1
|
Liu C, Xia S, Wang B, Li J, Wang X, Ren Y, Zhou X. Osteopontin promotes tumor microenvironment remodeling and therapy resistance. Cancer Lett 2025; 617:217618. [PMID: 40058726 DOI: 10.1016/j.canlet.2025.217618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Osteopontin (OPN) is a multifunctional secretory protein which can be expressed and secreted by a variety of tumor cells and immune cells. Tumor microenvironment remodeling provides favorable conditions for tumor progression, immune escape and therapy resistance. As a bridge molecule in crosstalk between tumor cells and tumor microenvironment, OPN can not only come from tumor cells to regulate the functions of various immune cells, promoting the formation of immunosuppressive environment, but also can be secreted by immune cells to act on tumor cells, leading to tumor progression, thus constructing a positive feedback regulatory network. Here, we summarize the molecular structure, source and receptor of OPN, and clarify the mechanism of OPN on tumor-associated macrophages, dendritic cells, myeloid-derived suppressor cells, tumor progression and therapy resistance to comprehensively understand the great potential of OPN as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
- Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Shunjin Xia
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jiayong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xuyan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
2
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
3
|
Chatterjee D, Bhattacharya S, Kumari L, Datta A. Aptamers: ushering in new hopes in targeted glioblastoma therapy. J Drug Target 2024; 32:1005-1028. [PMID: 38923419 DOI: 10.1080/1061186x.2024.2373306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma, a formidable brain cancer, has remained a therapeutic challenge due to its aggressive nature and resistance to conventional treatments. Recent data indicate that aptamers, short synthetic DNA or RNA molecules can be used in anti-cancer therapy due to their better tumour penetration, specific binding affinity, longer retention in tumour sites and their ability to cross the blood-brain barrier. With the ability to modify these oligonucleotides through the selection process, and using rational design to modify them, post-SELEX aptamers offer several advantages in glioblastoma treatment, including precise targeting of cancer cells while sparing healthy tissue. This review discusses the pivotal role of aptamers in glioblastoma therapy and diagnosis, emphasising their potential to enhance treatment efficacy and also highlights recent advancements in aptamer-based therapies which can transform the landscape of glioblastoma treatment, offering renewed hope to patients and clinicians alike.
Collapse
Affiliation(s)
- Debarpan Chatterjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Srijan Bhattacharya
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Leena Kumari
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
4
|
Wang C, Li Y, Wang L, Han Y, Gao X, Li T, Liu M, Dai L, Du R. SPP1 represents a therapeutic target that promotes the progression of oesophageal squamous cell carcinoma by driving M2 macrophage infiltration. Br J Cancer 2024; 130:1770-1782. [PMID: 38600327 PMCID: PMC11130281 DOI: 10.1038/s41416-024-02683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment (TME). However, the crosstalk between oesophageal squamous cell carcinoma (ESCC) cells and TAMs remains largely unexplored. METHODS Clinical samples and the TCGA database were used to evaluate the relevance of SPP1 and TAM infiltration in ESCC. Mouse models were constructed to investigate the roles of macrophages educated by SPP1 in ESCC. Macrophage phenotypes were determined using qRT‒PCR and immunohistochemical staining. RNA sequencing was performed to elucidate the mechanism. RESULTS Increasing expression of SPP1 correlated with M2-like TAM accumulation in ESCC, and they both predicted poor prognosis in the ESCC cohort. Knockdown of SPP1 significantly inhibited the infiltration of M2 TAMs in xenograft tumours. In vivo mouse model experiments showed that SPP1-mediated education of macrophages plays an essential role in the progression of ESCC. Mechanistically, SPP1 recruited macrophages and promoted M2 polarisation via CD44/PI3K/AKT signalling activation and then induced VEGFA and IL6 secretion to sustain ESCC progression. Finally, blockade of SPP1 with RNA aptamer significantly inhibited tumour growth and M2 TAM infiltration in xenograft mouse models. CONCLUSIONS This study highlights SPP1-mediated crosstalk between ESCC cells and TAMs in ESCC. SPP1 could serve as a potential target in ESCC therapy.
Collapse
Affiliation(s)
- Chen Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Nuclear Medicine, Xinxiang Central Hospital, Xinxiang, 453002, Henan, China
| | - Yutong Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Linhong Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohui Gao
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Man Liu
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, 450000, Henan, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Renle Du
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Medical Laboratory of Tumor Molecular Biomarkers, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory for Pharmacology of Liver Diseases, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- College of Public Health, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Choi CH, Lee JW, Bae DS, Kang ES, Cho D, Kim YM, Kim K, Kim JW, Kim HS, Kim YT, Lee JY, Lim MC, Oh T, Song B, Jeon I, Park M, Kim WH, Kang CY, Kim BG. Efficacy and safety of BVAC-C in HPV type 16- or 18-positive cervical carcinoma who failed 1st platinum-based chemotherapy: a phase I/IIa study. Front Immunol 2024; 15:1371353. [PMID: 38605958 PMCID: PMC11007103 DOI: 10.3389/fimmu.2024.1371353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background BVAC-C, a B cell- and monocyte-based immunotherapeutic vaccine transfected with recombinant HPV E6/E7, was well tolerated in HPV-positive recurrent cervical carcinoma patients in a phase I study. This phase IIa study investigates the antitumor activity of BVAC-C in patients with HPV 16- or 18-positive cervical cancer who had experienced recurrence after a platinum-based combination chemotherapy. Patients and methods Patients were allocated to 3 arms; Arm 1, BVAC-C injection at 0, 4, 8 weeks; Arm 2, BVAC-C injection at 0, 4, 8, 12 weeks; Arm 3, BVAC-C injection at 0, 4, 8, 12 weeks with topotecan at 2, 6, 10, 14 weeks. Primary endpoints were safety and objective response rate (ORR) as assessed by an independent radiologist according to Response Evaluation Criteria in Solid Tumors version 1.1. Secondary endpoints included the disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS). Results Of the 30 patients available for analysis, the ORR was 19.2% (Arm 1: 20.0% (3/15), Arm 2: 33.3% (2/6), Arm3: 0%) and the DCR was 53.8% (Arm 1: 57.1%, Arm 2: 28.6%, Arm3: 14.3%). The median DOR was 7.5 months (95% CI 7.1-not reported), the median PFS was 5.8 months (95% CI 4.2-10.3), and the median OS was 17.7 months (95% CI 12.0-not reported). All evaluated patients showed not only inflammatory cytokine responses (IFN-γ or TNF-α) but also potent E6/E7-specific T cell responses upon vaccinations. Immune responses of patients after vaccination were correlated with their clinical responses. Conclusion BVAC-C represents a promising treatment option and a manageable safety profile in the second-line setting for this patient population. Further studies are needed to identify potential biomarkers of response. Clinical trial registration ClinicalTrials.gov, identifier NCT02866006.
