1
|
Murillo Carrasco AG, Chammas R, Furuya TK. Mitochondrial DNA alterations in precision oncology: Emerging roles in diagnostics and therapeutics. Clinics (Sao Paulo) 2025; 80:100570. [PMID: 39884256 PMCID: PMC11830334 DOI: 10.1016/j.clinsp.2024.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mitochondria are dynamic organelles essential for vital cellular functions, including ATP production, apoptosis regulation, and calcium homeostasis. Increasing research has highlighted the significance of mitochondrial DNA (mtDNA) content and alterations in the development and progression of various diseases, including cancer. The high mutation rate and vulnerability of mtDNA to damage make these alterations valuable biomarkers for cancer diagnosis, monitoring disease progression, detecting metastasis, and predicting treatment resistance across different tumor types. This review explores the emerging roles of mtDNA alterations in precision oncology, emphasizing their potential in theranostics. The authors explore the mechanisms by which mtDNA mutations contribute to tumorigenesis and therapy resistance, the impact of heteroplasmy in cancer biology, and the integration of mtDNA-based diagnostics with current therapeutic strategies. Additionally, the authors highlight the experimental tools and models currently used to investigate mtDNA alterations in cancer, including advanced sequencing technologies and animal models.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| | - Tatiane Katsue Furuya
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Yardeni T, Olali AZ, Chen HW, Wang L, Halton JA, Zenab A, Morrow R, Butic A, Murdock DG, Waymire KG, MacGregor GR, Boursi B, Beier UH, Hancock WW, Wallace DC. Mitochondrial DNA lineages determine tumor progression through T cell reactive oxygen signaling. Proc Natl Acad Sci U S A 2025; 122:e2417252121. [PMID: 39752523 PMCID: PMC11725793 DOI: 10.1073/pnas.2417252121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025] Open
Abstract
Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, mtDNAB6 and mtDNANZB, where mtDNANZB mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, mtDNAB6 Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas mtDNANZB Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection. When challenged with melanoma or colon cancer cells, the mtDNANZB mice exhibited strikingly impaired tumor growth while mtDNAB6 mice showed Treg-dependent inhibition of Teff cells and allowed rapid tumor growth. Transcriptional analysis showed that activation of mtDNANZB Teff cells increased mitochondrial gene expression while activation of mtDNANZB Treg cells impaired mitochondrial gene expression and resulted in mtDNANZB Treg cell exhaustion. Induction of the mitochondrially targeted catalytic antioxidant, mCAT, in hematopoietic cells normalized mtDNANZB Treg function in both transplant and tumor models, indicating a key role for mROS in promoting Treg dysfunction. Anti-PD-L1 therapy did not modulate these effects, indicating that modulation of host mitochondrial function provides an independent approach for enhancing tumor cell destruction.
Collapse
Affiliation(s)
- Tal Yardeni
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel Hashomer5262000, Israel
| | - Arnold Z. Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Hsiao-Wen Chen
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Liqing Wang
- Division of Transplant Immunology, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jeffrey A. Halton
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Angi Zenab
- Bert Strassburger Metabolic Center for Preventive Medicine, Sheba Medical Center, Tel Hashomer5262000, Israel
| | - Ryan Morrow
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Arrienne Butic
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Katrina G. Waymire
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697-2300
| | - Grant R. MacGregor
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA92697-2300
| | - Ben Boursi
- Division of Oncology, Sheba Medical Center, Tel-Hashomer, Tel-Aviv University, Tel Aviv5262000, Israel
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ulf H. Beier
- Immunology, Johnson & Johnson Innovative Medicine, Spring House, PA19477
| | - Wayne W. Hancock
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Transplant Immunology, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
3
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
4
|
Fan S, Yan X, Hu X, Liu X, Zhao S, Zhang Y, Zhou X, Shen X, Qi Q, Chen Y. Shikonin blocks CAF-induced TNBC metastasis by suppressing mitochondrial biogenesis through GSK-3β/NEDD4-1 mediated phosphorylation-dependent degradation of PGC-1α. J Exp Clin Cancer Res 2024; 43:180. [PMID: 38937832 PMCID: PMC11210116 DOI: 10.1186/s13046-024-03101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by its high metastatic potential, which results in poor patient survival. Cancer-associated fibroblasts (CAFs) are crucial in facilitating TNBC metastasis via induction of mitochondrial biogenesis. However, how to inhibit CAF-conferred mitochondrial biogenesis is still needed to explore. METHODS We investigated metastasis using wound healing and cell invasion assays, 3D-culture, anoikis detection, and NOD/SCID mice. Mitochondrial biogenesis was detected by MitoTracker green FM staining, quantification of mitochondrial DNA levels, and blue-native polyacrylamide gel electrophoresis. The expression, transcription, and phosphorylation of peroxisome-proliferator activated receptor coactivator 1α (PGC-1α) were detected by western blotting, chromatin immunoprecipitation, dual-luciferase reporter assay, quantitative polymerase chain reaction, immunoprecipitation, and liquid chromatography-tandem mass spectrometry. The prognostic role of PGC-1α in TNBC was evaluated using the Kaplan-Meier plotter database and clinical breast cancer tissue samples. RESULTS We demonstrated that PGC-1α indicated lymph node metastasis, tumor thrombus formation, and poor survival in TNBC patients, and it was induced by CAFs, which functioned as an inducer of mitochondrial biogenesis and metastasis in TNBC. Shikonin impeded the CAF-induced PGC-1α expression, nuclear localization, and interaction with estrogen-related receptor alpha (ERRα), thereby inhibiting PGC-1α/ERRα-targeted mitochondrial genes. Mechanistically, the downregulation of PGC-1α was mediated by synthase kinase 3β-induced phosphorylation of PGC-1α at Thr295, which associated with neural precursor cell expressed developmentally downregulated 4e1 recognition and subsequent degradation by ubiquitin proteolysis. Mutation of PGC-1α at Thr295 negated the suppressive effects of shikonin on CAF-stimulated TNBC mitochondrial biogenesis and metastasis in vitro and in vivo. CONCLUSIONS Our findings indicate that PGC-1α is a viable target for blocking TNBC metastasis by disrupting mitochondrial biogenesis, and that shikonin merits potential for treatment of TNBC metastasis as an inhibitor of mitochondrial biogenesis through targeting PGC-1α.
Collapse
Affiliation(s)
- Shuangqin Fan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xiaomin Yan
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xiaoxia Hu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xing Liu
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Shijie Zhao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Yue Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China
| | - Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China.
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Yan Chen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
- Key Laboratory of Novel Anti-Cancer Drug Targets Discovery and Application, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, 561113, China.
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guizhou, 561113, China.
