1
|
Wang X, Guo Z, Xia Y, Wang X, Wang Z. Research Progress on the Immune Function of Liver Sinusoidal Endothelial Cells in Sepsis. Cells 2025; 14:373. [PMID: 40072101 PMCID: PMC11899273 DOI: 10.3390/cells14050373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Sepsis is a complex clinical syndrome closely associated with the occurrence of acute organ dysfunction and is often characterized by high mortality. Due to the rapid progression of sepsis, early diagnosis and intervention are crucial. Recent research has focused on exploring the pathological response involved in the process of sepsis. Liver sinusoidal endothelial cells (LSECs) are a special type of endothelial cell and an important component of liver non-parenchymal cells. Unlike general endothelial cells, which mainly provide a barrier function within the body, LSECs also have important functions in the clearance and regulation of the immune response. LSECs are not only vital antigen-presenting cells (APCs) in the immune system but also play a significant role in the development of infectious diseases and tumors through their specific immune regulatory pathways. However, in certain disease states, the functions of LSECs may be impaired, leading to immune imbalance and the development of organ failure. Investigating the immune pathways of LSECs in sepsis may provide new solutions for the prevention and treatment of sepsis and is crucial for maintaining microcirculation and improving patient outcomes.
Collapse
Affiliation(s)
- Xinrui Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
| | - Zhe Guo
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| | - Yuxiang Xia
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
| | - Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| | - Zhong Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100190, China; (X.W.); (Y.X.)
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
2
|
Song X, Zhu Y, Geng W, Jiao J, Liu H, Chen R, He Q, Wang L, Sun X, Qin W, Geng J, Chen Z. Spatial and single-cell transcriptomics reveal cellular heterogeneity and a novel cancer-promoting Treg cell subset in human clear-cell renal cell carcinoma. J Immunother Cancer 2025; 13:e010183. [PMID: 39755578 PMCID: PMC11748785 DOI: 10.1136/jitc-2024-010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated. METHODS To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue. On the basis, the findings were investigated in vitro using tissue and blood samples from 15 patients with ccRCC and validated in the broader samples on tissue microarrays. RESULTS In this study, we revealed previously unreported subsets of both stromal and immune cells, as well as mapped their spatial location at finer resolution. In addition, we validated the clusters of tumor cells after removing batch effects according to six characterized gene sets, including epithelial-mesenchymal transitionhigh clusters, metastatic clusters and proximal tubulehigh clusters. Importantly, we identified a special regulatory T (Treg) cell subpopulation that has the molecular characteristics of terminal effector Treg cells but expresses multiple cytokines, such as interleukin (IL)-1β and IL-18. This group of Treg cells has stronger immunosuppressive function and was associated with a worse prognosis in ccRCC cohorts. They were colocalized with MRC1 + FOLR2 + tumor-associated macrophages (TAMs) at the tumor-normal interface to form a positive feedback loop, maintaining a synergistic procarcinogenic effect. In addition, we traced the origin of IL-1β+ Treg cells and revealed that IL-18 can induce the expression of IL-1β in Treg cells via the ERK/NF-κB pathway. CONCLUSIONS We demonstrated a novel cancer-promoting Treg cell subset and its interactions with MRC1 + FOLR2 +TAMs, which provides new insight into Treg cell heterogeneity and potential therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Xiyu Song
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yumeng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenwen Geng
- Department of Breast Surgery, Shandong University, Jinan, Shandong, China
| | - Jianhua Jiao
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Urology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongjiao Liu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qian He
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lijuan Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuxuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weijun Qin
- Department of Urology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiejie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xijing Innovation Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xian, Shaanxi, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xian, Shaanxi, China
| |
Collapse
|
3
|
Ma J, Chen Y, Li T, Cao Y, Hu B, Liu Y, Zhang Y, Li X, Liu J, Zhang W, Niu H, Gao J, Zhang Z, Yue K, Wang J, Bao G, Wang C, Wang PG, Zou T, Xie S. Suppression of lysosome metabolism-meditated GARP/TGF-β1 complexes specifically depletes regulatory T cells to inhibit breast cancer metastasis. Oncogene 2024; 43:1930-1940. [PMID: 38698265 DOI: 10.1038/s41388-024-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/21/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Regulatory T cells (Tregs) prevent autoimmunity and contribute to cancer progression. They exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-β1 (TGF-β1). However, the absence of a specific surface marker makes inhibiting the production of active TGF-β1 to specifically deplete human Tregs but not other cell types a challenge. TGF-β1 in an inactive form binds to Tregs membrane protein Glycoprotein A Repetitions Predominant (GARP) and then activates it via an unknown mechanism. Here, we demonstrated that tumour necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) in the Treg lysosome is involved in this activation mechanism. Using a novel naphthalenelactam-platinum-based anticancer drug (NPt), we developed a new synergistic effect by suppressing ATP-binding cassette subfamily B member 9 (ABCB9) and TRAF3IP3-mediated divergent lysosomal metabolic programs in tumors and human Tregs to block the production of active GARP/TGF-β1 for remodeling the tumor microenvironment. Mechanistically, NPt is stored in Treg lysosome to inhibit TRAF3IP3-meditated GARP/TGF-β1 complex activation to specifically deplete Tregs. In addition, by promoting the expression of ABCB9 in lysosome membrane, NPt inhibits SARA/p-SMAD2/3 through CHRD-induced TGF-β1 signaling pathway. In addition to expose a previously undefined divergent lysosomal metabolic program-meditated GARP/TGF-β1 complex blockade by exploring the inherent metabolic plasticity, NPt may serve as a therapeutic tool to boost unrecognized Treg-based immune responses to infection or cancer via a mechanism distinct from traditional platinum drugs and currently available immune-modulatory antibodies.
Collapse
Affiliation(s)
- Jing Ma
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Yutong Chen
- South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Tao Li
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Cao
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Bin Hu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Yuru Liu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Youran Zhang
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Xiaoyan Li
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jianing Liu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Zhang
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Hanjing Niu
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jinhua Gao
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Zhongze Zhang
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Kexin Yue
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China.
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Peng George Wang
- School of Medicine, The Southern University of Science and Technology, Shenzhen, Guangdong, 518005, China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Songqiang Xie
- School of Pharmacy, The Zhongzhou Laboratory for Integrative Biology, Huaihe Hospital of Henan University, Institute of Chemical Biology, Academy for Advanced Interdisciplinary Studies, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
4
|
Lahimchi MR, Mohammadnia-Afrouzi M, Baharlou R, Haghmorad D, Abedi SH, Arjmandi D, Hosseini M, Yousefi B. "Decoding inflammation: glycoprotein a repetition predominant, microRNA-142-3-p, and metastasis associated lung adenocarcinoma transcript 1: as novel inflammatory biomarkers of inflammatory bowel disease". Mol Biol Rep 2024; 51:500. [PMID: 38598005 DOI: 10.1007/s11033-024-09475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic gastrointestinal (GI) condition comprising Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis involves immune system dysregulation, with increased Th (T helper cell)17 cells and reduced regulatory T cell (Treg) differentiation. Transforming growth factor-β (TGF-β) secretion from Tregs helps control inflammation, and its production is regulated by glycoprotein-A repetition predominant (GARP) protein along with non-coding RNAs (ncRNAs) like microRNA(miR)-142-3p and metastasis associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNAs (LncRNAs). This study analyzed their expression in IBD. METHODS Blood samples were collected from 44 IBD patients, and 22 healthy controls (HC). RNA extraction and circular DNA (cDNA) synthesis were performed. Real-time polymerase chain reaction (RT-PCR) measured gene expression of GARP, MALAT1, and miR-142-3p. Correlations and group differences were statistically analyzed. RESULTS Compared to controls, GARP was downregulated while MALAT1 and miR-142-3p were upregulated significantly in IBD group. GARP and MALAT1 expressions positively correlated in controls. MALAT1 and miR-142-3p expressions positively correlated in IBD group. MALAT1 was downregulated in aged HC but upregulated with smoking history across groups. No correlations occurred between gene expression and gender, diet, infections, or disease activity scores. CONCLUSIONS Dysregulation of GARP, MALAT1, and miR-142-3p likely contributes to inflammation in IBD by reducing TGF-β. MALAT1 is linked to smoking and age-related changes. These genes have potential as diagnostic markers or therapeutic targets for personalized IBD treatment.
Collapse
Affiliation(s)
| | | | - Rasoul Baharlou
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Hassan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Delaram Arjmandi
- Department of Immunology, Babol University of Medical Sciences, Babol, Iran
| | - Masoomeh Hosseini
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Gan Q, Li Y, Li Y, Liu H, Chen D, Liu L, Peng C. Pathways and molecules for overcoming immunotolerance in metastatic gastrointestinal tumors. Front Immunol 2024; 15:1359914. [PMID: 38646539 PMCID: PMC11026648 DOI: 10.3389/fimmu.2024.1359914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Worldwide, gastrointestinal (GI) cancer is recognized as one of the leading malignancies diagnosed in both genders, with mortality largely attributed to metastatic dissemination. It has been identified that in GI cancer, a variety of signaling pathways and key molecules are modified, leading to the emergence of an immunotolerance phenotype. Such modifications are pivotal in the malignancy's evasion of immune detection. Thus, a thorough analysis of the pathways and molecules contributing to GI cancer's immunotolerance is vital for advancing our comprehension and propelling the creation of efficacious pharmacological treatments. In response to this necessity, our review illuminates a selection of groundbreaking cellular signaling pathways associated with immunotolerance in GI cancer, including the Phosphoinositide 3-kinases/Akt, Janus kinase/Signal Transducer and Activator of Transcription 3, Nuclear Factor kappa-light-chain-enhancer of activated B cells, Transforming Growth Factor-beta/Smad, Notch, Programmed Death-1/Programmed Death-Ligand 1, and Wingless and INT-1/beta-catenin-Interleukin 10. Additionally, we examine an array of pertinent molecules like Indoleamine-pyrrole 2,3-dioxygenase, Human Leukocyte Antigen G/E, Glycoprotein A Repetitions Predominant, Clever-1, Interferon regulatory factor 8/Osteopontin, T-cell immunoglobulin and mucin-domain containing-3, Carcinoembryonic antigen-related cell adhesion molecule 1, Cell division control protein 42 homolog, and caspases-1 and -12.
