which cervical cancer-secreted, exosome-encapsulated microRNA (miR)-1468-5p promotes lymphatic PD-L1 upregulation and lymphangiogenesis to impair T cell immunity. Subsequently, exosomal miR-1468-5p epigenetically activates the JAK2/STAT3 pathway in LECs by directly targeting homeobox containing 1 (HMBOX1) in the SOCS1 promoter, activating an immunosuppressive program that allows cancer cells to escape anti-cancer immunity. Furthermore, clinical data reveal that high serum exosomal miR-1468-5p levels correlate with TME immunosuppressive status and poor prognosis in cervical cancer (CCa) patients. Taken together, our results suggest that cancer-secreted exosomal miR-1468-5p instructs LECs to form an integrated immunosuppressive TME component and may be a prognostic biomarker and therapeutic target for CCa.
Collapse
|
23
|
Wei WF, Chen XJ, Liang LJ, Yu L, Wu XG, Zhou CF, Wang ZC, Fan LS, Hu Z, Liang L, Wang W. Periostin + cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol Oncol 2020; 15:210-227. [PMID: 33124726 PMCID: PMC7782076 DOI: 10.1002/1878-0261.12837] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Lymph node metastasis (LNM), a critical prognostic determinant in cancer patients, is critically influenced by the presence of numerous heterogeneous cancer‐associated fibroblasts (CAFs) in the tumor microenvironment. However, the phenotypes and characteristics of the various pro‐metastatic CAF subsets in cervical squamous cell carcinoma (CSCC) remain unknown. Here, we describe a CAF subpopulation with elevated periostin expression (periostin+CAFs), located in the primary tumor sites and metastatic lymph nodes, that positively correlated with LNM and poor survival in CSCC patients. Mechanistically, periostin+CAFs impaired lymphatic endothelial barriers by activating the integrin‐FAK/Src‐VE‐cadherin signaling pathway in lymphatic endothelial cells and consequently enhanced metastatic dissemination. In contrast, inhibition of the FAK/Src signaling pathway alleviated periostin‐induced lymphatic endothelial barrier dysfunction and its related effects. Notably, periostin‐CAFs were incapable of impairing endothelial barrier integrity, which may explain the occurrence of CAF‐enriched cases without LNM. In conclusion, we identified a specific periostin+CAF subset that promotes LNM in CSCC, mainly by impairing the lymphatic endothelial barriers, thus providing the basis for potential stromal fibroblast‐targeted interventions that block CAF‐dependent metastasis.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Luo-Jiao Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Lan Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| | - Zheng Hu
- Department of Gynecological Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Guangzhou Medical University, China
| |
Collapse
|
24
|
Xu X, Li L, Li X, Tao D, Zhang P, Gong J. Aptamer-protamine-siRNA nanoparticles in targeted therapy of ErbB3 positive breast cancer cells. Int J Pharm 2020; 590:119963. [DOI: 10.1016/j.ijpharm.2020.119963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
|
25
|
High expression of PTPRM predicts poor prognosis and promotes tumor growth and lymph node metastasis in cervical cancer. Cell Death Dis 2020; 11:687. [PMID: 32826853 PMCID: PMC7443137 DOI: 10.1038/s41419-020-02826-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
The prognosis for cervical cancer (CCa) patients with lymph node metastasis (LNM) is dismal. Elucidation of the molecular mechanisms underlying LNM may provide clinical therapeutic strategies for CCa patients with LNM. However, the precise mechanism of LNM in CCa remains unclear. Herein, we demonstrated that protein tyrosine phosphatase receptor type M (PTPRM), identified from TCGA dataset, was markedly upregulated in CCa with LNM and correlated with LNM. Moreover, PTPRM was an independent prognostic factor of CCa patients in multivariate Cox′s proportional hazards model analysis and associated with poor prognosis. Furthermore, through gain-of-function and loss-of-function approaches, we found that PTPRM promoted CCa cells proliferation, migration, invasion, lymphangiogenesis, and LNM. Mechanistically, PTPRM promoted epithelial–mesenchymal transition (EMT) via Src-AKT signaling pathway and induced lymphangiogenesis in a VEGF-C dependent manner, resulting in LNM of CCa. Importantly, knockdown of PTPRM dramatically reduced LNM in vivo, suggesting that PTPRM plays an important role in the LNM of CCa. Taken together, our findings uncover a novel molecular mechanism in the LNM of CCa and identify PTPRM as a novel prognostic factor and potential therapeutic target for LNM in CCa.
Collapse
|
26
|
Ma Y, Xia Z, Ye C, Lu C, Zhou S, Pan J, Liu C, Zhang J, Liu T, Hu T, Xie L, Wu G, Zhao Y. AGTR1 promotes lymph node metastasis in breast cancer by upregulating CXCR4/SDF-1α and inducing cell migration and invasion. Aging (Albany NY) 2020; 11:3969-3992. [PMID: 31219799 PMCID: PMC6628987 DOI: 10.18632/aging.102032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022]
Abstract
The angiotensin II type I receptor (AGTR1) has a strong influence on tumor growth, angiogenesis, inflammation and immunity. However, the role of AGTR1 on lymph node metastasis (LNM) in breast cancer, which correlates with tumor progression and patient survival, has not been examined. AGTR1 was highly expressed in lymph node-positive tumor tissues, which was confirmed by the Oncomine database. Next, inhibition of AGTR1 reduced tumor growth and LNM in orthotopic xenografts by bioluminescence imaging (BLI). Losartan, an AGTR1-specific inhibitor, decreased the chemokine pair CXCR4/SDF-1α levels in vivo and inhibited AGTR1-induced cell migration and invasion in vitro. Finally, the molecular mechanism of AGTR1-induced cell migration and LNM was assessed by knocking down AGTR1 in normal cells or CXCR4 in AGTR1high cells. AGTR1-silenced cells treated with losartan showed lower CXCR4 expression. AGTR1 overexpression caused the upregulation of FAK/RhoA signaling molecules, while knocking down CXCR4 in AGTR1high cells downregulated these molecules. Collectively, AGTR1 promotes LNM by increasing the chemokine pair CXCR4/SDF-1α and tumor cell migration and invasion. The potential mechanism of AGTR1-mediated cell movement relies on activating the FAK/RhoA pathway. Our study indicated that inhibiting AGTR1 may be a potential therapeutic target for LNM in early-stage breast cancer.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zihan Xia
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunmei Ye
- Department of Breast Surgery, Wuhan Women and Children's Health Care Center, Wuhan 430022, China
| | - Chong Lu
- Department of Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng Zhou
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Pan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jieying Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Linka Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
27
|
