1
|
Mireles M, Jiménez-Valerio G, Morales-Dalmau J, Johansson JD, Martínez-Lozano M, Vidal-Rosas EE, Navarro-Pérez V, Busch DR, Casanovas O, Durduran T, Vilches C. Prediction of the response to antiangiogenic sunitinib therapy by non-invasive hybrid diffuse optics in renal cell carcinoma. BIOMEDICAL OPTICS EXPRESS 2024; 15:5773-5789. [PMID: 39421783 PMCID: PMC11482189 DOI: 10.1364/boe.532052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 10/19/2024]
Abstract
In this work, broadband diffuse reflectance spectroscopy (DRS) and diffuse correlation spectroscopy (DCS) were used to quantify deep tissue hemodynamics in a patient-derived orthotopic xenograft mouse model of clear cell renal cancer undergoing antiangiogenic treatment. A cohort of twenty-two mice were treated with sunitinib and compared to thirteen control untreated mice, and monitored by DRS/DCS. A reduction in total hemoglobin concentration (THC, p = 0.03), oxygen saturation (SO2, p = 0.03) and blood flow index (BFI, p = 0.02) was observed over the treatment course. Early changes in tumor microvascular blood flow and total hemoglobin concentration were correlated with the final microvessel density (p = 0.014) and tumor weight (p = 0.024), respectively. Higher pre-treatment tumor microvascular blood flow was observed in non-responder mice with respect to responder mice, which was statistically predictive of the tumor intrinsic resistance (p = 0.01). This hybrid diffuse optical technique provides a method for predicting tumor intrinsic resistance to antiangiogenic therapy and could be used as predictive biomarker of response to antiangiogenic therapies in pre-clinical models.
Collapse
Affiliation(s)
- Miguel Mireles
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Gabriela Jiménez-Valerio
- Computational Optics and Translational Imaging Lab, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jordi Morales-Dalmau
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| | - Johannes D. Johansson
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Department of Biomedical Engineering, Linköping University, SE-581 83 Linköping, Sweden
| | - Mar Martínez-Lozano
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Ernesto E. Vidal-Rosas
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- Digital Health and Biomedical Engineering, School of Electronics and Computer Science, University of Southampton, SO17 1BJ Southampton, UK
| | - Valentí Navarro-Pérez
- Clinical Research Unit, Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Spain
| | - David R. Busch
- University of Texas Southwestern Medical Center, Departments of Anesthesiology and Pain Management, Neurology, and Biomedical Engineering Dallas, Texas 75390-9003, USA
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE, Catalan Institute of Oncology - IDIBELL, 08908 L’Hospitalet de Llobregat, Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Clara Vilches
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain
| |
Collapse
|
2
|
Wang L, Yang G, Guo P, Lv Y, Fu B, Bai Y, Xiong F, Zhao D, Li C, Zhang J, Bai S, Zeng F, Xu W. LncRNA PVT1 promotes strong stemness and endothelial progenitor cell characteristics in renal carcinoma stem cells. FASEB J 2023; 37:e23118. [PMID: 37531296 DOI: 10.1096/fj.202201880r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Renal cancer stem cells (RCSCs) derived from clear cell renal cell carcinoma (ccRCC) tissues with higher microvessel density (MVD) have strong stemness and endothelial progenitor cells-like (EPCs-like) characteristics. A high level of lncRNA PVT1 expression is essential for simultaneously retaining strong RCSC stemness and EPCs-like characteristics. PVT1 binds with TAZ protein and prevents its phosphorylation, which promotes RCSC stemness. Moreover, RCSCs support endothelial differentiation and angiogenesis, which are mediated via the PVT1/miR-15b/KDR axis. This report provides insight into the determinants of RCSC impact on stemness and highlights the critical role of RCSC in angiogenesis. The presented findings suggest that targeting RCSC through PVT1 expression may be a new treatment strategy for ccRCC.
Collapse
Affiliation(s)
- Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyu Guo
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yulin Lv
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Bo Fu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Yang Bai
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Feng Xiong
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Danfeng Zhao
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Cong Li
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Jianji Zhang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Shiyu Bai
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Fanshu Zeng
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Yan X, Li S, Yan H, Yu C, Liu F. IONPs-Based Medical Imaging in Cancer Care: Moving Beyond Traditional Diagnosis and Therapeutic Assessment. Int J Nanomedicine 2023; 18:1741-1763. [PMID: 37034271 PMCID: PMC10075272 DOI: 10.2147/ijn.s399047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer-related burden of morbidity and mortality is rapidly rising worldwide. Medical imaging plays an important role in every phase of cancer management, including diagnosis, staging, treatment planning and evaluation. Iron oxide nanoparticles (IONPs) could serve as contrast agents or labeling agents to enhance the identification and visualization of pathological tissues as well as target cells. Multimodal or multifunctional imaging can be easily acquired by modifying IONPs with other imaging agents or functional groups, allowing the accessibility of combined imaging techniques and providing more comprehensive information for cancer care. To date, IONPs-enhanced medical imaging has gained intensive application in early diagnosis, monitoring treatment as well as guiding radio-frequency ablation, sentinel lymph node dissection, radiotherapy and hyperthermia therapy. Besides, IONPs mediated imaging is also capable of promoting the development of anti-cancer nanomedicines through identifying patients potentially sensitive to nanotherapeutics. Based on versatile imaging modes and application fields, this review highlights and summarizes recent research advances of IONPs-based medical imaging in cancer management. Besides, currently existing challenges are also discussed to provide perspectives and advices for the future development of IONPs-based imaging in cancer management.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Shanshan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Haiyin Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Chungang Yu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
| | - Fengxi Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Fengxi Liu, Tel +86 0531-89269594, Email
| |
Collapse
|
4
|
Sioud F, Dhouafi Z, Lahmar A, Elgueder D, Chekir-Ghedira L. A Novel Anticancer Effect of Ephedra alata Decne in Breast Cancer Cells. Nutr Cancer 2022; 74:3403-3412. [PMID: 35545961 DOI: 10.1080/01635581.2022.2072907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a class of diseases characterized by uncontrolled cell growth. One of the main aims of developing new therapies is to use natural resources to induce apoptosis. LC-ms/ms analysis of a methanolic extract of Ephedra alata (E.A.) allowed the identification of 20 secondary metabolites, including flavonoids, phenolic acids, and proanthocyanidins. Antiproliferative effect was assessed by crystal violet assay. Antimigration effect was tested by wound healing assay and apoptosis induction was determined by annexin binding assays, Hoechst staining, ROS production, and activation of apoptotic proteins. The results indicated that exposure of breast cancer cells to E.A. extract significantly reduced cell viability in a dose and time-dependent manner and inhibited the migration of 4T1 cells at a low dose. Moreover, treatment of cells with E.A. extract induced apoptosis, as it was detected by Annexin V/7 AAD, Hoechst staining, ROS production, and the activation of caspases.
