1
|
Sberna S, Filipuzzi M, Bianchi N, Croci O, Fardella F, Soriani C, Rohban S, Carnevali S, Albertini AA, Crosetto N, Rodighiero S, Chiesa A, Curti L, Campaner S. Senataxin prevents replicative stress induced by the Myc oncogene. Cell Death Dis 2025; 16:187. [PMID: 40108134 PMCID: PMC11923212 DOI: 10.1038/s41419-025-07485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Replicative stress (RS) is emerging as a promising therapeutic target in oncology, yet full exploitation of its potential requires a detailed understanding of the mechanisms and genes involved. Here, we investigated the RNA helicase Senataxin (SETX), an enzyme that resolves RNA-DNA hybrids and R-loops, to address its role in preventing RS by oncogenic Myc. Upon Myc activation, silencing of SETX led to selective engagement of the DNA damage response (DDR) and robust cytotoxicity. Pharmacological dissection of the upstream kinases regulating the DDR uncovered a protective role of the ATR pathway, that once inhibited, boosted SETX driven-DDR. While SETX loss did not lead to a genome-wide increase of R-loops, mechanistic analyses revealed enhanced R-loops localized at DDR-foci and newly replicated genomic loci, compatible with a selective role of SETX in resolving RNA-DNA hybrids to alleviate Myc-induced RS. Genome-wide mapping of DNA double-strand breaks confirmed that SETX silencing exacerbated DNA damage at transcription-replication conflict (TRC) regions at early replicated sites. We propose that SETX prevents Myc-induced TRCs by resolving transcription-associated R-loops that encounter the replisome. The identification of SETX as a genetic liability of oncogenic Myc opens up new therapeutic options against aggressive Myc-driven tumors.
Collapse
Affiliation(s)
- Silvia Sberna
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Marco Filipuzzi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Nicola Bianchi
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Ottavio Croci
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Federica Fardella
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Chiara Soriani
- Imaging Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Sara Rohban
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Sara Carnevali
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | | | - Nicola Crosetto
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE, 17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE, 17165, Sweden
| | - Simona Rodighiero
- Imaging Unit, Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Arianna Chiesa
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Laura Curti
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT, CGS@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139, Milan, Italy.
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Bakiri L, Wagner EF. c-Jun and Fra-2 pair up to Myc-anistically drive HCC. Cell Cycle 2024:1-9. [PMID: 39581891 DOI: 10.1080/15384101.2024.2429968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death with limited therapies, is a complex disease developing in a background of Hepatitis Virus infection or systemic conditions, such as the metabolic syndrome. Investigating HCC pathogenesis in model organisms is therefore crucial for developing novel diagnostic and therapeutic tools. Genetically engineered mouse models (GEMMs) have been instrumental in recapitulating the local and systemic features of HCC. Early studies using GEMMs and patient material implicated members of the dimeric Activator Protein-1 (AP-1) transcription factor family, such as c-Jun and c-Fos, in HCC formation. In a recent report, we described how switchable, hepatocyte-restricted expression of a single-chain c-Jun~Fra-2 protein, functionally mimicking the c-Jun/Fra-2 AP-1 dimer, results in spontaneous and largely reversible liver tumors in GEMMs. Dysregulated cell cycle, inflammation, and dyslipidemia are observed at early stages and tumors display molecular HCC signatures. We demonstrate that increased c-Myc expression is an essential molecular determinant of tumor formation that can be therapeutically targeted using the BET inhibitor JQ1. Here, we discuss these findings with additional results illustrating how AP-1 GEMMs can foster preclinical research on liver diseases with novel perspectives offered by the constantly increasing wealth of HCC-related datasets.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| |
Collapse
|
3
|
Venkateswaran N, Garcia R, Lafita-Navarro MC, Hao YH, Perez-Castro L, Nogueira PAS, Solmonson A, Mender I, Kilgore JA, Fang S, Brown IN, Li L, Parks E, Lopes Dos Santos I, Bhaskar M, Kim J, Jia Y, Lemoff A, Grishin NV, Kinch L, Xu L, Williams NS, Shay JW, DeBerardinis RJ, Zhu H, Conacci-Sorrell M. Tryptophan fuels MYC-dependent liver tumorigenesis through indole 3-pyruvate synthesis. Nat Commun 2024; 15:4266. [PMID: 38769298 PMCID: PMC11106337 DOI: 10.1038/s41467-024-47868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.
Collapse
Affiliation(s)
- Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pedro A S Nogueira
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ashley Solmonson
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ilgen Mender
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jessica A Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shun Fang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Isabella N Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Li Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Emily Parks
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Igor Lopes Dos Santos
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mahima Bhaskar
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuemeng Jia
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hao Zhu
- Children's Medical Center Research Institute at University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Bakiri L, Hasenfuss SC, Guío-Carrión A, Thomsen MK, Hasselblatt P, Wagner EF. Liver cancer development driven by the AP-1/c-Jun~Fra-2 dimer through c-Myc. Proc Natl Acad Sci U S A 2024; 121:e2404188121. [PMID: 38657045 PMCID: PMC11067056 DOI: 10.1073/pnas.2404188121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. HCC incidence is on the rise, while treatment options remain limited. Thus, a better understanding of the molecular pathways involved in HCC development has become a priority to guide future therapies. While previous studies implicated the Activator Protein-1 (AP-1) (Fos/Jun) transcription factor family members c-Fos and c-Jun in HCC formation, the contribution of Fos-related antigens (Fra-) 1 and 2 is unknown. Here, we show that hepatocyte-restricted expression of a single chain c-Jun~Fra-2 protein, which functionally mimics the c-Jun/Fra-2 AP-1 dimer, results in spontaneous HCC formation in c-Jun~Fra-2hep mice. Several hallmarks of human HCC, such as cell cycle dysregulation and the expression of HCC markers are observed in liver tumors arising in c-Jun~Fra-2hep mice. Tumorigenesis occurs in the context of mild inflammation, low-grade fibrosis, and Pparγ-driven dyslipidemia. Subsequent analyses revealed increased expression of c-Myc, evidently under direct regulation by AP-1 through a conserved distal 3' enhancer. Importantly, c-Jun~Fra-2-induced tumors revert upon switching off transgene expression, suggesting oncogene addiction to the c-Jun~Fra-2 transgene. Tumors escaping reversion maintained c-Myc and c-Myc target gene expression, likely due to increased c-Fos. Interfering with c-Myc in established tumors using the Bromodomain and Extra-Terminal motif inhibitor JQ-1 diminished liver tumor growth in c-Jun~Fra-2 mutant mice. Thus, our data establish c-Jun~Fra-2hep mice as a model to study liver tumorigenesis and identify the c-Jun/Fra-2-Myc interaction as a potential target to improve HCC patient stratification and/or therapy.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Sebastian C. Hasenfuss
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Ana Guío-Carrión
- Genes, Development and Disease Group, National Cancer Research Centre, 28029, Madrid, Spain
| | - Martin K. Thomsen
- Department of Biomedicine, University of Aarhus, 8000, Aarhus, Denmark
| | - Peter Hasselblatt
- Department of Medicine II, University Hospital and Faculty of Medicine, 79106, Freiburg, Germany
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
5
|
Nie XY, Menet JS. Circadian regulation of stereotypic chromatin conformations at enhancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590818. [PMID: 38712031 PMCID: PMC11071494 DOI: 10.1101/2024.04.24.590818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cooperation between the circadian transcription factor (TF) CLOCK:BMAL1 and other TFs at cis-regulatory elements (CREs) is critical to daily rhythms of transcription. Yet, the modalities of this cooperation are unclear. Here, we analyzed the co-binding of multiple TFs on single DNA molecules in mouse liver using single molecule footprinting (SMF). We found that SMF reads clustered in stereotypic chromatin states that reflect distinguishable organization of TFs and nucleosomes, and that were remarkably conserved between all samples. DNA protection at CLOCK:BMAL1 binding motif (E-box) varied between CREs, from E-boxes being solely bound by CLOCK:BMAL1 to situations where other TFs competed with CLOCK:BMAL1 for E-box binding. SMF also uncovered CLOCK:BMAL1 cooperative binding at E-boxes separated by 250 bp, which structurally altered the CLOCK:BMAL1-DNA interface. Importantly, we discovered multiple nucleosomes with E-boxes at entry/exit sites that were removed upon CLOCK:BMAL1 DNA binding, thereby promoting the formation of open chromatin states that facilitate DNA binding of other TFs and that were associated with rhythmic transcription. These results demonstrate the utility of SMF for studying how CLOCK:BMAL1 and other TFs regulate stereotypical chromatin states at CREs to promote transcription.