Collapse
Affiliation(s)
- Qixin Gan
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Yue Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuejun Li
- Department of Oncology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Haifen Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Daochuan Chen
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Lanxiang Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Churan Peng
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| |
Collapse
|
6
|
Zhang X, Sharma P, Maschmeyer P, Hu Y, Lou M, Kim J, Fujii H, Unutmaz D, Schwabe RF, Winau F. GARP on hepatic stellate cells is essential for the development of liver fibrosis. J Hepatol 2023; 79:1214-1225. [PMID: 37348791 PMCID: PMC10592496 DOI: 10.1016/j.jhep.2023.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND & AIMS Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-β docking molecule. While the immune regulatory properties of GARP on blood cells have been studied, the function of GARP on tissue stromal cells remains unclear. Here, we investigate the role of GARP expressed on hepatic stellate cells (HSCs) in the development of liver fibrosis. METHODS The function of GARP on HSCs was explored in toxin-induced and metabolic liver fibrosis models, using conditional GARP-deficient mice or a newly generated inducible system for HSC-specific gene ablation. Primary mouse and human HSCs were isolated to evaluate the contribution of GARP to the activation of latent TGF-β. Moreover, cell contraction of HSCs in the context of TGF-β activation was tested in a GARP-dependent fashion. RESULTS Mice lacking GARP in HSCs were protected from developing liver fibrosis. Therapeutically deleting GARP on HSCs alleviated the fibrotic process in established disease. Furthermore, natural killer T cells exacerbated hepatic fibrosis by inducing GARP expression on HSCs through IL-4 production. Mechanistically, GARP facilitated fibrogenesis by activating TGF-β and enhancing endothelin-1-mediated HSC contraction. Functional GARP was expressed on human HSCs and significantly upregulated in the livers of patients with fibrosis. Lastly, deletion of GARP on HSCs did not augment inflammation or liver damage. CONCLUSIONS GARP expressed on HSCs drives the development of liver fibrosis via cell contraction-mediated activation of latent TGF-β. Considering that systemic blockade of TGF-β has major side effects, we highlight a therapeutic niche provided by GARP and surface-mediated TGF-β activation. Thus, our findings suggest an important role of GARP on HSCs as a promising target for the treatment of liver fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis represents a substantial and increasing public health burden globally, for which specific treatments are not available. Glycoprotein A repetitions predominant (GARP) is a membrane protein that functions as a latent TGF-β docking molecule. Here, we show that GARP expressed on hepatic stellate cells drives the development of liver fibrosis. Our findings suggest GARP as a novel target for the treatment of fibrotic disease.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj Sharma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Maschmeyer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu Hu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mumeng Lou
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica Kim
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Robert F Schwabe
- Department of Medicine, College of Physicians and Surgeons, Institute of Human Nutrition, Columbia University, New York, USA
| | - Florian Winau
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Jiang Z, Xu J, Zhang S, Lan H, Bao Y. A pairwise immune gene model for predicting overall survival and stratifying subtypes of colon adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:10813-10829. [PMID: 37316691 DOI: 10.1007/s00432-023-04957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVES There is increasing evidence for a close correlation between risk stratification, prognosis and the immune environment in colon adenocarcinoma (COAD). However, the efficacy of immunotherapy is different among different patients with COAD. Therefore, the current work tends to use immune-related gene to develop a gene-pair model to evaluate the COAD prognosis, and to develop a new method for risk stratification of COAD, which is conducive to better predict the immunotherapy effect of patients. METHODS Specifically, from the TCGA and GEO (GSE14333 and GSE39582) databases, we first collected gene expression profiles, associated survival follow-up information of COAD patients. Through systematic bioinformatics analysis, we established a prognosis-related model of colon cancer with three pairs of "immune gene pairs", with uni- and multivariate and lasso cox regression analyses verifying the model stability. Most immune cells showed markedly different levels of infiltration between the two risk subgroups calculated by the model. More, single-cell RNA-seq analyses were also performed to validate the selected genes in the immune gene-pair model. RESULTS A prognosis-related model of colon cancer with three pairs of "immune gene pairs" were built and validated by several datasets. The analysis of immune landscape of COAD revealed that low-risk subgroup obtained by the prognosis-related model for COAD can be further divided into three subclusters with different prognosis. Then, we applied the Tumor online Prognostic analyses Platform (ToPP) to construct a prognostic model using these five genes. Results show that APOD, ISG20 and STC2 are risk factors, while CXCL9 and IL7R are protection factors. We also found that only the five-gene model could also predict the prognosis of COAD patients, indicating the robustness of the gene-pair model. Among the five genes, including CXCL9, APOD, STC2, ISG20, and IL7R, in the gene-pair model, single-cell RNA sequencing reveals the high expression of CXCL9 and IL7R in inflammatory macrophages. Using cell-cell interaction and trajectory analysis, data indicate that CXCL9+/IL7R+ pro-inflammatory macrophages were capable of secreting and activating more anti-tumor pathways than CXCL9-/IL7R- pro-inflammatory macrophages. CONCLUSIONS In short, we have successfully developed an "immune gene pair" related model that can judge the prognostic status of patients with COAD and may contribute to risk stratification and evaluate potential beneficiaries of immunotherapy, providing new ideas for the anti-COAD management and therapy.
Collapse
Affiliation(s)
- Ziyuan Jiang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jie Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Sitong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Haiyan Lan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yixi Bao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
8
|
Zhu Y, Zhao Z, Thandar M, Cheng J, Chi P, Huang S. Expression patterns and prognostic value of key regulators associated with m7G RNA modification based on all gene expression in colon adenocarcinoma. BMC Gastroenterol 2023; 23:22. [PMID: 36681801 PMCID: PMC9867544 DOI: 10.1186/s12876-023-02657-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND N7-methylguanosine (m7G) is present in a wide variety of organisms and has important roles. m7G has been reported to be involved in multiple biological processes, and recent studies have reported that changes in RNA modifications result in tumor cellular transformation and cancer, such as colon adenocarcinoma, lung cancer, and intrahepatic cholangiocarcinoma. However, little is known about the function of the m7G in colon adenocarcinoma. METHODS We established two clusters based on the expression of all genes associated with m7G to explore the expression pattern of 31 key regulatory factors of m7G RNA and assess the prognostic value of regulatory factors. Wilcoxon test and differential box line plots were applied for bioinformatics analysis. Receiver Operating and Kaplan‒Meier curves were utilized to evaluate the prognostic value. Finally, four genes' expression in the colon cancer cell line was confirmed by qRT-PCR. RESULTS From The Cancer Genome Atlas database, we found that the expression levels of 25 out of the 31 key N7-methylguanosine RNA modification regulators were significantly different in colon adenocarcinoma. According to 25 methylation regulators' expression, we identified two subgroups by consensus clustering, in which the prognosis was worse in Group 2 than in Group 1 and was significantly correlated with age. Cluster 2 was significantly enriched in tumor-associated pathways, and immune cells were highly infiltrated in Cluster 1 but weakly infiltrated in Cluster 2. Further results indicated that this risk profile may serve as a standalone predictive factor for colon adenocarcinoma, and the four genetic risk profiles' prognostic relatedness was successfully verified through Gene Expression Omnibus dataset. At last, A nomogram for prognosis was created according to age, sex, histological grading, clinicopathological staging, and hazard score to accurately predict patient prognosis in colon adenocarcinoma. We successfully validated the differential expression of four genes using qRT-PCR. CONCLUSIONS In the present study, we revealed the important contribution of key regulators associated with m7G RNA modifications based on all gene expression in colon adenocarcinoma and developed a signature of risk that serves as a promising prognostic marker for patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Yuanchang Zhu
- grid.411176.40000 0004 1758 0478Department of Colorectal Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province China
| | - Zeyi Zhao
- grid.411176.40000 0004 1758 0478Department of Colorectal Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province China
| | - Mya Thandar
- grid.411176.40000 0004 1758 0478Department of Colorectal Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province China
| | - Junhao Cheng
- grid.411176.40000 0004 1758 0478Department of Colorectal Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province China
| | - Pan Chi
- grid.411176.40000 0004 1758 0478Department of Colorectal Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province China ,grid.411176.40000 0004 1758 0478Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian China
| | - Shenghui Huang
- grid.411176.40000 0004 1758 0478Department of Colorectal Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou City, Fujian Province China ,grid.411176.40000 0004 1758 0478Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian China
| |
Collapse
|
9
|
Zhang H, Zhao G, Zhu G, Ye J. Identification of lymph node metastasis-related genes and patterns of immune infiltration in colon adenocarcinoma. Front Oncol 2023; 12:907464. [PMID: 36727052 PMCID: PMC9884978 DOI: 10.3389/fonc.2022.907464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Backgrounds Colon adenocarcinoma(COAD) is one of the most common tumors of the digestive tract. Lymph node metastasis (LNM) is a well-established prognostic factor for COAD. The mechanism of COAD lymph node metastasis in immunology remains unknown. The identification of LNM-related biomarkers of COAD could help in its treatment. Thus, the current study was aimed to identify key genes and construct a prognostic signature. Methods Gene expression and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes were calculated by using R software. GO functional and KEGG pathway enrichment analysis were processed. The CIBERSORT algorithm was used to assess immune cell infiltration. STRING database was used to screen key genes and constructed a protein-protein interaction network (PPI network). The LASSO-Cox regression analysis was performed based on the components of the PPI network. The correlation analysis between LNM-related signature and immune infiltrating cells was then investigated. TISIDB was used to explore the correlation between the abundance of immunomodulators and the expression of the inquired gene. Results In total, 394 differentially expressed genes were identified. After constructing and analyzing the PPI network, 180 genes were entered into the LASSO-Cox regression model, constructing a gene signature. Five genes(PMCH, LRP2, NAT1, NKAIN4, and CD1B) were identified as LNM-related genes of clinical value. Correlation analysis revealed that LRP2 and T follicular helper cells (R=0.34, P=0.0019) and NKAIN4 and T follicular helper cells (R=0.23, P=0.041) had significant correlations. Immunologic analysis revealed that LRP2 and NKAIN4 are potential coregulators of immune checkpoints in COAD. Conclusion In general, this study revealed the key genes related to lymph node metastasis and prognostic signature. Several potential mechanisms and therapeutic and prognostic targets of lymph node metastasis were also demonstrated in COAD.
Collapse
Affiliation(s)
- Haoxiang Zhang
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Gastrointestinal Surgery 2 Section, National Regional Medical Center, Fujian Medical University, Fuzhou, China
| | - Guibin Zhao
- Department of Gastrointestinal Surgery, Mindong Hospital Affiliated to Fujian Medical University, Fuan, China
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Gastrointestinal Surgery 2 Section, National Regional Medical Center, Fujian Medical University, Fuzhou, China,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuan, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of Accurate Diagnosis and Treatment of Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China,Department of Gastrointestinal Surgery 2 Section, National Regional Medical Center, Fujian Medical University, Fuzhou, China,*Correspondence: Jianxin Ye,
| |
Collapse
|
10
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
11
|
Lahimchi MR, Eslami M, Yousefi B. New insight into GARP striking role in cancer progression: application for cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:33. [PMID: 36460874 DOI: 10.1007/s12032-022-01881-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022]
Abstract
T regulatory cells play a crucial role in antitumor immunity suppression. Glycoprotein-A repetitions predominant (GARP), transmembrane cell surface marker, is mostly expressed on Tregs and mediates intracellular organization of transforming growth factor-beta (TGF-β). The physiological role of GARP is immune system homeostasis, while it may cause tumor development by upregulating TGF-β secretion. Despite the vast application of anti- programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte Antigen-4 (CTLA-4) antibodies in immunotherapy, anti-GARP antibodies have the advantage of better response in patients who has resistance to anti-PD-1/PD-L1. Furthermore, simultaneous administration of anti-GARP antibody and anti-PD-1/PD-L1 antibody is much more effective than anti-PD-1/PD-L1 alone. It is worth mentioning that the GARP-mTGF-β complex is more potent than secretory TGF-β to induce T helper 17 cells differentiation in HIV + patients. On the other hand, TGF-β is an effective cytokine in cancer development, and some microRNAs could control its secretion by regulating GARP. In the present review, some information is provided about the undeniable role of GARP in cancer progression and its probable importance as a novel prognostic biomarker. Anti-GARP antibodies are also suggested for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Majid Eslami
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran. .,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
12
|
Pugh KW, Alnaed M, Brackett CM, Blagg BSJ. The biology and inhibition of glucose-regulated protein 94/gp96. Med Res Rev 2022; 42:2007-2024. [PMID: 35861260 PMCID: PMC10003671 DOI: 10.1002/med.21915] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
The 94 kDa molecular chaperone, glucose-regulated protein 94 (Grp94), has garnered interest during the last decade due to its direct association with endoplasmic reticulum (ER) stress and disease. Grp94 belongs to the Hsp90 family of molecular chaperones and is a master regulator of ER homeostasis due to its ability to fold and stabilize proteins/receptors, and to chaperone misfolded proteins for degradation. Multiple studies have demonstrated that Grp94 knockdown or inhibition leads to the degradation of client protein substrates, which leads to disruption of disease-dependent signaling pathways. As a result, small molecule inhibitors of Grp94 have become a promising therapeutic approach to target a variety of disease states. Specifically, Grp94 has proven to be a promising target for cancer, glaucoma, immune-mediated inflammation, and viral infection. Moreover, Grp94-peptide complexes have been utilized effectively as adjuvants for vaccines against a variety of disease states. This work highlights the significance of Grp94 biology and the development of therapeutics that target this molecular chaperone in multiple disease states.