Collapse
Affiliation(s)
- Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, Asan Medical Center, Seoul, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Tae Kim
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Yun Lee
- Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myong Cheol Lim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | | | | | - Insu Jeon
- Cellid. Inc, Seoul, Republic of Korea
| | | | | | | | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Mamand DR, Bazaz S, Mohammad DK, Saher O, Wiklander OPB, Sadeghi B, Hassan M, El-Andaloussi S, Abedi-Valugerdi M. Tumor cell derived osteopontin and prostaglandin E2 synergistically promote the expansion of myeloid derived suppressor cells during the tumor immune escape phase. Int Immunopharmacol 2024; 129:111584. [PMID: 38364741 DOI: 10.1016/j.intimp.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.
Collapse
Affiliation(s)
- Doste R Mamand
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Safa Bazaz
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, SE-141 83 Stockholm, Sweden; College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Erbil 44002, Iraq
| | - Osama Saher
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Oscar P B Wiklander
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Experimental Cancer Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Sweden
| | - Samir El-Andaloussi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
7
|
Du W, Xia X, Hu F, Yu J. Extracellular matrix remodeling in the tumor immunity. Front Immunol 2024; 14:1340634. [PMID: 38332915 PMCID: PMC10850336 DOI: 10.3389/fimmu.2023.1340634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
The extracellular matrix (ECM) is a significant constituent of tumors, fulfilling various essential functions such as providing mechanical support, influencing the microenvironment, and serving as a reservoir for signaling molecules. The abundance and degree of cross-linking of ECM components are critical determinants of tissue stiffness. In the process of tumorigenesis, the interaction between ECM and immune cells within the tumor microenvironment (TME) frequently leads to ECM stiffness, thereby disrupting normal mechanotransduction and promoting malignant progression. Therefore, acquiring a thorough comprehension of the dysregulation of ECM within the TME would significantly aid in the identification of potential therapeutic targets for cancer treatment. In this regard, we have compiled a comprehensive summary encompassing the following aspects: (1) the principal components of ECM and their roles in malignant conditions; (2) the intricate interaction between ECM and immune cells within the TME; and (3) the pivotal regulators governing the onco-immune response in ECM.
Collapse
Affiliation(s)
- Wei Du
- Department of Targeting Therapy and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayun Yu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Shea AA, Heffron CL, Grieco JP, Roberts PC, Schmelz EM. Obesity modulates the cellular and molecular microenvironment in the peritoneal cavity: implication for ovarian cancer risk. Front Immunol 2024; 14:1323399. [PMID: 38264656 PMCID: PMC10803595 DOI: 10.3389/fimmu.2023.1323399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Abdominal obesity increases the risk of developing ovarian cancer but the molecular mechanisms of how obesity supports ovarian cancer development remain unknown. Here we investigated the impact of obesity on the immune cell and gene expression profiles of distinct abdominal tissues, focusing on the peritoneal serous fluid (PSF) and the omental fat band (OFB) as critical determinants for the dissemination of ovarian metastases and early metastatic events within the peritoneal cavity. Methods Female C57BL/6 mice were fed a low-fat (LFD) or a high-fat diet (HFD) for 12 weeks until the body weights in the HFD group were significantly higher and the mice displayed an impaired glucose tolerance. Then the mice were injected with the murine ovarian cancer cells (MOSE-LTICv) while remaining on their diets. After 21 days, the mice were sacrificed, tumor burden was evaluated and tissues were harvested. The immune cell composition of abdominal tissues and changes in gene expression in the PSF and OFB were evaluated by flow cytometry and qPCR RT2-profiler PCR arrays and confirmed by qRT-PCR, respectively. Other peritoneal adipose tissues including parametrial and retroperitoneal white adipose tissues as well as blood were also investigated. Results While limited effects were observed in the other peritoneal adipose tissues, feeding mice the HFD led to distinct changes in the immune cell composition in the PSF and the OFB: a depletion of B cells but an increase in myeloid-derived suppressor cells (MDSC) and mono/granulocytes, generating pro-inflammatory environments with increased expression of cyto- and chemokines, and genes supporting adhesion, survival, and growth, as well as suppression of apoptosis. This was associated with a higher peritoneal tumor burden compared to mice fed a LFD. Changes in cellular and genetic profiles were often exacerbated by the HFD. There was a large overlap in genes that were modulated by both the HFD and the cancer cells, suggesting that this 'genetic fingerprint' is important for ovarian metastases to the OFB. Discussion In accordance with the 'seed and soil' theory, our studies show that obesity contributes to the generation of a pro-inflammatory peritoneal environment that supports the survival of disseminating ovarian cancer cells in the PSF and the OFB and enhances the early metastatic adhesion events in the OFB through an increase in extracellular matrix proteins and modulators such as fibronectin 1 and collagen I expression as well as in genes supporting growth and invasion such as Tenacin C. The identified genes could potentially be used as targets for prevention strategies to lower the ovarian cancer risk in women with obesity.
Collapse
Affiliation(s)
- Amanda A. Shea
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Paul C. Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Saup R, Nair N, Shen J, Schmaus A, Thiele W, Garvalov BK, Sleeman JP. Increased Circulating Osteopontin Levels Promote Primary Tumour Growth, but Do Not Induce Metastasis in Melanoma. Biomedicines 2023; 11:biomedicines11041038. [PMID: 37189656 DOI: 10.3390/biomedicines11041038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Osteopontin (OPN) is a phosphoprotein with diverse functions in various physiological and pathological processes. OPN expression is increased in multiple cancers, and OPN within tumour tissue has been shown to promote key stages of cancer development. OPN levels are also elevated in the circulation of cancer patients, which in some cases has been correlated with enhanced metastatic propensity and poor prognosis. However, the precise impact of circulating OPN (cOPN) on tumour growth and progression remains insufficiently understood. To examine the role of cOPN, we used a melanoma model, in which we stably increased the levels of cOPN through adeno-associated virus-mediated transduction. We found that increased cOPN promoted the growth of primary tumours, but did not significantly alter the spontaneous metastasis of melanoma cells to the lymph nodes or lungs, despite an increase in the expression of multiple factors linked to tumour progression. To assess whether cOPN has a role at later stages of metastasis formation, we employed an experimental metastasis model, but again could not detect any increase in pulmonary metastasis in animals with elevated levels of cOPN. These results demonstrate that increased levels of OPN in the circulation play distinct roles during different stages of melanoma progression.