Zhou H, Blevins MA, Hsu JY, Kong D, Galbraith MD, Goodspeed A, Culp-Hill R, Oliphant MUJ, Ramirez D, Zhang L, Trinidad-Pineiro J, Mathews Griner L, King R, Barnaeva E, Hu X, Southall NT, Ferrer M, Gustafson DL, Regan DP, D'Alessandro A, Costello JC, Patnaik S, Marugan J, Zhao R, Ford HL. Identification of a Small-Molecule Inhibitor That Disrupts the SIX1/EYA2 Complex, EMT, and Metastasis. Cancer Res 2020; 80:2689-2702. [PMID: 32341035 PMCID: PMC7510951 DOI: 10.1158/0008-5472.can-20-0435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Metastasis is the major cause of mortality for patients with cancer, and dysregulation of developmental signaling pathways can significantly contribute to the metastatic process. The Sine oculis homeobox homolog 1 (SIX1)/eyes absent (EYA) transcriptional complex plays a critical role in the development of multiple organs and is typically downregulated after development is complete. In breast cancer, aberrant expression of SIX1 has been demonstrated to stimulate metastasis through activation of TGFβ signaling and subsequent induction of epithelial-mesenchymal transition (EMT). In addition, SIX1 can induce metastasis via non-cell autonomous means, including activation of GLI-signaling in neighboring tumor cells and activation of VEGFC-induced lymphangiogenesis. Thus, targeting SIX1 would be expected to inhibit metastasis while conferring limited side effects. However, transcription factors are notoriously difficult to target, and thus novel approaches to inhibit their action must be taken. Here we identified a novel small molecule compound, NCGC00378430 (abbreviated as 8430), that reduces the SIX1/EYA2 interaction. 8430 partially reversed transcriptional and metabolic profiles mediated by SIX1 overexpression and reversed SIX1-induced TGFβ signaling and EMT. 8430 was well tolerated when delivered to mice and significantly suppressed breast cancer-associated metastasis in vivo without significantly altering primary tumor growth. Thus, we have demonstrated for the first time that pharmacologic inhibition of the SIX1/EYA2 complex and associated phenotypes is sufficient to suppress breast cancer metastasis. SIGNIFICANCE: These findings identify and characterize a novel inhibitor of the SIX1/EYA2 complex that reverses EMT phenotypes suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Hengbo Zhou
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Deguang Kong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael U J Oliphant
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dominique Ramirez
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennyvette Trinidad-Pineiro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lesley Mathews Griner
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Rebecca King
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Elena Barnaeva
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Xin Hu
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Noel T Southall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Ferrer
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Daniel L Gustafson
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Daniel P Regan
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Samarjit Patnaik
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
28
|
Song J, Chen W, Cui X, Huang Z, Wen D, Yang Y, Yu W, Cui L, Liu CY. CCBE1 promotes tumor lymphangiogenesis and is negatively regulated by TGFβ signaling in colorectal cancer. Am J Cancer Res 2020; 10:2327-2341. [PMID: 32089745 PMCID: PMC7019157 DOI: 10.7150/thno.39740] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Collagen and calcium-binding EGF domain-1 (CCBE1) is essential for lymphatic vascular development as it promotes vascular endothelial growth factor C (VEGFC) proteolysis. A recent study reported that CCBE1 was overexpressed in epithelial colorectal cancer (CRC) cells; however, the role of CCBE1 in tumor lymphangiogenesis and the mechanism underlying dysregulated CCBE1 expression in CRC remain undefined. Methods: The role of CCBE1 in tumor lymphangiogenesis and lymphatic metastasis was investigated using human lymphatic endothelial cells (HLECs) model in vitro, and a hindfoot lymphatic metastasis model in vivo. Immunochemistry analysis was performed to assess CCBE1 expression, prognostic value and correlation with clinicopathological characteristics in CRC. The biochemical function and transcriptional regulatory mechanism of CCBE1 were explored by western blot, qPCR, and chromatin immunoprecipitation. Results: Cancer cell-derived CCBE1 enhances VEGFC proteolysis in vitro, facilitates tube formation and migration of HLECs in vitro, and promotes tumor lymphangiogenesis and lymphatic metastasis in vivo. In addition to CRC cells, tumor stroma within CRC tissue shows high CCBE1 expression, which is associated with high lymphatic vessel density, increased lymph node metastasis and poor prognosis. Cancer-associated fibroblasts (CAFs) express and secret CCBE1, thereby contributing to VEGFC maturation and tumor lymphangiogenesis in CRC. Transforming growth factor beta (TGF-β) downregulates the transcription and lymphangiogenic function of CCBE1 in CAFs and CRC cells through direct binding of SMADs to CCBE1 gene locus. Inactivation of the TGF-β pathway correlates with increased CCBE1 expression in CRC. Conclusion: Our results demonstrate the protumorigenic role of CCBE1 in promoting lymphangiogenesis and lymphatic metastasis in CRC, revealing a new mechanism by which loss of TGF-β signaling promotes CRC metastasis.
Collapse
|
29
|
Yang X, Zhu X, Yan Z, Li C, Zhao H, Ma L, Zhang D, Liu J, Liu Z, Du N, Ye Q, Xu X. miR-489-3p/SIX1 Axis Regulates Melanoma Proliferation and Glycolytic Potential. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:30-40. [PMID: 32258386 PMCID: PMC7109510 DOI: 10.1016/j.omto.2019.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Sine oculis homeobox 1 (SIX1), a key transcription factor for regulating aerobic glycolysis, participates in the occurrence of various cancer types. However, the role of SIX1 in melanoma and the upstream regulating mechanisms of SIX1 remain to be further investigated. MicroRNAs (miRNAs) have emerged as key regulators in tumorigenesis and progression. Here, we show that miR-489-3p suppresses SIX1 expression by directly targeting its 3′ untranslated region (3′ UTR) in melanoma cells. miR-489-3p suppressed melanoma cell proliferation, migration, and invasion through inhibition of SIX1. Mechanistically, by targeting SIX1, miR-489-3p dampens glycolysis, with decreased glucose uptake, lactate production, ATP generation, and extracellular acidification rate (ECAR), as well as an increased oxygen consumption rate (OCR). Importantly, glycolysis regulated by the miR-489-3p/SIX1 axis is critical for its regulation of melanoma growth and metastasis both in vitro and in vivo. In melanoma patients, miR-489-3p expression is negatively correlated with SIX1 expression. In addition, patients who had increased glucose uptake in tumors and with metastasis assessed by positron emission tomography (PET) scans showed decreased miR-489-3p expression and increased expression of SIX1. Collectively, our study demonstrates the importance of the miR-489-3p/SIX1 axis in melanoma, which can be a potential and a promising therapeutic target in melanoma.