Collapse
Affiliation(s)
- Fairouz Sioud
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia.,Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Zaineb Dhouafi
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Aida Lahmar
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia.,Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Dorra Elgueder
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia.,Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
5
|
Mao Q, Zhuang Q, Shen J, Chen Z, Xue D, Ding T, He X. MiRNA-124 regulates the sensitivity of renal cancer cells to cisplatin-induced necroptosis by targeting the CAPN4-CNOT3 axis. Transl Androl Urol 2021; 10:3669-3683. [PMID: 34733662 PMCID: PMC8511534 DOI: 10.21037/tau-21-777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background Currently, drug-resistance is a major challenge in the treatment of renal cancer. Although microRNAs (miRNAs) have been reported to contribute to the incidence of drug resistance in renal cancer, the bio-functional roles and underlying regulatory mechanisms of novel miRNAs in cisplatin resistance remain largely unclear. Methods In this study, miRNA microarray analysis was applied to evaluate miRNA changes induced by cisplatin on RCC (renal cell carcinoma) cell lines. Then, Caki-1 and 786-0 cells were transfected with miR (miRNA)-124 mimics to observe cisplatin resistance in RCC cell lines after up-regulation of miR-124. TargetScan was used to identify putative protein-coding gene targets of miR-124. Further, the interaction between calpain small subunit 1 (Capn4) and CCR4-NOT transcription complex subunit 3 (CNOT3) was detected by quantitative real-time PCR (qPCR) and western blotting, and confirmed by co-immunoprecipitation. The effect of Capn4 and/or CNOT3 on cell viability and half maximal inhibitory concentration (IC50) value of miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated using the Cell Counting Kit-8 (CCK-8) assay. And the effect of Capn4 and/or CNOT3 on the level of necroptosis in miR-124 overexpressed Caki-1 and 786-O cells to cisplatin was evaluated by flow cytometric analysis. Then, four groups of 786-0 cells (miR-124, miR-124+ Capn4, miR-124+ CNOT3, miR-124+ Capn4+ CNOT3) were inoculated into nude mice to observe the effect of cisplatin on tumor formation. Results miR-124 was found to be markedly elevated in renal cancer cells by cisplatin. Functionally, the overexpression of miR-124 reduced the sensitivity of renal cancer cells to cisplatin and CAPN4 was found to be a direct target of miR-124, which can negatively regulated CAPN4 expression. Moreover, ectopic expression of CAPN4 reversed the impairment of miR-124 on cisplatin-sensitivity and cisplatin-induced necroptosis. Mechanically, the present study revealed that CAPN4 could directly interact with CNOT3 and promote its degradation, and that the cisplatin-resistant phenotype was reversed by up-regulation of CNOT3. Conclusions Therefore, miR-124 is an important inhibitor in cisplatin-induced necroptosis, and the miR-124-CAPN4-CNOT3 signaling axis plays a critical role in the emergence of cisplatin-resistance.
Collapse
Affiliation(s)
- Qingyan Mao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tao Ding
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
6
|
Fouad MA, Zaki MY, Lotfy RA, Mahmoud WR. Insight on a new indolinone derivative as an orally bioavailable lead compound against renal cell carcinoma. Bioorg Chem 2021; 112:104985. [PMID: 34020239 DOI: 10.1016/j.bioorg.2021.104985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023]
Abstract
A series of novel 3-indolinone-thiazolidinones and oxazolidinones 4a-k was synthesized via molecular hybridization approach and sequentially evaluated to explore its cytotoxic activity. The cytotoxicity screening pointed toward the N-cyclohexyl thiazolidinone derivative 4f that revealed promising renal cytotoxicity against CAKI-1 and UO-31 renal cancer cell lines with IC50 values 4.74 and 3.99 µM, respectively, which were comparable to those of sunitinib along with good safety threshold against normal renal cells. Further emphasis on compound 4f renal cytotoxicity was achieved via different enzyme assays and CAKI-1 and UO-31 cell cycle analysis. The results were supported by in silico studies to explore its physicochemical, pharmacokinetic and drug-likeness properties. Finally, compound 4f was subjected to an in vivo pharmacokinetic study through two different routes of administration showing excellent oral bioavailability. This research represents compound 4f as a promising candidate against renal cell carcinoma.