Collapse
|
10
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
11
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
12
|
Wei J, Song R, Sabbagh A, Marisetty A, Shukla N, Fang D, Najem H, Ott M, Long J, Zhai L, Lesniak MS, James CD, Platanias L, Curran M, Heimberger AB. Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. Oncoimmunology 2022; 11:2062827. [PMID: 35433114 PMCID: PMC9009928 DOI: 10.1080/2162402x.2022.2062827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteopontin (OPN) is produced by tumor cells as well as by myeloid cells and is enriched in the tumor microenvironment (TME) of many cancers. Given the roles of OPN in tumor progression and immune suppression, we hypothesized that targeting OPN with aptamers that have high affinity and specificity could be a promising therapeutic strategy. Bi-specific aptamers targeting ligands for cellular internalization were conjugated to siRNAs to suppress OPN were created, and therapeutic leads were selected based on target engagement and in vivo activity. Aptamers as carriers for siRNA approaches were created including a cancer targeting nucleolin aptamer Ncl-OPN siRNA and a myeloid targeting CpG oligodeoxynucleotide (ODN)-OPN siRNA conjugate. These aptamers were selected as therapeutic leads based on 70–90% OPN inhibition in cancer (GL261, 344SQ, 4T1B2b) and myeloid (DC2.4) cells relative to scramble controls. In established immune competent 344SQ lung cancer and 4T1B2b breast cancer models, these aptamers, including in combination, demonstrate therapeutic activity by inhibiting tumor growth. The Ncl-OPN siRNA aptamer demonstrated efficacy in an immune competent orthotopic glioma model administered systemically secondary to the ability of the aptamer to access the glioma TME. Therapeutic activity was demonstrated using both aptamers in a breast cancer brain metastasis model. Targeted inhibition of OPN in tumor cells and myeloid cells using bifunctional aptamers that are internalized by specific cell types and suppress OPN expression once internalized may have clinical potential in cancer treatment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal Shukla
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Charles David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Leonidas Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Michael Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Dai B, Xu J, Li X, Huang L, Hopkins C, Wang H, Yao H, Mi J, Zheng L, Wang J, Tong W, Chow DHK, Li Y, He X, Hu P, Chen Z, Zu H, Li Y, Yao Y, Jiang Q, Qin L. Macrophages in epididymal adipose tissue secrete osteopontin to regulate bone homeostasis. Nat Commun 2022; 13:427. [PMID: 35058428 PMCID: PMC8776868 DOI: 10.1038/s41467-021-27683-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Epididymal white adipose tissue (eWAT) secretes an array of cytokines to regulate the metabolism of organs and tissues in high-fat diet (HFD)-induced obesity, but its effects on bone metabolism are not well understood. Here, we report that macrophages in eWAT are a main source of osteopontin, which selectively circulates to the bone marrow and promotes the degradation of the bone matrix by activating osteoclasts, as well as modulating bone marrow-derived macrophages (BMDMs) to engulf the lipid droplets released from adipocytes in the bone marrow of mice. However, the lactate accumulation induced by osteopontin regulation blocks both lipolysis and osteoclastogenesis in BMDMs by limiting the energy regeneration by ATP6V0d2 in lysosomes. Both surgical removal of eWAT and local injection of either clodronate liposomes (for depleting macrophages) or osteopontin-neutralizing antibody show comparable amelioration of HFD-induced bone loss in mice. These results provide an avenue for developing therapeutic strategies to mitigate obesity-related bone disorders.
Collapse
Affiliation(s)
- Bingyang Dai
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Le Huang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chelsea Hopkins
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Honglian Wang
- Research Center for Integrated Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, 646000, Luzhou, Sichuan, China
| | - Hao Yao
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Dick Ho-Kiu Chow
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xuan He
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Peijie Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiyue Zu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yixuan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yao Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Klement JD, Poschel DB, Lu C, Merting AD, Yang D, Redd PS, Liu K. Osteopontin Blockade Immunotherapy Increases Cytotoxic T Lymphocyte Lytic Activity and Suppresses Colon Tumor Progression. Cancers (Basel) 2021; 13:cancers13051006. [PMID: 33670921 PMCID: PMC7957528 DOI: 10.3390/cancers13051006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Despite the breakthrough in human cancer immunotherapy, colorectal cancer, except for the small subset of microsatellite instable colorectal cancer (MSI, ~4% total cases), is one of the few human cancers that does not respond to current immune checkpoint inhibitor (ICI) immunotherapy. CTLs are present in both MSI and microsatellite stable (MSS) human colon carcinoma, suggesting that PD-L1-independent mechanisms may exist and suppress CTL activation in the colon tumor microenvironment. We determined that osteopontin (OPN) inhibits tumor-specific cytotoxic T lymphocyte (CTL) lytic activity to promote colon tumor growth in vivo. Accordingly, OPN blockade immunotherapy using OPN neutralization monoclonal antibodies 100D3 and 103D6 suppressed colon tumor growth in vivo. Our findings indicate that 100D3 and 103D6 has the potential to be further developed for colorectal cancer immunotherapy. Abstract Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-1 blockade immunotherapy, necessitating the development of a new immunotherapy. Osteopontin (OPN) is elevated in human colorectal cancer and may function as an immune checkpoint. We aimed at elucidating the mechanism of action of OPN and determining the efficacy of OPN blockade immunotherapy in suppression of colon cancer. We report here that OPN is primarily expressed in tumor cells, myeloid cells, and innate lymphoid cells in human colorectal carcinoma. Spp1 knock out mice exhibit a high incidence and fast growth rate of carcinogen-induced tumors. Knocking out Spp1 in colon tumor cells increased tumor-specific CTL cytotoxicity in vitro and resulted in decreased tumor growth in vivo. The OPN protein level is elevated in the peripheral blood of tumor-bearing mice. We developed four OPN neutralization monoclonal antibodies based on their efficacy in blocking OPN inhibition of T cell activation. OPN clones 100D3 and 103D6 increased the efficacy of tumor-specific CTLs in killing colon tumor cells in vitro and suppressed colon tumor growth in tumor-bearing mice in vivo. Our data indicate that OPN blockade immunotherapy with 100D3 and 103D6 has great potential to be further developed for colorectal cancer immunotherapy and for rendering a colorectal cancer response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China;
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S. Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Chemedimmune Inc., Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; (J.D.K.); (D.B.P.); (A.D.M.); (D.Y.); (P.S.R.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: ; Tel.: +1-706-721-9483
| |
Collapse
|
15
|
Dennison L, Mohan AA, Yarchoan M. Tumor and Systemic Immunomodulatory Effects of MEK Inhibition. Curr Oncol Rep 2021; 23:23. [PMID: 33547983 PMCID: PMC8028056 DOI: 10.1007/s11912-020-01008-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Mitogen-activated protein kinase (MAPK) kinase (MEK) is an integral component of the RAS signaling pathway, one of the most frequently mutated pathways in cancer biology. MEK inhibitors were initially developed to directly target oncogenic signaling, but are recognized to have pleiotropic effects on both tumor cells and lymphocytes. Here, we review the preclinical and clinical evidence that MEK inhibition is immunomodulatory and discuss the potential rationale for combining MEK inhibitors with systemic immunotherapies. RECENT FINDINGS MEK inhibition may modulate the tumor microenvironment (TME) through direct effects on both tumor cells and immune cells. Despite encouraging evidence that MEK inhibition can reprogram the tumor microenvironment (TME) and augment anti-tumor immunity regardless of KRAS/BRAF status, recent clinical outcome studies combining MEK inhibition with systemic immunotherapy have yielded mixed results. The combination of MEK inhibitors plus systemic immunotherapies has been tolerable, but has thus far failed to demonstrate clear evidence of synergistic clinical activity. These results underscore the need to understand the appropriate therapeutic context for this combination. MEK inhibitors have the potential to inhibit oncogenic signaling and reprogram the tumor immune microenvironment, representing an attractive therapy to combine with systemic immunotherapies. Ongoing preclinical and clinical studies will further clarify the immunomodulatory effects of MEK inhibitors to inform the design of rational therapeutic combinations.