Collapse
Affiliation(s)
- Xinyu Y. Nie
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
| | - Jerome S. Menet
- Department of Biology, Center for Biological Clock Research, Texas A&M University, College Station, TX
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX
| |
Collapse
|
6
|
Lafita-Navarro MC, Hao YH, Jiang C, Jang S, Chang TC, Brown IN, Venkateswaran N, Maurais E, Stachera W, Zhang Y, Mundy D, Han J, Tran VM, Mettlen M, Xu L, Woodruff JB, Grishin NV, Kinch L, Mendell JT, Buszczak M, Conacci-Sorrell M. ZNF692 organizes a hub specialized in 40S ribosomal subunit maturation enhancing translation in rapidly proliferating cells. Cell Rep 2023; 42:113280. [PMID: 37851577 DOI: 10.1016/j.celrep.2023.113280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Increased nucleolar size and activity correlate with aberrant ribosome biogenesis and enhanced translation in cancer cells. One of the first and rate-limiting steps in translation is the interaction of the 40S small ribosome subunit with mRNAs. Here, we report the identification of the zinc finger protein 692 (ZNF692), a MYC-induced nucleolar scaffold that coordinates the final steps in the biogenesis of the small ribosome subunit. ZNF692 forms a hub containing the exosome complex and ribosome biogenesis factors specialized in the final steps of 18S rRNA processing and 40S ribosome maturation in the granular component of the nucleolus. Highly proliferative cells are more reliant on ZNF692 than normal cells; thus, we conclude that effective production of small ribosome subunits is critical for translation efficiency in cancer cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhui Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Seoyeon Jang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isabella N Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Maurais
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weronika Stachera
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yanfeng Zhang
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dorothy Mundy
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Live Cell Imaging Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsoo Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanna M Tran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey B Woodruff
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Wang H, Lu J, Stevens T, Roberts A, Mandel J, Avula R, Ma B, Wu Y, Wang J, Land CV, Finkel T, Vockley JE, Airik M, Airik R, Muzumdar R, Gong Z, Torbenson MS, Prochownik EV. Premature aging and reduced cancer incidence associated with near-complete body-wide Myc inactivation. Cell Rep 2023; 42:112830. [PMID: 37481724 PMCID: PMC10591215 DOI: 10.1016/j.celrep.2023.112830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
MYC proto-oncogene dysregulation alters metabolism, translation, and other functions in ways that support tumor induction and maintenance. Although Myc+/- mice are healthier and longer-lived than control mice, the long-term ramifications of more complete Myc loss remain unknown. We now describe the chronic consequences of body-wide Myc inactivation initiated postnatally. "MycKO" mice acquire numerous features of premature aging, including altered body composition and habitus, metabolic dysfunction, hepatic steatosis, and dysregulation of gene sets involved in functions that normally deteriorate with aging. Yet, MycKO mice have extended lifespans that correlate with a 3- to 4-fold lower lifetime cancer incidence. Aging tissues from normal mice and humans also downregulate Myc and gradually alter many of the same Myc target gene sets seen in MycKO mice. Normal aging and its associated cancer predisposition are thus highly linked via Myc.
Collapse
Affiliation(s)
- Huabo Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jie Lu
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Taylor Stevens
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alexander Roberts
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jordan Mandel
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Raghunandan Avula
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Bingwei Ma
- Tongji University School of Medicine, Shanghai, China
| | - Yijen Wu
- Department of Developmental Biology, The University of Pittsburgh, Pittsburgh, PA, USA
| | - Jinglin Wang
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Central South University, Xiangya School of Medicine, Changsha, Hunan 410013, P.R. China
| | - Clinton Van't Land
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Toren Finkel
- Division of Cardiology, The Department of Internal Medicine and the UPMC Aging Institute, Pittsburgh, PA 15224, USA
| | - Jerry E Vockley
- Division of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Merlin Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rannar Airik
- Division of Nephrology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Radhika Muzumdar
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zhenwei Gong
- Division of Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Michel S Torbenson
- Division of Laboratory Medicine and Pathology, The Mayo Clinic, Rochester, MN 55905, USA
| | - Edward V Prochownik
- Division of Hematology/Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15261, USA; Hillman Cancer Center of UPMC, Pittsburgh, PA 15232, USA; Pittsburgh Liver Research Center, UPMC, Pittsburgh, PA 15261, USA.
| |
Collapse
|
8
|
Vízkeleti L, Spisák S. Rewired Metabolism Caused by the Oncogenic Deregulation of MYC as an Attractive Therapeutic Target in Cancers. Cells 2023; 12:1745. [PMID: 37443779 PMCID: PMC10341379 DOI: 10.3390/cells12131745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
MYC is one of the most deregulated oncogenes on multiple levels in cancer. As a node transcription factor, MYC plays a diverse regulatory role in many cellular processes, including cell cycle and metabolism, both in physiological and pathological conditions. The relentless growth and proliferation of tumor cells lead to an insatiable demand for energy and nutrients, which requires the rewiring of cellular metabolism. As MYC can orchestrate all aspects of cellular metabolism, its altered regulation plays a central role in these processes, such as the Warburg effect, and is a well-established hallmark of cancer development. However, our current knowledge of MYC suggests that its spatial- and concentration-dependent contribution to tumorigenesis depends more on changes in the global or relative expression of target genes. As the direct targeting of MYC is proven to be challenging due to its relatively high toxicity, understanding its underlying regulatory mechanisms is essential for the development of tumor-selective targeted therapies. The aim of this review is to comprehensively summarize the diverse forms of MYC oncogenic deregulation, including DNA-, transcriptional- and post-translational level alterations, and their consequences for cellular metabolism. Furthermore, we also review the currently available and potentially attractive therapeutic options that exploit the vulnerability arising from the metabolic rearrangement of MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Bioinformatics, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Sándor Spisák
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, 1117 Budapest, Hungary
| |
Collapse
|
9
|
Scagnoli F, Palma A, Favia A, Scuoppo C, Illi B, Nasi S. A New Insight into MYC Action: Control of RNA Polymerase II Methylation and Transcription Termination. Biomedicines 2023; 11:biomedicines11020412. [PMID: 36830948 PMCID: PMC9952900 DOI: 10.3390/biomedicines11020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
MYC oncoprotein deregulation is a common catastrophic event in human cancer and limiting its activity restrains tumor development and maintenance, as clearly shown via Omomyc, an MYC-interfering 90 amino acid mini-protein. MYC is a multifunctional transcription factor that regulates many aspects of transcription by RNA polymerase II (RNAPII), such as transcription activation, pause release, and elongation. MYC directly associates with Protein Arginine Methyltransferase 5 (PRMT5), a protein that methylates a variety of targets, including RNAPII at the arginine residue R1810 (R1810me2s), crucial for proper transcription termination and splicing of transcripts. Therefore, we asked whether MYC controls termination as well, by affecting R1810me2S. We show that MYC overexpression strongly increases R1810me2s, while Omomyc, an MYC shRNA, or a PRMT5 inhibitor and siRNA counteract this phenomenon. Omomyc also impairs Serine 2 phosphorylation in the RNAPII carboxyterminal domain, a modification that sustains transcription elongation. ChIP-seq experiments show that Omomyc replaces MYC and reshapes RNAPII distribution, increasing occupancy at promoter and termination sites. It is unclear how this may affect gene expression. Transcriptomic analysis shows that transcripts pivotal to key signaling pathways are both up- or down-regulated by Omomyc, whereas genes directly controlled by MYC and belonging to a specific signature are strongly down-regulated. Overall, our data point to an MYC/PRMT5/RNAPII axis that controls termination via RNAPII symmetrical dimethylation and contributes to rewiring the expression of genes altered by MYC overexpression in cancer cells. It remains to be clarified which role this may have in tumor development.
Collapse
Affiliation(s)
- Fiorella Scagnoli
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Annarita Favia
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
| | - Claudio Scuoppo
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Barbara Illi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| | - Sergio Nasi
- IBPM—CNR, Biology and Biotechnology Department, Sapienza University, 00185 Rome, Italy
- Correspondence: (F.S.); (B.I.); (S.N.)
| |
Collapse
|
10
|
Sequera C, Grattarola M, Holczbauer A, Dono R, Pizzimenti S, Barrera G, Wangensteen KJ, Maina F. MYC and MET cooperatively drive hepatocellular carcinoma with distinct molecular traits and vulnerabilities. Cell Death Dis 2022; 13:994. [PMID: 36433941 PMCID: PMC9700715 DOI: 10.1038/s41419-022-05411-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Enhanced activation of the transcription factor MYC and of the receptor tyrosine kinase MET are among the events frequently occurring in hepatocellular carcinoma (HCC). Both genes individually act as drivers of liver cancer initiation and progression. However, their concomitant alteration in HCC has not been explored, nor functionally documented. Here, we analysed databases of five independent human HCC cohorts and found a subset of patients with high levels of MYC and MET (MYChigh/METhigh) characterised by poor prognosis. This clinical observation drove us to explore the functionality of MYC and MET co-occurrence in vivo, combining hydrodynamic tail vein injection for MYC expression in the R26stopMet genetic setting, in which wild-type MET levels are enhanced following the genetic deletion of a stop cassette. Results showed that increased MYC and MET expression in hepatocytes is sufficient to induce liver tumorigenesis even in the absence of pre-existing injuries associated with a chronic disease state. Intriguingly, ectopic MYC in MET tumours increases expression of the Mki67 proliferation marker, and switches them into loss of Afp, Spp1, Gpc3, Epcam accompanied by an increase in Hgma1, Vim, and Hep-Par1 levels. We additionally found a switch in the expression of specific immune checkpoints, with an increase in the Ctla-4 and Lag3 lymphocyte co-inhibitory responses, and in the Icosl co-stimulatory responses of tumour cells. We provide in vitro evidence on the vulnerability of some human HCC cell lines to combined MYC and MET targeting, which are otherwise resistant to single inhibition. Mechanistically, combined blockage of MYC and MET converts a partial cytostatic effect, triggered by individual blockage of MYC or MET, into a cytotoxic effect. Together, these findings highlight a subgroup of HCC characterised by MYChigh/METhigh, and document functional cooperativity between MYC and MET in liver tumorigenesis. Thus, the MYC-R26Met model is a relevant setting for HCC biology, patient classification and treatment.