Collapse
Affiliation(s)
- Xuhui Yang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China.,Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Xiang Zhu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Zhifeng Yan
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Chenxi Li
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Hui Zhao
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Luyuan Ma
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Juan Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Zihao Liu
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Nan Du
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
30
|
Zhang L, Jiang B, Zhu N, Tao M, Jun Y, Chen X, Wang Q, Luo C. Mitotic checkpoint kinase Mps1/TTK predicts prognosis of colon cancer patients and regulates tumor proliferation and differentiation via PKCα/ERK1/2 and PI3K/Akt pathway. Med Oncol 2019; 37:5. [PMID: 31720873 DOI: 10.1007/s12032-019-1320-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023]
Abstract
Mps1/TTK plays an important role in development of many tumors. The purpose of the present study was designed to investigate the role of TTK in colon cancer. We analyzed TTK and colon cancer in the GEO database, colon cancer tissues and normal tissues were collected to verify the results by immunohistochemistry. We detected the TTK expression in the colon cancer cell lines, and overexpressed or silenced TTK expression in colon cancer cell lines. GEO database showed that the expression of TTK was higher in the colon cancer tissues than normal tissues, higher level of TTK shows unfavourable prognosis in colon patients. Furthermore, high differentiation of colon shows the lower expression of TTK. The higher expression of TTK links with the high microsatellite status. However, the expression of TTK has no significant difference among the different stages of colon cancer patients, and has no significant relationship with recurrence or relapse. Here, we also report that the differential expression of TTK in colon cancer cells alters the intrinsic negative regulation of cell proliferation and differentiation, resulting in the difference of proliferation and differentiation capacity. TTK could activate the PKCα/ERK1/2 to influence the proliferation and inactivate the PI3K/AKT pathway to inhibition the expression of MUC2 and TFF3 that related to the differentiation of colon cells. In conclusions, TTK promote the colon cancer cell proliferation via activation of PKCα/ERK1/2 and inhibit the differentiation via inactivation of PI3K/Akt pathway. TTK inhibition may be the potential therapeutic pathway for the treatment of colon cancer.
Collapse
Affiliation(s)
- Li Zhang
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Baofei Jiang
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Ni Zhu
- Department of Microbiology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Mingyue Tao
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Yali Jun
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China
| | - Xiaofei Chen
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| | - Qilong Wang
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| | - Chao Luo
- Department of Central Laboratory and Huai'an Key Laboratory of Esophageal Cancer Biobank, The Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huai'an, 223300, China.
| |
Collapse
|
31
|
Wang Y, Li H, Ma J, Fang T, Li X, Liu J, Afewerky HK, Li X, Gao Q. Integrated Bioinformatics Data Analysis Reveals Prognostic Significance Of SIDT1 In Triple-Negative Breast Cancer. Onco Targets Ther 2019; 12:8401-8410. [PMID: 31632087 PMCID: PMC6792947 DOI: 10.2147/ott.s215898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a heterogeneous disease with a worse prognosis. However, current therapies have rarely improved the outcome of patients with TNBC. Here we sought to identify novel biomarkers or targets for TNBC. Materials and methods Patients GSE76275 clinic traits and their corresponding mRNA profiles for 198 TNBC and 67 non-TNBC were obtained from the GEO database. Weighted gene co-expression network analysis (WGCNA) of the GSE76275 keyed out hub genes, and the differentially expressed genes (DEGs) were identified with the cut-off of adjusted P (adj. P) <0.01 and |log2 fold-change (FC)| > 1.5. The hub - DEGs overlapping genes, as key genes, were considered for further study using Kaplan-Meier plotter online analysis. Subsequently, Breast Cancer Gene-Expression Miner v4.0 and tissue microarray analysis were applied to determine the transcriptional and translational levels of every key gene. Following plasmid transfection for overexpression, the proliferation of TNBC cells was determined by CCK8 and colony formation assay. Moreover, xenograft tumor models were canvassed to investigate their effect upon in vivo tumor growth. Results Four genes (SIDT1, ANKRD30A, GPR160, and CA12) were found to be associated with relapse-free survival (RFS) in TNBC through WGCNA and DEGs integrated analysis. Patients with a higher level of SIDT1 had significantly better RFS compared to those with lower levels. The transcriptional and translational levels of SIDT1 were validated as downregulated in patients with triple-negative status, negative estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Furthermore, SIDT1 inhibited proliferation of breast cancer cells (MDA-MB-231 and MDA-MB-468) and xenograft studies demonstrated that SIDT1 can suppress tumor growth in vivo. Conclusion This study suggests that SIDT1 may play a crucial role in TNBC progression and has the potential as a prognostic biomarker of TNBC.
Collapse
Affiliation(s)
- Ya Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingjing Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tian Fang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiahao Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Henok Kessete Afewerky
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiong Li
- Department of Gynecology and Obstetrics, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
32
|
SIX4 activates Akt and promotes tumor angiogenesis. Exp Cell Res 2019; 383:111495. [PMID: 31301290 DOI: 10.1016/j.yexcr.2019.111495] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Angiogenesis plays important roles in solid tumors progression. Growth factors such as vascular endothelial growth factors (VEGFs) can induce angiogenesis and hypoxia promotes the expression of VEGFs through activating hypoxia-inducible factor 1 (HIF-1α). However, the regulation of HIF-1α still not been fully understood. Here, we demonstrate that the Sine Oculis Homeobox Homolog 4 (SIX4) is up-regulated in colorectal cancer (CRC) and high expression of SIX4 predicts a poor prognosis. Overexpression of SIX4 enhances tumor growth and angiogenesis in vitro and in vivo, while knockdown of SIX4 inhibits tumor growth and angiogenesis. Furthermore, we show that SIX4 increases the expression of VEGF-A by coordinating with the HIF-1α. Mechanically, we explore that SIX4 up-regulates the expression of HIF-1α depending on Akt activation. Collectively, we demonstrate that SIX4 is functional in regulating tumor angiogenesis and SIX4 might be used as anti-angiogenic therapy in CRC.