Collapse
Affiliation(s)
- Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562 Cairo, Egypt.
| | - Mayssoune Y Zaki
- Applied Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Raghda A Lotfy
- Applied Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562 Cairo, Egypt
| |
Collapse
|
7
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
8
|
Tahmasvand R, Bayat P, Vahdaniparast SM, Dehghani S, Kooshafar Z, Khaleghi S, Almasirad A, Salimi M. Design and synthesis of novel 4-thiazolidinone derivatives with promising anti-breast cancer activity: Synthesis, characterization, in vitro and in vivo results. Bioorg Chem 2020; 104:104276. [PMID: 32992280 DOI: 10.1016/j.bioorg.2020.104276] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Novel lead compounds as anticancer agents with the ability to circumvent emerging drug resistance have recently gained a great deal of interest. Thiazolidinones are among such compounds with well-established biological activity in the field of oncology. Here, we designed, synthesized and characterized a series of thiazolidinone structures (8a-8k). The results of anti-proliferative assay led to the discovery of compound 8j with a high potent cytotoxic effect using colon, liver and breast cancer cells. Furthermore, MDA-MB-231 and 4T1 cell lines were used to represent triple negative breast cancer (TNBC). Next, a number of in vitro and in vivo evaluations were carried out to demonstrate the potential activity against TNBC and also elucidate the possible mechanism of cell death induction. Our in vitro outcomes exhibited an impressive anticancer activity for compound 8j toward MDA-MB-231 cells through inducing apoptosis and a remarkable anti-metastatic feature via suppressing MMP-9 expression as well. Consistently, the in vivo and immunohistopathologic evaluations demonstrated that this compound significantly inhibited the 4T1 induced tumor growth and its metastasis to the lung. Altogether, among numerous thiazolidinone derivatives, compound 8j might represent a promising anticancer agent for TNBC, which is a major concern in the developed and developing countries.
Collapse
Affiliation(s)
- Raheleh Tahmasvand
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Peyman Bayat
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyed Mahmood Vahdaniparast
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soudeh Dehghani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Kooshafar
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Almasirad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
10
|
Sobczuk P, Brodziak A, Khan MI, Chhabra S, Fiedorowicz M, Wełniak-Kamińska M, Synoradzki K, Bartnik E, Cudnoch-Jędrzejewska A, Czarnecka AM. Choosing The Right Animal Model for Renal Cancer Research. Transl Oncol 2020; 13:100745. [PMID: 32092671 PMCID: PMC7036425 DOI: 10.1016/j.tranon.2020.100745] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in the life expectancy of patients with renal cell carcinoma (RCC) in the last decade is due to changes that have occurred in the area of preclinical studies. Understanding cancer pathophysiology and the emergence of new therapeutic options, including immunotherapy, would not be possible without proper research. Before new approaches to disease treatment are developed and introduced into clinical practice they must be preceded by preclinical tests, in which animal studies play a significant role. This review describes the progress in animal model development in kidney cancer research starting from the oldest syngeneic or chemically-induced models, through genetically modified mice, finally to xenograft, especially patient-derived, avatar and humanized mouse models. As there are a number of subtypes of RCC, our aim is to help to choose the right animal model for a particular kidney cancer subtype. The data on genetic backgrounds, biochemical parameters, histology, different stages of carcinogenesis and metastasis in various animal models of RCC as well as their translational relevance are summarized. Moreover, we shed some light on imaging methods, which can help define tumor microstructure, assist in the analysis of its metabolic changes and track metastasis development.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Anna Brodziak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | - Mohammed Imran Khan
- Department of Otolaryngology - Head & Neck Surgery, Western University, London, Ontario, Canada.
| | - Stuti Chhabra
- Department of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Michał Fiedorowicz
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Marlena Wełniak-Kamińska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Anna M Czarnecka
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Department of Experimental Pharmacology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawinskiego Str., Warsaw, Poland.
| |
Collapse
|
11
|
Mytsyk Y, Pasichnyk S, Dutka I, Dats I, Vorobets D, Skrzypczyk M, Uteuliyev Y, Botikova A, Gazdikova K, Kubatka P, Urdzik P, Kruzliak P. Systemic treatment of the metastatic renal cell carcinoma: usefulness of the apparent diffusion coefficient of diffusion-weighted MRI in prediction of early therapeutic response. Clin Exp Med 2020; 20:277-287. [PMID: 32026157 DOI: 10.1007/s10238-020-00612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Accurate prediction of early treatment response to systemic therapy (ST) with tyrosine kinase inhibitors (TKI) in patients with metastatic renal cell carcinoma (mRCC) could help avoid ineffective and expensive treatment with serious side effects. Neither RECIST v.1.1 nor Choi criteria successfully discriminate between patients with mRCC who received ST having a short or long time to progression (TTP). There is no biomarker, which is able to predict early therapeutic response to TKIs application in patients with mRCC. The goal of our study was to investigate the potential of apparent diffusion coefficient (ADC) of diffusion-weighted imaging (DWI) of MRI in prediction of early therapeutic response to ST with pazopanib in patients with mRCC. The retrospective study enrolled 32 adult patients with conventional mRCC who received pazopanib (mean duration-7.5 ± 3.45). The mean duration of follow-up was 11.85 ± 4.34 months. In all patients as baseline examination and 1 month after treatment, 1.5T MRI including DWI sequence was performed followed by ADC measurement of the main renal lesion. For assessment of the therapeutic response, RECIST 1.1 is used. Partial response (PR), stable disease (SD) and progressive disease (PD) were observed in 12 (37.50%), 10 (31.25%) and 10 (31.25%) cases with mean TTP of 10.33 ± 2.06 months (95% confidence interval, CI = 9.05-11.61), 7.40 ± 2.50 months (95% CI = 5.61-9.19) and 4.20 ± 1.99 months (95% CI = 2.78-5.62) accordingly (p < 0.05). There was no difference in change of main lesions' longest size 1 month after ST in patients with PR, SD and PD. Comparison of mean ADC values before and 1 month after systemic treatment showed significant decrease by 19.11 ± 10.64% (95% CI = 12.35-25.87) and by 7.66 ± 6.72% (95% CI = 2.86-12.47) in subgroups with PR and SD, respectively (p < 0.05). There was shorter TTP in patients with mRCC if ADC of the main renal lesion 1 month after the ST increased from the baseline less than 1.73% compared to patients with ADC levels above this threshold: 5.29 ± 3.45 versus 9.50 ± 2.04 months accordingly (p < 0.001). Overall, our findings highlighted the use of ADC as a predictive biomarker for early therapeutic response assessment. Use of ADC will be effective and useful for reliable prediction of responders and non-responders to systemic treatment with pazopanib.