| |
Collapse
|
5
|
Wang M, Lan S, Zhang W, Jin Q, Du H, Sun X, He L, Meng X, Su L, Liu G. Anti-Cancer Potency of Copper-Doped Carbon Quantum Dots Against Breast Cancer Progression. Int J Nanomedicine 2024; 19:1985-2004. [PMID: 38435754 PMCID: PMC10908338 DOI: 10.2147/ijn.s449887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction The anti-cancer potency of copper-doped carbon quantum dots (Cu-CDs) against breast cancer progression needs more detailed investigations. Methods With urea and ethylene glycol applied as carbon sources and copper sulfate used as a reactive dopant, Cu-CDs were synthesized in the current study by a one-step hydrothermal synthesis method, followed by the characterization and biocompatibility evaluations of Cu-CDs. Subsequently, the anti-cancer potency of Cu-CDs against breast cancer progression was confirmed by these biochemical, molecular, and transcriptomic assessments, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, and transcriptomic assays of MDA-MB-231 cells. Results The biocompatibility of Cu-CDs was confirmed based on the non-significant changes in the pathological and physiological parameters in the Cu-CDs treated mice, as well as the noncytotoxic effect of Cu-CDs on normal cells. Moreover, the Cu-CDs treatments not only decreased the viability, proliferation, migration, invasion, adhesion, and clonogenicity of MDA-MB-231 cells but also induced the redox imbalance, cell cycle arrest, and apoptosis of MDA-MB-231 cells via ameliorating the mitochondrial dysfunctions and regulating the MAPK signaling pathway. Conclusion Our findings confirmed the biosafety and excellent anti-cancer potency of Cu-CDs against breast cancer progression by tapping into mechanisms that disrupt malignant behaviors and oxidative homeostasis of breast cancer cells.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shuting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Hua Du
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaomei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lijun He
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiangyun Meng
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
6
|
Shelton SD, House S, Ramesh V, Chen Z, Wei T, Wang X, Llamas CB, Venigalla SSK, Menezes CJ, Zhao Z, Gill JG, DeBerardinis RJ, Morrison SJ, Tasdogan A, Mishra P. Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555986. [PMID: 37732192 PMCID: PMC10508716 DOI: 10.1101/2023.09.01.555986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations are frequently observed in cancer, but their contribution to tumor progression is controversial. To evaluate the impact of mtDNA variants on tumor growth and metastasis, we created human melanoma cytoplasmic hybrid (cybrid) cell lines transplanted with wildtype mtDNA or pathogenic mtDNA encoding variants that partially or completely inhibit oxidative phosphorylation. Homoplasmic pathogenic mtDNA cybrids reliably established tumors despite dysfunctional oxidative phosphorylation. However, pathogenic mtDNA variants disrupted spontaneous metastasis of subcutaneous tumors and decreased the abundance of circulating melanoma cells in the blood. Pathogenic mtDNA did not induce anoikis or inhibit organ colonization of melanoma cells following intravenous injections. Instead, migration and invasion were reduced, indicating that limited circulation entry functions as a metastatic bottleneck amidst mtDNA dysfunction. Furthermore, analysis of selective pressure exerted on the mitochondrial genomes of heteroplasmic cybrid lines revealed a suppression of pathogenic mtDNA allelic frequency during melanoma growth. Collectively, these findings demonstrate that functional mtDNA is favored during melanoma growth and enables metastatic entry into the blood.
Collapse
Affiliation(s)
- Spencer D. Shelton
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Sara House
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Vijayashree Ramesh
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Zhenkang Chen
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Tao Wei
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Xun Wang
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Claire B. Llamas
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Siva Sai Krishna Venigalla
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Cameron J. Menezes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Zhiyu Zhao
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
| | - Jennifer G. Gill
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Sean J. Morrison
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen & German Cancer Consortium, Partner Site, Essen, Germany
| | - Prashant Mishra
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
7
|
Liang W, Huang L, Yuan T, Cheng R, Takahashi Y, Moiseyev GP, Karamichos D, Ma JX. A Method for Real-Time Assessment of Mitochondrial Respiration Using Murine Corneal Biopsy. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 37642632 PMCID: PMC10476441 DOI: 10.1167/iovs.64.11.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/09/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose To develop and optimize a method to monitor real-time mitochondrial function by measuring the oxygen consumption rate (OCR) in murine corneal biopsy punches with a Seahorse extracellular flux analyzer. Methods Murine corneal biopsies were obtained using a biopsy punch immediately after euthanasia. The corneal metabolic profile was assessed using a Seahorse XFe96 pro analyzer, and mitochondrial respiration was analyzed with specific settings. Results Real-time adenosine triphosphate rate assay showed that mitochondrial oxidative phosphorylation is a major source of adenosine triphosphate production in ex vivo live murine corneal biopsies. Euthanasia methods (carbon dioxide asphyxiation vs. overdosing on anesthetic drugs) did not affect corneal OCR values. Mouse corneal biopsy punches in 1.5-mm diameter generated higher and more reproducible OCR values than those in 1.0-mm diameter. The biopsy punches from the central and off-central cornea did not show significant differences in OCR values. There was no difference in OCR reading by the tissue orientations (the epithelium side up vs. the endothelium side up). No significant differences were found in corneal OCR levels between sexes, strains (C57BL/6J vs. BALB/cJ), or ages (4, 8, and 32 weeks). Using this method, we showed that the wound healing process in the mouse cornea affected mitochondrial activity. Conclusions The present study validated a new strategy to measure real-time mitochondrial function in fresh mouse corneal tissues. This procedure should be helpful for studies of the ex vivo live corneal metabolism in response to genetic manipulations, disease conditions, or pharmacological treatments in mouse models.
Collapse
Affiliation(s)
- Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Li Huang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Tian Yuan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Rui Cheng
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Gennadiy P. Moiseyev
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| |
Collapse
|
8
|
Welch DR, Larson MA, Vivian CJ, Vivian JL. Generating Mitochondrial-Nuclear Exchange (MNX) Mice to Identify Mitochondrial Determinants of Cancer Metastasis. Methods Mol Biol 2023; 2660:43-59. [PMID: 37191789 PMCID: PMC10195030 DOI: 10.1007/978-1-0716-3163-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Understanding the contributions of mitochondrial genetics to disease pathogenesis is facilitated by a new and unique model-the mitochondrial-nuclear exchange mouse. Here we report the rationale for their development, the methods used to create them, and a brief summary of how MNX mice have been used to understand the contributions of mitochondrial DNA in multiple diseases, focusing on cancer metastasis. Polymorphisms in mtDNA which distinguish mouse strains exert intrinsic and extrinsic effects on metastasis efficiency by altering epigenetic marks in the nuclear genome, changing production of reactive oxygen species, altering the microbiota, and influencing immune responses to cancer cells. Although the focus of this report is cancer metastasis, MNX mice have proven to be valuable in studying mitochondrial contributions to other diseases as well.
Collapse
Affiliation(s)
- Danny R Welch
- Departments of Cancer Biology, Internal Medicine (Hematology/Oncology), Molecular and Integrative Physiology, and Pathology and Laboratory Medicine, The Kansas University Medical Center and The University of Kansas Comprehensive Cancer Center, Kansas City, KS, USA.