Collapse
Affiliation(s)
- Celia Sequera
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France
| | - Margherita Grattarola
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France ,grid.7605.40000 0001 2336 6580Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy
| | - Agnes Holczbauer
- grid.66875.3a0000 0004 0459 167XDivision of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, NY USA
| | - Rosanna Dono
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France
| | - Stefania Pizzimenti
- grid.7605.40000 0001 2336 6580Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy
| | - Giuseppina Barrera
- grid.7605.40000 0001 2336 6580Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy
| | - Kirk J. Wangensteen
- grid.66875.3a0000 0004 0459 167XDivision of Gastroenterology, Department of Medicine, Mayo Clinic, Rochester, NY USA
| | - Flavio Maina
- grid.462081.90000 0004 0598 4854Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
11
|
Myc-mediated circular RNA circMcph1/miR-370-3p/Irak2 axis is a progressive regulator in hepatic fibrosis. Life Sci 2022; 312:121182. [PMID: 36435226 DOI: 10.1016/j.lfs.2022.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
AIMS Treating hepatic fibrosis (HF) is a major challenge worldwide. However, the biological functions and regulatory mechanisms of circular RNAs (circRNAs) remain unclear in HF. The present study aimed to elucidate the novel role of circMcph1 in HF. MAIN METHODS HF mouse model was established by injecting CCl4 intraperitoneally and validated using hematoxylin and eosin staining, immunohistochemistry, and serological tests in vivo. RAW264.7 cells were treated with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in vitro inflammatory damage model. Gel electrophoresis, DNA sequencing, RNase R and actinomycin D treatment, random 6 primers and oligo dT primers assay, nuclear and cytoplasmic fractionation assay, and fluorescence in situ hybridization were performed to identify the characteristics of circMcph1. Functional assays such as ELISA, flow cytometry, and adeno-associated virus administration in vivo and liposome delivery gene therapy in vitro were used to determine the functional effects of circMcph1/miR-370-3p/interleukin-1 receptor-associated kinase 2 (Irak2) axis. Mechanistic assays such as luciferase reporter analysis, and chromatin immunoprecipitation revealed the molecular mechanism of the Myc/circMcph1/miR-370-3p/Irak2 axis in HF. KEY FINDINGS CircMcph1 expression was upregulated in liver tissues and primary Kupffer cells of CCl4-induced HF mice, as well as in LPS and IFN-γ-treated RAW264.7 cells. Knockdown of circMcph1 ameliorated liver fibrogenesis and inflammatory damage in HF mice and reduced the inflammatory response in LPS and IFN-γ-treated RAW264.7 cells. Mechanically, circMcph1 mediated by Myc regulated the expression of Irak2 by sponging miR-370-3p in HF. SIGNIFICANCE The study findings suggested that the Myc/circMcph1/miR-370-3p/Irak2 axis might be a novel identifier and therapeutic target for HF.
Collapse
|
12
|
Sullivan DK, Deutzmann A, Yarbrough J, Krishnan MS, Gouw AM, Bellovin DI, Adam SJ, Liefwalker DF, Dhanasekaran R, Felsher DW. MYC oncogene elicits tumorigenesis associated with embryonic, ribosomal biogenesis, and tissue-lineage dedifferentiation gene expression changes. Oncogene 2022; 41:4960-4970. [PMID: 36207533 PMCID: PMC10257951 DOI: 10.1038/s41388-022-02458-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
MYC is a transcription factor frequently overexpressed in cancer. To determine how MYC drives the neoplastic phenotype, we performed transcriptomic analysis using a panel of MYC-driven autochthonous transgenic mouse models. We found that MYC elicited gene expression changes mostly in a tissue- and lineage-specific manner across B-cell lymphoma, T-cell acute lymphoblastic lymphoma, hepatocellular carcinoma, renal cell carcinoma, and lung adenocarcinoma. However, despite these gene expression changes being mostly tissue-specific, we uncovered a convergence on a common pattern of upregulation of embryonic stem cell gene programs and downregulation of tissue-of-origin gene programs across MYC-driven cancers. These changes are representative of lineage dedifferentiation, that may be facilitated by epigenetic alterations that occur during tumorigenesis. Moreover, while several cellular processes are represented among embryonic stem cell genes, ribosome biogenesis is most specifically associated with MYC expression in human primary cancers. Altogether, MYC's capability to drive tumorigenesis in diverse tissue types appears to be related to its ability to both drive a core signature of embryonic genes that includes ribosomal biogenesis genes as well as promote tissue and lineage specific dedifferentiation.
Collapse
Affiliation(s)
- Delaney K Sullivan
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Anja Deutzmann
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Josiah Yarbrough
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maya S Krishnan
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Arvin M Gouw
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - David I Bellovin
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stacey J Adam
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel F Liefwalker
- Department of Molecular and Medical Genetics, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Renumathy Dhanasekaran
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
False-positive IRESes from Hoxa9 and other genes resulting from errors in mammalian 5' UTR annotations. Proc Natl Acad Sci U S A 2022; 119:e2122170119. [PMID: 36037358 PMCID: PMC9456764 DOI: 10.1073/pnas.2122170119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperconserved genomic sequences have great promise for understanding core biological processes. It has been recently proposed that scores of hyperconserved 5' untranslated regions (UTRs), also known as transcript leaders (hTLs), encode internal ribosome entry sites (IRESes) that drive cap-independent translation, in part, via interactions with ribosome expansion segments. However, the direct functional significance of such interactions has not yet been definitively demonstrated. We provide evidence that the putative IRESes previously reported in Hox gene hTLs are rarely included in transcript leaders. Instead, these regions function independently as transcriptional promoters. In addition, we find the proposed RNA structure of the putative Hoxa9 IRES is not conserved. Instead, sequences previously shown to be essential for putative IRES activity encode a hyperconserved transcription factor binding site (E-box) that contributes to its promoter activity and is bound by several transcription factors, including USF1 and USF2. Similar E-box sequences enhance the promoter activities of other putative Hoxa gene IRESes. Moreover, we provide evidence that the vast majority of hTLs with putative IRES activity overlap transcriptional promoters, enhancers, and 3' splice sites that are most likely responsible for their reported IRES activities. These results argue strongly against recently reported widespread IRES-like activities from hTLs and contradict proposed interactions between ribosomal expansion segment ES9S and putative IRESes. Furthermore, our work underscores the importance of accurate transcript annotations, controls in bicistronic reporter assays, and the power of synthesizing publicly available data from multiple sources.
Collapse
|
14
|
Combinatorial immunotherapies overcome MYC-driven immune evasion in triple negative breast cancer. Nat Commun 2022; 13:3671. [PMID: 35760778 PMCID: PMC9237085 DOI: 10.1038/s41467-022-31238-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Few patients with triple negative breast cancer (TNBC) benefit from immune checkpoint inhibitors with complete and durable remissions being quite rare. Oncogenes can regulate tumor immune infiltration, however whether oncogenes dictate diminished response to immunotherapy and whether these effects are reversible remains poorly understood. Here, we report that TNBCs with elevated MYC expression are resistant to immune checkpoint inhibitor therapy. Using mouse models and patient data, we show that MYC signaling is associated with low tumor cell PD-L1, low overall immune cell infiltration, and low tumor cell MHC-I expression. Restoring interferon signaling in the tumor increases MHC-I expression. By combining a TLR9 agonist and an agonistic antibody against OX40 with anti-PD-L1, mice experience tumor regression and are protected from new TNBC tumor outgrowth. Our findings demonstrate that MYC-dependent immune evasion is reversible and druggable, and when strategically targeted, may improve outcomes for patients treated with immune checkpoint inhibitors.
Collapse
|
15
|
Tanaskovic N, Dalsass M, Filipuzzi M, Ceccotti G, Verrecchia A, Nicoli P, Doni M, Olivero D, Pasini D, Koseki H, Sabò A, Bisso A, Amati B. Polycomb group ring finger protein 6 suppresses Myc-induced lymphomagenesis. Life Sci Alliance 2022; 5:5/8/e202101344. [PMID: 35422437 PMCID: PMC9012912 DOI: 10.26508/lsa.202101344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Max dimerizes with Mga to form the repressive complex PRC1.6; another PRC1.6 subunit, Pcgf6, suppresses Myc-induced lymphomagenesis but, unexpectedly, does so in a Mga- and PRC1.6-independent manner. Max is an obligate dimerization partner for the Myc transcription factors and for several repressors, such as Mnt, Mxd1-4, and Mga, collectively thought to antagonize Myc function in transcription and oncogenesis. Mga, in particular, is part of the variant Polycomb group repressive complex PRC1.6. Here, we show that ablation of the distinct PRC1.6 subunit Pcgf6–but not Mga–accelerates Myc-induced lymphomagenesis in Eµ-myc transgenic mice. Unexpectedly, however, Pcgf6 loss shows no significant impact on transcriptional profiles, in neither pre-tumoral B-cells, nor lymphomas. Altogether, these data unravel an unforeseen, Mga- and PRC1.6-independent tumor suppressor activity of Pcgf6.
Collapse
Affiliation(s)
| | - Mattia Dalsass
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | | | | | - Paola Nicoli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Mirko Doni
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Daniela Olivero
- Laboratorio Analisi Veterinarie BiEsseA, A Company of Scil Animal Care Company Srl, Milan, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Cellular and Molecular Medicine, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Arianna Sabò
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Andrea Bisso
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
16
|
Wang D, Tian J, Yan Z, Yuan Q, Wu D, Liu X, Yang S, Guo S, Wang J, Yang Y, Xing J, An J, Huang Q. Mitochondrial fragmentation is crucial for c-Myc-driven hepatoblastoma-like liver tumor. Mol Ther 2022; 30:1645-1660. [PMID: 35085814 PMCID: PMC9077476 DOI: 10.1016/j.ymthe.2022.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
Hepatoblastoma is the most common liver cancer in children, and the aggressive subtype often has a poor prognosis and lacks effective targeted therapy. Although aggressive hepatoblastoma (HB) is often accompanied by abnormally high expression of the transcription factor c-Myc, the underlying mechanism remains unclear. In this study, we found that mitochondrial fragmentation was enhanced by c-Myc overexpression in human aggressive HB tissues and was associated with poor prognosis. Then, a mouse model resembling human HB was established via hydrodynamic injection of c-Myc plasmids. We observed that liver-specific knockout of the mitochondrial fusion molecule MFN1 or overexpression of mitochondrial fission molecule DRP1 promoted the occurrence of c-Myc-driven liver cancer. In contrast, when MFN1 was overexpressed in the liver, tumor formation was delayed. In vitro experiments showed that c-Myc transcriptionally upregulated the expression of DRP1 and decreased MFN1 expression through upregulation of miR-373-3p. Moreover, enhanced mitochondrial fragmentation significantly promoted aerobic glycolysis and the proliferation of HB cells by significantly increasing reactive oxygen species (ROS) production and activating the RAC-alpha serine/threonine-protein kinase (AKT)/mammalian target of rapamycin (mTOR) and nuclear factor κB (NF-κB) pathways. Taken together, our results indicate that c-Myc-mediated mitochondrial fragmentation promotes the malignant transformation and progression of HB by activating ROS-mediated multi-oncogenic signaling.