Collapse
Affiliation(s)
- Kyler W. Pugh
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Marim Alnaed
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher M. Brackett
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Brian S. J. Blagg
- Department of Chemistry and Biochemistry, Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
13
|
Geddes AE, Ray AL, Nofchissey RA, Esmaeili A, Saunders A, Bender DE, Khan M, Aravindan S, Ahrendsen JT, Li M, Fung KM, Jayaraman M, Yang J, Booth KK, Dunn GD, Carter SN, Morris KT. An analysis of sexual dimorphism in the tumor microenvironment of colorectal cancer. Front Oncol 2022; 12:986103. [PMID: 36387163 PMCID: PMC9651089 DOI: 10.3389/fonc.2022.986103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Women with colorectal cancer (CRC) have survival advantages over men, yet the underlying mechanisms are unclear. T cell infiltration within the CRC tumor microenvironment (TME) correlates strongly with survival. We hypothesized that women with CRC have increased T cell infiltration and differential gene expression in the TME compared to men. Tissue microarrays comprising primary tumor, tumor infiltrated lymph nodes, and uninvolved colon were created from CRC patients. Proportions of CD4 positive (CD4+) and CD8 positive (CD8+) T cells were identified using immunohistochemistry. TME immune- and cancer-related genetic expression from primary and metastatic CRC tumor were also evaluated via the NanoStringIO360 panel and The Cancer Genome Atlas Project database. CD4+ was higher in tumor samples from women compared to men (22.04% vs. 10.26%, p=0.002) and also in lymph node samples (39.54% vs. 8.56%, p=0.001). CD8+ was increased in uninvolved colon from women compared to men (59.40% vs. 43.61%, p=0.015), and in stage I/II tumors compared to III/IV in all patients (37.01% vs. 23.91%, p=0.009). Top CD8+ tertile patients survived longer compared to the bottom (43.9 months vs. 25.3 months, p=0.007). Differential gene expression was observed in pathways related to Treg function, T cell activity, and T cell exhaustion, amongst several others, in women compared to men. Thus, significant sexual dimorphism exists in the TME that could contribute to survival advantages observed in female patients with CRC.
Collapse
Affiliation(s)
- Andrea E. Geddes
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Anita L. Ray
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Robert A. Nofchissey
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Azadeh Esmaeili
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Apryl Saunders
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Dawn E. Bender
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Maaz Khan
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Sheeja Aravindan
- University of Oklahoma Health Science Center, Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Jared T. Ahrendsen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Min Li
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,University of Oklahoma Health Science Center, Stephenson Cancer Center, Oklahoma City, OK, United States
| | - Muralidharan Jayaraman
- University of Oklahoma Health Science Center, Stephenson Cancer Center, Oklahoma City, OK, United States,Department of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Jingxuan Yang
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Kristina K. Booth
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Gary D. Dunn
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Steven N. Carter
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Katherine T. Morris
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, OK, United States,*Correspondence: Katherine T. Morris,
| |
Collapse
|
14
|
McRitchie BR, Akkaya B. Exhaust the exhausters: Targeting regulatory T cells in the tumor microenvironment. Front Immunol 2022; 13:940052. [PMID: 36248808 PMCID: PMC9562032 DOI: 10.3389/fimmu.2022.940052] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
The concept of cancer immunotherapy has gained immense momentum over the recent years. The advancements in checkpoint blockade have led to a notable progress in treating a plethora of cancer types. However, these approaches also appear to have stalled due to factors such as individuals' genetic make-up, resistant tumor sub-types and immune related adverse events (irAE). While the major focus of immunotherapies has largely been alleviating the cell-intrinsic defects of CD8+ T cells in the tumor microenvironment (TME), amending the relationship between tumor specific CD4+ T cells and CD8+ T cells has started driving attention as well. A major roadblock to improve the cross-talk between CD4+ T cells and CD8+ T cells is the immune suppressive action of tumor infiltrating T regulatory (Treg) cells. Despite their indispensable in protecting tissues against autoimmune threats, Tregs have also been under scrutiny for helping tumors thrive. This review addresses how Tregs establish themselves at the TME and suppress anti-tumor immunity. Particularly, we delve into factors that promote Treg migration into tumor tissue and discuss the unique cellular and humoral composition of TME that aids survival, differentiation and function of intratumoral Tregs. Furthermore, we summarize the potential suppression mechanisms used by intratumoral Tregs and discuss ways to target those to ultimately guide new immunotherapies.
Collapse
Affiliation(s)
- Bayley R. McRitchie
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Billur Akkaya
- Department of Neurology, The College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Chen XY, Zhu XJ, Chen M, Lu MP, Wang ML, Yin M, Chen RX, Wu ZF, Bu DY, Zhang ZD, Cheng L. GARP Polymorphisms Associated with Susceptibility to House Dust Mite-Sensitized Persistent Allergic Rhinitis in a Chinese Population. J Asthma Allergy 2022; 15:1369-1381. [PMID: 36196093 PMCID: PMC9527031 DOI: 10.2147/jaa.s366815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Genetic variants in GARP (also known as LRRC32) have been reported to have significant associations with asthma and eczema in special populations, but little is known about allergic rhinitis. This study purposes to evaluate the association of single nucleotide polymorphisms (SNPs) in GARP with house dust mite (HDM)-sensitized persistent allergic rhinitis (PER) in a population of Han Chinese. Methods In this hospital-based case–control study, 534 HDM-sensitized PER patients and 451 healthy controls were recruited from East China. In this population, six SNPs in GARP were identified. Serum total and specific IgE levels were measured with ImmunoCAP. Secondary structure and minimum free energy were predicted by RNAfold. Results rs79525962 was associated with the risk of HDM-sensitized PER (P < 0.05). The individuals with CT+TT genotype demonstrated a higher risk of HDM-sensitized PER than those with CC genotype (adjusted OR = 1.393, 95% CI = 1.019–1.904). The homozygous genotype CC of rs3781699 rendered a lower risk of HDM-sensitized PER than the wild-type genotype AA (adjusted OR = 0.646, 95% CI = 0.427–0.976); however, the genotype and allele frequencies of rs3781699 demonstrated no associations with HDM-sensitized PER (P > 0.05). rs79525962 increased the risk of HDM-sensitized PER in the subgroup aged ≥16 years (adjusted OR = 1.745, 95% CI = 1.103–2.760), and this high risk was also found in the females (adjusted OR = 1.708, 95% CI = 1.021–2.856). The G-C haplotype of rs1320646-rs3781699 rendered a lower risk of HDM-sensitized PER than the common haplotype G-A (adjusted OR = 0.819, 95% CI = 0.676–0.993). The secondary structure of GARP altered in response to different genotypes of rs79525962 and rs3781699. Conclusion SNP rs79525962 in the GARP gene marks a risk locus of HDM-sensitized PER in Chinese Hans.
Collapse
Affiliation(s)
- Xin-Yuan Chen
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xin-Jie Zhu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Min Chen
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mei-Lin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Min Yin
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruo-Xi Chen
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhong-Fei Wu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Dong-Yun Bu
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zheng-Dong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People’s Republic of China
- Zheng-Dong Zhang, Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People’s Republic of China, Email
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, People’s Republic of China
- Correspondence: Lei Cheng, Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People’s Republic of China, Email
| |
Collapse
|
16
|
Li A, Chang Y, Song NJ, Wu X, Chung D, Riesenberg BP, Velegraki M, Giuliani GD, Das K, Okimoto T, Kwon H, Chakravarthy KB, Bolyard C, Wang Y, He K, Gatti-Mays M, Das J, Yang Y, Gewirth DT, Ma Q, Carbone D, Li Z. Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8 + T cell antitumor immunity. J Immunother Cancer 2022; 10:e005433. [PMID: 36096533 PMCID: PMC9472209 DOI: 10.1136/jitc-2022-005433] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has revolutionized cancer immunotherapy. However, most patients with cancer fail to respond clinically. One potential reason is the accumulation of immunosuppressive transforming growth factor β (TGFβ) in the tumor microenvironment (TME). TGFβ drives cancer immune evasion in part by inducing regulatory T cells (Tregs) and limiting CD8+ T cell function. Glycoprotein-A repetitions predominant (GARP) is a cell surface docking receptor for activating latent TGFβ1, TGFβ2 and TGFβ3, with its expression restricted predominantly to effector Tregs, cancer cells, and platelets. METHODS We investigated the role of GARP in human patients with cancer by analyzing existing large databases. In addition, we generated and humanized an anti-GARP monoclonal antibody and evaluated its antitumor efficacy and underlying mechanisms of action in murine models of cancer. RESULTS We demonstrate that GARP overexpression in human cancers correlates with a tolerogenic TME and poor clinical response to ICB, suggesting GARP blockade may improve cancer immunotherapy. We report on a unique anti-human GARP antibody (named PIIO-1) that specifically binds the ligand-interacting domain of all latent TGFβ isoforms. PIIO-1 lacks recognition of GARP-TGFβ complex on platelets. Using human LRRC32 (encoding GARP) knock-in mice, we find that PIIO-1 does not cause thrombocytopenia; is preferentially distributed in the TME; and exhibits therapeutic efficacy against GARP+ and GARP- cancers, alone or in combination with anti-PD-1 antibody. Mechanistically, PIIO-1 treatment reduces canonical TGFβ signaling in tumor-infiltrating immune cells, prevents T cell exhaustion, and enhances CD8+ T cell migration into the TME in a C-X-C motif chemokine receptor 3 (CXCR3)-dependent manner. CONCLUSION GARP contributes to multiple aspects of immune resistance in cancer. Anti-human GARP antibody PIIO-1 is an efficacious and safe strategy to block GARP-mediated LTGFβ activation, enhance CD8+ T cell trafficking and functionality in the tumor, and overcome primary resistance to anti-PD-1 ICB. PIIO-1 therefore warrants clinical development as a novel cancer immunotherapeutic.