Collapse
Affiliation(s)
- Lauren Dennison
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Aditya A Mohan
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA
| | - Mark Yarchoan
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, 21231, USA.
| |
Collapse
|
16
|
Tao H, Liu M, Wang Y, Luo S, Xu Y, Ye B, Zheng L, Meng K, Li L. Icaritin Induces Anti-tumor Immune Responses in Hepatocellular Carcinoma by Inhibiting Splenic Myeloid-Derived Suppressor Cell Generation. Front Immunol 2021; 12:609295. [PMID: 33717093 PMCID: PMC7952329 DOI: 10.3389/fimmu.2021.609295] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Recent studies have demonstrated that splenic extramedullary hematopoiesis (EMH) is an important mechanism for the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissues, and thus contributes to disease progression. Icaritin, a prenylflavonoid derivative from plants of the Epimedium genus, has been implicated as a novel immune-modulator that could prolong the survival of hepatocellular carcinoma (HCC) patients. However, it is unclear whether icaritin achieves its anti-tumor effects via the regulation of MDSCs generated by EMH in HCC. Here, we investigated the anti-tumor potential of icaritin and its mechanism of action in murine HCC. Icaritin suppressed tumor progression and significantly prolonged the survival of mice-bearing orthotopic and subcutaneous HCC tumors. Rather than exerting direct cytotoxic activity against tumor cells, icaritin significantly reduced the accumulation and activation of tumoral and splenic MDSCs, and increased the number and activity of cytotoxic T cells. Mechanistically, icaritin downregulates the tumor-associated splenic EMH, thereby reducing the generation and activation of MDSCs. The inhibitory effects of icaritin on human MDSCs in vitro were verified in short-term culture with cord-blood derived hematopoietic precursors. Furthermore, icaritin synergistically enhanced the therapeutic efficacy of immune checkpoint blockade therapy in HCC mice. These findings revealed that icaritin dampens tumoral immunosuppression to elicit anti-tumor immune responses by preventing MDSC generation via the attenuation of EMH. Thus, icaritin may serve as a novel adjuvant or even a stand-alone therapeutic agent for the effective treatment of HCC.
Collapse
Affiliation(s)
- Huimin Tao
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Mingyu Liu
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Wang
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shufeng Luo
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongquan Xu
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Ye
- Beijing Shenogen Biomedical Ltd, Beijing, China
| | - Limin Zheng
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kun Meng
- Beijing Shenogen Biomedical Ltd, Beijing, China
- Kun Meng
| | - Lian Li
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lian Li
| |
Collapse
|
17
|
IER2-induced senescence drives melanoma invasion through osteopontin. Oncogene 2021; 40:6494-6512. [PMID: 34611309 PMCID: PMC8616759 DOI: 10.1038/s41388-021-02027-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Expression of the immediate-early response gene IER2 has been associated with the progression of several types of cancer, but its functional role is poorly understood. We found that increased IER2 expression in human melanoma is associated with shorter overall survival, and subsequently investigated the mechanisms through which IER2 exerts this effect. In experimental melanoma models, sustained expression of IER2 induced senescence in a subset of melanoma cells in a p53/MAPK/AKT-dependent manner. The senescent cells produced a characteristic secretome that included high levels of the extracellular phosphoglycoprotein osteopontin. Nuclear localization of the IER2 protein was critical for both the induction of senescence and osteopontin secretion. Osteopontin secreted by IER2-expressing senescent cells strongly stimulated the migration and invasion of non-senescent melanoma cells. Consistently, we observed coordinate expression of IER2, p53/p21, and osteopontin in primary human melanomas and metastases, highlighting the pathophysiological relevance of IER2-mediated senescence in melanoma progression. Together, our study reveals that sustained IER2 expression drives melanoma invasion and progression through stimulating osteopontin secretion via the stochastic induction of senescence.
Collapse
|
18
|
Osteopontin: A Key Regulator of Tumor Progression and Immunomodulation. Cancers (Basel) 2020; 12:cancers12113379. [PMID: 33203146 PMCID: PMC7698217 DOI: 10.3390/cancers12113379] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anti-PD-1/PD-L1 and anti-CTLA-4-based immune checkpoint blockade (ICB) immunotherapy have recently emerged as a breakthrough in human cancer treatment. Durable efficacy has been achieved in many types of human cancers. However, not all human cancers respond to current ICB immunotherapy and only a fraction of the responsive cancers exhibit efficacy. Osteopontin (OPN) expression is highly elevated in human cancers and functions as a tumor promoter. Emerging data suggest that OPN may also regulate immune cell function in the tumor microenvironment. This review aims at OPN function in human cancer progression and new findings of OPN as a new immune checkpoint. We propose that OPN compensates PD-L1 function to promote tumor immune evasion, which may underlie human cancer non-response to current ICB immunotherapy. Abstract OPN is a multifunctional phosphoglycoprotein expressed in a wide range of cells, including osteoclasts, osteoblasts, neurons, epithelial cells, T, B, NK, NK T, myeloid, and innate lymphoid cells. OPN plays an important role in diverse biological processes and is implicated in multiple diseases such as cardiovascular, diabetes, kidney, proinflammatory, fibrosis, nephrolithiasis, wound healing, and cancer. In cancer patients, overexpressed OPN is often detected in the tumor microenvironment and elevated serum OPN level is correlated with poor prognosis. Initially identified in activated T cells and termed as early T cell activation gene, OPN links innate cells to adaptive cells in immune response to infection and cancer. Recent single cell RNA sequencing revealed that OPN is primarily expressed in tumor cells and tumor-infiltrating myeloid cells in human cancer patients. Emerging experimental data reveal a key role of OPN is tumor immune evasion through regulating macrophage polarization, recruitment, and inhibition of T cell activation in the tumor microenvironment. Therefore, in addition to its well-established direct tumor cell promotion function, OPN also acts as an immune checkpoint to negatively regulate T cell activation. The OPN protein level is highly elevated in peripheral blood of human cancer patients. OPN blockade immunotherapy with OPN neutralization monoclonal antibodies (mAbs) thus represents an attractive approach in human cancer immunotherapy.