Collapse
|
17
|
Liefwalker DF, Ryan M, Wang Z, Pathak KV, Plaisier S, Shah V, Babra B, Dewson GS, Lai IK, Mosley AR, Fueger PT, Casey SC, Jiang L, Pirrotte P, Swaminathan S, Sears RC. Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies. Cancer Metab 2021; 9:31. [PMID: 34399819 PMCID: PMC8369789 DOI: 10.1186/s40170-021-00263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles. We examined cells from mouse models of MYC-, RAS-, and BCR-ABL-driven lymphoid malignancies and find a convergence on de novo lipogenesis. We explore the potential role of MYC in mediating lipogenesis by 13C glucose tracing and untargeted metabolic profiling. Inhibition of lipogenesis leads to cell death both in vitro and in vivo and does not induce cell death of normal splenocytes. METHODS We analyzed RNA-seq data sets for common metabolic convergence in lymphoma and leukemia. Using in vitro cell lines derived in from conditional MYC, RAS, and BCR-ABL transgenic murine models and oncogene-driven human cell lines, we determined gene regulation, metabolic profiles, and sensitivity to inhibition of lipogenesis in lymphoid malignancies. We utilize preclinical murine models and transgenic primary model of T-ALL to determine the effect of lipogenesis blockade across BCR-ABL-, RAS-, and c-MYC-driven lymphoid malignancies. Statistical significance was calculated using unpaired t-tests and one-way ANOVA. RESULTS This study illustrates that de novo lipid biogenesis is a shared feature of several lymphoma subtypes. Using cell lines derived from conditional MYC, RAS, and BCR-ABL transgenic murine models, we demonstrate shared responses to inhibition of lipogenesis by the acetyl-coA carboxylase inhibitor 5-(tetradecloxy)-2-furic acid (TOFA), and other lipogenesis inhibitors. We performed metabolic tracing studies to confirm the influence of c-MYC and TOFA on lipogenesis. We identify specific cell death responses to TOFA in vitro and in vivo and demonstrate delayed engraftment and progression in vivo in transplanted lymphoma cell lines. We also observe delayed progression of T-ALL in a primary transgenic mouse model upon TOFA administration. In a panel of human cell lines, we demonstrate sensitivity to TOFA treatment as a metabolic liability due to the general convergence on de novo lipogenesis in lymphoid malignancies driven by MYC, RAS, or BCR-ABL. Importantly, cell death was not significantly observed in non-malignant cells in vivo. CONCLUSIONS These studies suggest that de novo lipogenesis may be a common survival strategy for many lymphoid malignancies and may be a clinically exploitable metabolic liability. TRIAL REGISTRATION This study does not include any clinical interventions on human subjects.
Collapse
Affiliation(s)
- Daniel F Liefwalker
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA.
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA.
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Meital Ryan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhichao Wang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Seema Plaisier
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Vidhi Shah
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Bobby Babra
- Molecular & Cellular Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Gabrielle S Dewson
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Ian K Lai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Adriane R Mosley
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick T Fueger
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Stephanie C Casey
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Jiang
- Department of Molecular & Cellular Endocrinology, Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Srividya Swaminathan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Systems Biology, Beckman Research Institute of the City of Hope, Monrovia, CA, 91016, USA
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
18
|
Peng D, Gleyzer R, Tai WH, Kumar P, Bian Q, Isaacs B, da Rocha EL, Cai S, DiNapoli K, Huang FW, Cahan P. Evaluating the transcriptional fidelity of cancer models. Genome Med 2021; 13:73. [PMID: 33926541 PMCID: PMC8086312 DOI: 10.1186/s13073-021-00888-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cancer researchers use cell lines, patient-derived xenografts, engineered mice, and tumoroids as models to investigate tumor biology and to identify therapies. The generalizability and power of a model derive from the fidelity with which it represents the tumor type under investigation; however, the extent to which this is true is often unclear. The preponderance of models and the ability to readily generate new ones has created a demand for tools that can measure the extent and ways in which cancer models resemble or diverge from native tumors. METHODS We developed a machine learning-based computational tool, CancerCellNet, that measures the similarity of cancer models to 22 naturally occurring tumor types and 36 subtypes, in a platform and species agnostic manner. We applied this tool to 657 cancer cell lines, 415 patient-derived xenografts, 26 distinct genetically engineered mouse models, and 131 tumoroids. We validated CancerCellNet by application to independent data, and we tested several predictions with immunofluorescence. RESULTS We have documented the cancer models with the greatest transcriptional fidelity to natural tumors, we have identified cancers underserved by adequate models, and we have found models with annotations that do not match their classification. By comparing models across modalities, we report that, on average, genetically engineered mice and tumoroids have higher transcriptional fidelity than patient-derived xenografts and cell lines in four out of five tumor types. However, several patient-derived xenografts and tumoroids have classification scores that are on par with native tumors, highlighting both their potential as faithful model classes and their heterogeneity. CONCLUSIONS CancerCellNet enables the rapid assessment of transcriptional fidelity of tumor models. We have made CancerCellNet available as a freely downloadable R package ( https://github.com/pcahan1/cancerCellNet ) and as a web application ( http://www.cahanlab.org/resources/cancerCellNet_web ) that can be applied to new cancer models that allows for direct comparison to the cancer models evaluated here.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Gleyzer
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wen-Hsin Tai
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pavithra Kumar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qin Bian
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bradley Isaacs
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Stephanie Cai
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kathleen DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine; Helen Diller Family Cancer Center; Bakar Computational Health Sciences Institute; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Pellanda P, Dalsass M, Filipuzzi M, Loffreda A, Verrecchia A, Castillo Cano V, Thabussot H, Doni M, Morelli MJ, Soucek L, Kress T, Mazza D, Mapelli M, Beaulieu ME, Amati B, Sabò A. Integrated requirement of non-specific and sequence-specific DNA binding in Myc-driven transcription. EMBO J 2021; 40:e105464. [PMID: 33792944 DOI: 10.15252/embj.2020105464] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic transcription factors recognize specific DNA sequence motifs, but are also endowed with generic, non-specific DNA-binding activity. How these binding modes are integrated to determine select transcriptional outputs remains unresolved. We addressed this question by site-directed mutagenesis of the Myc transcription factor. Impairment of non-specific DNA backbone contacts caused pervasive loss of genome interactions and gene regulation, associated with increased intra-nuclear mobility of the Myc protein in murine cells. In contrast, a mutant lacking base-specific contacts retained DNA-binding and mobility profiles comparable to those of the wild-type protein, but failed to recognize its consensus binding motif (E-box) and could not activate Myc-target genes. Incidentally, this mutant gained weak affinity for an alternative motif, driving aberrant activation of different genes. Altogether, our data show that non-specific DNA binding is required to engage onto genomic regulatory regions; sequence recognition in turn contributes to transcriptional activation, acting at distinct levels: stabilization and positioning of Myc onto DNA, and-unexpectedly-promotion of its transcriptional activity. Hence, seemingly pervasive genome interaction profiles, as detected by ChIP-seq, actually encompass diverse DNA-binding modalities, driving defined, sequence-dependent transcriptional responses.
Collapse
Affiliation(s)
- Paola Pellanda
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mattia Dalsass
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Alessia Loffreda
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Virginia Castillo Cano
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain
| | | | - Mirko Doni
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.,Vall d'Hebron Institute of Oncology (VHIO), Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Mapelli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Arianna Sabò
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
20
|
Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. J Hepatol 2021; 74:380-393. [PMID: 32916216 DOI: 10.1016/j.jhep.2020.08.033] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Angiocrine signaling by liver sinusoidal endothelial cells (LSECs) regulates hepatic functions such as growth, metabolic maturation, and regeneration. Recently, we identified GATA4 as the master regulator of LSEC specification during development. Herein, we studied the role of endothelial GATA4 in the adult liver and in hepatic pathogenesis. METHODS We generated adult Clec4g-icretg/0xGata4fl/fl (Gata4LSEC-KO) mice with LSEC-specific depletion of Gata4. Livers were analyzed by histology, electron microscopy, immunohistochemistry/immunofluorescence, in situ hybridization, and LSECs were isolated for gene expression profiling, ChIP- and ATAC-sequencing. Partial hepatectomy was performed to assess regeneration. We used choline-deficient, l-amino acid-defined (CDAA) diet and chronic carbon tetrachloride exposure to model liver fibrosis. Human single cell RNA-seq data sets were analyzed for endothelial alterations in healthy and cirrhotic livers. RESULTS Genetic Gata4 deficiency in LSECs of adult mice caused perisinusoidal liver fibrosis, hepatopathy and impaired liver regeneration. Sinusoidal capillarization and LSEC-to-continuous endothelial transdifferentiation were accompanied by a profibrotic angiocrine switch involving de novo endothelial expression of hepatic stellate cell-activating cytokine PDGFB. Increased chromatin accessibility and amplification by activated MYC mediated angiocrine Pdgfb expression. As observed in Gata4LSEC-KO livers, CDAA diet-induced perisinusoidal liver fibrosis was associated with GATA4 repression, MYC activation and a profibrotic angiocrine switch in LSECs. Comparison of CDAA-fed Gata4LSEC-KO and control mice demonstrated that endothelial GATA4 indeed protects against dietary-induced perisinusoidal liver fibrosis. In human cirrhotic livers, GATA4-positive LSECs and endothelial GATA4 target genes were reduced, while non-LSEC endothelial cells and MYC target genes including PDGFB were enriched. CONCLUSIONS Endothelial GATA4 protects against perisinusoidal liver fibrosis by repressing MYC activation and profibrotic angiocrine signaling at the chromatin level. Therapies targeting the GATA4/MYC/PDGFB/PDGFRβ axis offer a promising strategy for prevention and treatment of liver fibrosis. LAY SUMMARY The liver vasculature is supposed to play a major role in the development of liver fibrosis and cirrhosis, which can lead to liver failure and liver cancer. Herein, we discovered that structural and transcriptional changes induced by genetic deletion of the transcription factor GATA4 in the hepatic endothelium were sufficient to cause liver fibrosis. Activation of the transcription factor MYC and de novo expression of the "angiocrine" growth factor PDGFB were identified as downstream drivers of fibrosis and as potential therapeutic targets for this potentially fatal disease.