Collapse
|
33
|
Li HL, Sun JJ, Ma H, Liu SJ, Li N, Guo SJ, Shi Y, Xu YY, Qi ZY, Wang YQ, Wang F, Guo RM, Liu D, Xue FX. MicroRNA-23a inhibits endometrial cancer cell development by targeting SIX1. Oncol Lett 2019; 18:3792-3802. [PMID: 31579409 PMCID: PMC6757317 DOI: 10.3892/ol.2019.10694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
The present study focused on exploring the inhibitory mechanism of microRNA (miR)-23a in endometrial cancer. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to investigate miR-23a expression in endometrial tissues and endometrial cancer cells. A colony formation assay using crystal violet staining was performed to compare cell proliferation, while wound-healing and Transwell assays were performed to compare cell migration and invasion. Subsequently, bioinformatics and a luciferase reporter gene assay were used to investigate the effect of miR-23a on sine oculis homeobox homolog 1 (SIX1) expression, and the biological function of SIX1 was analyzed. Additionally, a nude mouse tumorigenicity assay was performed to test the inhibitory effect of miR-23a and Taxol® therapy in endometrial cancer. Finally, immunohistochemistry and RT-qPCR were used to explore the association between miR-23a and SIX1 expression in endometrial cancer tissues. miR-23a was underexpressed in endometrial cancer tissues compared with in para-carcinoma tissues, and the overexpression of miR-23a inhibited proliferation and invasion of endometrial cancer cells. Furthermore, SIX1 was demonstrated to be a downstream target of miR-23a, and miR-23a reduced SIX1 expression. Additionally, SIX1 inversely promoted cell proliferation, migration and invasion. In addition, the effects of reduced cell proliferation and increased cell invasion following miR-23a overexpression could be reversed by adding SIX1 to in vitro culture. Furthermore, the inhibitory effect of miR-23a and Taxol therapy, which reduced SIX1 expression in endometrial cancer, was demonstrated in vivo. Finally, a negative association between miR-23a and SIX1 expression was demonstrated in endometrial cancer tissues. The results of the present study revealed that miR-23a may inhibit endometrial cancer development by targeting SIX1.
Collapse
Affiliation(s)
- Hong-Lin Li
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jun-Jie Sun
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Hui Ma
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Shen-Jia Liu
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Na Li
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Su-Jie Guo
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yang Shi
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yan-Ying Xu
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhi-Ying Qi
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yu-Quan Wang
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Rui-Meng Guo
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Dong Liu
- Department of Obstetrics and Gynecology, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Feng-Xia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
34
|
Zhou CF, Liu MJ, Wang W, Wu S, Huang YX, Chen GB, Liu LM, Peng DX, Wang XF, Cai XZ, Li XX, Feng WQ, Ma Y. miR-205-5p inhibits human endometriosis progression by targeting ANGPT2 in endometrial stromal cells. Stem Cell Res Ther 2019; 10:287. [PMID: 31547870 PMCID: PMC6757391 DOI: 10.1186/s13287-019-1388-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/21/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND miRNA expression profiles in ectopic endometrium (EC) serving as pathophysiologic genetic fingerprints contribute to determining endometriosis progression; however, the underlying molecular mechanisms remain unknown. METHODS miRNA microarray analysis was used to determine the expression profiling of EC fresh tissues. qRT-PCR was performed to screen miR-205-5p expression in EC tissues. The roles of miR-205-5p and its candidate target gene, angiopoietin-2 (ANGPT2), in endometriosis progression were confirmed on the basis of both in vitro and in vivo systems. miR-205-5p and ANGPT2 expression were measured by in situ hybridization and immunochemistry, and their clinical significance was statistically analysed. RESULTS miR-205-5p was screened as a novel suppressor of endometriosis through primary ectopic endometrial stromal cell migration, invasion, and apoptosis assay in vitro, along with endometrial-like xenograft growth and apoptosis in vivo. In addition, ANGPT2 was identified as a direct target of miR-205-5p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of ANGPT2 could respectively rescue and simulate the effects induced by miR-205-5p. Importantly, the miR-205-5p-ANGPT2 axis was found to activate the ERK/AKT pathway in endometriosis. Finally, miR-205-5p and ANGPT2 expression were closely correlated with the endometriosis severity. CONCLUSION The newly identified miR-205-5p-ANGPT2-AKT/ERK axis illustrates the molecular mechanism of endometriosis progression and may represent a novel diagnostic biomarker and therapeutic target for disease treatment.
Collapse
Affiliation(s)
- Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Min-Juan Liu
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Sha Wu
- Department of Immunology/Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Xin Huang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Guo-Bin Chen
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Healthcare Hospital of Southern Medical University, Shenzhen, 518028, China
| | - Li-Min Liu
- Department of Obstetrics and Gynecology, Shenzhen Maternal and Child Healthcare Hospital of Southern Medical University, Shenzhen, 518028, China
| | - Dong-Xian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xue-Feng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xu-Zi Cai
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Xiao-Xuan Li
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Wan-Qin Feng
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China
| | - Ying Ma
- Department of Obstetrics and Gynecology, Zhujiang Hospital of Southern Medical University, No.253, Middle Gongyeda Road, Haizhu District, Guangzhou, 510280, China.
| |
Collapse
|
35
|
Zhu Z, Rong Z, Luo Z, Yu Z, Zhang J, Qiu Z, Huang C. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis. Mol Cancer 2019; 18:126. [PMID: 31438963 PMCID: PMC6704702 DOI: 10.1186/s12943-019-1054-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Background Mounting evidences indicate that circular RNAs (circRNAs) play vital roles in the development and progression of various cancers. However, the detail functions and underlying mechanisms of circRNAs in gastric cancer remain largely unknown. Methods The expression profile of metastasis-related circRNAs was screened by RNA-seq analysis. qRT-PCR was used to determine the level and prognostic values of circNHSL1 in gastric cancer tissues. In vitro cell wound healing and transwell (migration and invasion) and in vivo tumorigenesis and metastasis assays were performed to evaluate the functions of circNHSL1. Luciferase reporter, RNA immunoprecipitation (RIP) and rescued assays were employed to confirm the interactions between circNHSL1, miR-1306-3p and SIX1. It’s widely accepted that as a mesenchymal marker, Vimentin promotes invasion and metastasis in various cancers. Luciferase reporter assay was used to determine the regulation of SIX1 on Vimentin. In addition, In situ hybridization (ISH) was performed to detect the level and prognostic values of miR-1306-3p. Results We found that the level of circNHSL1 was significantly up-regulated in gastric cancer, and positively correlated with clinicopathological features and poor prognosis of patients with gastric cancer. Functionally, circNHSL1 promoted cell mobility and invasion, as well as in vivo tumorgenesis and metastasis. Mechanistically, circNHSL1 acted as a miR-1306-3p sponge to relieve the repressive effect of miR-1306-3p on its target SIX1. Moreover, SIX1 enhanced Vimentin expression in the transcriptional level through directly binding to the promoter domain of Vimentin, thereby promoting cell migration and invasion. In addition, miR-1306-3p was down-regulated and negatively correlated with pathological features and poor prognosis in gastric cancer. Conclusions CircNHSL1 promotes gastric cancer progression through miR-1306-3p/SIX1/Vimentin axis, and may serve as a novel diagnostic marker and target for treatment of gastric cancer patients. Electronic supplementary material The online version of this article (10.1186/s12943-019-1054-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhonglin Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Zeyin Rong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Zhilong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Jing Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China.