Collapse
Affiliation(s)
- Anqi Li
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - No-Joon Song
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Xingjun Wu
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Dongjun Chung
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Brian P Riesenberg
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Giuseppe D Giuliani
- Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Physics, The Ohio State University, Columbus, Ohio, USA
| | - Komal Das
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Tamio Okimoto
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Hyunwoo Kwon
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Karthik B Chakravarthy
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Kai He
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jayajit Das
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Yiping Yang
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Hematology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel T Gewirth
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, USA
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David Carbone
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
17
|
Bahabayi A, Zeng X, Tuerhanbayi B, Zhang Y, Hasimu A, Guo S, Liu T, Zheng M, Alimu X, Liu C. Changes in circulating TCF1- and GARP-associated regulatory T cell subsets reflect the clinical status of patients with chronic HBV infection. Med Microbiol Immunol 2022; 211:237-247. [PMID: 35953613 DOI: 10.1007/s00430-022-00748-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/23/2022] [Indexed: 10/15/2022]
Abstract
This study aimed to clarify the expression changes and clinical significance of regulatory T (Treg) cells and follicular regulatory T (TFR) cell subsets divided by glycoprotein A repetitions predominant protein (GARP) and T cell factor 1(TCF1) in peripheral blood of patients with chronic HBV infection. The peripheral blood of 26 chronic hepatitis B (CHB) patients, 27 inactive HBsAg carriers and 32 healthy controls were collected and GARP + percentages in Treg and TFR cells were analyzed by flow cytometry. In addition, Treg and TFR cell subsets sorted by CD62L and TCF1 were analyzed and compared. Correlation analyses were performed between Treg and TFR cell subpopulations and clinical parameters as well as cytokine concentrations, including IL-21, IL-10 and TGF-β1 in plasma. Circulating Treg and TFR levels were elevated in CHB patients. Moreover, GARP and TCF1 were up-regulated in circulating Treg and TFR cells of CHB patients. TCF1 + CD62L- Treg cells were increased while TCF1-CD62L + Treg cells were decreased in CHB patients. TCF1 + CD62L- and TCF1-CD62L- TFR cells were increased while TCF1 + CD62L + TFR cells were decreased in CHB patients. TCF1 + CD62L- Treg cells were positively correlated with HBV DNA, ALT and plasma IL-10, while TCF1 + CD62L + TFR cells were negatively correlated with HBV DNA, HBeAg, HBsAg, ALT, AST, T-BIL and positively correlated with plasma IL-21. Treg and TFR subsets sorted by TCF1, CD62L and GARP were changed in CHB patients. Changes in Treg and TFR functional subsets are associated with antiviral immunity in CHB patients.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Bulidierxin Tuerhanbayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Yangyang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Siyu Guo
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Tianci Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
18
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
19
|
Hou J, Wang X, Su C, Ma W, Zheng X, Ge X, Duan X. Reduced frequencies of Foxp3 +GARP + regulatory T cells in COPD patients are associated with multi-organ loss of tissue phenotype. Respir Res 2022; 23:176. [PMID: 35780120 PMCID: PMC9250745 DOI: 10.1186/s12931-022-02099-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Background Expression of glycoprotein A dominant repeat (GARP) has been reported to occur only in activated human naturally occurring regulatory T cells (Tregs) and their clones, and not in activated effector T cells, indicating that GARP is a marker for bona fide Tregs. A different phenotype of chronic obstructive pulmonary disease (COPD) may have a different immunologic mechanism. Objective To investigate whether the distribution of Tregs defined by GARP is related to the multi-organ loss of tissue phenotype in COPD. Methods GARP expression on T cells from peripheral blood and bronchoalveolar lavage (BAL) collected from patients with COPD was examined by flow cytometry. The correlation of GARP expression to clinical outcomes and clinical phenotype, including the body mass index, lung function and quantitative computed tomography (CT) scoring of emphysema, was analyzed. Results Patients with more baseline emphysema had lower forced expiratory volume, body mass index (BMI), worse functional capacity, and more osteoporosis, thus, resembling the multiple organ loss of tissue (MOLT) phenotype. Peripheral Foxp3+GARP+ Tregs are reduced in COPD patients, and this reduction reversely correlates with quartiles of CT emphysema severity in COPD. Meanwhile, the frequencies of Foxp3+GARP− Tregs, which are characteristic of pro-inflammatory cytokine production, are significantly increased in COPD patients, and correlated with increasing quartiles of CT emphysema severity in COPD. Tregs in BAL show a similar pattern of variation in peripheral blood. Conclusion Decreased GARP expression reflects more advanced disease in MOLT phenotype of COPD. Our results have potential implications for better understanding of the immunological nature of COPD and the pathogenic events leading to lung damage. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02099-2.
Collapse
Affiliation(s)
- Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Xia Wang
- Ningxia Medical University, Ningxia, China
| | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Ningxia, China
| | - Weirong Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xiahui Ge
- Department of Respiratory Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China.
| | - Xiangguo Duan
- College of Clinical Medicine, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
20
|
Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol 2022; 15:80. [PMID: 35690784 PMCID: PMC9188021 DOI: 10.1186/s13045-022-01298-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in cancer therapeutics, glioblastoma (GBM) remains one of the most difficult cancers to treat in both the primary and recurrent settings. GBM presents a unique therapeutic challenge given the immune-privileged environment of the brain and the aggressive nature of the disease. Furthermore, it can change phenotypes throughout the course of disease—switching between mesenchymal, neural, and classic gene signatures, each with specific markers and mechanisms of resistance. Recent advancements in the field of immunotherapy—which utilizes strategies to reenergize or alter the immune system to target cancer—have shown striking results in patients with many types of malignancy. Immune checkpoint inhibitors, adoptive cellular therapy, cellular and peptide vaccines, and other technologies provide clinicians with a vast array of tools to design highly individualized treatment and potential for combination strategies. There are currently over 80 active clinical trials evaluating immunotherapies for GBM, often in combination with standard secondary treatment options including re-resection and anti-angiogenic agents, such as bevacizumab. This review will provide a clinically focused overview of the immune environment present in GBM, which is frequently immunosuppressive and characterized by M2 macrophages, T cell exhaustion, enhanced transforming growth factor-β signaling, and others. We will also outline existing immunotherapeutic strategies, with a special focus on immune checkpoint inhibitors, chimeric antigen receptor therapy, and dendritic cell vaccines. Finally, we will summarize key discoveries in the field and discuss currently active clinical trials, including combination strategies, burgeoning technology like nucleic acid and nanoparticle therapy, and novel anticancer vaccines. This review aims to provide the most updated summary of the field of immunotherapy for GBM and offer both historical perspective and future directions to help inform clinical practice.
Collapse
|
21
|
Moreau JM, Velegraki M, Bolyard C, Rosenblum MD, Li Z. Transforming growth factor-β1 in regulatory T cell biology. Sci Immunol 2022; 7:eabi4613. [PMID: 35302863 PMCID: PMC10552796 DOI: 10.1126/sciimmunol.abi4613] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is inextricably linked to regulatory T cell (Treg) biology. However, precisely untangling the role for TGF-β1 in Treg differentiation and function is complicated by the pleiotropic and context-dependent activity of this cytokine and the multifaceted biology of Tregs. Among CD4+ T cells, Tregs are the major producers of latent TGF-β1 and are uniquely able to activate this cytokine via expression of cell surface docking receptor glycoprotein A repetitions predominant (GARP) and αv integrins. Although a preponderance of evidence indicates no essential roles for Treg-derived TGF-β1 in Treg immunosuppression, TGF-β1 signaling is crucial for Treg development in the thymus and periphery. Furthermore, active TGF-β1 instructs the differentiation of other T cell subsets, including TH17 cells. Here, we will review TGF-β1 signaling in Treg development and function and discuss knowledge gaps, future research, and the TGF-β1/Treg axis in the context of cancer immunotherapy and fibrosis.
Collapse
Affiliation(s)
- Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center—James Cancer Hospital, Columbus, OH, USA
| |
Collapse
|
22
|
Bandaru SS, Boyilla R, Merchant N, Nagaraju GP, El-Rayes B. Targeting T regulatory cells: their role in colorectal carcinoma progression and current clinical trials. Pharmacol Res 2022; 178:106197. [DOI: 10.1016/j.phrs.2022.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
|
23
|
Arai N, Kudo T, Tokita K, Kyodo R, Sato M, Miyata E, Hosoi K, Ikuse T, Jimbo K, Ohtsuka Y, Shimizu T. Expression of Oncogenic Molecules in Pediatric Ulcerative Colitis. Digestion 2022; 103:150-158. [PMID: 34718239 PMCID: PMC8985031 DOI: 10.1159/000519559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/05/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Long-term disease duration of ulcerative colitis (UC) is known to increase the risk of developing colorectal cancer in adults; however, this association has not been genetically analyzed in children with UC. Herein, we examined the expression of cancer-related genes in the colonic mucosa of pediatric UC patients and their risk of developing colorectal cancer. METHODS Microarray analysis of cancer-related gene expression was conducted on rectal mucosa biopsy specimens randomly selected from pediatric cases, including 4 active-phase UC cases, 3 remission-phase UC cases, and 3 irritable bowel syndrome control cases. The subject pool was then expanded to 10 active-phase cases, 10 remission-phase cases, and 10 controls, which were analyzed by real-time polymerase chain reaction (PCR) and immunohistochemical staining. RESULTS The microarray results indicated significantly higher expression levels of cancer-related genes PIM2 and SPI1 in the active group than in the remission and control groups (p < 0.05). Real-time PCR confirmed that PIM2 and SPI1 expression levels were significantly higher, whereas TP53 and APC expression levels were significantly lower, in the active-phase group than in the remission and control groups (p < 0.05). Immunohistochemical staining for PIM2, SPI1, TP53, and APC proteins supported the real-time PCR results. CONCLUSIONS Expression levels of previously unreported cancer-related genes in adult UC patients were significantly higher in pediatric UC patients than in controls. Inflammation of the gastrointestinal mucosa increased the expression levels of cancer-related genes even in childhood-onset UC cases, suggesting that chronic inflammation from childhood may increase the risk of colorectal cancer development.