Collapse
|
21
|
Thng DKH, Toh TB, Chow EKH. Capitalizing on Synthetic Lethality of MYC to Treat Cancer in the Digital Age. Trends Pharmacol Sci 2021; 42:166-182. [PMID: 33422376 DOI: 10.1016/j.tips.2020.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Deregulation of MYC is among the most frequent oncogenic drivers of cancer. Developing targeted therapies against MYC is, therefore, one of the most critical unmet needs of cancer therapy. Unfortunately, MYC has been labelled as undruggable due to the lack of success in developing clinically relevant MYC-targeted therapies. Synthetic lethality is a promising approach that targets MYC-dependent vulnerabilities in cancer. However, translating the synthetic lethality targets to the clinics is still challenging due to the complex nature of cancers. This review highlights the most promising mechanisms of MYC synthetic lethality and how these discoveries are currently translated into the clinic. Finally, we discuss how in silico computational platforms can improve clinical success of synthetic lethality-based therapy.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore.
| |
Collapse
|
22
|
Bisso A, Filipuzzi M, Gamarra Figueroa GP, Brumana G, Biagioni F, Doni M, Ceccotti G, Tanaskovic N, Morelli MJ, Pendino V, Chiacchiera F, Pasini D, Olivero D, Campaner S, Sabò A, Amati B. Cooperation Between MYC and β-Catenin in Liver Tumorigenesis Requires Yap/Taz. Hepatology 2020; 72:1430-1443. [PMID: 31965581 DOI: 10.1002/hep.31120] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Activation of MYC and catenin beta-1 (CTNNB1, encoding β-catenin) can co-occur in liver cancer, but how these oncogenes cooperate in tumorigenesis remains unclear. APPROACH AND RESULTS We generated a mouse model allowing conditional activation of MYC and WNT/β-catenin signaling (through either β-catenin activation or loss of APC - adenomatous polyposis coli) upon expression of CRE recombinase in the liver and monitored their effects on hepatocyte proliferation, apoptosis, gene expression profiles, and tumorigenesis. Activation of WNT/β-catenin signaling strongly accelerated MYC-driven carcinogenesis in the liver. Both pathways also cooperated in promoting cellular transformation in vitro, demonstrating their cell-autonomous action. Short-term induction of MYC and β-catenin in hepatocytes, followed by RNA-sequencing profiling, allowed the identification of a "Myc/β-catenin signature," composed of a discrete set of Myc-activated genes whose expression increased in the presence of active β-catenin. Notably, this signature enriched for targets of Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz), two transcriptional coactivators known to be activated by WNT/β-catenin signaling and to cooperate with MYC in mitogenic activation and liver transformation. Consistent with these regulatory connections, Yap/Taz accumulated upon Myc/β-catenin activation and were required not only for the ensuing proliferative response, but also for tumor cell growth and survival. Finally, the Myc/β-catenin signature was enriched in a subset of human hepatocellular carcinomas characterized by comparatively poor prognosis. CONCLUSIONS Myc and β-catenin show a strong cooperative action in liver carcinogenesis, with Yap and Taz serving as mediators of this effect. These findings warrant efforts toward therapeutic targeting of Yap/Taz in aggressive liver tumors marked by elevated Myc/β-catenin activity.
Collapse
Affiliation(s)
- Andrea Bisso
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | - Giulia Brumana
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesca Biagioni
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Mirko Doni
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | | | | | - Marco Jacopo Morelli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Vera Pendino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Fulvio Chiacchiera
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy.,Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | | | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Arianna Sabò
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO)-IRCCS, Milan, Italy
| |
Collapse
|
23
|
Qiao P, Hou Y. Application of discrete fruit fly algorithm in enhancement of wireless sensor node coverage. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-179835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Peixin Qiao
- College of Education, Shanghai Normal University, Shanghai, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Ying Hou
- Department of Physics and Engineering Technology, Guilin Normal College, Guilin, China
| |
Collapse
|
24
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
25
|
Bywater MJ, Burkhart DL, Straube J, Sabò A, Pendino V, Hudson JE, Quaife-Ryan GA, Porrello ER, Rae J, Parton RG, Kress TR, Amati B, Littlewood TD, Evan GI, Wilson CH. Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nat Commun 2020; 11:1827. [PMID: 32286286 PMCID: PMC7156407 DOI: 10.1038/s41467-020-15552-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.
Collapse
Affiliation(s)
- Megan J Bywater
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Arianna Sabò
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Vera Pendino
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Via Adamello 16, 20139, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology (IEO) - IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
- Department of Pharmacology, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
26
|
Baluapuri A, Wolf E, Eilers M. Target gene-independent functions of MYC oncoproteins. Nat Rev Mol Cell Biol 2020; 21:255-267. [PMID: 32071436 DOI: 10.1038/s41580-020-0215-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Oncoproteins of the MYC family are major drivers of human tumorigenesis. Since a large body of evidence indicates that MYC proteins are transcription factors, studying their function has focused on the biology of their target genes. Detailed studies of MYC-dependent changes in RNA levels have provided contrasting models of the oncogenic activity of MYC proteins through either enhancing or repressing the expression of specific target genes, or as global amplifiers of transcription. In this Review, we first summarize the biochemistry of MYC proteins and what is known (or is unclear) about the MYC target genes. We then discuss recent progress in defining the interactomes of MYC and MYCN and how this information affects central concepts of MYC biology, focusing on mechanisms by which MYC proteins modulate transcription. MYC proteins promote transcription termination upon stalling of RNA polymerase II, and we propose that this mechanism enhances the stress resilience of basal transcription. Furthermore, MYC proteins coordinate transcription elongation with DNA replication and cell cycle progression. Finally, we argue that the mechanism by which MYC proteins regulate the transcription machinery is likely to promote tumorigenesis independently of global or relative changes in the expression of their target genes.
Collapse
Affiliation(s)
- Apoorva Baluapuri
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Elmar Wolf
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
27
|
Yang T, Wen Y, Li J, Tan T, Yang J, Pan J, Hu C, Yao Y, Zhang J, Li S, Xia H, He J, Zou Y. Association of CMYC polymorphisms with hepatoblastoma risk. Transl Cancer Res 2020; 9:849-855. [PMID: 35117430 PMCID: PMC8798278 DOI: 10.21037/tcr.2019.12.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) in genes may affect gene expression and contribute to cancer susceptibility. This study aimed to explore the association between CMYC gene polymorphisms and hepatoblastoma risk. METHODS Hepatoblastoma patients and cancer-free controls were recruited and matched by age and sex. Genotypes were determined by TaqMan, and the strength of the association of interest was determined by calculating odds ratios (ORs) and 95% confidence intervals (CIs). The distributions of various CMYC genotypes among subjects were recorded, followed by analyses of associations between CMYC polymorphisms and hepatoblastoma risk. RESULTS A total of 213 hepatoblastoma patients and 958 cancer-free controls were enrolled. No significant associations between the CMYC rs4645943 and rs2070583 polymorphisms and hepatoblastoma risk were found (all P>0.05). In stratification analysis based on age, sex, and clinical stage, the CMYC rs4645943 and rs2070583 polymorphisms were not associated with hepatoblastoma susceptibility (all P>0.05). CONCLUSIONS Thus, the CMYC rs4645943 and rs2070583 polymorphisms were not associated with hepatoblastoma risk in the study cohort.
Collapse
Affiliation(s)
- Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yang Wen
- First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiahao Li
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Tianbao Tan
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiliang Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing Pan
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chao Hu
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yuxiao Yao
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030002, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
28
|
Bisso A, Sabò A, Amati B. MYC in Germinal Center-derived lymphomas: Mechanisms and therapeutic opportunities. Immunol Rev 2019; 288:178-197. [PMID: 30874346 DOI: 10.1111/imr.12734] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The rearrangement of immunoglobulin loci during the germinal center reaction is associated with an increased risk of chromosomal translocations that activate oncogenes such as MYC, BCL2 or BCL6, thus contributing to the development of B-cell lymphomas. MYC and BCL2 activation are initiating events in Burkitt's (BL) and Follicular Lymphoma (FL), respectively, but can occur at later stages in other subtypes such as Diffuse Large-B Cell Lymphoma (DLBCL). MYC can also be activated during the progression of FL to the transformed stage. Thus, either DLBCL or FL can give rise to aggressive double-hit lymphomas (DHL) with concurrent activation of MYC and BCL2. Research over the last three decades has improved our understanding of the functions of these oncogenes and the basis for their cooperative action in lymphomagenesis. MYC, in particular, is a transcription factor that contributes to cell activation, growth and proliferation, while concomitantly sensitizing cells to apoptosis, the latter being blocked by BCL2. Here, we review our current knowledge about the role of MYC in germinal center B-cells and lymphomas, discuss MYC-induced dependencies that can sensitize cancer cells to select pharmacological inhibitors, and illustrate their therapeutic potential in aggressive lymphomas-and in particular in DHL, in combination with BCL2 inhibitors.