Collapse
|
19
|
Steenbrugge J, De Jaeghere EA, Meyer E, Denys H, De Wever O. Splenic Hematopoietic and Stromal Cells in Cancer Progression. Cancer Res 2020; 81:27-34. [PMID: 32998999 DOI: 10.1158/0008-5472.can-20-2339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Tumor-derived secretory factors orchestrate splenic hematopoietic and stromal cells to fuel metastasis. The spleen acts as a reservoir site for hematopoietic stem and progenitor cells, which are rapidly exploited as myeloid-derived suppressor cells at the cost of tumor-reactive lymphoid cells. Splenic erythroid progenitor cells and mesenchymal stromal cells contribute directly and indirectly to both tumor immune escape and the metastatic cascade. Animal models provide valuable mechanistic insights, but their translation to a clinical setting highlights specific challenges and open issues. In this review, we envision the exploitation of the spleen as a source for novel biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Emiel A De Jaeghere
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hannelore Denys
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
- Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Kiss M, Caro AA, Raes G, Laoui D. Systemic Reprogramming of Monocytes in Cancer. Front Oncol 2020; 10:1399. [PMID: 33042791 PMCID: PMC7528630 DOI: 10.3389/fonc.2020.01399] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023] Open
Abstract
Monocytes influence multiple aspects of tumor progression, including antitumor immunity, angiogenesis, and metastasis, primarily by infiltrating tumors, and differentiating into tumor-associated macrophages. Emerging evidence suggests that the tumor-induced systemic environment influences the development and phenotype of monocytes before their arrival to the tumor site. As a result, circulating monocytes show functional alterations in cancer, such as the acquisition of immunosuppressive activity and reduced responsiveness to inflammatory stimuli. In this review, we summarize available evidence about cancer-induced changes in monopoiesis and its impact on the abundance and function of monocytes in the periphery. In addition, we describe the phenotypical alterations observed in tumor-educated peripheral blood monocytes and highlight crucial gaps in our knowledge about additional cellular functions that may be affected based on transcriptomic studies. We also highlight emerging therapeutic strategies that aim to reverse cancer-induced changes in monopoiesis and peripheral monocytes to inhibit tumor progression and improve therapy responses. Overall, we suggest that an in-depth understanding of systemic monocyte reprogramming will have implications for cancer immunotherapy and the development of clinical biomarkers.
Collapse
Affiliation(s)
- Máté Kiss
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aarushi Audhut Caro
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Pham TN, Spaulding C, Munshi HG. Controlling TIME: How MNK Kinases Function to Shape Tumor Immunity. Cancers (Basel) 2020; 12:cancers12082096. [PMID: 32731503 PMCID: PMC7465005 DOI: 10.3390/cancers12082096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.
Collapse
Affiliation(s)
- Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| |
Collapse
|
22
|
Choi CH, Choi HJ, Lee JW, Kang ES, Cho D, Park BK, Kim YM, Kim DY, Seo H, Park M, Kim W, Choi KY, Oh T, Kang CY, Kim BG. Phase I Study of a B Cell-Based and Monocyte-Based Immunotherapeutic Vaccine, BVAC-C in Human Papillomavirus Type 16- or 18-Positive Recurrent Cervical Cancer. J Clin Med 2020; 9:jcm9010147. [PMID: 31948126 PMCID: PMC7019768 DOI: 10.3390/jcm9010147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
BVAC-C is a B cell-based and monocyte-based immuno-therapeutic vaccine transfected with a recombinant human papillomavirus (HPV) 16/18 E6/E7 gene and loaded with alpha-galactosyl ceramide, which is a natural killer T cell ligand. This phase I study sought to determine the tolerability and immunogenicity of BVAC-C in platinum-resistant recurrent cervical cancer patients. Patients with HPV 16-positive or 18-positive recurrent or persistent cervical cancer who had received at least one prior platinum-based combination chemotherapy were enrolled. BVAC-C was injected intravenously three times every four weeks, and dose escalation was planned in a three-patient cohort design at doses of 1 × 107, 4 × 107, or 1 × 108 cells/dose. Eleven patients were enrolled, and six (55%) patients had received two or more lines of platinum-based chemotherapy prior to enrollment. Treatment-related adverse events (TRAEs) were observed in 21 cycles. Most TRAEs were mild fever (n = 6.55%) or myalgia (n = 4.36%). No dose-limiting toxicities occurred. The overall response rate was 11% among nine patients evaluable, and the duration of response was 10 months. Five patients (56%) achieved a stable disease for 4.2–11 months as their best overall response. The median progression-free survival in all patients was 6.8 months (95% CI, 3.2 to infinite months), and the overall survival rate at 6 and 12 months was 89% (95% CI, 71 to 100%) and 65% (95% CI, 39 to 100%), respectively. BVAC-C induced the activation of natural killer T cells, natural killer cells, and HPV 16/18 E6/E7-specific T cells upon vaccination in all patients evaluated. BVAC-C was well tolerated and demonstrated a durable anti-tumor activity with an immune response in HPV 16-positive or 18-positive recurrent cervical carcinoma patients. A Phase 2 efficacy trial is currently underway.
Collapse
Affiliation(s)
- Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.H.C.); (J.-W.L.)
| | - Hyun Jin Choi
- Department of Obstetrics and Gynecology, Chung-Ang University hospital, College of medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.H.C.); (J.-W.L.)
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.-S.K.); (D.C.)
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (E.-S.K.); (D.C.)
| | - Byung Kwan Park
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yong-Man Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 06351, Korea; (Y.-M.K.); (D.-Y.K.)
| | - Dae-Yeon Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 06351, Korea; (Y.-M.K.); (D.-Y.K.)
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 06351, Korea; (H.S.); (C.-Y.K.)
| | - Myunghwan Park
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Wuhyun Kim
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Ki-Young Choi
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Taegwon Oh
- Cellid, Inc., Seoul 06351, Korea; (M.P.); (W.K.); (K.-Y.C.); (T.O.)
| | - Chang-Yuil Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 06351, Korea; (H.S.); (C.-Y.K.)
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (C.H.C.); (J.-W.L.)
- Correspondence: ; Tel.: +82-2-3410-3519; Fax: +82-2-3410-0630
| |
Collapse
|
23
|
Schultze JL, Mass E, Schlitzer A. Emerging Principles in Myelopoiesis at Homeostasis and during Infection and Inflammation. Immunity 2019; 50:288-301. [PMID: 30784577 DOI: 10.1016/j.immuni.2019.01.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
Myelopoiesis ensures the steady state of the myeloid cell compartment. Technological advances in fate mapping and genetic engineering, as well as the advent of single cell RNA-sequencing, have highlighted the heterogeneity of the hematopoietic system and revealed new concepts in myeloid cell ontogeny. These technologies are also shedding light on mechanisms of myelopoiesis at homeostasis and at different phases of infection and inflammation, illustrating important feedback loops between affected tissues and the bone marrow. We review these findings here and revisit principles in myelopoiesis in light of the evolving understanding of myeloid cell ontogeny and heterogeneity. We argue for the importance of system-wide evaluation of changes in myelopoiesis and discuss how even after the resolution of inflammation, long-lasting alterations in myelopoiesis may play a role in innate immune memory or trained immunity.