Collapse
|
24
|
Jiang M, Jin S, Han J, Li T, Shi J, Zhong Q, Li W, Tang W, Huang Q, Zong H. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res 2021; 9:85. [PMID: 34798902 PMCID: PMC8605607 DOI: 10.1186/s40364-021-00326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Histopathological examination (biopsy) is the "gold standard" for the diagnosis of colorectal cancer (CRC). However, biopsy is an invasive method, and due to the temporal and spatial heterogeneity of the tumor, a single biopsy cannot reveal the comprehensive biological characteristics and dynamic changes of the tumor. Therefore, there is a need for new biomarkers to improve CRC diagnosis and to monitor and treat CRC patients. Numerous studies have shown that "liquid biopsy" is a promising minimally invasive method for early CRC detection. A liquid biopsy mainly samples circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA) and extracellular vesicles (EVs). CTCs are malignant cells that are shed from the primary tumors and/or metastases into the peripheral circulation. CTCs carry information on both primary tumors and metastases that can reflect dynamic changes in tumors in a timely manner. As a promising biomarker, CTCs can be used for early disease detection, treatment response and disease progression evaluation, disease mechanism elucidation, and therapeutic target identification for drug development. This review will discuss currently available technologies for plasma CTC isolation and detection, their utility in the management of CRC patients and future research directions.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jinming Han
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Tong Li
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.,Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Qian Zhong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wen Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Qinqin Huang
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
25
|
Noël G, Fontsa ML, Garaud S, De Silva P, de Wind A, Van den Eynden GG, Salgado R, Boisson A, Locy H, Thomas N, Solinas C, Migliori E, Naveaux C, Duvillier H, Lucas S, Craciun L, Thielemans K, Larsimont D, Willard-Gallo K. Functional Th1-oriented T follicular helper cells that infiltrate human breast cancer promote effective adaptive immunity. J Clin Invest 2021; 131:e139905. [PMID: 34411002 DOI: 10.1172/jci139905] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that tumor-infiltrating lymphocytes (TIL) in human breast cancer sometimes form organized tertiary lymphoid structures (TLS) characterized by CXCL13-producing T follicular helper (Tfh) cells. The present study found that CD4+ Tfh TIL, CD8+ TIL, and TIL-B, colocalizing in TLS, all express the CXCL13 receptor CXCR5. An ex vivo functional assay determined that only activated, functional Th1-oriented Tfh TIL (PD-1hiICOSint phenotype) provide help for immunoglobulin and IFN-γ production. A functional Tfh TIL presence signals an active TLS, characterized by humoral (immunoglobulins, Ki-67+ TIL-B in active germinal centers) and cytotoxic (GZMB+CD8+ and GZMB+CD68+ TIL plus Th1 gene expression) immune responses. Analysis of active versus inactive TLS in untreated patients revealed that the former are associated with positive clinical outcomes. TLS also contain functional T follicular regulatory (Tfr) TIL, which are characterized by a CD25+CXCR5+GARP+FOXP3+ phenotype and a demethylated FOXP3 gene. Functional Tfr inhibited functional Tfh activities via a glycoprotein A repetitions predominant (GARP)-associated TGF-β-dependent mechanism. The activity of tumor-associated TLS was dictated by the relative balance between functional Tfh TIL and functional Tfr TIL. These data provide mechanistic insight into TLS processes orchestrated by functional Th1-oriented Tfh TIL, including TIL-B and CD8+ TIL activation and immunological memory generation. Tfh TIL, regulated by functional Tfr TIL, are an expected key target of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
| | | | | | | | - Alexandre de Wind
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Gert G Van den Eynden
- Molecular Immunology Unit, and.,Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus Campus, Wilrijk, Belgium
| | - Roberto Salgado
- Department of Pathology, GZA Ziekenhuizen, Sint-Augustinus Campus, Wilrijk, Belgium
| | | | - Hanne Locy
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | - Hugues Duvillier
- Molecular Immunology Unit, and.,Flow Cytometry Facility, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Lucas
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
26
|
Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, Li Z, Pan CX. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol 2021; 14:156. [PMID: 34579759 PMCID: PMC8475356 DOI: 10.1186/s13045-021-01164-5] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapies such as immune checkpoint blockade (ICB) and adoptive cell therapy (ACT) have revolutionized cancer treatment, especially in patients whose disease was otherwise considered incurable. However, primary and secondary resistance to single agent immunotherapy often results in treatment failure, and only a minority of patients experience long-term benefits. This review article will discuss the relationship between cancer immune response and mechanisms of resistance to immunotherapy. It will also provide a comprehensive review on the latest clinical status of combination therapies (e.g., immunotherapy with chemotherapy, radiation therapy and targeted therapy), and discuss combination therapies approved by the US Food and Drug Administration. It will provide an overview of therapies targeting cytokines and other soluble immunoregulatory factors, ACT, virotherapy, innate immune modifiers and cancer vaccines, as well as combination therapies that exploit alternative immune targets and other therapeutic modalities. Finally, this review will include the stimulating insights from the 2020 China Immuno-Oncology Workshop co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), the China National Medical Product Administration (NMPA) and Tsinghua University School of Medicine.
Collapse
Affiliation(s)
- Shaoming Zhu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Tian Zhang
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, DUMC 103861, Durham, NC, 27710, USA
| | - Lei Zheng
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hongtao Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,University of Chicago, Chicago, IL, USA
| | - Wenru Song
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,Kira Pharmaceuticals, Cambridge, MA, USA
| | - Delong Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.,New York Medical College, Valhalla, NY, USA
| | - Zihai Li
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA.
| | - Chong-Xian Pan
- Chinese American Hematologist and Oncologist Network, New York, NY, USA. .,Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
27
|
Bouchard A, Collin B, Garrido C, Bellaye PS, Kohli E. GARP: A Key Target to Evaluate Tumor Immunosuppressive Microenvironment. BIOLOGY 2021; 10:biology10090836. [PMID: 34571713 PMCID: PMC8470583 DOI: 10.3390/biology10090836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/12/2021] [Indexed: 01/16/2023]
Abstract
Simple Summary Tumors are not only composed of cancer cells but also of various infiltrating cells constituting the tumor microenvironment (TME); all these cells produce growth factors which contribute to tumor progression and invasiveness. Among them, transforming growth factor-β1 (TGF-β1) has been shown to be a potent immunosuppressive cytokine favoring cell proliferation and invasion and to be associated with resistance to anticancer treatments. Glycoprotein-A repetition predominant (GARP) plays a critical role in the activation of TGF-β1 and has been shown to be expressed at the membrane of cancer cells and also of regulatory T cells and platelets in the TME. An increased GARP expression has been shown in a variety of cancers. The objective of this review is to highlight GARP’s expression and function in cancer and to evaluate its potential as a predictive and therapeutic follow-up biomarker that could be assessed, in real time, by molecular imaging. Abstract Glycoprotein-A repetitions predominant (GARP) is the docking receptor for latent transforming growth factor (LTGF-β) and promotes its activation. In cancer, increased GARP expression has been found in many types of cancer. GARP is expressed by regulatory T cells and platelets in the tumor microenvironment (TME) and can be also expressed by tumor cells themselves. Thus, GARP can be widely present in tumors in which it plays a major role in the production of active TGF-β, contributing to immune evasion and cancer progression via the GARP-TGF-β pathway. The objective of this review is to highlight GARP expression and function in cancer and to evaluate the potential of membrane GARP as a predictive and therapeutic follow-up biomarker that could be assessed, in real time, by molecular imaging. Moreover, as GARP can be secreted, a focus will also be made on soluble GARP as a circulating biomarker.
Collapse
Affiliation(s)
- Alexanne Bouchard
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France; (A.B.); (B.C.); (C.G.)
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Bertrand Collin
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France; (A.B.); (B.C.); (C.G.)
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Carmen Garrido
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France; (A.B.); (B.C.); (C.G.)
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
| | - Pierre-Simon Bellaye
- Centre George-François Leclerc, Service de Médecine Nucléaire, Plateforme d’Imagerie et de Radiothérapie Précliniques, 1 rue du Professeur Marion, 21079 Dijon, France; (A.B.); (B.C.); (C.G.)
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
- Correspondence: (P.-S.B.); (E.K.)
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079 Dijon, France
- CHU Dijon, 21079 Dijon, France
- Correspondence: (P.-S.B.); (E.K.)
| |
Collapse
|
28
|
Jiang S, Zhang Y, Zhang X, Lu B, Sun P, Wu Q, Ding X, Huang J. GARP Correlates With Tumor-Infiltrating T-Cells and Predicts the Outcome of Gastric Cancer. Front Immunol 2021; 12:660397. [PMID: 34421887 PMCID: PMC8378229 DOI: 10.3389/fimmu.2021.660397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Accepting the crucial role of the immune microenvironment (TME) in tumor progression enables us to identify immunotherapeutic targets and develop new therapies. Glycoprotein A repetitions predominant (GARP) plays a vital part in maintaining regulatory T cell (Treg)-mediated immune tolerance. The impact of GARP in TME of gastric cancer is still worth exploring. We investigated public genomic datasets from The Cancer Genome Atlas and Gene Expression Omnibus to analyze the possible role of GARP and its relationship with TME of gastric cancer. Fluorescence-based multiplex immunohistochemistry and immunohistochemistry for T-cell immune signatures in a series of tissue microarrays were used to validate the value of GARP in the TME. We initially found that GARP expression was upregulated in gastric carcinoma cells, and diverse levels o3f immune cell infiltration and immune checkpoint expression were detected. Gene expression profiling revealed that GARP expression was related to the TME of gastric cancer. GARP upregulation was usually accompanied by increased FOXP3+ Treg and CD4+ T cell infiltration. In addition, GARP expression had positive relationships with CTLA-4 and PD-L1 expression in gastric cancer. Cox regression analysis and a nomogram highlighted that the probability of poor overall survival was predicted well by GARP or GARP+CD4+ T cell. Taken together, this research underlines the potential effect of GARP in regulating survival and tumor-infiltrating T-cells. In addition, the function of CD4+ T cell immune signatures in the prognosis can be clinically meaningful, thereby providing a new idea for the immunotherapeutic approach.
Collapse
Affiliation(s)
- Sutian Jiang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China.,Department of Pathology and Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Yifan Zhang
- Clinical Medicine, Xian Medical University, Xi'an, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Bing Lu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Wu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Xuzhong Ding
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianfei Huang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China.,Translational Medicine Center, The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, China
| |
Collapse
|
29
|
Iwanowycz S, Ngoi S, Li Y, Hill M, Koivisto C, Parrish M, Guo B, Li Z, Liu B. Type-2 dendritic cells mediate control of cytotoxic T cell-resistant tumors. JCI Insight 2021; 6:e145885. [PMID: 34283809 PMCID: PMC8492342 DOI: 10.1172/jci.insight.145885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Type 2 DCs (DC2s) comprise the majority of conventional DCs within most tumors; however, little is known about their ability to initiate and sustain antitumor immunity, as most studies have focused on antigen cross-presenting DC1s. Here, we report that DC2 infiltration identified by analysis of multiple human cancer data sets showed a significant correlation with survival across multiple human cancers, with the benefit being seen in tumors resistant to cytotoxic T cell control. Characterization of DC subtype infiltration into an immunotherapy-resistant model of breast cancer revealed that impairment of DC1s through 2 unique models resulted in enhanced DC2 functionality and improved tumor control. BATF3 deficiency depleted intratumoral DC1s, which led to increased DC2 lymph node migration and CD4+ T cell activation. Enhancing DC2 stimulatory potential by genetic deletion of Hsp90b1 (encoding molecular chaperon GP96) led to a similar enhancement of T cell immunity and improved survival in a spontaneous breast cancer model. These data highlight the therapeutic and prognostic potential of DC2s within checkpoint blockade–resistant tumors.
Collapse
Affiliation(s)
- Stephen Iwanowycz
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Soo Ngoi
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, United States of America
| | - Yingqi Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Megan Hill
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, United States of America
| | - Christopher Koivisto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, United States of America
| | - Melodie Parrish
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, United States of America
| | - Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Zihai Li
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, United States of America
| | - Bei Liu
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, United States of America
| |
Collapse
|
30
|
Lehmkuhl P, Gentz M, Garcia de Otezya AC, Grimbacher B, Schulze-Koops H, Skapenko A. Dysregulated immunity in PID patients with low GARP expression on Tregs due to mutations in LRRC32. Cell Mol Immunol 2021; 18:1677-1691. [PMID: 34059789 PMCID: PMC8245512 DOI: 10.1038/s41423-021-00701-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Immune dysregulation diseases are characterized by heterogeneous clinical manifestations and may have severe disease courses. The identification of the genetic causes of these diseases therefore has critical clinical implications. We performed whole-exome sequencing of patients with immune dysregulation disorders and identified two patients with previously undescribed mutations in LRRC32, which encodes glycoprotein A repetitions predominant (GARP). These patients were characterized by markedly reduced numbers and frequencies of regulatory T cells (Tregs). Tregs with mutated LRRC32 exhibited strongly diminished cell-surface GARP expression and reduced suppressor function. In a model of conditional Garp deficiency in mice, we confirmed increased susceptibility to inflammatory diseases once GARP expression on Tregs was decreased. Garp deficiency led to an unstable Treg phenotype due to diminished Foxp3 protein acetylation and stability. Our study reinforces the understanding of the immunological mechanisms of immune dysregulation and expands the knowledge on the immunological function of GARP as an important regulator of Treg stability.