Collapse
Affiliation(s)
- Andrea Bisso
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Sabò
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
29
|
ZFP281 Recruits MYC to Active Promoters in Regulating Transcriptional Initiation and Elongation. Mol Cell Biol 2019; 39:MCB.00329-19. [PMID: 31570506 DOI: 10.1128/mcb.00329-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 02/02/2023] Open
Abstract
The roles of the MYC transcription factor in transcriptional regulation have been studied intensively. However, the general mechanism underlying the recruitment of MYC to chromatin is less clear. Here, we found that the Krüppel-like transcription factor ZFP281 plays important roles in recruiting MYC to active promoters in mouse embryonic stem cells. At the genome scale, ZFP281 is broadly associated with MYC, and the depletion of ZFP281 significantly reduces the levels of MYC and RNA polymerase II at the ZFP281- and MYC-cobound genes. Specially, we found that recruitment is required for the regulation of the Lin28a oncogene and pri-let-7 transcription. Our results therefore suggest a major role of ZFP281 in recruiting MYC to chromatin and the integration of ZFP281 and the MYC/LIN28A/Let-7 loop into a multilevel circuit.
Collapse
|
30
|
Filip D, Mraz M. The role of MYC in the transformation and aggressiveness of ‘indolent’ B-cell malignancies. Leuk Lymphoma 2019; 61:510-524. [DOI: 10.1080/10428194.2019.1675877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel Filip
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Mraz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
31
|
Tesi A, de Pretis S, Furlan M, Filipuzzi M, Morelli MJ, Andronache A, Doni M, Verrecchia A, Pelizzola M, Amati B, Sabò A. An early Myc-dependent transcriptional program orchestrates cell growth during B-cell activation. EMBO Rep 2019; 20:e47987. [PMID: 31334602 PMCID: PMC6726900 DOI: 10.15252/embr.201947987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Upon activation, lymphocytes exit quiescence and undergo substantial increases in cell size, accompanied by activation of energy-producing and anabolic pathways, widespread chromatin decompaction, and elevated transcriptional activity. These changes depend upon prior induction of the Myc transcription factor, but how Myc controls them remains unclear. We addressed this issue by profiling the response to LPS stimulation in wild-type and c-myc-deleted primary mouse B-cells. Myc is rapidly induced, becomes detectable on virtually all active promoters and enhancers, but has no direct impact on global transcriptional activity. Instead, Myc contributes to the swift up- and down-regulation of several hundred genes, including many known regulators of the aforementioned cellular processes. Myc-activated promoters are enriched for E-box consensus motifs, bind Myc at the highest levels, and show enhanced RNA Polymerase II recruitment, the opposite being true at down-regulated loci. Remarkably, the Myc-dependent signature identified in activated B-cells is also enriched in Myc-driven B-cell lymphomas: hence, besides modulation of new cancer-specific programs, the oncogenic action of Myc may largely rely on sustained deregulation of its normal physiological targets.
Collapse
Affiliation(s)
- Alessandra Tesi
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Marco Filipuzzi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Center for Translational Genomics and BioinformaticsIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
- Present address:
Experimental Therapeutics Program of IFOM ‐ The FIRC Institute of Molecular OncologyMilanItaly
| | - Mirko Doni
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Alessandro Verrecchia
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMMFondazione Istituto Italiano di Tecnologia (IIT)MilanItaly
| | - Bruno Amati
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| | - Arianna Sabò
- Department of Experimental OncologyEuropean Institute of Oncology (IEO)‐IRCCSMilanItaly
| |
Collapse
|
32
|
He J, Gerstenlauer M, Chan LK, Leithäuser F, Yeh MM, Wirth T, Maier HJ. Block of NF-kB signaling accelerates MYC-driven hepatocellular carcinogenesis and modifies the tumor phenotype towards combined hepatocellular cholangiocarcinoma. Cancer Lett 2019; 458:113-122. [PMID: 31128214 DOI: 10.1016/j.canlet.2019.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022]
Abstract
Primary liver cancer ranks among the leading causes of cancer death worldwide. Risk factors are closely linked to inflammation, such as viral hepatitis and alcoholic as well as non-alcoholic steatohepatitis. Among the pathways involved in the pathogenesis of malignant liver tumors, dysregulation of NF-κB signaling plays a prominent role. It provides a link between inflammation and cancer. To examine the role of NF-κB in a MYC-induced model of hepatocellular carcinoma we deleted NEMO (IKKγ) specifically from hepatocytes. NEMO deletion accelerated tumor development and shortened survival, suggesting a tumor-suppressive function of NF-κB signaling. We observed increased proliferation, inflammation and fibrosis, as well as activation of MAPK and STAT signaling. Importantly, deletion of NEMO modified the tumor phenotype from hepatocellular carcinoma to combined hepatocellular cholangiocarcinoma. The intrahepatic cholangiocarcinoma tumor component showed increased expression of progenitor markers such as Sox9 and reduced expression of mature hepatic markers such as CPS1. In both cases tumorigenesis was reversible by turning off MYC expression. To our knowledge this is the first mouse model of combined hepatocellular cholangiocarcinoma and may provide insights into the development of this rare malignant tumor.
Collapse
Affiliation(s)
- Jiajia He
- Institute of Physiological Chemistry, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Melanie Gerstenlauer
- Institute of Physiological Chemistry, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Lap Kwan Chan
- Institute of Physiological Chemistry, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Frank Leithäuser
- Institute of Pathology, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Matthew M Yeh
- Department of Pathology, University of Washington, 1959 NE Pacific St., Seattle, USA
| | - Thomas Wirth
- Institute of Physiological Chemistry, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Harald J Maier
- Institute of Physiological Chemistry, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
33
|
Kido T, Li Y, Tanaka Y, Dahiya R, Chris Lau YF. The X-linked tumor suppressor TSPX downregulates cancer-drivers/oncogenes in prostate cancer in a C-terminal acidic domain dependent manner. Oncotarget 2019; 10:1491-1506. [PMID: 30863497 PMCID: PMC6407674 DOI: 10.18632/oncotarget.26673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023] Open
Abstract
TSPX is a tumor suppressor gene located at Xp11.22, a prostate cancer susceptibility locus. It is ubiquitously expressed in most tissues but frequently downregulated in various cancers, including lung, brain, liver and prostate cancers. The C-terminal acidic domain (CAD) of TSPX is crucial for the tumor suppressor functions, such as inhibition of cyclin B/CDK1 phosphorylation and androgen receptor transactivation. Currently, the exact role of the TSPX CAD in transcriptional regulation of downstream genes is still uncertain. Using different variants of TSPX, we showed that overexpression of either TSPX, that harbors a CAD, or a CAD-truncated variant (TSPX[∆C]) drastically retarded cell proliferation in a prostate cancer cell line LNCaP, but cell death was induced only by overexpression of TSPX. Transcriptome analyses showed that TSPX or TSPX[∆C] overexpression downregulated multiple cancer-drivers/oncogenes, including MYC and MYB, in a CAD-dependent manner and upregulated various tumor suppressors in a CAD-independent manner. Datamining of transcriptomes of prostate cancer specimens in the Cancer Genome Atlas (TCGA) dataset confirmed the negative correlation between the expression level of TSPX and those of MYC and MYB in clinical prostate cancer, thereby supporting the hypothesis that the CAD of TSPX plays an important role in suppression of cancer-drivers/oncogenes in prostatic oncogenesis.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
34
|
Gastric Cancer Cell Lines Have Different MYC-Regulated Expression Patterns but Share a Common Core of Altered Genes. Can J Gastroenterol Hepatol 2018; 2018:5804376. [PMID: 30410872 PMCID: PMC6206580 DOI: 10.1155/2018/5804376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 12/15/2022] Open
Abstract
MYC is an oncogene responsible for excessive cell growth in cancer, enabling transcriptional activation of genes involved in cell cycle regulation, metabolism, and apoptosis, and is usually overexpressed in gastric cancer (GC). By using siRNA and Next-Generation Sequencing (NGS), we identified MYC-regulated differentially expressed Genes (DEGs) in three Brazilian gastric cancer cell lines representing the histological subtypes of GC (diffuse, intestinal, and metastasis). The DEGs were picked using Sailfish software, followed by Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using KEGG. We found 11 significantly enriched gene sets by using enrichment score (ES), False Discovery Rate (FDR), and nominal P-values. We identified a total of 5.471 DEGs with correlation over (80%). In diffuse-type and in metastatic GC cell lines, MYC-silencing caused DEGs downregulation, while the intestinal-type GC cells presented overall DEGs upregulation after MYC siRNA depletion. We were able to detect 11 significant gene sets when comparing our samples to the hallmark collection of gene expression, enriched mostly for the following hallmarks: proliferation, pathway, signaling, metabolic, and DNA damage response. When we analyzed our DEGs considering KEGG metabolic pathways, we found 12 common branches covering a wide range of biological functions, and three of them were common to all three cell lines: ubiquitin-mediated proteolysis, ribosomes, and system and epithelial cell signaling in Helicobacter pylori infection. The GC cell lines used in this study share 14 MYC-regulated genes, but their gene expression profile is different for each histological subtype of GC. Our results present a computational analysis of MYC-related signatures in GC, and we present evidence that GC cell lines representing distinct histological subtypes of this disease have different MYC-regulated expression profiles but share a common core of altered genes. This is an important step towards the understanding of MYC's role in gastric carcinogenesis and an indication of probable new drug targets in stomach cancer.