Collapse
Affiliation(s)
- Joachim L Schultze
- Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Elvira Mass
- Developmental Biology of the Innate Immune System, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| | - Andreas Schlitzer
- Myeloid Cell Biology, LIMES Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
24
|
Del Prete A, Scutera S, Sozzani S, Musso T. Role of osteopontin in dendritic cell shaping of immune responses. Cytokine Growth Factor Rev 2019; 50:19-28. [PMID: 31126876 DOI: 10.1016/j.cytogfr.2019.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Osteopontin (OPN) is a pleiotropic cytokine produced both by immune and non-immune cells and active on different cellular targets. OPN production has been associated with several pathological conditions, including autoimmune diseases (e.g. lupus, multiple sclerosis and rheumatoid arthritis) and cancer. Emerging evidence suggests that the role of OPN has been underestimated, as it seems to be working at multiple levels of immune regulation, such as the shaping of T cell effector responses, the regulation of the tumor microenvironment, and the functional interaction with mesenchymal stromal cells. In this context, dendritic cells (DCs) play a crucial role being both an important source and a cellular target for OPN action. DC family is composed by several cell subsets endowed with specific immune functions. OPN exerts its biological functions through multiple receptors and is produced in different intracellular and secreted forms. OPN production by DC subsets is emerging as a crucial mechanism of regulation in normal and pathological conditions and starts to be exploited as a therapeutic target. This review will focus on the role of DC-derived OPN in shaping immune response and on the complex role of this cytokines in the regulation in immune response.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Humanitas Clinical and Research Center-IRCCS Rozzano-Milano, Italy
| | - Sara Scutera
- Microbiology section, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Tiziana Musso
- Microbiology section, Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
| |
Collapse
|
25
|
Bae EA, Seo H, Kim IK, Jeon I, Kang CY. Roles of NKT cells in cancer immunotherapy. Arch Pharm Res 2019; 42:543-548. [DOI: 10.1007/s12272-019-01139-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 01/22/2023]
|
26
|
Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, Grami Z, Kong LY, Ling X, Caruso H, Zhou S, Wang YA, Fuller GN, Huse J, Gilboa E, Kang N, Huang X, Verhaak R, Li S, Heimberger AB. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest 2018; 129:137-149. [PMID: 30307407 DOI: 10.1172/jci121266] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene-deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvβ5 (ITGαvβ5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB-OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.
Collapse
Affiliation(s)
- Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brett Schrand
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Konrad Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuuri Hashimoto
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zacharia Grami
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoyang Ling
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hillary Caruso
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Gregory N Fuller
- Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason Huse
- Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Nannan Kang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Roel Verhaak
- Jackson Laboratory of Genomic Medicine, Farmington, Connecticut, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
27
|
Al Sayed MF, Amrein MA, Bührer ED, Huguenin AL, Radpour R, Riether C, Ochsenbein AF. T-cell–Secreted TNFα Induces Emergency Myelopoiesis and Myeloid-Derived Suppressor Cell Differentiation in Cancer. Cancer Res 2018; 79:346-359. [DOI: 10.1158/0008-5472.can-17-3026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
|
28
|
Bae EA, Seo H, Kim BS, Choi J, Jeon I, Shin KS, Koh CH, Song B, Kim IK, Min BS, Han YD, Shin SJ, Kang CY. Activation of NKT Cells in an Anti-PD-1-Resistant Tumor Model Enhances Antitumor Immunity by Reinvigorating Exhausted CD8 T Cells. Cancer Res 2018; 78:5315-5326. [PMID: 30012672 DOI: 10.1158/0008-5472.can-18-0734] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/04/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022]
Abstract
PD-1-based cancer immunotherapy is a successful example of immune checkpoint blockade that provides long-term durable therapeutic effects in patients with cancer across a wide spectrum of cancer types. Accumulating evidence suggests that anti-PD-1 therapy enhances antitumor immunity by reversing the function of exhausted T cells in the tumor environment. However, the responsiveness rate of patients with cancer to anti-PD-1 therapy remains low, providing an urgent need for optimization and improvement. In this study, we designed an anti-PD-1-resistant mouse tumor model and showed that unresponsiveness to anti-PD-1 is associated with a gradual increase in CD8 T-cell exhaustion. We also found that invariant natural killer T cell stimulation by the synthetic ligand α-galactosylceramide (αGC) can enhance the antitumor effect in anti-PD-1-resistant tumors by restoring the effector function of tumor antigen-specific exhausted CD8 T cells. IL2 and IL12 were among the cytokines produced by αGC stimulation critical for reinvigorating exhausted CD8 T cells in tumor-bearing mice and patients with cancer. Furthermore, we observed a synergistic increase in the antitumor effect between αGC-loaded antigen-presenting cells and PD-1 blockade in a therapeutic murine tumor model. Our study suggests NKT cell stimulation as a promising therapeutic strategy for the treatment of patients with anti-PD-1-resistant cancer.Significance: These findings provide mechanistic insights into the application of NKT cell stimulation as a potent adjuvant for immunotherapy against advanced cancer. Cancer Res; 78(18); 5315-26. ©2018 AACR.
Collapse
Affiliation(s)
- Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeongwon Choi
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Seo H, Kim BS, Bae EA, Min BS, Han YD, Shin SJ, Kang CY. IL21 Therapy Combined with PD-1 and Tim-3 Blockade Provides Enhanced NK Cell Antitumor Activity against MHC Class I-Deficient Tumors. Cancer Immunol Res 2018; 6:685-695. [PMID: 29615398 DOI: 10.1158/2326-6066.cir-17-0708] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Accepted: 03/15/2018] [Indexed: 11/16/2022]
Abstract
Increased expression of coinhibitory molecules such as PD-1 and Tim-3 on NK cells has been demonstrated in advanced cancer patients who harbor MHC class I-deficient tumors. However, even in preclinical models, the antitumor effects of checkpoint blockade on NK cells have not been clearly elucidated. Here, we show that anti-PD-1/anti-Tim-3 treatment suppressed tumor progression in mice bearing MHC class I-deficient tumors, and the suppression was further enhanced by recombinant IL21 (rIL21) treatments through an NK-cell-dependent mechanism. We also show that the intratumoral delivery of rIL21 attracted NK cells to the tumor site in a CXCR3-dependent fashion. A combination of IL21 and checkpoint blockade facilitated the effector function of exhausted NK cells in cancer patients. Given the effects of the checkpoint blockade and rIL21 combination on NK cells infiltrating into MHC class I-deficient tumors, we suggest that the efficacy of checkpoint blockade can be enhanced through the administration of IL21 for advanced cancer patients with MHC class I-low/deficient tumors. Cancer Immunol Res; 6(6); 685-95. ©2018 AACR.