| | - Melissa A Larson
- Transgenic and Gene-Targeting Institutional Facility, The Kansas University Medical Center, Kansas City, KS, USA
| | - Carolyn J Vivian
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, KS, USA
| | - Jay L Vivian
- Transgenic and Gene-Targeting Institutional Facility, The Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
9
|
Welch DR, Foster C, Rigoutsos I. Roles of mitochondrial genetics in cancer metastasis. Trends Cancer 2022; 8:1002-1018. [PMID: 35915015 PMCID: PMC9884503 DOI: 10.1016/j.trecan.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/27/2022] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
The contributions of mitochondria to cancer have been recognized for decades. However, the focus on the metabolic role of mitochondria and the diminutive size of the mitochondrial genome compared to the nuclear genome have hindered discovery of the roles of mitochondrial genetics in cancer. This review summarizes recent data demonstrating the contributions of mitochondrial DNA (mtDNA) copy-number variants (CNVs), somatic mutations, and germline polymorphisms to cancer initiation, progression, and metastasis. The goal is to summarize accumulating data to establish a framework for exploring the contributions of mtDNA to neoplasia and metastasis.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Internal Medicine (Hematology/Oncology), The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Molecular and Integrative Physiology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; Department of Pathology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | - Christian Foster
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel College of Medicine, Thomas Jefferson University, 1020 Locust Street, Suite M81, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Agnoletto C, Volinia S. Mitochondria dysfunction in circulating tumor cells. Front Oncol 2022; 12:947479. [PMID: 35992829 PMCID: PMC9386562 DOI: 10.3389/fonc.2022.947479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) represent a subset of heterogeneous cells, which, once released from a tumor site, have the potential to give rise to metastasis in secondary sites. Recent research focused on the attempt to detect and characterize these rare cells in the circulation, and advancements in defining their molecular profile have been reported in diverse tumor species, with potential implications for clinical applications. Of note, metabolic alterations, involving mitochondria, have been implicated in the metastatic process, as key determinants in the transition of tumor cells to a mesenchymal or stemness-like phenotype, in drug resistance, and in induction of apoptosis. This review aimed to briefly analyse the most recent knowledge relative to mitochondria dysfunction in CTCs, and to envision implications of altered mitochondria in CTCs for a potential utility in clinics.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Rete Oncologica Veneta (ROV), Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Biological and Chemical Research Centre (CNBCh UW), University of Warsaw, Warsaw, Poland
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Hussain MZ, Haris MS, Khan MS, Mahjabeen I. Role of mitochondrial sirtuins in rheumatoid arthritis. Biochem Biophys Res Commun 2021; 584:60-65. [PMID: 34768083 DOI: 10.1016/j.bbrc.2021.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
AIM Current study is intended to evaluate the expression and epigenetic variations of mitochondrial situins in 306 rheumatoid arthritis (RA) cases and compared with age/gender matched controls. MATERIALS AND METHODS The expression level was measured using the quantitative Real time PCR (qPCR) and epigenetic analysis was performed by measuring deacetylation activity. Oxidative stress was also measured in present study using the enzyme linked immunoassay (ELISA). The obtained results were evaluated by means of the student t-test, spearman correlation and ROC curve analysis. RESULTS Expression analysis showed the significant downregulation of SIRT3 (p < 0.0001), SIRT4 (p < 0.0001) and SIRT5 (p < 0.0001) in RA cases when compared with controls. Downregulation of mitochondrial sirtuins was significantly associated with positive anti-CCP status, increased ESR level and with increased CRP levels. Epigenetic analysis showed significant increased histone deacetylation in RA patients compared to controls. Co-expression analysis showed the significant negative association between expression level of mitochondrial sirtuins and deacytylation level (SIRT3 r = -0.438, p < 0.0001; SIRT4 r = -0.424, p < 0.0001; SIRT5 r = -0.282, p < 0.0001). ROC curve analysis exhibited that downregulation of mitochondrial sirtuins (SIRT3 AUC = 0.91, p < 0.001; SIRT4 AUC = 0.92, p < 0.001; SIRT5 AUC = 0.85, p < 0.001) was act as the good diagnostic marker for detection/diagnosis of arthritis. CONCLUSIONS The results show that significant deregulation of mitochondrial sirtuins was associated with increased arthritis risk and can be act as an indicator of advance clinical outcome.
Collapse
Affiliation(s)
- Muhmmad Zahid Hussain
- Department of Rheumatology, National University of Medical Sciences, Rawalpindi, Pakistan; Department of Rheumatology, Pak Emirates Military Hospital, Rawalpindi, Pakistan
| | - Muhammad Shahbaz Haris
- Cancer Genetics and Epigenetics Lab, Department of Biosciences COMSATS University, Islamabad, Pakistan
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences COMSATS University, Islamabad, Pakistan.
| |
Collapse
|
12
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
13
|
Sammy MJ, Connelly AW, Brown JA, Holleman C, Habegger KM, Ballinger SW. Mito-Mendelian interactions alter in vivo glucose metabolism and insulin sensitivity in healthy mice. Am J Physiol Endocrinol Metab 2021; 321:E521-E529. [PMID: 34370595 PMCID: PMC8560378 DOI: 10.1152/ajpendo.00069.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.
Collapse
Affiliation(s)
- Melissa J Sammy
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley W Connelly
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jamelle A Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cassie Holleman
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Saravanabavan S, Rangan GK. Possible role of the mitochondrial genome in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrology (Carlton) 2021; 26:920-930. [PMID: 34331378 DOI: 10.1111/nep.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic renal disease in adults and is due to heterozygous germ line variants in either PKD1, PKD2 or rarely other genes. It is characterized by marked intra-familial disease variability suggesting that other genetic and/or environmental factors are involved in determining the lifetime course ADPKD. Recently, research indicates that polycystin-mediated mitochondrial dysfunction and metabolic re-programming contributes to the progression of ADPKD. Although biochemical abnormalities have gained the most interest, variants in the mitochondrial genome could be one of the mechanisms underlying the phenotypic variability in ADPKD. This narrative review aims to evaluate the role of the mitochondrial genome in the pathogenesis of APDKD.
Collapse
Affiliation(s)
- Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gopala K Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
15
|
University of Alabama at Birmingham Nathan Shock Center: comparative energetics of aging. GeroScience 2021; 43:2149-2160. [PMID: 34304389 DOI: 10.1007/s11357-021-00414-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/09/2022] Open
Abstract
The UAB Nathan Shock Center focuses on comparative energetics and aging. Energetics, as defined for this purpose, encompasses the causes, mechanisms, and consequences of the acquisition, storage, and use of metabolizable energy. Comparative energetics is the study of metabolic processes at multiple scales and across multiple species as it relates to health and aging. The link between energetics and aging is increasingly understood in terms of dysregulated mitochondrial function, altered metabolic signaling, and aberrant nutrient responsiveness with increasing age. The center offers world-class expertise in comprehensive, integrated energetic assessment and analysis from the level of the organelle to the organism and across species from the size of worms to rats as well as state-of-the-art data analytics. The range of services offered by our three research cores, (1) The Organismal Energetics Core, (2) Mitometabolism Core, and (3) Data Analytics Core, is described herein.
Collapse
|
16
|
Nathanson SD, Detmar M, Padera TP, Yates LR, Welch DR, Beadnell TC, Scheid AD, Wrenn ED, Cheung K. Mechanisms of breast cancer metastasis. Clin Exp Metastasis 2021; 39:117-137. [PMID: 33950409 PMCID: PMC8568733 DOI: 10.1007/s10585-021-10090-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Invasive breast cancer tends to metastasize to lymph nodes and systemic sites. The management of metastasis has evolved by focusing on controlling the growth of the disease in the breast/chest wall, and at metastatic sites, initially by surgery alone, then by a combination of surgery with radiation, and later by adding systemic treatments in the form of chemotherapy, hormone manipulation, targeted therapy, immunotherapy and other treatments aimed at inhibiting the proliferation of cancer cells. It would be valuable for us to know how breast cancer metastasizes; such knowledge would likely encourage the development of therapies that focus on mechanisms of metastasis and might even allow us to avoid toxic therapies that are currently used for this disease. For example, if we had a drug that targeted a gene that is critical for metastasis, we might even be able to cure a vast majority of patients with breast cancer. By bringing together scientists with expertise in molecular aspects of breast cancer metastasis, and those with expertise in the mechanical aspects of metastasis, this paper probes interesting aspects of the metastasis cascade, further enlightening us in our efforts to improve the outcome from breast cancer treatments.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Cancer Institute, 2799 W Grand Boulevard, Detroit, MI, USA.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Timothy P Padera
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thomas C Beadnell
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Adam D Scheid
- Department of Cancer Biology, University of Kansas Medical Center and University of Kansas Cancer Center, Kansas City, KS, USA
| | - Emma D Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
17
|
Mitochondria-related core genes and TF-miRNA-hub mrDEGs network in breast cancer. Biosci Rep 2021; 41:227576. [PMID: 33439992 PMCID: PMC7843495 DOI: 10.1042/bsr20203481] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Mitochondria-nuclear cross-talk and mitochondrial retrograde regulation are involved in the genesis and development of breast cancer (BC). Therefore, mitochondria can be regarded as a promising target for BC therapeutic strategies. The present study aimed to construct regulatory network and seek the potential biomarkers of BC diagnosis and prognosis as well as the molecular therapeutic targets from the perspective of mitochondrial dysfunction. Methods: The microarray data of mitochondria-related encoding genes in BC cell lines were downloaded from GEO including GSE128610 and GSE72319. GSE128610 was treated as test set and validation sets consisted of GSE72319 and TCGA tissue samples, intending to identify mitochondria-related differentially expressed genes (mrDEGs). We performed enrichment analysis, PPI network, hub mrDEGs and overall survival analysis and constructed transcription factor (TF)-miRNA-hub mrDEGs network. Results: A total of 23 up-regulated and 71 down-regulated mrDEGs were identified and validated in BC cell lines and tissues. Enrichment analyses indicated that mrDEGs were associated with several cancer-related biological processes. Moreover, 9 hub mrDEGs were identified and validated in BC cell lines and tissues. Finally, 5 hub coregulated mrDEGs, 21 miRNAs and 117 TFs were used to construct TF-miRNA-hub mrDEGs network. MYC associated zinc finger protein (MAZ), heparin binding growth factor (HDGF) and Sp2 transcription factor (SP2) regulated 3 hub mrDEGs. Hsa-mir-21-5p, hsa-mir-1-3p, hsa-mir-218-5p, hsa-mir-26a-5p and hsa-mir-335-5p regulated 2 hub mrDEGs. Overall survival analysis suggested that the up-regulation of fibronectin 1 (FN1), as well as the down-regulation of discoidin domain receptor tyrosine kinase 2 (DDR2) correlated with unfavorable prognosis in BC. Conclusion: TF-miRNA-hub mrDEGs had instruction significance for the exploration of BC etiology. The hub mrDEGs such as FN1 and DDR2 were likely to regulate mitochondrial function and be novel biomarkers for BC diagnosis and prognosis as well as the therapeutic targets.