Collapse
Affiliation(s)
- Peter Lehmkuhl
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Magdalena Gentz
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Andres Caballero Garcia de Otezya
- Institute for Immunodeficiency, Centre of Chronic Immunodeficiency, Medical Centre, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Centre of Chronic Immunodeficiency, Medical Centre, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine IV, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|
31
|
Satoh K, Kobayashi Y, Fujimaki K, Hayashi S, Ishida S, Sugiyama D, Sato T, Lim K, Miyamoto M, Kozuma S, Kadokura M, Wakita K, Hata M, Hirahara K, Amano M, Watanabe I, Okamoto A, Tuettenberg A, Jonuleit H, Tanemura A, Maruyama S, Agatsuma T, Wada T, Nishikawa H. Novel anti-GARP antibody DS-1055a augments anti-tumor immunity by depleting highly suppressive GARP+ regulatory T cells. Int Immunol 2021; 33:435-446. [PMID: 34235533 DOI: 10.1093/intimm/dxab027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T (Treg) cells, which are essential for maintaining self-tolerance, inhibit anti-tumor immunity, consequently hindering protective cancer immunosurveillance, and hampering effective anti-tumor immune responses in tumor-bearing hosts. Here, we show that depletion of Treg cells via targeting glycoprotein A repetitions predominant (GARP) induces effective anti-tumor immune responses. GARP was specifically expressed by highly suppressive Treg cells in the tumor microenvironment (TME) of multiple cancer types in humans. In the periphery, GARP was selectively induced in Treg cells, but not in effector T cells, by polyclonal stimulation. DS-1055a, a novel afucosylated anti-human GARP monoclonal antibody, efficiently depleted GARP+ Treg cells, leading to the activation of effector T cells. Moreover, DS-1055a decreased FoxP3+CD4+ T cells in the TME and exhibited remarkable anti-tumor activity in humanized mice bearing HT-29 tumors. We propose that DS-1055a is a new Treg-cell-targeted cancer immunotherapy agent with augmentation of anti-tumor immunity.
Collapse
Affiliation(s)
- Kazuki Satoh
- Early Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Yoichi Kobayashi
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kaori Fujimaki
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinko Hayashi
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Saori Ishida
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takahiko Sato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kyungtaek Lim
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Megumi Miyamoto
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Shiho Kozuma
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Michinori Kadokura
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Kenichi Wakita
- Translational Science Department I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Masato Hata
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Kazuki Hirahara
- Biologics Planning Department, Daiichi Sankyo Co., Ltd., Gunma 370-0503, Japan
| | - Masato Amano
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Ichiro Watanabe
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Atsushi Okamoto
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Toshinori Agatsuma
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Teiji Wada
- Oncology Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo 140-8710, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
32
|
Duan X, Iwanowycz S, Ngoi S, Hill M, Zhao Q, Liu B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front Oncol 2021; 11:629846. [PMID: 33898309 PMCID: PMC8062746 DOI: 10.3389/fonc.2021.629846] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
During tumor development and progression, intrinsic and extrinsic factors trigger endoplasmic reticulum (ER) stress and the unfolded protein response, resulting in the increased expression of molecular chaperones to cope with the stress and maintain tumor cell survival. Heat shock protein (HSP) GRP94, also known as GP96, is an ER paralog of HSP90 and has been shown to promote survival signaling during tumor-induced stress and modulate the immune response through its multiple clients, including TLRs, integrins, LRP6, GARP, IGF, and HER2. Clinically, elevated expression of GRP94 correlates with an aggressive phenotype and poor clinical outcome in a variety of cancers. Thus, GRP94 is a potential molecular marker and therapeutic target in malignancies. In this review, we will undergo deep molecular profiling of GRP94 in tumor development and summarize the individual roles of GRP94 in common cancers, including breast cancer, colon cancer, lung cancer, liver cancer, multiple myeloma, and others. Finally, we will briefly review the therapeutic potential of selectively targeting GRP94 for the treatment of cancers.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Iwanowycz
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Soo Ngoi
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Megan Hill
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Bei Liu
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
33
|
Rana MN, Lu J, Xue E, Ruan J, Liu Y, Zhang L, Dhar R, Li Y, Hu Z, Zhou J, Ma W, Tang H. PDE9 Inhibitor PF-04447943 Attenuates DSS-Induced Colitis by Suppressing Oxidative Stress, Inflammation, and Regulating T-Cell Polarization. Front Pharmacol 2021; 12:643215. [PMID: 33967779 PMCID: PMC8098793 DOI: 10.3389/fphar.2021.643215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a form of inflammatory bowel disease, which manifests as irritation or swelling and sores in the large intestine in a relapsing and remitting manner. In a dextran sulfate sodium sulfate (DSS)-induced UC model in female mice, we found that the levels of cyclic guanosine monophosphate (cGMP) are reduced, while the expression of phosphodiesterase 9A (PDE9A) is highest among all phosphodiesterase (PDEs). Since PDE9 has the highest affinity toward cGMP, we evaluated the selective PDE9 inhibitor PF-04447943 (PF) as a potential candidate for UC treatment. PF has been extensively studies in cognitive function and in sickle cell disease, but not in models for inflammatory bowel disease (IBD). Therefore, we used female C57BL/6 mice treated with 3% DSS alone or co-treated with PF or sulfasalazine (SASP) to study the body weight, colon length, histopathology, and measure superoxide dismutase (SOD), malondialdehyde (MDA), and cGMP level, as well as cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-12/23 (IL-12/23), interleukin-10 (IL-10), and pathways including nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and inflammasome activation. In addition, the number of dendritic cells (DC) and regulatory T cells (Treg cell) was assessed in the spleen, lymph node, and colon using flow cytometry. DSS reduced the number of goblet cells, decreased colon lengths and body weights, all of them were attenuated by PF treatment. It also suppressed the elevated level of inflammatory cytokines and increased level the anti-inflammatory cytokine, IL-10. PF treatment also reduced the DSS-induced inflammation by suppressing oxidative stress, NF-κB, STAT3, and inflammasome activation, by upregulating nuclear factor erythroid 2-related factor 2 (Nrf-2) and its downstream proteins via extracellular signal-regulated kinase (ERK) phosphorylation. Importantly, PF reversed imbalance in Treg/T helper 17 cells (Th17) cells ratio, possibly by regulating dendritic cells and Treg developmental process. In summary, this study shows the protective effect of a PDE9A inhibitor in ulcerative colitis by suppressing oxidative stress and inflammation as well as reversing the Treg/Th17 cells imbalance.
Collapse
Affiliation(s)
- Mohammad Nasiruddin Rana
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Lu
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Enfu Xue
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jingjing Ruan
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yuting Liu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Lejun Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Rana Dhar
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yajun Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zhengqiang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wangqian Ma
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Huifang Tang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Seed RI, Kobayashi K, Ito S, Takasaka N, Cormier A, Jespersen JM, Publicover J, Trilok S, Combes AJ, Chew NW, Chapman J, Krummel MF, Lou J, Marks J, Cheng Y, Baron JL, Nishimura SL. A tumor-specific mechanism of T reg enrichment mediated by the integrin αvβ8. Sci Immunol 2021; 6:6/57/eabf0558. [PMID: 33771888 DOI: 10.1126/sciimmunol.abf0558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/06/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
Regulatory T cells (Tregs) that promote tumor immune evasion are enriched in certain tumors and correlate with poor prognosis. However, mechanisms for Treg enrichment remain incompletely understood. We described a mechanism for Treg enrichment in mouse and human tumors mediated by the αvβ8 integrin. Tumor cell αvβ8 bound to latent transforming growth factor-β (L-TGF-β) presented on the surface of T cells, resulting in TGF-β activation and immunosuppressive Treg differentiation in vitro. In vivo, tumor cell αvβ8 expression correlated with Treg enrichment, immunosuppressive Treg gene expression, and increased tumor growth, which was reduced in mice by αvβ8 inhibition or Treg depletion. Structural modeling and cell-based studies suggested a highly geometrically constrained complex forming between αvβ8-expressing tumor cells and L-TGF-β-expressing T cells, facilitating TGF-β activation, independent of release and diffusion, and providing limited access to TGF-β inhibitors. These findings suggest a highly localized tumor-specific mechanism for Treg enrichment.
Collapse
Affiliation(s)
- Robert I Seed
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Kenji Kobayashi
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Saburo Ito
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Naoki Takasaka
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Anthony Cormier
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Jillian M Jespersen
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean Publicover
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Suprita Trilok
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.,ImmunoX CoLabs, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nayvin W Chew
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA.,ImmunoX CoLabs, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jocelyne Chapman
- Department of Gynecology and Oncology, University of California, San Francisco San Francisco, CA 94110, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - James Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jody L Baron
- Department of Medicine and Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA.,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stephen L Nishimura
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94110, USA. .,ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Anvari S, Schuster K, Grimbergen A, Davis CM, Makedonas G. Attenuation of GARP expression on regulatory T cells by protein transport inhibitors. J Immunol Methods 2021; 492:112998. [PMID: 33600819 DOI: 10.1016/j.jim.2021.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
An integrated understanding of the functional capacities of cells in the context of their physical parameters and molecular markers is increasingly demanded in immunologic studies. Regulatory T cells (Tregs) are a subpopulation of T cells involved in immune response modulation and mediating tolerance to self-antigen with their absence leading to a loss of tolerance. Glycoprotein repetitions A predominant (GARP) is a key marker for activated Tregs, but its detection may also be useful in determining the functional capacities of the cell. This study aims to deduce the optimal stimulation period and the impact of protein transport inhibitors (PTIs), commonly used in the detection of intracellular cytokines, on GARP detection. Through flow cytometric analysis we analyzed different cell culture conditions for optimal GARP expression on activated Tregs. Healthy donor PBMCs were stimulated with either Staphylococcal Enterotoxin B (SEB) or PMA/Ionomycin (PMA/Iono), in the presence and absence of PTIs monensin and/or brefeldin A (BFA) and GARP expression was assessed on CD4+ CD25+ FOXP3+ Tregs. The optimal stimulation period for the detection of GARP was highest at 24-h. Furthermore, we determined that GARP expression on Tregs is significantly reduced when cells are treated with the PTIs monensin and/or BFA following PMA/Iono stimulation. This effect was not seen following SEB stimulation. Therefore, due to the effects of PTIs, alternative methods should be considered when performing simultaneous analysis for cytokine expression and GARP expression on Tregs.
Collapse
Affiliation(s)
- Sara Anvari
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Kimberly Schuster
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Andrea Grimbergen
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - Carla M Davis
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| | - George Makedonas
- Baylor College of Medicine, Texas Children's Hospital, Section of Pediatric Immunology, Allergy, and Retrovirology, William T. Shearer Center for Human Immunobiology, 1102 Bates Avenue, Ste. 330, Houston, TX, USA.
| |
Collapse
|
36
|
Metelli A, Wu BX, Riesenberg B, Guglietta S, Huck JD, Mills C, Li A, Rachidi S, Krieg C, Rubinstein MP, Gewirth DT, Sun S, Lilly MB, Wahlquist AH, Carbone DP, Yang Y, Liu B, Li Z. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci Transl Med 2021; 12:12/525/eaay4860. [PMID: 31915300 DOI: 10.1126/scitranslmed.aay4860] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Cancer-associated thrombocytosis and high concentrations of circulating transforming growth factor-β1 (TGF-β1) are frequently observed in patients with progressive cancers. Using genetic and pharmacological approaches, we show a direct link between thrombin catalytic activity and release of mature TGF-β1 from platelets. We found that thrombin cleaves glycoprotein A repetitions predominant (GARP), a cell surface docking receptor for latent TGF-β1 (LTGF-β1) on platelets, resulting in liberation of active TGF-β1 from the GARP-LTGF-β1 complex. Furthermore, systemic inhibition of thrombin obliterates TGF-β1 maturation in platelet releasate and rewires the tumor microenvironment toward favorable antitumor immunity, which translates into efficient cancer control either alone or in combination with programmed cell death 1-based immune checkpoint blockade therapy. Last, we demonstrate that soluble GARP and GARP-LTGF-β1 complex are present in the circulation of patients with cancer. Together, our data reveal a mechanism of cancer immune evasion that involves thrombin-mediated GARP cleavage and the subsequent TGF-β1 release from platelets. We propose that blockade of GARP cleavage is a valuable therapeutic strategy to overcome cancer's resistance to immunotherapy.