Collapse
Affiliation(s)
- Hyungseok Seo
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun-Ah Bae
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy Seoul National University, Seoul, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Gu X, Gao XS, Ma M, Qin S, Qi X, Li X, Sun S, Yu H, Wang W, Zhou D. Prognostic significance of osteopontin expression in gastric cancer: a meta-analysis. Oncotarget 2018; 7:69666-69673. [PMID: 27626167 PMCID: PMC5342506 DOI: 10.18632/oncotarget.11936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Accumulated studies have exploited the association between osteopontin (OPN) expression and survival of patients with gastric cancer (GC), however, the results were controversial. Thus, we performed a meta-analysis, aiming to investigate the prognostic role of OPN for GC patients and to explore the association between OPN and clinicalpathological features of GC. RESULTS A total of ten studies involving 1775 patients were included in final meta-analysis. Of the included studies, nine were conducted on Asian patients and one was performed on Caucasian patients. Regarding OPN detection, immunohistochemistry (IHC) was used on tissue specimens in eight studies and enzyme linked immunosorbent assay (ELISA) was used on plasma specimens in two studies. The pooled data showed that high OPN expression was correlated with poor OS (HR = 1.59, 95% CI: 1.15-2.22, p = 0.006). Subgroup analyses demonstrated that OPN had enhanced prognostic value for Asian patients (HR = 1.64, 95% CI = 1.11-2.41, p = 0.012) and for patients receiving surgical resection (HR = 1.6, 95% CI = 1.04-2.48, p = 0.034). In addition, the results also showed that elevated OPN expression was associated with lymph node metastasis, TNM stage, depth of invasion, tumor size and distant metastasis in GC. METHODS Relevant studies were retrieved through PubMed, Embase and Web of Science. Combined hazard ratio (HR) and 95% confidence interval (CI) were calculated to assess the association between OPN and overall survival (OS). Subgroup analyses and publication bias were also conducted. CONCLUSIONS OPN overexpression was correlated with poor OS and clinical features reflecting high aggressiveness in patients with GC. OPN was a promising prognostic biomarker for GC.
Collapse
Affiliation(s)
- Xiaobin Gu
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Mingwei Ma
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Shangbin Qin
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Xin Qi
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Xiaoying Li
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Shaoqian Sun
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Hao Yu
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Wen Wang
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| | - Dong Zhou
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
31
|
Allegrezza MJ, Rutkowski MR, Stephen TL, Svoronos N, Perales-Puchalt A, Nguyen JM, Payne KK, Singhal S, Eruslanov EB, Tchou J, Conejo-Garcia JR. Trametinib Drives T-cell-Dependent Control of KRAS-Mutated Tumors by Inhibiting Pathological Myelopoiesis. Cancer Res 2017; 76:6253-6265. [PMID: 27803104 DOI: 10.1158/0008-5472.can-16-1308] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Targeted therapies elicit seemingly paradoxical and poorly understood effects on tumor immunity. Here, we show that the MEK inhibitor trametinib abrogates cytokine-driven expansion of monocytic myeloid-derived suppressor cells (mMDSC) from human or mouse myeloid progenitors. MEK inhibition also reduced the production of the mMDSC chemotactic factor osteopontin by tumor cells. Together, these effects reduced mMDSC accumulation in tumor-bearing hosts, limiting the outgrowth of KRas-driven breast tumors, even though trametinib largely failed to directly inhibit tumor cell proliferation. Accordingly, trametinib impeded tumor progression in vivo through a mechanism requiring CD8+ T cells, which was paradoxical given the drug's reported ability to inhibit effector lymphocytes. Confirming our observations, adoptive transfer of tumor-derived mMDSC reversed the ability of trametinib to control tumor growth. Overall, our work showed how the effects of trametinib on immune cells could partly explain its effectiveness, distinct from its activity on tumor cells themselves. More broadly, by providing a more incisive view into how MEK inhibitors may act against tumors, our findings expand their potential uses to generally block mMDSC expansion, which occurs widely in cancers to drive their growth and progression. Cancer Res; 76(21); 6253-65. ©2016 AACR.
Collapse
Affiliation(s)
- Michael J Allegrezza
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Melanie R Rutkowski
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Tom L Stephen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Alfredo Perales-Puchalt
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jenny M Nguyen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Kyle K Payne
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Tchou
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Sangaletti S, Chiodoni C, Tripodo C, Colombo MP. Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments. Cancer Immunol Immunother 2017; 66:1059-1067. [PMID: 28501940 PMCID: PMC11029001 DOI: 10.1007/s00262-017-2014-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/06/2017] [Indexed: 01/09/2023]
Abstract
The complex interaction between cells undergoing transformation and the various stromal and immunological cell components of the tumor microenvironment (TME) crucially influences cancer progression and diversification, as well as endowing clinical and prognostic significance. The immunosuppression characterizing the TME depends on the recruitment and activation of different cell types including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Less considered is the non-cellular component of the TME. Here, we focus on the extracellular matrix (ECM) regulatory activities that, within the TME, actively contribute to many aspects of tumor progression, acting on both tumor and immune cells. Particularly, ECM-mediated regulation of tumor-associated immunosuppression occurs through the modulation of myeloid cell expansion, localization, and functional activities. Such regulation is not limited to the TME but occurs also within the bone marrow, wherein matricellular proteins contribute to the maintenance of specialized hematopoietic stem cell niches thereby regulating their homeostasis as well as the generation and expansion of myeloid cells under both physiological and pathological conditions. Highlighting the commonalities among ECM-myeloid cell interactions in bone marrow and TME, in this review we present a picture in which myeloid cells might sense and respond to ECM modifications, providing different ECM-myeloid cell interfaces that may be useful to define prognostic groups and to tailor therapeutic interventions.
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, 20133, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, 20133, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo, 42, 20133, Milan, Italy.
| |
Collapse
|
33
|
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.
Collapse
|
34
|
Kumar R, de Mooij T, Peterson TE, Kaptzan T, Johnson AJ, Daniels DJ, Parney IF. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane. PLoS One 2017; 12:e0179012. [PMID: 28666020 PMCID: PMC5493295 DOI: 10.1371/journal.pone.0179012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/23/2017] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tristan de Mooij
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Timothy E. Peterson
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tatiana Kaptzan
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David J. Daniels
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ian F. Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
35
|
Seo H, Jeon I, Kim BS, Park M, Bae EA, Song B, Koh CH, Shin KS, Kim IK, Choi K, Oh T, Min J, Min BS, Han YD, Kang SJ, Shin SJ, Chung Y, Kang CY. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat Commun 2017; 8:15776. [PMID: 28585539 PMCID: PMC5467212 DOI: 10.1038/ncomms15776] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/26/2017] [Indexed: 12/14/2022] Open
Abstract
During cancer immunoediting, loss of major histocompatibility complex class I (MHC-I) in neoplasm contributes to the evasion of tumours from host immune system. Recent studies have demonstrated that most natural killer (NK) cells that are found in advanced cancers are defective, releasing the malignant MHC-I-deficient tumours from NK-cell-dependent immune control. Here, we show that a natural killer T (NKT)-cell-ligand-loaded tumour-antigen expressing antigen-presenting cell (APC)-based vaccine effectively eradicates these advanced tumours. During this process, we find that the co-expression of Tim-3 and PD-1 marks functionally exhausted NK cells in advanced tumours and that MHC-I downregulation in tumours is closely associated with the induction of NK-cell exhaustion in both tumour-bearing mice and cancer patients. Furthermore, the recovery of NK-cell function by IL-21 is critical for the anti-tumour effects of the vaccine against advanced tumours. These results reveal the process involved in the induction of NK-cell dysfunction in advanced cancers and provide a guidance for the development of strategies for cancer immunotherapy. Loss of major histocompatibility complex MHC-I expression contributes to cancer immune evasion. Here, the authors show that, in both mice and humans, MHC-I downregulation is associated with the induction of NK-cell exhaustion and that IL-21 restores NK-cell function and inhibits tumours progression.