Collapse
|
18
|
Lin YH, Chu YD, Lim SN, Chen CW, Yeh CT, Lin WR. Impact of an MT-RNR1 Gene Polymorphism on Hepatocellular Carcinoma Progression and Clinical Characteristics. Int J Mol Sci 2021; 22:1119. [PMID: 33498721 PMCID: PMC7865300 DOI: 10.3390/ijms22031119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are highly associated with cancer progression. The poor prognosis of hepatocellular carcinoma (HCC) is largely due to high rates of tumor metastasis. This emphasizes the urgency of identifying these patients in advance and developing new therapeutic targets for successful intervention. However, the issue of whether mtDNA influences tumor metastasis in hepatoma remains unclear. In the current study, multiple mutations in mtDNA were identified by sequencing HCC samples. Among these mutations, mitochondrially encoded 12S rRNA (MT-RNR1) G709A was identified as a novel potential candidate. The MT-RNR1 G709A polymorphism was an independent risk factor for overall survival and distant metastasis-free survival. Subgroup analysis showed that in patients with cirrhosis, HBV-related HCC, α-fetoprotein ≥ 400 ng/mL, aspartate transaminase ≥ 31 IU/L, tumor number > 1, tumor size ≥ 5 cm, and histology grade 3-4, MT-RNR1 G709A was associated with both shorter overall survival and distant metastasis-free survival. Mechanistically, MT-RNR1 G709A was clearly associated with hexokinase 2 (HK2) expression and unfavorable prognosis in HCC patients. Our data collectively highlight that novel associations among MT-RNR1 G709A and HK2 are an important risk factor in HCC patients.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
| | - Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Chau-Ting Yeh
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-H.L.); (Y.-D.C.); (C.-T.Y.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|
19
|
F C Lopes A. Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes. Clin Epigenetics 2020; 12:182. [PMID: 33228792 PMCID: PMC7684747 DOI: 10.1186/s13148-020-00976-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are controlled by the coordination of two genomes: the mitochondrial and the nuclear DNA. As such, variations in nuclear gene expression as a consequence of mutations and epigenetic modifications can affect mitochondrial functionality. Conversely, the opposite could also be true. However, the relationship between mitochondrial dysfunction and epigenetics, such as nuclear DNA methylation, remains largely unexplored. Mitochondria function as central metabolic hubs controlling some of the main substrates involved in nuclear DNA methylation, via the one carbon metabolism, the tricarboxylic acid cycle and the methionine pathway. Here, we review key findings and highlight new areas of focus, with the ultimate goal of getting one step closer to understanding the genomic effects of mitochondrial dysfunction on nuclear epigenetic landscapes.
Collapse
Affiliation(s)
- Amanda F C Lopes
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Medical Research Council - Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
20
|
Ni J, Wang Y, Cheng X, Teng F, Wang C, Han S, Chen X, Guo W. Pathogenic Heteroplasmic Somatic Mitochondrial DNA Mutation Confers Platinum-Resistance and Recurrence of High-Grade Serous Ovarian Cancer. Cancer Manag Res 2020; 12:11085-11093. [PMID: 33173341 PMCID: PMC7646460 DOI: 10.2147/cmar.s277724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose Platinum resistance is a primary barrier to improving the survival rate of ovarian cancer. The relationship between mtDNA somatic mutations and response to platinum-based chemotherapy in ovarian cancer has not been well clarified. Patients and Methods Here, we employed the next-generation sequencing (NGS) platform to identify mtDNA mutations of the unrelated high-grade serous ovarian cancer (HGSOC) patients. Results We identified 569 germline variants and 28 mtDNA somatic mutations, and found the platinum-sensitive relapsed HGSOC patients had more synonymous mutations while the platinum-resistant relapsed HGSOC patients had more missense mutations in the mtDNA somatic mutations. Meanwhile, we found that the HGSOC patients who harbored heteroplasmic pathogenic mtDNA somatic mutations had significantly higher prevalence of both platinum-resistance and relapse than those without (80.0% versus 16.7%, p=0.035). Additionally, we observed that the tumor tissues had significantly higher lactate-to-pyruvate (L/P) ratio than the paired nontumor tissues (p<0.001), and L/P ratio of tumors with any heteroplasmic pathogenic mtDNA mutations was significantly higher than that of the tumors free of pathogenic mtDNA mutations (p=0.025). Conclusion Our findings indicate that these heteroplasmic pathogenic mtDNA somatic mutations may cause decreased respiratory chain activity and lead to the metabolism remodeling that seem to be beneficial for progression of both platinum-based chemotherapy resistance and relapse.
Collapse
Affiliation(s)
- Jing Ni
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China.,Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Xianzhong Cheng
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Fang Teng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, People's Republic of China
| | - Congyang Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| | - Suping Han
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiaoxiang Chen
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, People's Republic of China
| | - Wenwen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, People's Republic of China
| |
Collapse
|
21
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Tasdogan A, McFadden DG, Mishra P. Mitochondrial DNA Haplotypes as Genetic Modifiers of Cancer. Trends Cancer 2020; 6:1044-1058. [PMID: 32980320 DOI: 10.1016/j.trecan.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in cellular metabolism, generation of reactive oxygen species (ROS), and the initiation of apoptosis. These properties enable mitochondria to be crucial integrators in the pathways of tumorigenesis. An open question is to what extent variation in the mitochondrial genome (mtDNA) contributes to the biological heterogeneity observed in human tumors. In this review, we summarize our current understanding of the role of mtDNA genetics in relation to human cancers.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David G McFadden
- Department of Internal Medicine, Department of Biochemistry, Simmons Comprehensive Cancer Center, Division of Endocrinology, Program in Molecular Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Mishra
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
23
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Brinker AE, Vivian CJ, Beadnell TC, Koestler DC, Teoh ST, Lunt SY, Welch DR. Mitochondrial Haplotype of the Host Stromal Microenvironment Alters Metastasis in a Non-cell Autonomous Manner. Cancer Res 2020; 80:1118-1129. [PMID: 31848195 PMCID: PMC7056497 DOI: 10.1158/0008-5472.can-19-2481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria contribute to tumor growth through multiple metabolic pathways, regulation of extracellular pH, calcium signaling, and apoptosis. Using the Mitochondrial Nuclear Exchange (MNX) mouse models, which pair nuclear genomes with different mitochondrial genomes, we previously showed that mitochondrial SNPs regulate mammary carcinoma tumorigenicity and metastatic potential in genetic crosses. Here, we tested the hypothesis that polymorphisms in stroma significantly affect tumorigenicity and experimental lung metastasis. Using syngeneic cancer cells (EO771 mammary carcinoma and B16-F10 melanoma cells) injected into wild-type and MNX mice (i.e., same nuclear DNA but different mitochondrial DNA), we showed mt-SNP-dependent increases (C3H/HeN) or decreases (C57BL/6J) in experimental metastasis. Superoxide scavenging reduced experimental metastasis. In addition, expression of lung nuclear-encoded genes changed specifically with mt-SNP. Thus, mitochondrial-nuclear cross-talk alters nuclear-encoded signaling pathways that mediate metastasis via both intrinsic and extrinsic mechanisms. SIGNIFICANCE: Stromal mitochondrial polymorphisms affect metastatic colonization through reactive oxygen species and mitochondrial-nuclear cross-talk.