Collapse
Affiliation(s)
- Alessandra Metelli
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bill X Wu
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Brian Riesenberg
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Silvia Guglietta
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John D Huck
- Hauptman Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Catherine Mills
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Anqi Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Saleh Rachidi
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark P Rubinstein
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel T Gewirth
- Hauptman Woodward Medical Research Institute, Buffalo, NY 14203, USA
| | - Shaoli Sun
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael B Lilly
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amy H Wahlquist
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David P Carbone
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.,Division of Medical Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Yiping Yang
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.,Division of Hematology, Department of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Bei Liu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA. .,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.,Division of Medical Oncology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Zhang Y, Rajput A, Jin N, Wang J. Mechanisms of Immunosuppression in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12123850. [PMID: 33419310 PMCID: PMC7766388 DOI: 10.3390/cancers12123850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary More emerging studies are exploring immunotherapy for solid cancers, including colorectal cancer. Besides, checkpoint blockade immunotherapy and chimeric antigen receptor (CAR) -based immune cell therapy have being examined in clinical trials for colorectal cancer patients. However, immunosuppression that leads to the blockage of normal immunosurveillance often leads to cancer development and relapse. In this study, we systematically reviewed the mechanism of immunosuppression, specifically in colorectal cancer, from different perspectives, including the natural or induced immunosuppressive cells, cell surface protein, cytokines/chemokines, transcriptional factors, metabolic alteration, phosphatase, and tissue hypoxia in the tumor microenvironment. We also discussed the progress of immunotherapies in clinical trials/studies for colorectal cancer and highlighted how different strategies for cancer therapy targeted the immunosuppression reviewed above. Our review provides some timely implications for restoring immunosurveillance to improve treatment efficacy in colorectal cancer (CRC). Abstract CRC is the third most diagnosed cancer in the US with the second-highest mortality rate. A multi-modality approach with surgery/chemotherapy is used in patients with early stages of colon cancer. Radiation therapy is added to the armamentarium in patients with locally advanced rectal cancer. While some patients with metastatic CRC are cured, the majority remain incurable and receive palliative chemotherapy as the standard of care. Recently, immune checkpoint blockade has emerged as a promising treatment for many solid tumors, including CRC with microsatellite instability. However, it has not been effective for microsatellite stable CRC. Here, main mechanisms of immunosuppression in CRC will be discussed, aiming to provide some insights for restoring immunosurveillance to improve treatment efficacy in CRC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ashwani Rajput
- Johns Hopkins Sidney Kimmel Cancer Center, National Capital Region, Sibley Memorial Hospital, 5255 Loughboro Road NW, Washington, DC 20016, USA;
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Correspondence: (N.J.); (J.W.); Tel.: +1-614-293-6529 (N.J.); +1-614-293-7733 (J.W.)
| | - Jing Wang
- Department of Cancer Biology and Genetics, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Correspondence: (N.J.); (J.W.); Tel.: +1-614-293-6529 (N.J.); +1-614-293-7733 (J.W.)
| |
Collapse
|
38
|
GARP promotes the proliferation and therapeutic resistance of bone sarcoma cancer cells through the activation of TGF-β. Cell Death Dis 2020; 11:985. [PMID: 33203838 PMCID: PMC7673987 DOI: 10.1038/s41419-020-03197-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Sarcomas are mesenchymal cancers with poor prognosis, representing about 20% of all solid malignancies in children, adolescents, and young adults. Radio- and chemoresistance are common features of sarcomas warranting the search for novel prognostic and predictive markers. GARP/LRRC32 is a TGF-β-activating protein that promotes immune escape and dissemination in various cancers. However, if GARP affects the tumorigenicity and treatment resistance of sarcomas is not known. We show that GARP is expressed by human osteo-, chondro-, and undifferentiated pleomorphic sarcomas and is associated with a significantly worse clinical prognosis. Silencing of GARP in bone sarcoma cell lines blocked their proliferation and induced apoptosis. In contrast, overexpression of GARP promoted their growth in vitro and in vivo and increased their resistance to DNA damage and cell death induced by etoposide, doxorubicin, and irradiation. Our data suggest that GARP could serve as a marker with therapeutic, prognostic, and predictive value in sarcoma. We propose that targeting GARP in bone sarcomas could reduce tumour burden while simultaneously improving the efficacy of chemo- and radiotherapy.
Collapse
|
39
|
Luo J, Liu P, Wang L, Huang Y, Wang Y, Geng W, Chen D, Bai Y, Yang Z. Establishment of an immune-related gene pair model to predict colon adenocarcinoma prognosis. BMC Cancer 2020; 20:1071. [PMID: 33167940 PMCID: PMC7654612 DOI: 10.1186/s12885-020-07532-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Colon cancer is the most common type of gastrointestinal cancer and has high morbidity and mortality. Colon adenocarcinoma (COAD) is the main pathological type of colon cancer, and much evidence has supported the correlation between the prognosis of COAD and the immune system. The current study aimed to develop a robust prognostic immune-related gene pair (IRGP) model to estimate the overall survival of patients with COAD. Methods The gene expression profiles and clinical information of patients with colon adenocarcinoma were obtained from the TCGA and GEO databases and were divided into training and validation cohorts. Immune genes were selected that showed a significant association with prognosis. Results Among 1647 immune genes, a model with 17 IRGPs was built that was significantly associated with OS in the training cohort. In the training and validation datasets, the IRGP model divided patients into the high-risk group and low-risk group, and the prognosis of the high-risk group was significantly worse (P<0.001). Univariate and multivariate Cox proportional hazard analyses confirmed the feasibility of this model. Functional analysis confirmed that multiple tumor progression and stem cell growth-related pathways were upregulated in the high-risk groups. Regulatory T cells and macrophages M0 were significantly highly expressed in the high-risk group. Conclusion We successfully constructed an IRGP model that can predict the prognosis of COAD, providing new insights into the treatment strategy of COAD. Supplementary information Supplementary information accompanies this paper at 10.1186/s12885-020-07532-7.
Collapse
Affiliation(s)
- Jihang Luo
- Cancer Hospital, Second Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China
| | - Puyu Liu
- Department of Pathology, Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Leibo Wang
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yi Huang
- Cancer Hospital, Second Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China
| | - Yuanyan Wang
- Cancer Hospital, Second Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China
| | - Wenjing Geng
- Cancer Hospital, Second Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China
| | - Duo Chen
- Cancer Hospital, Second Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China
| | - Yuju Bai
- Cancer Hospital, Second Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China.
| | - Ze Yang
- Cancer Hospital, Second Affiliated Hospital of Zunyi Medical University, Zunyi City, 563000, Guizhou Province, China.
| |
Collapse
|
40
|
Xing H, Liang C, Xu X, Sun H, Ma X, Jiang Z. Mesenchymal stroma/stem-like cells of GARP knockdown inhibits cell proliferation and invasion of mouse colon cancer cells (MC38) through exosomes. J Cell Mol Med 2020; 24:13984-13990. [PMID: 33155413 PMCID: PMC7753840 DOI: 10.1111/jcmm.16008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stroma/stem-like cells (MSCs) have antitumour activity, and MSC-derived exosomes play a role in the growth, metastasis and invasion of tumour cells. Additionally, glycoprotein A repetition predominant (GARP) promotes oncogenesis in breast cancer. Therefore, GARP is speculated to be a target gene for cancer therapy. We aimed to explore the therapy role of MSC-derived exosomes targeting GARP in mouse colon cancer cell MC38. We successfully established a GARP knockdown system using three kinds of siRNA-GARP in MSC cells. Exosomes were isolated from MSC and siGARP-MSC cells, and verified by the exosome surface protein markers CD9, CD63 and CD81. GARP expression was significantly decreased in siGARP-MSC exosomes compared with that of MSC exosomes. We found that siGARP-MSC exosomes inhibited cell proliferation, migration and invasion of MC38 cells, using CCK-8, colony formation, wound-healing and Transwell invasion assays. Furthermore, siGARP-MSC exosomes impeded IL-6 secretion and partly inactivated JAK1/STAT3 pathway, measured using ELISA and RT-qPCR. In conclusion, MSC-derived exosomes targeting GARP are a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyan Liang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xintong Xu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Sun
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Sun YL, Zhang Y, Guo YC, Yang ZH, Xu YC. A Prognostic Model Based on the Immune-related Genes in Colon Adenocarcinoma. Int J Med Sci 2020; 17:1879-1896. [PMID: 32788867 PMCID: PMC7415395 DOI: 10.7150/ijms.45813] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Immune-related genes (IRGs) are critically involved in the tumor microenvironment (TME) of colon adenocarcinoma (COAD). Here, the study was mainly designed to establish a prognostic model of IRGs to predict the survival of COAD patients. Methods: The Cancer Genome Atlas (TCGA), Immunology Database and Analysis Portal (ImmPort) database, and Cistrome database were utilized for extracting data regarding the expression of immune gene- and tumor-related transcription factors (TFs), aimed at the identification of differentially expressed genes (DEGs), differentially expressed IRGs (DEIRGs), and differentially expressed TFs (DETFs). Univariate Cox regression analysis was subsequently performed for the acquisition of prognosis-related IRGs, followed by establishment of TF regulatory network for uncovering the possible molecular regulatory association in COAD. Subsequently, multivariate Cox regression analysis was conducted to further determine the role of prognosis-related IRGs for prognostic prediction in COAD. Finally, the feasibility of a prognostic model with immunocytes was explored by immunocyte infiltration analysis. Results: A total of 2450 DEGs, 8 DETFs, and 79 DEIRGs were extracted from the corresponding databases. Univariate Cox regression analysis revealed 11 prognosis-related IRGs, followed by establishment of a regulatory network on prognosis-related IRGs at transcriptional levels. Functionally, IRG GLP2R was negatively modulated by TF MYH11, whereas IRG TDGF1 was positively modulated by TF TFAP2A. Multivariate Cox regression analysis was subsequently performed to establish a prognostic model on the basis of seven prognosis-related IRGs (GLP2R, ESM1, TDGF1, SLC10A2, INHBA, STC2, and CXCL1). Moreover, correlation analysis of immunocyte infiltration also revealed that the seven-IRG prognostic model was positively associated with five types of immunocytes (dendritic cell, macrophage, CD4 T cell, CD8 T cell, and neutrophil), which may directly reflect tumor immune state in COAD. Conclusions: Our present findings indicate that the prognostic model based on prognosis-related IRGs plays a crucial role in the clinical supervision and prognostic prediction of COAD patients at both molecular and cellular levels.