Collapse
Affiliation(s)
- Yulian Mytsyk
- Department of Urology, Lviv National Medical University n.a. Danylo Halytsky, Pekarska Str. 69, Lviv, Ukraine
| | - Serhiy Pasichnyk
- Department of Urology, Lviv National Medical University n.a. Danylo Halytsky, Pekarska Str. 69, Lviv, Ukraine
| | - Ihor Dutka
- Medical center "Euroclinic", Lviv, Ukraine
| | - Ihor Dats
- Department of Radiology, Lviv National Medical University n.a. Danylo Halytsky, Lviv, Ukraine
| | - Dmytro Vorobets
- Department of Urology, Lviv National Medical University n.a. Danylo Halytsky, Pekarska Str. 69, Lviv, Ukraine
| | - Michał Skrzypczyk
- Department of Urology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Yerzhan Uteuliyev
- Department of Postgraduate Education and Research, Kazakhstan Medical University, Almaty, Kazakhstan
| | - Andrea Botikova
- Faculty of Health and Social Work, Trnava University, Trnava, Slovakia
| | - Katarina Gazdikova
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Limbova 12, 8303, Bratislava, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University, Martin, Slovakia
| | - Peter Urdzik
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, Tr. SNP 1, 04001, Kosice, Slovakia
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Polni 553/3, 63900, Brno, Czech Republic.
| |
Collapse
|
12
|
Sioud F, Amor S, Toumia IB, Lahmar A, Aires V, Chekir-Ghedira L, Delmas D. A New Highlight of Ephedra alata Decne Properties as Potential Adjuvant in Combination with Cisplatin to Induce Cell Death of 4T1 Breast Cancer Cells In Vitro and In Vivo. Cells 2020; 9:E362. [PMID: 32033130 PMCID: PMC7072491 DOI: 10.3390/cells9020362] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/29/2022] Open
Abstract
Despite major advances in the last 10 years, whether in terms of prevention or treatment, the 5 year survival rate remains relatively low for a large number of cancers. These therapeutic failures can be the consequence of several factors associated with the cellular modifications or with the host by itself, especially for some anticancer drugs such as cisplatin, which induces a nephrotoxicity. In the strategy of research for active molecules capable both of exerting a protective action against the deleterious effects of cisplatin and exerting a chemosensitizing action with regard to cancer cells, we tested the potential effects of Ephedra alata Decne extract (E.A.) rich in polyphenolic compounds towards a 4T1 breast cancer model in vitro and in vivo. We showed that E.A. extract inhibited cell viability of 4T1 breast cancer cells and induced apoptosis in a caspase-dependent manner, which involved intrinsic pathways. Very interestingly, we observed a synergic antiproliferative and pro-apoptotic action with cisplatin. These events were associated with a strong decrease of breast tumor growth in mice treated with an E.A./cisplatin combination and simultaneously with a decrease of hepato- and nephrotoxicities of cisplatin.
Collapse
Affiliation(s)
- Fairouz Sioud
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia; (F.S.); (I.b.T.); (A.L.); (L.C.-G.)
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (S.A.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
| | - Souheila Amor
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (S.A.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
| | - Imène ben Toumia
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia; (F.S.); (I.b.T.); (A.L.); (L.C.-G.)
| | - Aida Lahmar
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia; (F.S.); (I.b.T.); (A.L.); (L.C.-G.)
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (S.A.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
| | - Leila Chekir-Ghedira
- Research Unit Bioactive Natural Products and Biotechnology UR17ES49, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne street, Monastir 5000, Tunisia; (F.S.); (I.b.T.); (A.L.); (L.C.-G.)
| | - Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (S.A.); (V.A.)
- INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, F-21000 Dijon, France
- Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France
| |
Collapse
|
13
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Hallscheidt P. Tumors of the Urinary Tract. CURRENT RADIOLOGY REPORTS 2019. [DOI: 10.1007/s40134-019-0334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Zormpas-Petridis K, Jerome NP, Blackledge MD, Carceller F, Poon E, Clarke M, McErlean CM, Barone G, Koers A, Vaidya SJ, Marshall LV, Pearson ADJ, Moreno L, Anderson J, Sebire N, McHugh K, Koh DM, Yuan Y, Chesler L, Robinson SP, Jamin Y. MRI Imaging of the Hemodynamic Vasculature of Neuroblastoma Predicts Response to Antiangiogenic Treatment. Cancer Res 2019; 79:2978-2991. [PMID: 30877107 PMCID: PMC6558276 DOI: 10.1158/0008-5472.can-18-3412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
Abstract
Childhood neuroblastoma is a hypervascular tumor of neural origin, for which antiangiogenic drugs are currently being evaluated; however, predictive biomarkers of treatment response, crucial for successful delivery of precision therapeutics, are lacking. We describe an MRI-pathologic cross-correlative approach using intrinsic susceptibility (IS) and susceptibility contrast (SC) MRI to noninvasively map the vascular phenotype in neuroblastoma Th-MYCN transgenic mice treated with the vascular endothelial growth factor receptor inhibitor cediranib. We showed that the transverse MRI relaxation rate R 2* (second-1) and fractional blood volume (fBV, %) were sensitive imaging biomarkers of hemorrhage and vascular density, respectively, and were also predictive biomarkers of response to cediranib. Comparison with MRI and pathology from patients with MYCN-amplified neuroblastoma confirmed the high degree to which the Th-MYCN model vascular phenotype recapitulated that of the clinical phenotype, thereby supporting further evaluation of IS- and SC-MRI in the clinic. This study reinforces the potential role of functional MRI in delivering precision medicine to children with neuroblastoma. SIGNIFICANCE: This study shows that functional MRI predicts response to vascular-targeted therapy in a genetically engineered murine model of neuroblastoma.
Collapse
Affiliation(s)
- Konstantinos Zormpas-Petridis
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Neil P Jerome
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Matthew D Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Fernando Carceller
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Evon Poon
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Matthew Clarke
- Division of Molecular Pathology, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Ciara M McErlean
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Giuseppe Barone
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Alexander Koers
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Sucheta J Vaidya
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Lynley V Marshall
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Andrew D J Pearson
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Lucas Moreno
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Ninõ Jesús, Madrid, Spain
| | - John Anderson
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Neil Sebire
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Kieran McHugh
- Department of Radiology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Yinyin Yuan
- Division of Molecular Pathology, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom
| | - Yann Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom.
| |
Collapse
|
16
|
Jiménez-Torres JA, Virumbrales-Muñoz M, Sung KE, Lee MH, Abel EJ, Beebe DJ. Patient-specific organotypic blood vessels as an in vitro model for anti-angiogenic drug response testing in renal cell carcinoma. EBioMedicine 2019; 42:408-419. [PMID: 30902740 PMCID: PMC6491391 DOI: 10.1016/j.ebiom.2019.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Anti-angiogenic treatment failure is often attributed to drug resistance, unsuccessful drug delivery, and tumor heterogeneity. Recent studies have speculated that anti-angiogenic treatments may fail due to characteristics inherent to tumor-associated blood vessels. Tumor-associated blood vessels are phenotypically different from their normal counterparts, having defective or permeable endothelial monolayers, abnormal sprouts, and abnormal vessel hierarchy. Therefore, to predict the efficacy of anti-angiogenic therapies in an individual patient, in vitro models that mirror individual patient's tumor vascular biology and response to anti-angiogenic treatment are needed. METHODS We used a microfluidic in vitro organotypic model to create patient-specific biomimetic blood vessels from primary patient-specific tumor endothelial cells (TEnCs) and normal endothelial cells (NEnC). We assessed number of sprouts and vessel organization via microscopy imaging and image analysis. We characterized NEnC and TEnC vessel secretions via multiplex bead-based ELISA. FINDINGS Using this model, we found that TEnC vessels exhibited more angiogenic sprouts than NEnC vessels. We also found a more disorganized and gap-filled endothelial monolayer. NEnCs and TEnC vessels exhibited heterogeneous functional drug responses across the five patients screened, as described in the clinic. INTERPRETATION Our model recapitulated hallmarks of TEnCs and NEnCs found in vivo and captured the functional and structural differences between TEnC and NEnC vessels. This model enables a platform for therapeutic drug screening and assessing patient-specific responses with great potential to inform personalized medicine approaches. FUNDING NIH grants R01 EB010039, R33 CA225281, R01CA186134 University of Wisconsin Carbone Cancer Center (CA014520), and University of Wisconsin Hematology training grant T32 HL07899.
Collapse
Affiliation(s)
- José A Jiménez-Torres
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1451 Engineering Dr., Madison, WI 53706, United States of America; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, United States of America
| | - María Virumbrales-Muñoz
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1451 Engineering Dr., Madison, WI 53706, United States of America; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, United States of America
| | - Kyung E Sung
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Moon Hee Lee
- Department of Urology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Ave., Madison, 53705, WI, United States of America
| | - E Jason Abel
- Department of Urology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Ave., Madison, 53705, WI, United States of America
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1451 Engineering Dr., Madison, WI 53706, United States of America; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, United States of America.