Collapse
Affiliation(s)
- Amanda E Brinker
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| | - Carolyn J Vivian
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| | - Devin C Koestler
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Department of Biostatistics, The University of Kansas Medical Center, Kansas City, Kansas
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas.
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
- Heartland Center for Mitochondrial Medicine
| |
Collapse
|
25
|
Johnson JR, Lack JB, Boulanger CA, Ragle LE, Smith GH. Sequence conservation of mitochondrial (mt)DNA during expansion of clonal mammary epithelial populations suggests a common mtDNA template in CzechII mice. Oncotarget 2020; 11:161-174. [PMID: 32010429 PMCID: PMC6968779 DOI: 10.18632/oncotarget.27429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/21/2019] [Indexed: 11/26/2022] Open
Abstract
One major foundation of cancer etiology is the process of clonal expansion. The mechanisms underlying the complex process of a single cell leading to a clonal dominant tumor, are poorly understood. Our study aims to analyze mitochondrial DNA (mtDNA) for somatic single nucleotide polymorphisms (SNPs) variants, to determine if they are conserved throughout clonal expansion in mammary tissues and tumors. To test this hypothesis, we took advantage of a mouse mammary tumor virus (MMTV)-infected mouse model (CzechII). CzechII mouse mtDNA was extracted, from snap-frozen normal, hyperplastic, and tumor mammary epithelial outgrowth fragments. Next generation deep sequencing was used to determine if mtDNA “de novo” SNP variants are conserved during serial transplantation of both normal and neoplastic mammary clones. Our results support the conclusion that mtDNA “de novo” SNP variants are selected for and maintained during serial passaging of clonal phenotypically heterogeneous normal cellular populations; neoplastic cellular populations; metastatic clonal cellular populations and in individual tumor transplants, grown from the original metastatic tumor. In one case, a mammary tumor arising from a single cell, within a clonal hyperplastic outgrowth, contained only mtDNA copies, harboring a deleterious “de novo” SNP variant, suggesting that only one mtDNA template may act as a template for all mtDNA copies regardless of cell phenotype. This process has been attributed to “heteroplasmic-shifting”. A process that is thought to result from selective pressure and may be responsible for pathogenic mutated mtDNA copies becoming homogeneous in clonal dominant oncogenic tissues.
Collapse
Affiliation(s)
- Jabril R Johnson
- Mammary Stem Cell Biology Section, National Cancer Institute, Bethesda, MD 20892, USA.,Department of Population Sciences, City of Hope, Duarte, CA 91107, USA
| | - Justin B Lack
- Bioinformatics Manager/Lead, NIAID Collaborative Bioinformatics Resource (NCBR) Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Bethesda, MD 20894, USA
| | - Corinne A Boulanger
- Mammary Stem Cell Biology Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lauren E Ragle
- Mammary Stem Cell Biology Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gilbert H Smith
- Mammary Stem Cell Biology Section, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Beadnell TC, Fain C, Vivian CJ, King JCG, Hastings R, Markiewicz MA, Welch DR. Mitochondrial genetics cooperate with nuclear genetics to selectively alter immune cell development/trafficking. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165648. [PMID: 31899295 DOI: 10.1016/j.bbadis.2019.165648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The nuclear genome drives differences in immune cell populations and differentiation potentials, in part regulated by changes in metabolism. Despite this connection, the role of mitochondrial DNA (mtDNA) polymorphisms (SNP) in this process has not been examined. Using mitochondrial nuclear exchange (MNX) mice, we and others have shown that mtDNA strongly influences varying aspects of cell biology and disease. Based upon an established connection between mitochondria and immune cell polarization, we hypothesized that mtDNA SNP alter immune cell development, trafficking, and/or differentiation. Innate and adaptive immune cell populations were isolated and characterizated from the peritoneum and spleen. While most differences between mouse strains are regulated by nuclear DNA (nDNA), there are selective changes that are mediated by mtDNA differences (e.g., macrophage (CD11c) differentiation), These findings highlight how nuclear-mitochondrial crosstalk may alter pathology and physiology via regulation of specific components of the immune system.
Collapse
Affiliation(s)
- T C Beadnell
- Department of Cancer Biology, Department of Microbiology, Immunology and Genetics, The University of Kansas Cancer Center, The University of Kansas Medical Center, United States of America
| | - C Fain
- Department of Cancer Biology, Department of Microbiology, Immunology and Genetics, The University of Kansas Cancer Center, The University of Kansas Medical Center, United States of America
| | - C J Vivian
- Department of Cancer Biology, Department of Microbiology, Immunology and Genetics, The University of Kansas Cancer Center, The University of Kansas Medical Center, United States of America
| | - J C G King
- Department of Cancer Biology, Department of Microbiology, Immunology and Genetics, The University of Kansas Cancer Center, The University of Kansas Medical Center, United States of America
| | - R Hastings
- Department of Cancer Biology, Department of Microbiology, Immunology and Genetics, The University of Kansas Cancer Center, The University of Kansas Medical Center, United States of America
| | - M A Markiewicz
- Department of Cancer Biology, Department of Microbiology, Immunology and Genetics, The University of Kansas Cancer Center, The University of Kansas Medical Center, United States of America
| | - D R Welch
- Department of Cancer Biology, Department of Microbiology, Immunology and Genetics, The University of Kansas Cancer Center, The University of Kansas Medical Center, United States of America.
| |
Collapse
|
27
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
28
|
Ahmed MW, Mahjabeen I, Gul S, Khursheed A, Mehmood A, Kayani MA. Relationship of single nucleotide polymorphisms and haplotype interaction of mitochondrial unfolded protein response pathway genes with head and neck cancer. Future Oncol 2019; 15:3819-3829. [PMID: 31651195 DOI: 10.2217/fon-2019-0365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: In this study, we evaluated the effect of selected polymorphisms of mitochondrial unfolded protein response (UPRmt) pathway in 500 head and neck cancer (HNC) patients and 500 healthy controls from Pakistan. Materials & methods: The experiments were conducted using tetra-ARMS PCR followed by DNA sequencing. Results: Multivariate analysis showed that AA genotype of rs3782116 showed fivefold, GG genotype of rs6598072 approximately twofold and CC genotype of rs4946936 and TT genotype of rs12212067 showed twofold increased risk of HNC. Furthermore, haplotype analysis showed that certain haplotypes of UPRmt pathway single nucleotide polymorphisms have significant association with increased HNC risk. Conclusion: These results show that genetic aberrations in UPRmt pathway genes have association with increased HNC risk and can be an indicator of advance clinical outcome especially invasion and metastasis.