| |
Collapse
|
36
|
Pak KH, Park KC, Cheong JH. VEGF-C induced by TGF- β1 signaling in gastric cancer enhances tumor-induced lymphangiogenesis. BMC Cancer 2019; 19:799. [PMID: 31409309 PMCID: PMC6692962 DOI: 10.1186/s12885-019-5972-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/23/2019] [Indexed: 01/24/2023] Open
Abstract
Background The role of TGF-β1 in lymph node metastasis and lymphangiogenesis, one of the most important steps of gastric cancer dissemination, is largely unknown. The goal of this study was to investigate the role of TGF-β1 signaling and its molecular mechanisms involved in lymphangiogenesis of gastric cancer. Methods Two gastric cell line models, MKN45 and KATOIII, were selected for this study. The protein expression of TGF-β1 pathway molecules and VEGF-C were examined with western blot, or ELISA according to TGF-β1 treatment. To explore whether Smad3 binds to the specific DNA sequences in the VEGFC promoter, we performed an electrophoretic mobility shift assay. Lymphatic tube forming assay and gastric cancer xenograft mouse models were also used to elucidate the effect of TGF-β1 on lymphangiogenesis. Results TGF-β1 induced the activation of Smad2/3 and Smad pathway-modulated VEGF-C expression in gastric cancer cell line models. Phosphorylated and activated Smad3 in the nucleus bound to the promoter of VEGFC in KATO III cells. Of note, in MKN45 cells, the Smad-independent AKT pathway was also activated in response to TGF-β1 and induced VEGF-C expression. Inhibition of TGF-β1 signaling down-regulated the expression of VEGF-C. We also confirmed, through tube forming assay and tumor xenograft mouse model, that TGF-β1 increased lymphatic formation, while TGF-β1 inhibition blocked lymphangiogenesis. Conclusion Smad-dependent and -independent TGF-β1 pathways induce VEGF-C, which make lymphangiogenesis around tumor. These findings suggest that TGF-β might be a potential therapeutic target for preventing gastric cancer progression and dissemination. Electronic supplementary material The online version of this article (10.1186/s12885-019-5972-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyung Ho Pak
- Department of Surgery, Hallym University Medical Center, Hwasung, Korea.,Department of Medicine, Yonsei University Graduate School, Seoul, Korea
| | - Ki Cheong Park
- Depatment of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jae-Ho Cheong
- Depatment of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea. .,Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea. .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int J Mol Sci 2019; 20:ijms20112767. [PMID: 31195692 PMCID: PMC6600375 DOI: 10.3390/ijms20112767] [Citation(s) in RCA: 761] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor β (TGF-β) is a secreted cytokine that regulates cell proliferation, migration, and the differentiation of a plethora of different cell types. Consistent with these findings, TGF-β plays a key role in controlling embryogenic development, inflammation, and tissue repair, as well as in maintaining adult tissue homeostasis. TGF-β elicits a broad range of context-dependent cellular responses, and consequently, alterations in TGF-β signaling have been implicated in many diseases, including cancer. During the early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inducing cytostasis and the apoptosis of normal and premalignant cells. However, at later stages, when cancer cells have acquired oncogenic mutations and/or have lost tumor suppressor gene function, cells are resistant to TGF-β-induced growth arrest, and TGF-β functions as a tumor promotor by stimulating tumor cells to undergo the so-called epithelial-mesenchymal transition (EMT). The latter leads to metastasis and chemotherapy resistance. TGF-β further supports cancer growth and progression by activating tumor angiogenesis and cancer-associated fibroblasts and enabling the tumor to evade inhibitory immune responses. In this review, we will consider the role of TGF-β signaling in cell cycle arrest, apoptosis, EMT and cancer cell metastasis. In particular, we will highlight recent insights into the multistep and dynamically controlled process of TGF-β-induced EMT and the functions of miRNAs and long noncoding RNAs in this process. Finally, we will discuss how these new mechanistic insights might be exploited to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Yang Hao
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - David Baker
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
38
|
Chu Y, Chen Y, Li M, Shi D, Wang B, Lian Y, Cheng X, Wang X, Xu M, Cheng T, Shi J, Yuan W. Six1 regulates leukemia stem cell maintenance in acute myeloid leukemia. Cancer Sci 2019; 110:2200-2210. [PMID: 31050834 PMCID: PMC6609858 DOI: 10.1111/cas.14033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/10/2019] [Accepted: 05/01/2019] [Indexed: 12/28/2022] Open
Abstract
Molecular genetic changes in acute myeloid leukemia (AML) play crucial roles in leukemogenesis, including recurrent chromosome translocations, epigenetic/spliceosome mutations and transcription factor aberrations. Six1, a transcription factor of the Sine oculis homeobox (Six) family, has been shown to transform normal hematopoietic progenitors into leukemia in cooperation with Eya. However, the specific role and the underlying mechanism of Six1 in leukemia maintenance remain unexplored. Here, we showed increased expression of SIX1 in AML patients and murine leukemia stem cells (c‐Kit+ cells, LSCs). Importantly, we also observed that a higher level of Six1 in human patients predicts a worse prognosis. Notably, knockdown of Six1 significantly prolonged the survival of MLL‐AF9‐induced AML mice with reduced peripheral infiltration and tumor burden. AML cells from Six1‐knockdown (KD) mice displayed a significantly decreased number and function of LSC, as assessed by the immunophenotype, colony‐forming ability and limiting dilution assay. Further analysis revealed the augmented apoptosis of LSC and decreased expression of glycolytic genes in Six1 KD mice. Overall, our data showed that Six1 is essential for the progression of MLL‐AF9‐induced AML via maintaining the pool of LSC.