| |
Collapse
|
17
|
Qin N, Lu S, Chen N, Chen C, Xie Q, Wei X, Ye F, He J, Li Y, Chen L, Jiang L, Lu X, Yuan Y, Li J, Jiao Y, Huang R. Yulangsan polysaccharide inhibits 4T1 breast cancer cell proliferation and induces apoptosis in vitro and in vivo. Int J Biol Macromol 2018; 121:971-980. [PMID: 30340007 DOI: 10.1016/j.ijbiomac.2018.10.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
Yulangsan polysaccharide (YLSPS) is derived from the root of Millettia pulchra (Benth.) Kurz var. Recent studies have postulated YLSPS as a regimen for cancer treatment. However, the underlying mechanism anti-breast cancer is still poorly unknown. The aim of this study was to examine the suppressive and apoptosis effect of YLSPS on the growth of breast cancer cell 4T1 and its possible underlying mechanism. In this study, breast cancer cell 4T1 viability and apoptosis were assessed by CCK-8 and flow cytometry, relative quantitative real-time PCR and western blot after treated with drug-serum of YLSPS. Furthermore, therapy experiments were conducted using a Balb/c mouse transplanted tumor model of breast cancer. The number of apoptotic cells and microvascular density (MVD) in the tumor tissues were assessed by TUNEL and CD34 immunostaining. Immunohistochemical assays and ELISA were used to detect the expression of VEGF, Bcl-2, Bax and Caspase-3 in the tissues. The in vitro studies showed that the drug-serum of YLSPS significantly inhibition of proliferation and effectively induced apoptosis of 4T1 cells. Oral administration of YLSPS in the breast cancer models significantly reduced the tumor volume and weight. The enhanced antitumor efficacy was associated with decreased angiogenesis, an enhanced antioxidant capacity, an increased induction of apoptosis and an inhibition of lung metastasis. These findings indicate that YLSPS significantly inhibited mouse breast cancer growth in vitro and in vivo. These data suggest that YLSPS may serve as a potential therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Ni Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ning Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Chunxia Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Qiuqiao Xie
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiaojie Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Fangxing Ye
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Junhui He
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuchun Li
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Lixiu Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Luhui Jiang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xiaoqi Lu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuchan Yuan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jian Li
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yang Jiao
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| | - Renbin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| |
Collapse
|
18
|
Little RA, Jamin Y, Boult JKR, Naish JH, Watson Y, Cheung S, Holliday KF, Lu H, McHugh DJ, Irlam J, West CML, Betts GN, Ashton G, Reynolds AR, Maddineni S, Clarke NW, Parker GJM, Waterton JC, Robinson SP, O’Connor JPB. Mapping Hypoxia in Renal Carcinoma with Oxygen-enhanced MRI: Comparison with Intrinsic Susceptibility MRI and Pathology. Radiology 2018; 288:739-747. [PMID: 29869970 PMCID: PMC6122194 DOI: 10.1148/radiol.2018171531] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022]
Abstract
Purpose To cross-validate T1-weighted oxygen-enhanced (OE) MRI measurements of tumor hypoxia with intrinsic susceptibility MRI measurements and to demonstrate the feasibility of translation of the technique for patients. Materials and Methods Preclinical studies in nine 786-0-R renal cell carcinoma (RCC) xenografts and prospective clinical studies in eight patients with RCC were performed. Longitudinal relaxation rate changes (∆R1) after 100% oxygen inhalation were quantified, reflecting the paramagnetic effect on tissue protons because of the presence of molecular oxygen. Native transverse relaxation rate (R2*) and oxygen-induced R2* change (∆R2*) were measured, reflecting presence of deoxygenated hemoglobin molecules. Median and voxel-wise values of ∆R1 were compared with values of R2* and ∆R2*. Tumor regions with dynamic contrast agent-enhanced MRI perfusion, refractory to signal change at OE MRI (referred to as perfused Oxy-R), were distinguished from perfused oxygen-enhancing (perfused Oxy-E) and nonperfused regions. R2* and ∆R2* values in each tumor subregion were compared by using one-way analysis of variance. Results Tumor-wise and voxel-wise ∆R1 and ∆R2* comparisons did not show correlative relationships. In xenografts, parcellation analysis revealed that perfused Oxy-R regions had faster native R2* (102.4 sec-1 vs 81.7 sec-1) and greater negative ∆R2* (-22.9 sec-1 vs -5.4 sec-1), compared with perfused Oxy-E and nonperfused subregions (all P < .001), respectively. Similar findings were present in human tumors (P < .001). Further, perfused Oxy-R helped identify tumor hypoxia, measured at pathologic analysis, in both xenografts (P = .002) and human tumors (P = .003). Conclusion Intrinsic susceptibility biomarkers provide cross validation of the OE MRI biomarker perfused Oxy-R. Consistent relationship to pathologic analyses was found in xenografts and human tumors, demonstrating biomarker translation. Published under a CC BY 4.0 license. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ross A. Little
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Yann Jamin
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Jessica K. R. Boult
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Josephine H. Naish
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Yvonne Watson
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Susan Cheung
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Katherine F. Holliday
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Huiqi Lu
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Damien J. McHugh
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Joely Irlam
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Catharine M. L. West
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Guy N. Betts
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Garry Ashton
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | | | - Satish Maddineni
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Noel W. Clarke
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Geoff J. M. Parker
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - John C. Waterton
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - Simon P. Robinson
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| | - James P. B. O’Connor
- From the Centre for Imaging Sciences (R.A.L., J.H.N., Y.W., S.C.,
K.F.H., H.L., D.J.M., G.J.M.P., J.C.W.) and Division of Cancer Sciences (J.I.,
C.M.L.W., N.W.C., J.P.B.O.), University of Manchester, Manchester, England;
Division of Radiotherapy and Imaging, The Institute of Cancer Research, London,
England (Y.J., J.K.R.B., S.P.R.); Department of Pathology, Central Manchester
University Hospitals NHS Foundation Trust, Manchester, England (G.N.B.);
Department of Histology, CRUK Manchester Institute, Manchester, England (G.A.);
Tumour Biology Team, The Breast Cancer Now Toby Robins Research Centre, The
Institute of Cancer Research, London, England (A.R.R.); Department of Urology,
Salford Royal Hospitals NHS Foundation Trust, Salford, England (S.M., N.W.C.);
Bioxydyn Ltd, Manchester, England (G.J.M.P., J.C.W.); and Department of
Radiology, The Christie NHS Foundation Trust, Manchester, England
(J.P.B.O.)