Collapse
Affiliation(s)
- Malik Waqar Ahmed
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Shazma Gul
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Anum Khursheed
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Azhar Mehmood
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| |
Collapse
|
29
|
Kenny TC, Gomez ML, Germain D. Mitohormesis, UPR mt, and the Complexity of Mitochondrial DNA Landscapes in Cancer. Cancer Res 2019; 79:6057-6066. [PMID: 31484668 DOI: 10.1158/0008-5472.can-19-1395] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
The discovery of the Warburg effect, the preference of cancer cells to generate ATP via glycolysis rather than oxidative phosphorylation, has fostered the misconception that cancer cells become independent of the electron transport chain (ETC) for survival. This is inconsistent with the need of ETC function for the generation of pyrimidines. Along with this misconception, a large body of literature has reported numerous mutations in mitochondrial DNA (mtDNA), further fueling the notion of nonfunctional ETC in cancer cells. More recent findings, however, suggest that cancers maintain oxidative phosphorylation capacity and that the role of mtDNA mutations in cancer is likely far more nuanced in light of the remarkable complexity of mitochondrial genetics. This review aims at describing the various model systems that were developed to dissect the role of mtDNA in cancer, including cybrids, and more recently mitochondrial-nuclear exchange and conplastic mice. Furthermore, we put forward the notion of mtDNA landscapes, where the surrounding nonsynonymous mutations and variants can enhance or repress the biological effect of specific mtDNA mutations. Notably, we review recent studies describing the ability of some mtDNA landscapes to activate the mitochondrial unfolded protein response (UPRmt) but not others. Furthermore, the role of the UPRmt in maintaining cancer cells in the mitohormetic zone to provide selective adaptation to stress is discussed. Among the genes activated by the UPRmt, we suggest that the dismutases SOD2 and SOD1 may play key roles in the establishment of the mitohormetic zone. Finally, we propose that using a UPRmt nuclear gene expression signature may be a more reliable readout than mtDNA landscapes, given their diversity and complexity.
Collapse
Affiliation(s)
- Timothy C Kenny
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maria L Gomez
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
30
|
Mitochondrial genetics regulate nuclear gene expression through metabolites. Proc Natl Acad Sci U S A 2019; 116:15763-15765. [PMID: 31308238 PMCID: PMC6689900 DOI: 10.1073/pnas.1909996116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Abstract
Perturbed mitochondrial bioenergetics constitute a core pillar of cancer-associated metabolic dysfunction. While mitochondrial dysfunction in cancer may result from myriad biochemical causes, a historically neglected source is that of the mitochondrial genome. Recent large-scale sequencing efforts and clinical studies have highlighted the prevalence of mutations in mitochondrial DNA (mtDNA) in human tumours and their potential roles in cancer progression. In this review we discuss the biology of the mitochondrial genome, sources of mtDNA mutations, and experimental evidence of a role for mtDNA mutations in cancer. We also propose a ‘metabolic licensing’ model for mtDNA mutation-derived dysfunction in cancer initiation and progression.
Collapse
Affiliation(s)
- Payam A Gammage
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK. .,CRUK Beatson Institute for Cancer Research, Glasgow, UK.
| | | |
Collapse
|
32
|
Welch DR, Hurst DR. Defining the Hallmarks of Metastasis. Cancer Res 2019; 79:3011-3027. [PMID: 31053634 PMCID: PMC6571042 DOI: 10.1158/0008-5472.can-19-0458] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Metastasis is the primary cause of cancer morbidity and mortality. The process involves a complex interplay between intrinsic tumor cell properties as well as interactions between cancer cells and multiple microenvironments. The outcome is the development of a nearby or distant discontiguous secondary mass. To successfully disseminate, metastatic cells acquire properties in addition to those necessary to become neoplastic. Heterogeneity in mechanisms involved, routes of dissemination, redundancy of molecular pathways that can be utilized, and the ability to piggyback on the actions of surrounding stromal cells makes defining the hallmarks of metastasis extraordinarily challenging. Nonetheless, this review identifies four distinguishing features that are required: motility and invasion, ability to modulate the secondary site or local microenvironments, plasticity, and ability to colonize secondary tissues. By defining these first principles of metastasis, we provide the means for focusing efforts on the aspects of metastasis that will improve patient outcomes.
Collapse
Affiliation(s)
- Danny R Welch
- Department of Cancer Biology and The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Douglas R Hurst
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
33
|
Vivian CJ, Hagedorn TM, Jensen RA, Brinker AE, Welch DR. Mitochondrial polymorphisms contribute to aging phenotypes in MNX mouse models. Cancer Metastasis Rev 2019; 37:633-642. [PMID: 30547266 DOI: 10.1007/s10555-018-9773-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many inbred strains of mice develop spontaneous tumors as they age. Recent awareness of the impacts of mitochondrial DNA (mtDNA) on cancer and aging has inspired developing a mitochondrial-nuclear exchange (MNX) mouse model in which nuclear DNA is paired with mitochondrial genomes from other strains of mouse. MNX mice exhibit mtDNA influences on tumorigenicity and metastasis upon mating with transgenic mice. However, we also wanted to investigate spontaneous tumor phenotypes as MNX mice age. Utilizing FVB/NJ, C57BL/6J, C3H/HeN, and BALB/cJ wild-type inbred strains, previously documented phenotypes were observed as expected in MNX mice with the same nuclear background. However, aging nuclear matched MNX mice exhibited decreased occurrence of mammary tumors in C3H/HeN mice containing C57BL/6J mitochondria compared to wild-type C3H/HeN mice. Although aging tumor phenotypes appear to be driven by nuclear genes, evidence suggesting that some differences are modified by the mitochondrial genome is presented.
Collapse
Affiliation(s)
- Carolyn J Vivian
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Travis M Hagedorn
- Laboratory Animal Resources, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Roy A Jensen
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Amanda E Brinker
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.,The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA. .,The University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
34
|
Telonis AG, Loher P, Magee R, Pliatsika V, Londin E, Kirino Y, Rigoutsos I. tRNA Fragments Show Intertwining with mRNAs of Specific Repeat Content and Have Links to Disparities. Cancer Res 2019; 79:3034-3049. [PMID: 30996049 DOI: 10.1158/0008-5472.can-19-0789] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
tRNA-derived fragments (tRF) are a class of potent regulatory RNAs. We mined the datasets from The Cancer Genome Atlas (TCGA) representing 32 cancer types with a deterministic and exhaustive pipeline for tRNA fragments. We found that mitochondrial tRNAs contribute disproportionally more tRFs than nuclear tRNAs. Through integrative analyses, we uncovered a multitude of statistically significant and context-dependent associations between the identified tRFs and mRNAs. In many of the 32 cancer types, these associations involve mRNAs from developmental processes, receptor tyrosine kinase signaling, the proteasome, and metabolic pathways that include glycolysis, oxidative phosphorylation, and ATP synthesis. Even though the pathways are common to multiple cancers, the association of specific mRNAs with tRFs depends on and differs from cancer to cancer. The associations between tRFs and mRNAs extend to genomic properties as well; specifically, tRFs are positively correlated with shorter genes that have a higher density in repeats, such as ALUs, MIRs, and ERVLs. Conversely, tRFs are negatively correlated with longer genes that have a lower repeat density, suggesting a possible dichotomy between cell proliferation and differentiation. Analyses of bladder, lung, and kidney cancer data indicate that the tRF-mRNA wiring can also depend on a patient's sex. Sex-dependent associations involve cyclin-dependent kinases in bladder cancer, the MAPK signaling pathway in lung cancer, and purine metabolism in kidney cancer. Taken together, these findings suggest diverse and wide-ranging roles for tRFs and highlight the extensive interconnections of tRFs with key cellular processes and human genomic architecture. SIGNIFICANCE: Across 32 TCGA cancer contexts, nuclear and mitochondrial tRNA fragments exhibit associations with mRNAs that belong to concrete pathways, encode proteins with particular destinations, have a biased repeat content, and are sex dependent.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rogan Magee
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Venetia Pliatsika
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yohei Kirino
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
35
|
Weerts MJA, Sleijfer S, Martens JWM. The role of mitochondrial DNA in breast tumors. Drug Discov Today 2019; 24:1202-1208. [PMID: 30910739 DOI: 10.1016/j.drudis.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
Abstract
Somatic variation in mitochondrial DNA (mtDNA) has been described in primary breast tumors, including single-nucleotide variants and variation in the number of mtDNA molecules per cell (mtDNA content). However, there is currently a gap in the knowledge on the link between mitochondrial variation in breast cancer cells and their phenotypic behavior (i.e., tumorigenesis) or outcome. This review focuses on recent findings on mtDNA content and mtDNA somatic mutations in breast cancer and the potential biological impact and clinical relevance.