Collapse
Affiliation(s)
- Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yangpeng Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Mengke Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Deyang Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Lian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
39
|
Monteiro AC, Muenzner JK, Andrade F, Rius FE, Ostalecki C, Geppert CI, Agaimy A, Hartmann A, Fujita A, Schneider-Stock R, Jasiulionis MG. Gene expression and promoter methylation of angiogenic and lymphangiogenic factors as prognostic markers in melanoma. Mol Oncol 2019; 13:1433-1449. [PMID: 31069961 PMCID: PMC6547615 DOI: 10.1002/1878-0261.12501] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 01/06/2023] Open
Abstract
The high mortality rate of melanoma is broadly associated with its metastatic potential. Tumor cell dissemination is strictly dependent on vascularization; therefore, angiogenesis and lymphangiogenesis play an essential role in metastasis. Hence, a better understanding of the players of tumor vascularization and establishing them as new molecular biomarkers might help to overcome the poor prognosis of melanoma patients. Here, we further characterized a linear murine model of melanoma progression and showed that the aggressiveness of melanoma cells is closely associated with high expression of angiogenic factors, such as Vegfc, Angpt2, and Six1, and that blockade of the vascular endothelial growth factor pathway by the inhibitor axitinib abrogates their tumorigenic potential in vitro and in the in vivo chicken chorioallantoic membrane assay. Furthermore, analysis of The Cancer Genome Atlas data revealed that the expression of the angiogenic factor ANGPT2 (P‐value = 0.044) and the lymphangiogenic receptor VEGFR‐3 (P‐value = 0.002) were independent prognostic factors of overall survival in melanoma patients. Enhanced reduced representation bisulfite sequencing‐based methylome profiling revealed for the first time a link between abnormal VEGFC, ANGPT2, and SIX1 gene expression and promoter hypomethylation in melanoma cells. In patients, VEGFC (P‐value = 0.031), ANGPT2 (P‐value < 0.001), and SIX1 (P‐value = 0.009) promoter hypomethylation were independent prognostic factors of shorter overall survival. Hence, our data suggest that these angio‐ and lymphangiogenesis factors are potential biomarkers of melanoma prognosis. Moreover, these findings strongly support the applicability of our melanoma progression model to unravel new biomarkers for this aggressive human disease.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.,Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Julienne K Muenzner
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Fernando Andrade
- Department of Computer Science, Institute of Mathematics and Statistics, Universidade de São Paulo, Brazil
| | - Flávia Eichemberger Rius
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Christian Ostalecki
- Department of Dermatology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - André Fujita
- Department of Computer Science, Institute of Mathematics and Statistics, Universidade de São Paulo, Brazil
| | - Regine Schneider-Stock
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | | |
Collapse
|
40
|
Franchitto A, Overi D, Mancinelli R, Mitterhofer AP, Muiesan P, Tinti F, Umbro I, Hubscher SG, Onori P, Gaudio E, Carpino G. Peribiliary gland damage due to liver transplantation involves peribiliary vascular plexus and vascular endothelial growth factor. Eur J Histochem 2019; 63:3022. [PMID: 31113191 PMCID: PMC6517787 DOI: 10.4081/ejh.2019.3022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Extrahepatic bile ducts are characterized by the presence of peribiliary glands (PBGs), which represent stem cell niches implicated in biliary regeneration. Orthotopic liver transplantation may be complicated by non-anastomotic strictures (NAS) of the bile ducts, which have been associated with ischemic injury of PBGs and occur more frequently in livers obtained from donors after circulatory death than in those from brain-dead donors. The aims of the present study were to investigate the PBG phenotype in bile ducts after transplantation, the integrity of the peribiliary vascular plexus (PVP) around PBGs, and the expression of vascular endothelial growth factor-A (VEGF-A) by PBGs. Transplanted ducts obtained from patients who underwent liver transplantation were studied (N=62). Controls included explanted bile duct samples not used for transplantation (N=10) with normal histology. Samples were processed for histology, immunohistochemistry and immunofluorescence. Surface epithelium is severely injured in transplanted ducts; PBGs are diffusely damaged, particularly in ducts obtained from circulatory-dead compared to brain-dead donors. PVP is reduced in transplanted compared to controls. PBGs in transplanted ducts contain more numerous progenitor and proliferating cells compared to controls, show higher positivity for VEGF-A compared to controls, and express VEGF receptor-2. In conclusion, PBGs and associated PVP are damaged in transplanted extrahepatic bile ducts; however, an activation of the PBG niche takes place and is characterized by proliferation and VEGF-A expression. This response could have a relevant role in reconstituting biliary epithelium and vascular plexus and could be implicated in the genesis of non-anastomotic strictures.
Collapse
Affiliation(s)
- Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Garnier L, Gkountidi AO, Hugues S. Tumor-Associated Lymphatic Vessel Features and Immunomodulatory Functions. Front Immunol 2019; 10:720. [PMID: 31024552 PMCID: PMC6465591 DOI: 10.3389/fimmu.2019.00720] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
The lymphatic system comprises a network of lymphoid tissues and vessels that drains the extracellular compartment of most tissues. During tumor development, lymphatic endothelial cells (LECs) substantially expand in response to VEGFR-3 engagement by VEGF-C produced in the tumor microenvironment, a process known as tumor-associated lymphangiogenesis. Lymphatic drainage from the tumor to the draining lymph nodes consequently increases, powering interstitial flow in the tumor stroma. The ability of a tumor to induce and activate lymphatic growth has been positively correlated with metastasis. Much effort has been made to identify genes responsible for tumor-associated lymphangiogenesis. Inhibition of lymphangiogenesis with soluble VEGFR-3 or with specific monoclonal antibodies decreases tumor spread to LNs in rodent models. Importantly, tumor-associated lymphatics do not only operate as tumor cell transporters but also play critical roles in anti-tumor immunity. Therefore, metastatic as well as primary tumor progression can be affected by manipulating tumor-associated lymphatic remodeling or function. Here, we review and discuss our current knowledge on the contribution of LECs immersed in the tumor microenvironment as immunoregulators, as well as a possible functional remodeling of LECs subsets depending on the organ microenvironment.