| |
Collapse
|
19
|
The expression and function of RASAL2 in renal cell carcinoma angiogenesis. Cell Death Dis 2018; 9:881. [PMID: 30158581 PMCID: PMC6115459 DOI: 10.1038/s41419-018-0898-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023]
Abstract
Patients with renal cell carcinoma (RCC) often develop resistance to antivascular drugs and eventually succumb to disease. However, the underlying molecular mechanism remains poorly understood. In this study, we demonstrated that RASAL2, a RAS GTPase-activating protein, played a tumor-suppressive role in RCC by targeting tumor angiogenesis. Firstly, we showed that RASAL2 was frequently epigenetically silenced in RCC, and its loss was negatively correlated with overall survival of RCC patients. Furthermore, we discovered that RASAL2 could inhibit RCC angiogenesis in vitro and in vivo. Mechanistically, we identified that RASAL2 could activate GSK3β by reducing Ser9 phosphorylation and subsequently decrease the expression of c-FOS and vascular endothelial growth factor A (VEGFA). Interruption of the p-GSK3β/c-FOS pathway with the specific inhibitor or small interfering RNA could reverse the expression of VEGFA, which may provide a new insight to prevent RCC from resistance to antivascular therapy.
Collapse
|
20
|
Hauge A, Wegner CS, Gaustad JV, Simonsen TG, Andersen LMK, Rofstad EK. Diffusion-Weighted MRI Is Insensitive to Changes in the Tumor Microenvironment Induced by Antiangiogenic Therapy. Transl Oncol 2018; 11:1128-1136. [PMID: 30036782 PMCID: PMC6072800 DOI: 10.1016/j.tranon.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/29/2022] Open
Abstract
Antiangiogenic treatment (AAT) used in combination with radiation therapy or chemotherapy is a promising strategy for the treatment of several cancer diseases. The vascularity and oxygenation of tumors may be changed significantly by AAT, and consequently, a noninvasive method for monitoring AAT-induced changes in these microenvironmental parameters is needed. The purpose of this study was to evaluate the potential usefulness of diffusion-weighted magnetic resonance imaging (DW-MRI). DW-MRI was conducted with a Bruker Biospec 7.05-T scanner using four diffusion weightings and diffusion sensitization gradients in three orthogonal directions. Maps of the apparent diffusion coefficient (ADC) were calculated by using a monoexponential diffusion model. Two cervical carcinoma xenograft models (BK-12, HL-16) were treated with bevacizumab, and two pancreatic carcinoma xenograft models (BxPC-3, Panc-1) were treated with sunitinib. Pimonidazole and CD31 were used as markers of hypoxia and blood vessels, respectively, and fraction of hypoxic tissue (HFPim) and microvascular density (MVD) were quantified by analyzing immunohistochemical preparations. MVD decreased significantly after AAT in BK-12, HL-16, and BxPC-3 tumors, and this decrease was sufficiently large to cause a significant increase in HFPim in BK-12 and BxPC-3 tumors. The ADC maps of treated tumors and untreated control tumors were not significantly different in any of these three tumor models, suggesting that the AAT-induced microenvironmental changes were not detectable by DW-MRI. DW-MRI is insensitive to changes in tumor vascularity and oxygenation induced by bevacizumab or sunitinib treatment.
Collapse
Affiliation(s)
- Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
21
|
Wegner CS, Hauge A, Simonsen TG, Gaustad JV, Andersen LMK, Rofstad EK. DCE-MRI of Sunitinib-Induced Changes in Tumor Microvasculature and Hypoxia: A Study of Pancreatic Ductal Adenocarcinoma Xenografts. Neoplasia 2018; 20:734-744. [PMID: 29886124 PMCID: PMC6041378 DOI: 10.1016/j.neo.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
The purpose of this study was dual: to investigate (a) whether sunitinib may induce changes in tumor microvasculature and hypoxia in pancreatic ductal adenocarcinoma (PDAC) and (b) whether any changes can be detected by DCE-MRI. Sunitinib-treated and untreated control tumors of two PDAC xenograft models (BxPC-3 and Panc-1) were subjected to DCE-MRI before the imaged tumors were prepared for quantitative analysis of immunohistochemical preparations. Pimonidazole was used as a hypoxia marker, and fraction of hypoxic tissue (HFPim), density of CD31-positive microvessels (MVDCD31), and density of αSMA-positive microvessels (MVDαSMA) were measured. Parametric images of Ktrans and ve were derived from the DCE-MRI data by using the Tofts pharmacokinetic model. BxPC-3 tumors showed increased HFPim, decreased MVDCD31, unchanged MVDαSMA, and increased vessel maturation index (VMI = MVDαSMA/MVDCD31) after sunitinib treatment. The increase in VMI was seen because sunitinib induced selective pruning rather than maturation of αSMA-negative microvessels. Even though the microvessels in sunitinib-treated tumors were less abnormal than those in untreated tumors, this microvessel normalization did not improve the function of the microvascular network or normalize the tumor microenvironment. In Panc-1 tumors, HFPim, MVDCD31, MVDαSMA, and VMI were unchanged after sunitinib treatment. Median Ktrans increased with increasing MVDCD31 and decreased with increasing HFPim, and the correlations were similar for treated and untreated BXPC-3 and Panc-1 tumors. These observations suggest that sunitinib may induce significant changes in the microenvironment of PDACs, and furthermore, that Ktrans may be an adequate measure of tumor vascular density and hypoxia in untreated as well as sunitinib-treated PDACs.