Collapse
Affiliation(s)
- Marjolein J A Weerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Stefan Sleijfer
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
36
|
Scheid AD, Beadnell TC, Welch DR. The second genome: Effects of the mitochondrial genome on cancer progression. Adv Cancer Res 2019; 142:63-105. [PMID: 30885364 DOI: 10.1016/bs.acr.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of genetics in cancer has been recognized for centuries, but most studies elucidating genetic contributions to cancer have understandably focused on the nuclear genome. Mitochondrial contributions to cancer pathogenesis have been documented for decades, but how mitochondrial DNA (mtDNA) influences cancer progression and metastasis remains poorly understood. This lack of understanding stems from difficulty isolating the nuclear and mitochondrial genomes as experimental variables, which is critical for investigating direct mtDNA contributions to disease given extensive crosstalk exists between both genomes. Several in vitro and in vivo models have isolated mtDNA as an independent variable from the nuclear genome. This review compares and contrasts different models, their advantages and disadvantages for studying mtDNA contributions to cancer, focusing on the mitochondrial-nuclear exchange (MNX) mouse model and findings regarding tumor progression, metastasis, and other complex cancer-related phenotypes.
Collapse
Affiliation(s)
- Adam D Scheid
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
37
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
38
|
Beadnell TC, Scheid AD, Vivian CJ, Welch DR. Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer. Cancer Metastasis Rev 2018; 37:615-632. [PMID: 30542781 PMCID: PMC6358502 DOI: 10.1007/s10555-018-9772-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes for only a fraction of the proteins that are encoded within the nucleus, and therefore has typically been regarded as a lesser player in cancer biology and metastasis. Accumulating evidence, however, supports an increased role for mtDNA impacting tumor progression and metastatic susceptibility. Unfortunately, due to this delay, there is a dearth of data defining the relative contributions of specific mtDNA polymorphisms (SNP), which leads to an inability to effectively use these polymorphisms to guide and enhance therapeutic strategies and diagnosis. In addition, evidence also suggests that differences in mtDNA impact not only the cancer cells but also the cells within the surrounding tumor microenvironment, suggesting a broad encompassing role for mtDNA polymorphisms in regulating the disease progression. mtDNA may have profound implications in the regulation of cancer biology and metastasis. However, there are still great lengths to go to understand fully its contributions. Thus, herein, we discuss the recent advances in our understanding of mtDNA in cancer and metastasis, providing a framework for future functional validation and discovery.
Collapse
Affiliation(s)
- Thomas C Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Adam D Scheid
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Carolyn J Vivian
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
39
|
Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMedicine 2018; 36:316-328. [PMID: 30232024 PMCID: PMC6197375 DOI: 10.1016/j.ebiom.2018.08.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023] Open
Abstract
We hypothesized that changes in the mitochondrial DNA (mtDNA) would significantly influence whole body metabolism, adiposity and gene expression in response to diet. Because it is not feasible to directly test these predictions in humans we used Mitochondrial-Nuclear eXchange mice, which have reciprocally exchanged nuclear and mitochondrial genomes between different Mus musculus strains. Results demonstrate that nuclear-mitochondrial genetic background combination significantly alters metabolic efficiency and body composition. Comparative RNA sequencing analysis in adipose tissues also showed a clear influence of the mtDNA on regulating nuclear gene expression on the same nuclear background (up to a 10-fold change in the number of differentially expressed genes), revealing that neither Mendelian nor mitochondrial genetics unilaterally control gene expression. Additional analyses indicate that nuclear-mitochondrial genome combination modulates gene expression in a manner heretofore not described. These findings provide a new framework for understanding complex genetic disease susceptibility.
Collapse
|
40
|
Feeley KP, Edmonds MD. Hiding in Plain Sight: Rediscovering the Importance of Noncoding RNA in Human Malignancy. Cancer Res 2018; 78:2149-2158. [PMID: 29632135 DOI: 10.1158/0008-5472.can-17-2675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022]
Abstract
At the time of its construction in the 1950s, the central dogma of molecular biology was a useful model that represented the current state of knowledge for the flow of genetic information after a period of prolific scientific discovery. Unknowingly, it also biased many of our assumptions going forward. Whether intentional or not, genomic elements not fitting into this paradigm were deemed unimportant and emphasis on the study of protein-coding genes prevailed for decades. The phrase "Junk DNA," first popularized in the 1960s, is still used with alarming frequency to describe the entirety of noncoding DNA. It has since become apparent that RNA molecules not coding for protein are vitally important in both normal development and human malignancy. Cancer researchers have been pioneers in determining noncoding RNA function and developing new technologies to study these molecules. In this review, we will discuss well known and newly emerging species of noncoding RNAs, their functions in cancer, and new technologies being utilized to understand their mechanisms of action in cancer. Cancer Res; 78(9); 2149-58. ©2018 AACR.
Collapse
Affiliation(s)
- Kyle P Feeley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mick D Edmonds
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
41
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
42
|
Bussard KM, Siracusa LD. Understanding Mitochondrial Polymorphisms in Cancer. Cancer Res 2017; 77:6051-6059. [PMID: 29097610 DOI: 10.1158/0008-5472.can-17-1939] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/25/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Alterations in mitochondrial DNA (mtDNA) were once thought to be predominantly innocuous to cell growth. Recent evidence suggests that mtDNA undergo naturally occurring alterations, including mutations and polymorphisms, which profoundly affect the cells in which they appear and contribute to a variety of diseases, including cardiovascular disease, diabetes, and cancer. Furthermore, interplay between mtDNA and nuclear DNA has been found in cancer cells, necessitating consideration of these complex interactions for future studies of cancer mutations and polymorphisms. In this issue of Cancer Research, Vivian and colleagues utilize a unique mouse model, called Mitochondrial Nuclear eXchange mice, that contain the nuclear DNA from one inbred mouse strain, and the mtDNA from a different inbred mouse strain to examine the genome-wide nuclear DNA methylation and gene expression patterns of brain tissue. Results demonstrated there were alterations in nuclear DNA expression and DNA methylation driven by mtDNA. These alterations may impact disease pathogenesis. In light of these results, in this review, we highlight alterations in mtDNA, with a specific focus on polymorphisms associated with cancer susceptibility and/or prognosis, mtDNA as cancer biomarkers, and considerations for investigating the role of mtDNA in cancer progression for future studies. Cancer Res; 77(22); 6051-9. ©2017 AACR.
Collapse
Affiliation(s)
- Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Linda D Siracusa
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Fetterman JL, Sammy MJ, Ballinger SW. Mitochondrial toxicity of tobacco smoke and air pollution. Toxicology 2017; 391:18-33. [PMID: 28838641 PMCID: PMC5681398 DOI: 10.1016/j.tox.2017.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Melissa J Sammy
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama, Birmingham, AL, United States.
| |
Collapse
|
44
|
Brinker AE, Vivian CJ, Koestler DC, Tsue TT, Jensen RA, Welch DR. Mitochondrial Haplotype Alters Mammary Cancer Tumorigenicity and Metastasis in an Oncogenic Driver-Dependent Manner. Cancer Res 2017; 77:6941-6949. [PMID: 29070615 DOI: 10.1158/0008-5472.can-17-2194] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Using a novel mouse model, a mitochondrial-nuclear exchange model termed MNX, we tested the hypothesis that inherited mitochondrial haplotypes alter primary tumor latency and metastatic efficiency. Male FVB/N-Tg(MMTVneu)202Mul/J (Her2) transgenic mice were bred to female MNX mice having FVB/NJ nuclear DNA with either FVB/NJ, C57BL/6J, or BALB/cJ mtDNA. Pups receiving the C57BL/6J or BALB/cJ mitochondrial genome (i.e., females crossed with Her2 males) showed significantly (P < 0.001) longer tumor latency (262 vs. 293 vs. 225 days), fewer pulmonary metastases (5 vs. 7 vs. 15), and differences in size of lung metastases (1.2 vs. 1.4 vs. 1.0 mm diameter) compared with FVB/NJ mtDNA. Although polyoma virus middle T-driven tumors showed altered primary and metastatic profiles in previous studies, depending upon nuclear and mtDNA haplotype, the magnitude and direction of changes were not the same in the HER2-driven mammary carcinomas. Collectively, these results establish mitochondrial polymorphisms as quantitative trait loci in mammary carcinogenesis, and they implicate distinct interactions between tumor drivers and mitochondria as critical modifiers of tumorigenicity and metastasis. Cancer Res; 77(24); 6941-9. ©2017 AACR.