Collapse
Affiliation(s)
| | | | | | | | - Yue-Chao Xu
- Department of Gastrointestinal Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
42
|
Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 2020; 19:116. [PMID: 32680511 PMCID: PMC7367382 DOI: 10.1186/s12943-020-01234-1] [Citation(s) in RCA: 499] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) characterized by the expression of the master transcription factor forkhead box protein p3 (Foxp3) suppress anticancer immunity, thereby hindering protective immunosurveillance of tumours and hampering effective antitumour immune responses in tumour-bearing hosts, constitute a current research hotspot in the field. However, Tregs are also essential for the maintenance of the immune tolerance of the body and share many molecular signalling pathways with conventional T cells, including cytotoxic T cells, the primary mediators of tumour immunity. Hence, the inability to specifically target and neutralize Tregs in the tumour microenvironment without globally compromising self-tolerance poses a significant challenge. Here, we review recent advances in characterizing tumour-infiltrating Tregs with a focus on the functional roles of costimulatory and inhibitory receptors in Tregs, evaluate their potential as clinical targets, and systematically summarize their roles in potential treatment strategies. Also, we propose modalities to integrate our increasing knowledge on Tregs phenotype and function for the rational design of checkpoint inhibitor-based combination therapies. Finally, we propose possible treatment strategies that can be used to develop Treg-targeted therapies.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaofei Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
43
|
Olguín JE, Medina-Andrade I, Rodríguez T, Rodríguez-Sosa M, Terrazas LI. Relevance of Regulatory T Cells during Colorectal Cancer Development. Cancers (Basel) 2020; 12:E1888. [PMID: 32674255 PMCID: PMC7409056 DOI: 10.3390/cancers12071888] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been a significant increase in the study of own and foreign human factors favoring the development of different types of cancer, including genetic and environmental ones. However, the fact that the immune response plays a fundamental role in the development of immunity and susceptibility to colorectal cancer (CRC) is much stronger. Among the many cell populations of the immune system that participate in restricting or favoring CRC development, regulatory T cells (Treg) play a major role in orchestrating immunomodulation during CRC. In this review, we established concrete evidence supporting the fact that Treg cells have an important role in the promotion of tumor development during CRC, mediating an increasing suppressive capacity which controls the effector immune response, and generating protection for tumors. Furthermore, Treg cells go through a process called "phenotypic plasticity", where they co-express transcription factors that promote an inflammatory profile. We reunited evidence that describes the interaction between the different effector populations of the immune response and its modulation by Treg cells adapted to the tumor microenvironment, including the mechanisms used by Treg cells to suppress the protective immune response, as well as the different subpopulations of Treg cells participating in tumor progression, generating susceptibility during CRC development. Finally, we discussed whether Treg cells might or might not be a therapeutic target for an effective reduction in the morbidity and mortality caused by CRC.
Collapse
Affiliation(s)
- Jonadab E. Olguín
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| | - Itzel Medina-Andrade
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| | - Tonathiu Rodríguez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
| | - Miriam Rodríguez-Sosa
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
| | - Luis I. Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores (FES) Iztacala, Universidad Nacional Autónoma de México (UNAM), Av. De los Barrios # 1, Tlalnepantla 54090, Mexico; (J.E.O.); (I.M.-A.); (T.R.); (M.R.-S.)
- Unidad de Biomedicina, FES Iztacala, UNAM, Av. De los Barrios # 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
44
|
Akkaya B, Shevach EM. Regulatory T cells: Master thieves of the immune system. Cell Immunol 2020; 355:104160. [PMID: 32711171 DOI: 10.1016/j.cellimm.2020.104160] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Treg cells are the immune system's in-house combatants against pathological immune activation. Because they are vital to maintenance of peripheral tolerance, it is important to understand how they perform their functions. To this end, various mechanisms have been proposed for Treg-mediated immune inhibition. A major group of mechanisms picture Treg cells as skilled thieves stealing a plethora of molecules that would otherwise promote immune effector functions. This suggests that several million years of evolution have endowed Treg cells with efficient ways to deprive immune effectors of activating stimuli to prevent immunopathology for survival of the host. Although we are still long way from deciphering their complete set of tricks, this review will focus on the types of "crimes" committed by these master thieves in both secondary lymphoid organs and non-lymphoid tissue.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Nasrallah R, Imianowski CJ, Bossini-Castillo L, Grant FM, Dogan M, Placek L, Kozhaya L, Kuo P, Sadiyah F, Whiteside SK, Mumbach MR, Glinos D, Vardaka P, Whyte CE, Lozano T, Fujita T, Fujii H, Liston A, Andrews S, Cozzani A, Yang J, Mitra S, Lugli E, Chang HY, Unutmaz D, Trynka G, Roychoudhuri R. A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by T reg cells. Nature 2020; 583:447-452. [PMID: 32499651 PMCID: PMC7116706 DOI: 10.1038/s41586-020-2296-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.
Collapse
Affiliation(s)
- Rabab Nasrallah
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Charlotte J Imianowski
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | - Francis M Grant
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | | | | | | | - Paula Kuo
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Firas Sadiyah
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah K Whiteside
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maxwell R Mumbach
- Howard Hughes Medical Institute and Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Dafni Glinos
- Immune Genomics Group, Wellcome Sanger Institute, Cambridge, UK
| | - Panagiota Vardaka
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Carly E Whyte
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Teresa Lozano
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Biochemistry and Genome Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Adrian Liston
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, UK
| | - Adeline Cozzani
- Inserm UMR1277/CNRS9020, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Jie Yang
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Suman Mitra
- Inserm UMR1277/CNRS9020, Institut pour la Recherche sur le Cancer de Lille, Lille, France
| | - Enrico Lugli
- Humanitas Clinical and Research Center, Milan, Italy
| | - Howard Y Chang
- Howard Hughes Medical Institute and Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Gosia Trynka
- Immune Genomics Group, Wellcome Sanger Institute, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
46
|
Campbell MG, Cormier A, Ito S, Seed RI, Bondesson AJ, Lou J, Marks JD, Baron JL, Cheng Y, Nishimura SL. Cryo-EM Reveals Integrin-Mediated TGF-β Activation without Release from Latent TGF-β. Cell 2020; 180:490-501.e16. [PMID: 31955848 PMCID: PMC7238552 DOI: 10.1016/j.cell.2019.12.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/15/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Integrin αvβ8 binds with exquisite specificity to latent transforming growth factor-β (L-TGF-β). This binding is essential for activating L-TGF-β presented by a variety of cell types. Inhibiting αvβ8-mediated TGF-β activation blocks immunosuppressive regulatory T cell differentiation, which is a potential therapeutic strategy in cancer. Using cryo-electron microscopy, structure-guided mutagenesis, and cell-based assays, we reveal the binding interactions between the entire αvβ8 ectodomain and its intact natural ligand, L-TGF-β, as well as two different inhibitory antibody fragments to understand the structural underpinnings of αvβ8 binding specificity and TGF-β activation. Our studies reveal a mechanism of TGF-β activation where mature TGF-β signals within the confines of L-TGF-β and the release and diffusion of TGF-β are not required. The structural details of this mechanism provide a rational basis for therapeutic strategies to inhibit αvβ8-mediated L-TGF-β activation.
Collapse
Affiliation(s)
- Melody G Campbell
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Anthony Cormier
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Saburo Ito
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Robert I Seed
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Bondesson
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Jianlong Lou
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - James D Marks
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Jody L Baron
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Stephen L Nishimura
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol 2019; 101:123-139. [PMID: 31879265 DOI: 10.1016/j.semcdb.2019.12.010] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
'Jack of all trades, master of everything' is a fair label for transforming growth factor β1 (TGF-β) - a cytokine that controls our life at many levels. In the adult organism, TGF-β1 is critical for the development and maturation of immune cells, maintains immune tolerance and homeostasis, and regulates various aspects of immune responses. Following acute tissue damages, TGF-β1 becomes a master regulator of the healing process with impacts on about every cell type involved. Divergence from the tight control of TGF-β1 actions, for instance caused by chronic injury, severe trauma, or infection can tip the balance from regulated physiological to excessive pathological repair. This condition of fibrosis is characterized by accumulation and stiffening of collagenous scar tissue which impairs organ functions to the point of failure. Fibrosis and dysregulated immune responses are also a feature of cancer, in which tumor cells escape immune control partly by manipulating TGF-β1 regulation and where immune cells are excluded from the tumor by fibrotic matrix created during the stroma 'healing' response. Despite the obvious potential of TGF-β-signalling therapies, globally targeting TGF-β1 receptor, downstream pathways, or the active growth factor have proven to be extremely difficult if not impossible in systemic treatment regimes. However, TGF-β1 binding to cell receptors requires prior activation from latent complexes that are extracellularly presented on the surface of immune cells or within the extracellular matrix. These different locations have led to some divergence in the field which is often either seen from the perspective of an immunologists or a fibrosis/matrix researcher. Despite these human boundaries, there is considerable overlap between immune and tissue repair cells with respect to latent TGF-β1 presentation and activation. Moreover, the mechanisms and proteins employed by different cells and spatiotemporal control of latent TGF-β1 activation provide specificity that is amenable to drug development. This review aims at synthesizing the knowledge on TGF-β1 extracellular activation in the immune system and in fibrosis to further stimulate cross talk between the two research communities in solving the TGF-β conundrum.
Collapse
Affiliation(s)
- Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G1G6, Canada.
| |
Collapse
|
48
|
Ma W, Qin Y, Chapuy B, Lu C. LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS One 2019; 14:e0213482. [PMID: 31600200 PMCID: PMC6786621 DOI: 10.1371/journal.pone.0213482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
Transforming growth factor‑β1 (TGF-β1) is a versatile cytokine. It has context-dependent pro- and anti-cell proliferation functions. Activation of latent TGF-β1 requires release of the growth factor from pro-complexes and is regulated through TGF-β binding proteins. Two types of TGF-β binding partners, latent TGF-β-binding proteins (LTBPs) and leucine-rich-repeat-containing protein 32 (LRRC32), have been identified and their expression are cell specific. TGF-β1 also plays important roles in acute myeloid leukemia (AML) cells. However, the expression of LTBPs and LRRC32 are lacking in myeloid lineage cells and the binding protein of TGF-β1 in these cells are unknown. Here we show that a novel leucine-rich-repeat-containing protein family member, LRRC33, with high mRNA level in AML cells, to be the binding and regulating protein of TGF-β1 in AML cells. Using two representative cell lines MV4-11 and AML193, we demonstrate that the protein expression of LRRC33 and TGF-β1 are correlated. LRRC33 co-localizes and forms complex with latent TGF-β1 protein on the cell surface and intracellularly in these cells. Similar as in other cell types, the activation of TGF-β1 in MV4-11 and AML193 cells are also integrin dependent. We anticipate our study to be a starting point of more comprehensive research on LRRC33 as novel TGF-β regulating protein and potential non-genomic based drug target for AML and other myeloid malignancy.
Collapse
MESH Headings
- Cell Line, Tumor
- Drug Delivery Systems
- Humans
- Latent TGF-beta Binding Proteins/genetics
- Latent TGF-beta Binding Proteins/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Wenjiang Ma
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Yan Qin
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Chafen Lu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
49
|
Regulatory T cell adaptation in the intestine and skin. Nat Immunol 2019; 20:386-396. [PMID: 30890797 DOI: 10.1038/s41590-019-0351-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
The intestine and skin are distinct microenvironments with unique physiological functions and are continually exposed to diverse environmental challenges. Host adaptation at these sites is an active process that involves interaction between immune cells and tissue cells. Regulatory T cells (Treg cells) play a pivotal role in enforcing homeostasis at barrier surfaces, illustrated by the development of intestinal and skin inflammation in diseases caused by primary deficiency in Treg cells. Treg cells at barrier sites are phenotypically distinct from their lymphoid-organ counterparts, and these 'tissue' signatures often reflect their tissue-adapted function. We discuss current understanding of Treg cell adaptation in the intestine and skin, including unique phenotypes, functions and metabolic demands, and how increased knowledge of Treg cells at barrier sites might guide precision medicine therapies.
Collapse
|