Collapse
|
35
|
Zou J, Zhuang M, Yu X, Li N, Mao R, Wang Z, Wang J, Wang X, Zhou H, Zhang L, Shi Y. MYC inhibition increases PD-L1 expression induced by IFN-γ in hepatocellular carcinoma cells. Mol Immunol 2018; 101:203-209. [PMID: 30007230 DOI: 10.1016/j.molimm.2018.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022]
Abstract
The effectiveness of immunotherapy targeting the immune checkpoint PD-L1/PD-1 pathway highlights importance of elucidating the regulatory mechanisms of PD-L1 expression in cancer cells. Previous studies demonstrate that oncogene MYC up-regulates PD-L1 expression in lymphomas. In the present study, we investigated the regulatory role of MYC in the PD-L1 expression induced by IFN-γ in HCC cells. Unexpectedly, knockdown of MYC expression using siRNA assay increased the inducible expression of PD-L1 both at mRNA and protein levels. Mechanistically, the inhibition of MYC elevated expression of STAT1, a critical component of IFN-γ signaling pathway, leading to the elevation of PD-L1 expression in HCC cells exposed to IFN-γ. These results suggest that MYC may down-regulate PD-L1 expression in the context of HCC. This study implicates that a combination therapy targeting MYC function and PD-L1/PD-1 pathway might be effective for treatment of HCC.
Collapse
Affiliation(s)
- Jiahuan Zou
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Mengwei Zhuang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Xiaopeng Yu
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Na Li
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Rudi Mao
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Zhida Wang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Jianing Wang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Xiaoyan Wang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Huaiyu Zhou
- Department of Parasitology, School of Basic Medical Science, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China
| | - Yongyu Shi
- Department of Immunology, Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, 44# Wenhua Xi Road, Jinan 250012, China.
| |
Collapse
|
36
|
Schauer SN, Carreira PE, Shukla R, Gerhardt DJ, Gerdes P, Sanchez-Luque FJ, Nicoli P, Kindlova M, Ghisletti S, Santos AD, Rapoud D, Samuel D, Faivre J, Ewing AD, Richardson SR, Faulkner GJ. L1 retrotransposition is a common feature of mammalian hepatocarcinogenesis. Genome Res 2018; 28:639-653. [PMID: 29643204 PMCID: PMC5932605 DOI: 10.1101/gr.226993.117] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022]
Abstract
The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) is a continuing source of germline and somatic mutagenesis in mammals. Deregulated L1 activity is a hallmark of cancer, and L1 mutagenesis has been described in numerous human malignancies. We previously employed retrotransposon capture sequencing (RC-seq) to analyze hepatocellular carcinoma (HCC) samples from patients infected with hepatitis B or hepatitis C virus and identified L1 variants responsible for activating oncogenic pathways. Here, we have applied RC-seq and whole-genome sequencing (WGS) to an Abcb4 (Mdr2)-/- mouse model of hepatic carcinogenesis and demonstrated for the first time that L1 mobilization occurs in murine tumors. In 12 HCC nodules obtained from 10 animals, we validated four somatic L1 insertions by PCR and capillary sequencing, including TF subfamily elements, and one GF subfamily example. One of the TF insertions carried a 3' transduction, allowing us to identify its donor L1 and to demonstrate that this full-length TF element retained retrotransposition capacity in cultured cancer cells. Using RC-seq, we also identified eight tumor-specific L1 insertions from 25 HCC patients with a history of alcohol abuse. Finally, we used RC-seq and WGS to identify three tumor-specific L1 insertions among 10 intra-hepatic cholangiocarcinoma (ICC) patients, including one insertion traced to a donor L1 on Chromosome 22 known to be highly active in other cancers. This study reveals L1 mobilization as a common feature of hepatocarcinogenesis in mammals, demonstrating that the phenomenon is not restricted to human viral HCC etiologies and is encountered in murine liver tumors.
Collapse
Affiliation(s)
- Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ruchi Shukla
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology, 20146 Milan, Italy
| | - Michaela Kindlova
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Alexandre Dos Santos
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Delphine Rapoud
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Didier Samuel
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
- Université Paris-Sud, Faculté de Médecine, Villejuif 94800, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, Villejuif 94800, France
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
37
|
Lombardi O, Varshney D, Phillips NM, Cowling VH. c-Myc deregulation induces mRNA capping enzyme dependency. Oncotarget 2018; 7:82273-82288. [PMID: 27756891 PMCID: PMC5347691 DOI: 10.18632/oncotarget.12701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023] Open
Abstract
c-Myc is a potent driver of many human cancers. Since strategies for directly targeting c-Myc protein have had limited success, upstream regulators and downstream effectors of c-Myc are being investigated as alternatives for therapeutic intervention. c-Myc regulates transcription and formation of the mRNA cap, which is important for transcript maturation and translation. However, the direct mechanism by which c-Myc upregulates mRNA capping is unclear. mRNA cap formation initiates with the linkage of inverted guanosine via a triphosphate bridge to the first transcribed nucleotide, catalysed by mRNA capping enzyme (CE/RNGTT). Here we report that c-Myc increases the recruitment of catalytically active CE to RNA polymerase II and to its target genes. c-Myc-induced target gene expression, cell proliferation and cell transformation is highly dependent on CE, but only when c-Myc is deregulated. Cells retaining normal control of c-Myc expression are insensitive to repression of CE. c-Myc expression is also dependent on CE. Therefore, inhibiting CE provides an attractive route for selective therapeutic targeting of cancer cells which have acquired deregulated c-Myc.
Collapse
Affiliation(s)
- Olivia Lombardi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dhaval Varshney
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola M Phillips
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.,School of Science and the Environment, Manchester Metropolitan University, Manchester, M15 6BH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
38
|
A sequence polymorphism on 8q24 is associated with survival in hepatocellular carcinoma patients who received radiation therapy. Sci Rep 2018; 8:2264. [PMID: 29396413 PMCID: PMC5797243 DOI: 10.1038/s41598-018-20700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022] Open
Abstract
There is a growing consensus that genetic variation in candidate genes can influence cancer progression and treatment effects. In this study, we genotyped the rs9642880 G > T polymorphism using DNA isolated from blood samples of 271 hepatocellular carcinoma (HCC) patients who received radiotherapy treatment. We found that patients who carried the GT or TT genotypes had significantly shorter median survival times (MSTs) compared to patients with the GG genotype (14.6 vs.21.4 months). The multivariate P value was 0.027, the hazard ratio (HR) was 1.38, and the 95% confidence interval was 1.04–1.84. Further analysis revealed that patients with the variant genotypes had an increased risk of poor tumour response to radiotherapy (P = 0.036 and 0.002 for stable disease and progressive disease, respectively) and higher incidence of multiple intrahepatic lesions (P = 0.026) and BCLC C stage (P = 0.027). Moreover, further stratified survival analyses revealed that at least radioresponse and BCLC stage contributed to the association between the rs9642880 G > T polymorphism and survival of HCC patients in this study (P value, 0.017 vs 0.053 for BCLC C stage vs B stage; 0.011 vs 0.531 for radioresponse SD + PD vs CR + PR). These results illustrate the potential association between rs9642880 G > T and survival in HCC patients who received radiotherapy treatment.
Collapse
|
39
|
|
40
|
BET-Bromodomain Inhibitors Engage the Host Immune System and Regulate Expression of the Immune Checkpoint Ligand PD-L1. Cell Rep 2017; 18:2162-2174. [PMID: 28249162 PMCID: PMC5340981 DOI: 10.1016/j.celrep.2017.02.011] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/24/2016] [Accepted: 01/31/2017] [Indexed: 12/27/2022] Open
Abstract
BET inhibitors (BETi) target bromodomain-containing proteins and are currently being evaluated as anti-cancer agents. We find that maximal therapeutic effects of BETi in a Myc-driven B cell lymphoma model required an intact host immune system. Genome-wide analysis of the BETi-induced transcriptional response identified the immune checkpoint ligand Cd274 (Pd-l1) as a Myc-independent, BETi target-gene. BETi directly repressed constitutively expressed and interferon-gamma (IFN-γ) induced CD274 expression across different human and mouse tumor cell lines and primary patient samples. Mechanistically, BETi decreased Brd4 occupancy at the Cd274 locus without any change in Myc occupancy, resulting in transcriptional pausing and rapid loss of Cd274 mRNA production. Finally, targeted inhibition of the PD-1/PD-L1 axis by combining anti-PD-1 antibodies and the BETi JQ1 caused synergistic responses in mice bearing Myc-driven lymphomas. Our data uncover an interaction between BETi and the PD-1/PD-L1 immune-checkpoint and provide mechanistic insight into the transcriptional regulation of CD274. BETi require an intact host immune system to promote robust anti-tumor responses BRD4 inhibition inhibits PD-L1 transcription independently from MYC expression BRD4 and IRF1 co-regulate interferon-induced PD-L1 transcription Combinations of BET inhibitor and immune modulating therapy are efficacious in vivo
Collapse
|
41
|
Croci O, De Fazio S, Biagioni F, Donato E, Caganova M, Curti L, Doni M, Sberna S, Aldeghi D, Biancotto C, Verrecchia A, Olivero D, Amati B, Campaner S. Transcriptional integration of mitogenic and mechanical signals by Myc and YAP. Genes Dev 2017; 31:2017-2022. [PMID: 29141911 PMCID: PMC5733494 DOI: 10.1101/gad.301184.117] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
The transcription factors Myc and YAP–TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, Croci et al. show that these factors coordinately regulate genes required for cell proliferation. Mammalian cells must integrate environmental cues to determine coherent physiological responses. The transcription factors Myc and YAP–TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, we show that these factors coordinately regulate genes required for cell proliferation. Activation of Myc led to extensive association with its genomic targets, most of which were prebound by TEAD. At these loci, recruitment of YAP was Myc-dependent and led to full transcriptional activation. This cooperation was critical for cell cycle entry, organ growth, and tumorigenesis. Thus, Myc and YAP–TEAD integrate mitogenic and mechanical cues at the transcriptional level to provide multifactorial control of cell proliferation.