Collapse
Key Words
- αsma, α smooth muscle actin
- angpt/tie, angiopoietin/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains
- dce-mri, dynamic contrast-enhanced magnetic resonance imaging
- fov, field of view
- he, hematoxylin and eosin
- hf, hypoxic fraction
- il-8/nf-κb, interleukin-8/nuclear factor-κb
- ktrans, volume transfer constant
- mvd, microvessel density
- pdac, pancreatic ductal adenocarcinoma
- roi, region of interest
- te, echo time
- tr, repetition time
- ve, fractional distribution volume
- vegf/vegf-r, vascular endothelial growth factor/vegf-receptor
Collapse
Affiliation(s)
- Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
22
|
Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R, Rata M, Koh DM, Tunariu N, Collins D, Hulkki-Wilson S, Ragulan C, Spiteri I, Moorcraft SY, Chau I, Rao S, Watkins D, Fotiadis N, Bali M, Darvish-Damavandi M, Lote H, Eltahir Z, Smyth EC, Begum R, Clarke PA, Hahne JC, Dowsett M, de Bono J, Workman P, Sadanandam A, Fassan M, Sansom OJ, Eccles S, Starling N, Braconi C, Sottoriva A, Robinson SP, Cunningham D, Valeri N. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018; 359:920-926. [PMID: 29472484 PMCID: PMC6112415 DOI: 10.1126/science.aao2774] [Citation(s) in RCA: 1277] [Impact Index Per Article: 182.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/26/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
Patient-derived organoids (PDOs) have recently emerged as robust preclinical models; however, their potential to predict clinical outcomes in patients has remained unclear. We report on a living biobank of PDOs from metastatic, heavily pretreated colorectal and gastroesophageal cancer patients recruited in phase 1/2 clinical trials. Phenotypic and genotypic profiling of PDOs showed a high degree of similarity to the original patient tumors. Molecular profiling of tumor organoids was matched to drug-screening results, suggesting that PDOs could complement existing approaches in defining cancer vulnerabilities and improving treatment responses. We compared responses to anticancer agents ex vivo in organoids and PDO-based orthotopic mouse tumor xenograft models with the responses of the patients in clinical trials. Our data suggest that PDOs can recapitulate patient responses in the clinic and could be implemented in personalized medicine programs.
Collapse
Affiliation(s)
| | - Somaieh Hedayat
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Alexandra Vatsiou
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Yann Jamin
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Javier Fernández-Mateos
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Khurum Khan
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Ian Huntingford
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Mihaela Rata
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Dow-Mu Koh
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
- Department of Radiology, The Royal Marsden NHS Trust, London, UK
| | - Nina Tunariu
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
- Department of Radiology, The Royal Marsden NHS Trust, London, UK
| | - David Collins
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | - Sanna Hulkki-Wilson
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Chanthirika Ragulan
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Ian Chau
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Sheela Rao
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - David Watkins
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Nicos Fotiadis
- Department of Radiology, The Royal Marsden NHS Trust, London, UK
| | - Maria Bali
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
- Department of Radiology, The Royal Marsden NHS Trust, London, UK
| | | | - Hazel Lote
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Zakaria Eltahir
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | | | - Ruwaida Begum
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Mitchell Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital NHS Trust, London, UK
| | - Johann de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology and Cytopathology Unit, University of Padua, Padua, Italy
| | | | - Suzanne Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | | | - Chiara Braconi
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Simon P Robinson
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| | | | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Department of Medicine, The Royal Marsden NHS Trust, London, UK
| |
Collapse
|
23
|
Wang L, Yang G, Zhu X, Wang Z, Wang H, Bai Y, Sun P, Peng L, Wei W, Chen G, Li G, Zamyatnin AA, Glybochko PV, Xu W. miR-93-3p inhibition suppresses clear cell renal cell carcinoma proliferation, metastasis and invasion. Oncotarget 2017; 8:82824-82834. [PMID: 29137305 PMCID: PMC5669931 DOI: 10.18632/oncotarget.20458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/29/2017] [Indexed: 01/10/2023] Open
Abstract
miRNA dysregulation is associated with many human diseases, including cancer. This study explored the effects of miR-93-3p on clear cell renal cell carcinoma (ccRCC). We found that miR-93-3p is upregulated an average of 38-fold in 138 ccRCC specimens compared to matched normal kidney tissues, which correlated with poor patient outcome. miR-93-3p inhibition reduced ccRCC cell growth, invasion, and migration in vitro and in a mouse xenograft model. A search of the TargetScan, miRanda, and PicTar databases revealed that miR-93-3p is predicted to regulate pigment epithelium-derived factor (PEDF). A direct PEDF-miR-93-3p interaction was confirmed via dual-luciferase reporter assays. Like miR-93-3p inhibition, PEDF overexpression induced cell apoptosis and inhibited migration and invasion. Additionally, co-transfection with PEDF siRNA reversed the effects of miR-93-3p inhibition in ccRCC cells. Thus, miR-93-3p is a likely ccRCC oncogene that acts by regulating PEDF. These results suggest that miR-93-3p may predict ccRCC patient clinical outcome and serve as a novel anti-ccRCC therapeutic target.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Xiangwei Zhu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Ziqi Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Hongzhi Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Yang Bai
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Pengcheng Sun
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Li Peng
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Wei Wei
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Guang Chen
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Guangbin Li
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Peter V Glybochko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R. China
| |
Collapse
|
24
|
Kidney cancer: FBV indicates sunitinib response. Nat Rev Urol 2017. [PMID: 28631743 DOI: 10.1038/nrurol.2017.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|