Collapse
Affiliation(s)
- Laure Garnier
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anastasia-Olga Gkountidi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stephanie Hugues
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Liu D, Li L, Zhang XX, Wan DY, Xi BX, Hu Z, Ding WC, Zhu D, Wang XL, Wang W, Feng ZH, Wang H, Ma D, Gao QL. Correction: SIX1 Promotes Tumor Lymphangiogenesis by Coordinating TGFβ Signals That Increase Expression of VEGF-C. Cancer Res 2019; 79:1715. [PMID: 30936079 DOI: 10.1158/0008-5472.can-19-0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Cote B, Rao D, Alany RG, Kwon GS, Alani AW. Lymphatic changes in cancer and drug delivery to the lymphatics in solid tumors. Adv Drug Deliv Rev 2019; 144:16-34. [PMID: 31461662 DOI: 10.1016/j.addr.2019.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Although many solid tumors use the lymphatic system to metastasize, there are few treatment options that directly target cancer present in the lymphatic system, and those that do are highly invasive, uncomfortable, and/or have limitations. In this review we provide a brief overview of lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the mechanisms by which these changes occur, and highlight limitations of lymphatic drug delivery. We then go on to summarize relevant techniques and new research for targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, and actively targeted nanomedicine.
Collapse
|
44
|
Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, Liu Y, Zhou X, Zhang T, Gong C, Wei X, Liu D, Sun C, Chen G, Hu J, Meng L, Zhou J, Sawada K, Fruscio R, Grunt TW, Wischhusen J, Vargas-Hernández VM, Pothuri B, Coleman RL. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med 2019; 216:688-703. [PMID: 30710055 PMCID: PMC6400537 DOI: 10.1084/jem.20180765] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/02/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
The study provides insights in HGSOC by identifying that ascitic CAFs selectively recruit ITGA5high ascitic tumor cells to form heterotypic spheroids named metastatic units (MUs), which actively engage in peritoneal metastasis, discriminates HGSOC from LGSOC, and act as therapeutic targets in hampering OC metastasis. High-grade serous ovarian cancer (HGSOC) is hallmarked by early onset of peritoneal dissemination, which distinguishes it from low-grade serous ovarian cancer (LGSOC). Here, we describe the aggressive nature of HGSOC ascitic tumor cells (ATCs) characterized by integrin α5high (ITGA5high) ATCs, which are prone to forming heterotypic spheroids with fibroblasts. We term these aggregates as metastatic units (MUs) in HGSOC for their advantageous metastatic capacity and active involvement in early peritoneal dissemination. Intriguingly, fibroblasts inside MUs support ATC survival and guide their peritoneal invasion before becoming essential components of the tumor stroma in newly formed metastases. Cancer-associated fibroblasts (CAFs) recruit ITGA5high ATCs to form MUs, which further sustain ATC ITGA5 expression by EGF secretion. Notably, LGSOC is largely devoid of CAFs and the resultant MUs, which might explain its metastatic delay. These findings identify a specialized MU architecture that amplifies the tumor–stroma interaction and promotes transcoelomic metastasis in HGSOC, providing the basis for stromal fibroblast-oriented interventions in hampering OC peritoneal propagation.
Collapse
Affiliation(s)
- Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zongyuan Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sen Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoshui Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taoran Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Gong
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junbo Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Yamadaoka Suita, Osaka, Japan
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, San Gerardo Hospital, Monza, Italy.,Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Thomas W Grunt
- Signaling Networks Program, Division of Oncology, Department of Medicine I, Comprehensive Cancer Center & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | - Jörg Wischhusen
- Department of Obstetrics and Gynecology, Experimental Tumor Immunology, University of Würzburg Medical School, Würzburg, Germany
| | | | - Bhavana Pothuri
- Division of Gynecological Oncology, NYU Langone Medical Center, Perlmutter Cancer Center, New York, NY
| | - Robert L Coleman
- Department of Gynecological Oncology & Reproductive Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
45
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
46
|
Zheng X, Liu Q, Yi M, Qin S, Wu K. The regulation of cytokine signaling by retinal determination gene network pathway in cancer. Onco Targets Ther 2018; 11:6479-6487. [PMID: 30323623 PMCID: PMC6177397 DOI: 10.2147/ott.s176113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor environment plays a pivotal role in determining cancer biology characteristics. Cytokine factors, as a critical component in tumor milieu, execute distinct functions in the process of tumorigenesis and progression via the autocrine or paracrine manner. The retinal determination gene network (RDGN), which mainly comprised DACH, SIX, and EYA family members, is required for the organ development in mammalian species. While the aberrant expression of RDGN is involved in the proliferation, apoptosis, angiogenesis, and metastasis of tumors via interacting with different cytokine-related signals, such as CXCL8, IL-6, TGF-β, FGF, and VEGF, in a cell- or tissue-dependent manner. Thus, joint detection of this pathway might be used as a potential biomarker for the stratification of target therapy and for the precision prediction of the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xinhua Zheng
- Department of Clinical Medicine, Medical School of Pingdingshan University, Pingdingshan, Henan 467000, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| |
Collapse
|
47
|
Zhou CF, Ma J, Huang L, Yi HY, Zhang YM, Wu XG, Yan RM, Liang L, Zhong M, Yu YH, Wu S, Wang W. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene 2018; 38:1256-1268. [PMID: 30254211 PMCID: PMC6363643 DOI: 10.1038/s41388-018-0511-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/03/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Cancer-secreted exosomal miRNAs are emerging mediators of cancer-stromal cross-talk in the tumor environment. Our previous miRNAs array of cervical squamous cell carcinoma (CSCC) clinical specimens identified upregulation of miR-221-3p. Here, we show that miR-221-3p is closely correlated with peritumoral lymphangiogenesis and lymph node (LN) metastasis in CSCC. More importantly, miR-221-3p is characteristically enriched in and transferred by CSCC-secreted exosomes into human lymphatic endothelial cells (HLECs) to promote HLECs migration and tube formation in vitro, and facilitate lymphangiogenesis and LN metastasis in vivo according to both gain-of-function and loss-of-function experiments. Furthermore, we identify vasohibin-1 (VASH1) as a novel direct target of miR-221-3p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of VASH1 could respectively rescue and simulate the effects induced by exosomal miR-221-3p. Importantly, the miR-221-3p-VASH1 axis activates the ERK/AKT pathway in HLECs independent of VEGF-C. Finally, circulating exosomal miR-221-3p levels also have biological function in promoting HLECs sprouting in vitro and are closely associated with tumor miR-221-3p expression, lymphatic VASH1 expression, lymphangiogenesis, and LN metastasis in CSCC patients. In conclusion, CSCC-secreted exosomal miR-221-3p transfers into HLECs to promote lymphangiogenesis and lymphatic metastasis via downregulation of VASH1 and may represent a novel diagnostic biomarker and therapeutic target for metastatic CSCC patients in early stages.