Collapse
Affiliation(s)
- Ottavio Croci
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Serena De Fazio
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Francesca Biagioni
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Elisa Donato
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Marieta Caganova
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Laura Curti
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Silvia Sberna
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Deborah Aldeghi
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Chiara Biancotto
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Alessandro Verrecchia
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Daniela Olivero
- Laboratorio di Analisi Veterinarie BiEsseA, 20129 Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy.,Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@SEMM (Istituto Italiano di Tecnologia at European School of Molecular Medicine), Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
42
|
Integrative analysis of RNA polymerase II and transcriptional dynamics upon MYC activation. Genome Res 2017; 27:1658-1664. [PMID: 28904013 PMCID: PMC5630029 DOI: 10.1101/gr.226035.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 02/03/2023]
Abstract
Overexpression of the MYC transcription factor causes its widespread interaction with regulatory elements in the genome but leads to the up- and down-regulation of discrete sets of genes. The molecular determinants of these selective transcriptional responses remain elusive. Here, we present an integrated time-course analysis of transcription and mRNA dynamics following MYC activation in proliferating mouse fibroblasts, based on chromatin immunoprecipitation, metabolic labeling of newly synthesized RNA, extensive sequencing, and mathematical modeling. Transcriptional activation correlated with the highest increases in MYC binding at promoters. Repression followed a reciprocal scenario, with the lowest gains in MYC binding. Altogether, the relative abundance (henceforth, "share") of MYC at promoters was the strongest predictor of transcriptional responses in diverse cell types, predominating over MYC's association with the corepressor ZBTB17 (also known as MIZ1). MYC activation elicited immediate loading of RNA polymerase II (RNAPII) at activated promoters, followed by increases in pause-release, while repressed promoters showed opposite effects. Gains and losses in RNAPII loading were proportional to the changes in the MYC share, suggesting that repression by MYC may be partly indirect, owing to competition for limiting amounts of RNAPII. Secondary to the changes in RNAPII loading, the dynamics of elongation and pre-mRNA processing were also rapidly altered at MYC regulated genes, leading to the transient accumulation of partially or aberrantly processed mRNAs. Altogether, our results shed light on how overexpressed MYC alters the various phases of the RNAPII cycle and the resulting transcriptional response.
Collapse
|
43
|
Liu P, Ge M, Hu J, Li X, Che L, Sun K, Cheng L, Huang Y, Pilo MG, Cigliano A, Pes GM, Pascale RM, Brozzetti S, Vidili G, Porcu A, Cossu A, Palmieri G, Sini MC, Ribback S, Dombrowski F, Tao J, Calvisi DF, Chen L, Chen X. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology 2017; 66:167-181. [PMID: 28370287 PMCID: PMC5481473 DOI: 10.1002/hep.29183] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/11/2017] [Accepted: 03/17/2017] [Indexed: 02/05/2023]
Abstract
UNLABELLED Amplification and/or activation of the c-Myc proto-oncogene is one of the leading genetic events along hepatocarcinogenesis. The oncogenic potential of c-Myc has been proven experimentally by the finding that its overexpression in the mouse liver triggers tumor formation. However, the molecular mechanism whereby c-Myc exerts its oncogenic activity in the liver remains poorly understood. Here, we demonstrate that the mammalian target of rapamycin complex 1 (mTORC1) cascade is activated and necessary for c-Myc-dependent hepatocarcinogenesis. Specifically, we found that ablation of Raptor, the unique member of mTORC1, strongly inhibits c-Myc liver tumor formation. Also, the p70 ribosomal S6 kinase/ribosomal protein S6 and eukaryotic translation initiation factor 4E-binding protein 1/eukaryotic translation initiation factor 4E signaling cascades downstream of mTORC1 are required for c-Myc-driven tumorigenesis. Intriguingly, microarray expression analysis revealed up-regulation of multiple amino acid transporters, including solute carrier family 1 member A5 (SLC1A5) and SLC7A6, leading to robust uptake of amino acids, including glutamine, into c-Myc tumor cells. Subsequent functional studies showed that amino acids are critical for activation of mTORC1 as their inhibition suppressed mTORC1 in c-Myc tumor cells. In human hepatocellular carcinoma specimens, levels of c-Myc directly correlate with those of mTORC1 activation as well as of SLC1A5 and SLC7A6. CONCLUSION Our current study indicates that an intact mTORC1 axis is required for c-Myc-driven hepatocarcinogenesis; thus, targeting the mTOR pathway or amino acid transporters may be an effective and novel therapeutic option for the treatment of hepatocellular carcinoma with activated c-Myc signaling. (Hepatology 2017;66:167-181).
Collapse
Affiliation(s)
- Pin Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA. U.S.A
| | - Mengmeng Ge
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Junjie Hu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA. U.S.A
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xiaolei Li
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA. U.S.A
- Department of Thyroid and Breast Surgery, Jinan Military General Hospital of PLA, Jinan, Shandong, China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA. U.S.A
| | - Kun Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Lili Cheng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yuedong Huang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Maria G. Pilo
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Antonio Cigliano
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Giovanni M. Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Stefania Brozzetti
- Pietro Valdoni Surgery Department, University of Rome La Sapienza, Rome, Italy
| | - Gianpaolo Vidili
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Alberto Porcu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Antonio Cossu
- Unit of Pathology, Azienda Ospedaliero Universitaria Sassari, Sassari, Italy
| | - Giuseppe Palmieri
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Maria C. Sini
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA. U.S.A
| | - Diego F. Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA. U.S.A
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
44
|
Anderton B, Camarda R, Balakrishnan S, Balakrishnan A, Kohnz RA, Lim L, Evason KJ, Momcilovic O, Kruttwig K, Huang Q, Xu G, Nomura DK, Goga A. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer. EMBO Rep 2017; 18:569-585. [PMID: 28219903 PMCID: PMC5376764 DOI: 10.15252/embr.201643068] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC-driven tumors. We find that fewer glutamine-derived carbons are incorporated into GSH in tumor tissue relative to non-tumor tissue. Expression of GCLC, the rate-limiting enzyme of GSH synthesis, is attenuated by the MYC-induced microRNA miR-18a. Inhibition of miR-18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC-driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC-dependent attenuation of GCLC by miR-18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.
Collapse
Affiliation(s)
- Brittany Anderton
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Roman Camarda
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sanjeev Balakrishnan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Asha Balakrishnan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Rebecca A Kohnz
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Lionel Lim
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberley J Evason
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake, UT, USA
| | - Olga Momcilovic
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Klaus Kruttwig
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Qiang Huang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
45
|
Altman BJ, Hsieh AL, Gouw AM, Dang CV. Correspondence: Oncogenic MYC persistently upregulates the molecular clock component REV-ERBα. Nat Commun 2017; 8:14862. [PMID: 28332504 PMCID: PMC5376640 DOI: 10.1038/ncomms14862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Brian J Altman
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Annie L Hsieh
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arvin M Gouw
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
46
|
Maschietto M, Rodrigues TC, Kashiwabara AY, de Araujo ÉSS, Marques Aguiar TF, da Costa CML, da Cunha IW, Dos Reis Vasques L, Cypriano M, Brentani H, de Toledo SRC, Pearson PL, Carraro DM, Rosenberg C, Krepischi ACV. DNA methylation landscape of hepatoblastomas reveals arrest at early stages of liver differentiation and cancer-related alterations. Oncotarget 2016; 8:97871-97889. [PMID: 29228658 PMCID: PMC5716698 DOI: 10.18632/oncotarget.14208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatoblastomas are uncommon embryonal liver tumors accounting for approximately 80% of childhood hepatic cancer. We hypothesized that epigenetic changes, including DNA methylation, could be relevant to hepatoblastoma onset. The methylomes of eight matched hepatoblastomas and non-tumoral liver tissues were characterized, and data were validated in an independent group (11 hepatoblastomas). In comparison to differentiated livers, hepatoblastomas exhibited a widespread and non-stochastic pattern of global low-level hypomethylation. The analysis revealed 1,359 differentially methylated CpG sites (DMSs) between hepatoblastomas and control livers, which are associated with 765 genes. Hypomethylation was detected in hepatoblastomas for ~58% of the DMSs with enrichment at intergenic sites, and most of the hypermethylated CpGs were located in CpG islands. Functional analyses revealed enrichment in signaling pathways involved in metabolism, negative regulation of cell differentiation, liver development, cancer, and Wnt signaling pathway. Strikingly, an important overlap was observed between the 1,359 DMSs and the CpG sites reported to exhibit methylation changes through liver development (p<0.0001), with similar patterns of methylation in both hepatoblastomas and fetal livers compared to adult livers. Overall, our results suggest an arrest at early stages of liver cell differentiation, in line with the hypothesis that hepatoblastoma ontogeny involves the disruption of liver development. This genome-wide methylation dysfunction, taken together with a relatively small number of driver genetic mutations reported for both adult and pediatric liver cancers, shed light on the relevance of epigenetic mechanisms for hepatic tumorigenesis.
Collapse
Affiliation(s)
- Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiane Cristina Rodrigues
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Luciana Dos Reis Vasques
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Pediatric Oncology Institute (GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Peter Lees Pearson
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana C V Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|