Collapse
Affiliation(s)
- Amanda E Brinker
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, The University of Kansas Medical Center, Kansas City, Kansas
| | - Carolyn J Vivian
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, The University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, The University of Kansas Medical Center, Kansas City, Kansas.,The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
| | - Trevor T Tsue
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Roy A Jensen
- The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, Kansas City, Kansas. .,Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, The University of Kansas Medical Center, Kansas City, Kansas.,The University Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
45
|
Teoh ST, Lunt SY. Metabolism in cancer metastasis: bioenergetics, biosynthesis, and beyond. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1406] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Shao Thing Teoh
- Department of Biochemistry and Molecular Biology; Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing MI USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology; Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing MI USA
| |
Collapse
|
46
|
Kenny TC, Germain D. From discovery of the CHOP axis and targeting ClpP to the identification of additional axes of the UPRmt driven by the estrogen receptor and SIRT3. J Bioenerg Biomembr 2017; 49:297-305. [PMID: 28799020 DOI: 10.1007/s10863-017-9722-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/18/2022]
Abstract
The mitochondrial UPR (UPRmt) is rapidly gaining attention. While most studies on the UPRmt have focused on its role in aging, emerging studies suggest an important role of the UPRmt in cancer. Further, several of the players of the UPRmt in mammalian cells have well reported roles in the maintenance of the organelle. The goal of this review is to emphasize aspects of the UPRmt that have been overlooked in the current literature, describe the role of specific players of the UPRmt in the biology of the mitochondria and highlight the intriguing possibility that targeting the UPRmt in cancer may be already within reach.
Collapse
Affiliation(s)
- Timothy C Kenny
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA
| | - Doris Germain
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, 10029, USA.
| |
Collapse
|
47
|
Wang H, Xu J, Li D, Zhang S, Guo Z. Identification of sequence polymorphisms in the mitochondrial cytochrome c oxidase genes as risk factors for hepatocellular carcinoma. J Clin Lab Anal 2017; 32. [PMID: 28703354 DOI: 10.1002/jcla.22299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) accumulated in the mitochondrial DNA (mtDNA) is susceptible to the tumor formation. We discovered previously that SNPs in the mitochondrial displacement loop (D-loop) was associated with the risk of hepatocellular carcinoma (HCC). METHODS The cytochrome c oxidase (COX) genes of mtDNA were sequenced between 107 HCC patients and 100 matched healthy controls. The χ2 test was used to analyze single SNPs' statistical difference between HCC patients and healthy controls. RESULTS In this study, cancer risk-associated SNPs in the COX genes of mtDNA coding region were assessed in HCC patients and health controls. The nucleotide position at site 9545A/G (P=.036) was identified its association for HCC with the 9545G allele susceptible to cancer risk. CONCLUSIONS The SNPs in the COX genes may help us to evaluate the cancer risk of HCC.
Collapse
Affiliation(s)
- Hongfang Wang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Demao Li
- Department of Thoracic Surgery, Xingtai People's Hospital, Xingtai, China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
48
|
Vivian CJ, Brinker AE, Graw S, Koestler DC, Legendre C, Gooden GC, Salhia B, Welch DR. Mitochondrial Genomic Backgrounds Affect Nuclear DNA Methylation and Gene Expression. Cancer Res 2017; 77:6202-6214. [PMID: 28663334 DOI: 10.1158/0008-5472.can-17-1473] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations and polymorphisms contribute to many complex diseases, including cancer. Using a unique mouse model that contains nDNA from one mouse strain and homoplasmic mitochondrial haplotypes from different mouse strain(s)-designated Mitochondrial Nuclear Exchange (MNX)-we showed that mtDNA could alter mammary tumor metastasis. Because retrograde and anterograde communication exists between the nuclear and mitochondrial genomes, we hypothesized that there are differential mtDNA-driven changes in nuclear (n)DNA expression and DNA methylation. Genome-wide nDNA methylation and gene expression were measured in harvested brain tissue from paired wild-type and MNX mice. Selective differential DNA methylation and gene expression were observed between strains having identical nDNA, but different mtDNA. These observations provide insights into how mtDNA could be altering epigenetic regulation and thereby contribute to the pathogenesis of metastasis. Cancer Res; 77(22); 6202-14. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Vivian
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona
| | - Amanda E Brinker
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Stefan Graw
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - Bodour Salhia
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas. .,Heartland Center for Mitochondrial Medicine, Phoenix, Arizona.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.,The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
49
|
Kenny TC, Germain D. mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPR mt). Front Cell Dev Biol 2017; 5:37. [PMID: 28470001 PMCID: PMC5395626 DOI: 10.3389/fcell.2017.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
While several studies have confirmed a link between mitochondrial DNA (mtDNA) mutations and cancer cell metastasis, much debate remains regarding the nature of the alternations in mtDNA leading to this effect. Meanwhile, the mitochondrial unfolded protein response (UPRmt) has gained much attention in recent years, with most studies of this pathway focusing on its role in aging. However, the UPRmt has also been studied in the context of cancer. More recent work suggests that rather than a single mutation or alternation, specific combinatorial mtDNA landscapes able to activate the UPRmt may be those that are selected by metastatic cells, while mtDNA landscapes unable to activate the UPRmt do not. This review aims at offering an overview of the confusing literature on mtDNA mutations and metastasis and the more recent work on the UPRmt in this setting.
Collapse
Affiliation(s)
- Timothy C Kenny
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer InstituteNew York, NY, USA
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer InstituteNew York, NY, USA
| |
Collapse
|
50
|
Selected mitochondrial DNA landscapes activate the SIRT3 axis of the UPR mt to promote metastasis. Oncogene 2017; 36:4393-4404. [PMID: 28368421 PMCID: PMC5542861 DOI: 10.1038/onc.2017.52] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 12/12/2022]
Abstract
By causing mitochondrial DNA (mtDNA) mutations and oxidation of mitochondrial proteins, reactive oxygen species (ROS) leads to perturbations in mitochondrial proteostasis. Several studies have linked mtDNA mutations to metastasis of cancer cells but the nature of the mtDNA species involved remains unclear. Our data suggests that no common mtDNA mutation identifies metastatic cells; rather the metastatic potential of several ROS-generating mutations is largely determined by their mtDNA genomic landscapes, which can act either as an enhancer or repressor of metastasis. However, mtDNA landscapes of all metastatic cells are characterized by activation of the SIRT/FOXO/SOD2 axis of the mitochondrial unfolded protein response (UPRmt). The UPRmt promotes a complex transcription program ultimately increasing mitochondrial integrity and fitness in response to oxidative proteotoxic stress. Using SOD2 as a surrogate marker of the UPRmt, we found that in primary breast cancers, SOD2 is significantly increased in metastatic lesions. We propose that the ability of selected mtDNA species to activate the UPRmt is a process that is exploited by cancer cells to maintain mitochondrial fitness and facilitate metastasis.
Collapse
|