Collapse
Affiliation(s)
- Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myunghwan Park
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang-Soo Shin
- Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.,Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea
| | | | - Taegwon Oh
- Cellid, Inc., Seoul 08826, Republic of Korea
| | - Jiyoun Min
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yoon Dae Han
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sang Joon Shin
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.,Laboratory of Immunology, Research Institute of Pharmaceutical Science, College of Pharmacy Seoul National University, Seoul 08826, Republic of Korea.,Cellid, Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
The protumorigenic potential of FTY720 by promoting extramedullary hematopoiesis and MDSC accumulation. Oncogene 2017; 36:3760-3771. [PMID: 28218904 DOI: 10.1038/onc.2017.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
FTY720 (also called fingolimod) is recognized as an immunosuppressant and has been approved by the Food and Drug Administration to treat refractory multiple sclerosis. However, long-term administration of FTY720 potentially increases the risk for cancer in recipients. The underlying mechanisms remain poorly understood. Herein, we provided evidence that FTY720 administration potentiated tumor growth. Mechanistically, FTY720 enhanced extramedullary hematopoiesis and massive accumulation of myeloid-derived suppressor cells (MDSCs), which actively suppressed antitumor immune responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF), mainly produced by MDSCs, was identified as a key factor to mediate these effects of FTY720 in tumor microenvironment. Furthermore, we showed that FTY720 triggers MDSCs to release GM-CSF via S1P receptor 3 (S1pr3) through Rho kinase and extracellular signal-regulated kinase-dependent pathway. Thus, our findings provide mechanistic explanation for the protumorigenic potentials of FTY720 and suggest that targeting S1pr3 simultaneously may be beneficial for the patients receiving FTY720 treatment.
Collapse
|
37
|
Runx3 and Cell Fate Decisions in Pancreas Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:333-352. [PMID: 28299667 DOI: 10.1007/978-981-10-3233-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1 . RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.
Collapse
|
38
|
IL-33 inhibits the differentiation and immunosuppressive activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Immunol Cell Biol 2016; 95:99-107. [PMID: 27507556 DOI: 10.1038/icb.2016.72] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape by suppressing antitumor immune responses. Interleukin-33 (IL-33) is capable of regulating various immune cell populations; however, the effects of IL-33 on the differentiation of MDSCs have not been well characterized. In this study, we evaluated the effects of IL-33 on MDSCs and found that IL-33 significantly reduced the differentiation of lineage-negative bone marrow progenitor cells into granulocytic MDSCs (G-MDSCs). IL-33-treated MDSCs exhibited diminished immunosuppressive capacity; reduced inhibition on T-cell proliferation and interferon-γ production, and diminished production of reactive oxygen species. However, IL-33 treatment did not affect the frequency of monocytic MDSCs (M-MDSCs) or their production of nitric oxide and expression of arginase-1. Additionally, compared with control MDSCs, IL-33-treated MDSCs had reduced capacity to induce the differentiation or expansion of Treg cells. Moreover, in vivo IL-33 administration significantly decreased MDSCs and G-MDSCs accumulation in the spleen and tumor microenvironment. Also, despite increasing CD4+ and CD8+ T-cell infiltration, IL-33 administration markedly decreased Treg-cell population in tumor microenvironment. Taken together, our findings indicate that IL-33 reduces the frequency and immunosuppressive activity of G-MDSCs and ultimately the extent of tumor growth.
Collapse
|
39
|
Wang Z, Xiong S, Mao Y, Chen M, Ma X, Zhou X, Ma Z, Liu F, Huang Z, Luo Q, Ouyang G. Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis. J Pathol 2016; 239:484-95. [PMID: 27193093 DOI: 10.1002/path.4747] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/14/2016] [Accepted: 05/14/2016] [Indexed: 01/19/2023]
Abstract
Periostin (POSTN) is a limiting factor in the metastatic colonization of disseminated tumour cells. However, the role of POSTN in regulating the immunosuppressive function of immature myeloid cells in tumour metastasis has not been documented. Here, we demonstrate that POSTN promotes the pulmonary accumulation of myeloid-derived suppressor cells (MDSCs) during the early stage of breast tumour metastasis. Postn deletion decreases neutrophil and monocytic cell populations in the bone marrow of mice and suppresses the accumulation of MDSCs to premetastatic sites. We also found that POSTN-deficient MDSCs display reduced activation of ERK, AKT and STAT3 and that POSTN deficiency decreases the immunosuppressive functions of MDSCs during tumour progression. Moreover, the pro-metastatic role of POSTN is largely limited to ER-negative breast cancer patients. Lysyl oxidase contributes to POSTN-promoted premetastatic niche formation and tumour metastasis. Our findings indicate that POSTN is essential for immunosuppressive premetastatic niche formation in the lungs during breast tumour metastasis and is a potential target for the prevention and treatment of breast tumour metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhe Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, People's Republic of China
| | - Shanshan Xiong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, People's Republic of China
| | - Yubin Mao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Medical College of Xiamen University, People's Republic of China
| | - Mimi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Xiaohong Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Xueliang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Zhenling Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
| | - Fan Liu
- Medical College of Xiamen University, People's Republic of China
| | - Zhengjie Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, People's Republic of China
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, People's Republic of China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, People's Republic of China
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, People's Republic of China
| |
Collapse
|
40
|
LEE JIYOON, HAN AREUM, LEE SUNGEUN, MIN WOOSUNG, KIM HEEJE. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment. Mol Med Rep 2016; 13:3849-3857. [PMID: 27035421 PMCID: PMC4838120 DOI: 10.3892/mmr.2016.5009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 01/13/2016] [Indexed: 01/24/2023] Open
Abstract
Podoplanin+ cells are indispensable in the tumor microenvironment. Increasing evidence suggests that podoplanin may support the growth and metastasis of solid tumors; however, to the best of our knowledge no studies have determined whether or not podoplanin serves a supportive role in acute myeloid leukemia (AML). The effects of co‑culture with podoplanin+ cells on the cellular activities of the leukemic cells, such as apoptosis and cell proliferation, in addition to the expression of podoplanin in leukemic cells, were investigated. Due to the fact that genetic abnormalities are the primary cause of leukemogenesis, the overexpression of the fibromyalgia‑like tyrosine kinase‑3 gene in colony forming units was also examined following cell sorting. Podoplanin+ cells were found to play a protective role against apoptosis in leukemic cells and to promote cell proliferation. Tumor‑associated antigens, including Wilms' tumor gene 1 and survivin, were increased when leukemic cells were co‑cultured with podoplanin+ cells. In combination, the present results also suggest that podoplanin+ cells can function as stromal cells for blast cell retention in the AML tumor microenvironment.
Collapse
Affiliation(s)
- JI YOON LEE
- Leukemia Research Institute, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - A-REUM HAN
- Leukemia Research Institute, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - SUNG-EUN LEE
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - WOO-SUNG MIN
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - HEE-JE KIM
- Leukemia Research Institute, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| |
Collapse
|