Collapse
Affiliation(s)
- Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Hong-Yan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Mei Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
48
|
Roles of the TGF-β⁻VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. Int J Mol Sci 2018; 19:ijms19092487. [PMID: 30142879 PMCID: PMC6163754 DOI: 10.3390/ijms19092487] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022] Open
Abstract
Lymphatic vessels drain excess tissue fluids to maintain the interstitial environment. Lymphatic capillaries develop during the progression of tissue fibrosis in various clinical and pathological situations, such as chronic kidney disease, peritoneal injury during peritoneal dialysis, tissue inflammation, and tumor progression. The role of fibrosis-related lymphangiogenesis appears to vary based on organ specificity and etiology. Signaling via vascular endothelial growth factor (VEGF)-C, VEGF-D, and VEGF receptor (VEGFR)-3 is a central molecular mechanism for lymphangiogenesis. Transforming growth factor-β (TGF-β) is a key player in tissue fibrosis. TGF-β induces peritoneal fibrosis in association with peritoneal dialysis, and also induces peritoneal neoangiogenesis through interaction with VEGF-A. On the other hand, TGF-β has a direct inhibitory effect on lymphatic endothelial cell growth. We proposed a possible mechanism of the TGF-β–VEGF-C pathway in which TGF-β promotes VEGF-C production in tubular epithelial cells, macrophages, and mesothelial cells, leading to lymphangiogenesis in renal and peritoneal fibrosis. Connective tissue growth factor (CTGF) is also involved in fibrosis-associated renal lymphangiogenesis through interaction with VEGF-C, in part by mediating TGF-β signaling. Further clarification of the mechanism might lead to the development of new therapeutic strategies to treat fibrotic diseases.
Collapse
|
49
|
Duan L, Ye L, Zhuang L, Zou X, Liu S, Zhang Y, Zhang L, Jin C, Huang Y. VEGFC/VEGFR3 axis mediates TGFβ1-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cells. PLoS One 2018; 13:e0200452. [PMID: 29995950 PMCID: PMC6040758 DOI: 10.1371/journal.pone.0200452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023] Open
Abstract
In the tumor progression, transforming growth factor β1 (TGFβ1) plays a critical role in tumorigenesis as well as metastasis. It is known that high plasma level of TGFβ1 in patients with advanced non-small cell lung cancer (NSCLC) is correlated with poor prognostics. In addition, the generation of cancer stem-like cells is associated with metastasis, drug resistance, and tumor recurrence, which also lead to poor outcomes in NSCLC patients. However, it remains unclear how TGFβ1 promotes NSCLC cells to acquire stem-like properties and accelerate tumor metastasis. In our study, we found that short term TGFβ1 treatment resulted in a significant epithelial-mesenchymal transition (EMT) morphological change in TGFβ1-sensitive NSCLC cells but not in insensitive cells. Western blotting confirmed increased Vimentin and reduced E-Cadherin protein expression after TGFβ1 treatment in A549, NCI-H1993, and NCI-H358 cells. TGFβ1 incubation dramatically decreased in vitro cell proliferation and increased cell invasion in TGFβ1-sensitive NSCLC cells but not in NCI-H1975, NCI-H1650, and HCC827 cells. Moreover, TGFβ1 was able to enhance the mRNA expression of Oct4, Nanog and Sox2 and drastically increased anchorage-independent colony formation in TGFβ1-sensitive NSCLC cells, suggesting the acquisition of cancer stem-like properties. Interestingly, we found that vascular endothelial growth factor receptor 3 (VEGFR3) mRNA expression was significantly elevated in TGFβ1-sensitive NSCLC cells compared to insensitive cells. And TGFβ1 was capable of inducing VEGF-C gene expression. Pharmacological blocking TGFβ type I receptor kinase (ALK5) significantly inhibited TGFβ1-induced VEGF-C expression. Silencing of ALK5 by siRNA also dramatically reduced TGFβ1-induced VEGF-C expression in TGFβ1-sensitive NSCLC cells. Therefore, TGFβ1 contributes for NSCLC metastasis through promoting EMT, generation of high invasive cancer cells with stem-like properties, and increasing VEGF-C expression. Blocking TGFβ pathway is a potential therapeutic target in human non-small cell lung cancer.
Collapse
Affiliation(s)
- Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lianhua Ye
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Zhuang
- Department of Palliative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolan Zou
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shan Liu
- Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Congguo Jin
- Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunchao Huang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
50
|
Steroid receptor coactivator-1 interacts with NF-κB to increase VEGFC levels in human thyroid cancer. Biosci Rep 2018; 38:BSR20180394. [PMID: 29717026 PMCID: PMC5997793 DOI: 10.1042/bsr20180394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 11/17/2022] Open
Abstract
Thyroid cancer is the most common endocrine cancer, and has a high incidence of lymphatic metastasis. Vascular endothelial growth factor C (VEGFC) is essential for development of lymphatic vessels and lymphatic metastases during carcinogenesis. Steroid receptor coactivator-1 (SRC-1) interacts with nuclear receptors and transcription factors to promote tumor proliferation and metastasis. However, the correlation between SRC-1 and VEGFC levels in the lymphatic metastases of thyroid cancer remains unclear. We analyzed 20-paired specimens of thyroid cancer tissue and normal thyroid tissue and found increased levels of SRC-1 and VEGFC proteins in 13/20 and 15/20 thyroid cancer specimens, respectively, when compared with those levels in specimens of normal thyroid tissue. A high level of SRC-1 expression was positively correlated with VEGFC and lymphatic endothelial cell marker LYVE-1 expression. Papillary thyroid carcinoma cell line TPC-1 displayed high levels of SRC-1 and VEGFC expression and was selected for stable knockdown of SRC-1 in vitro Inhibition of SRC-1 significantly reduced the VEGFC levels in TPC-1 cells. We found that SRC-1 binds to transcription factor NF-kB (p50/p65), and that this coactivation complex directly promoted VEGFC transcription, which could be abrogated by SRC-1 knockdown. Up-regulated NF-kB signaling was also confirmed in thyroid cancer tissues. In vivo studies showed that SRC-1 knockdown restricted tumor growth, reduced the numbers of LYVE-1-positive lymphatic vessels, and decreased the levels of VEGFC in tumor tissues. These results suggest a tumorigenic role for SRC-1 in thyroid cancer via its ability to regulate VEGFC expression.
Collapse
|